
Commun. Math. Phys. 162, 399^31 (1994) Communicat ions ΪΠ

Mathematical
Physics

© Springer-Verlag 1994

On the Completeness of the Set of Classical ^-Algebras
Obtained from DS Reductions

L. Feher1 >*, L.O'Raifeartaigh2, P. Ruelle2,1. Tsutsui2

1 Physikalisches Institut der Universitat Bonn, NuBallee 12, D-53115 Bonn, Germany
2 Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

Received: 30 April 1993/in revised form: 9 September 1993

Abstract: We clarify the notion of the DS - generalized Drinfeld-Sokolov - reduction
approach to classical ^-algebras. We first strengthen an earlier theorem which
showed that an sl(2) embedding ^ c & can be associated to every DS reduction. We
then use the fact that a ^"-algebra must have a quasi-primary basis to derive severe
restrictions on the possible reductions corresponding to a given 5/(2) embedding.
In the known DS reductions found to date, for which the ^-algebras are denoted
by ^F-algebras and are called canonical, the quasi-primary basis corresponds to
the highest weights of the 5/(2). Here we find some examples of noncanonical DS
reductions leading to ^-algebras which are direct products of Wy -algebras and

"free field" algebras with conformal weights A G {θ, | , l } . We also show that if the
conformal weights of the generators of a ^"-algebra obtained from DS reduction are
nonnegative A > 0 (which is the case for all DS reductions known to date), then the
A > - subsectors of the weights are necessarily the same as in the corresponding

3^*? -algebra. These results are consistent with an earlier result by Bowcock and Watts
on the spectra of ^-algebras derived by different means. We are led to the conjecture
that, up to free fields, the set of ^-algebras with nonnegative spectra A > 0 that
may be obtained from DS reduction is exhausted by the canonical ones.

1. Introduction

The study of nonlinear extensions of the Virasoro algebra by conformal primary fields
was initiated by A. B. Zamolodchikov in the pioneering paper [1]. Such algebras,
known as ^"-algebras, play an important role in two dimensional conformal field
theories, gravity models and integrable systems. (For detailed reviews, see e.g. [2, 3].)
At least three distinct methods are used in the literature for constructing ^-algebras.
These can be labelled as direct constructions [1,4, 5], the methods of extracting W-
algebras from conformal field theories (the most important of which is the coset
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construction) [6-10], and Hamiltonian reductions of affine Kac-Moody (KM) algebras
to ^-algebras [11-13]. The Hamiltonian KM reduction method has been intensively
pursued recently both in the classical [14-17] and in the quantum framework [18-22],
and proved to be the most productive source of ^"-algebras so far. As reviewed in
[23], the ^"-algebras obtained by this method are symmetry algebras of Toda type
field theories, first studied in [24]. (See also [25,26].)

In constructing a reduction of the KM Poisson bracket algebra to a classical W-
algebra we start by imposing certain first class constraints on the KM current, and
consider the ring M of differential polynomials in the current which are invariant
under the gauge transformations generated by the first class constraints. The crucial
questions are:

(A) free generation: whether the ring 3% of differential polynomial invariants is freely
generated.

(B) conformal property: whether
(bl) JB contains a gauge invariant Virasoro density.
(b2) & has a ^*-basis.

Here by 3^-basis is meant a basis which consists of a Virasoro density and fields
which are primary with respect to this Virasoro. See also Sect. 2 for the notion of
classical W-algebra used throughout the paper.

These are quite separate issues and it is easy to construct examples for which (A)
holds but not (B) and (bl) holds but not (A). (They are of course interrelated since
(b2) obviously requires (A) and (bl).) Naturally, the answers to both (A) and (B)
must be positive for a KM reduction to produce a classical ^"-algebra.

All Hamiltonian KM reductions that are, to the date of writing, known to produce a
(classical) ^-algebra are so called DS - generalized Drinfeld-Sokolov - reductions.
In a DS reduction one makes the technical assumption that a certain mechanism
is applicable, whose essence is that a freely generating basis (not necessarily the
5^-basis) of 3% can be constructed by a gauge fixing procedure, and the Virasoro
element of the 3F-basis is obtained by improving the Sugawara formula by adding
the derivative of a current component. This mechanism is termed the DS mechanism
in this paper and will be described in some detail. However, for a generic KM
reduction by first class constraints one cannot expect the invariant ring 3% to admit
a free generating set; in fact, the special gauge fixing procedure involved in the DS
mechanism is the only known method whereby the existence of such a basis set can
be guaranteed. The distinguished position of DS reductions among all Hamiltonian
KM reductions derives from the applicability of this gauge fixing procedure, which
places a stringent restriction on the nature of the constraints.

An important recent development concerning the Hamiltonian KM reduction
method has been the realization [15,16] that a DS reduction can be defined to every
embedding of the Lie algebra sl(2) into the simple Lie algebras. The construction
generalizes the standard case appearing in the construction of KdV type hierarchies
by Drinfeld and Sokolov [11], which corresponds to the principal sl(2) embedding
[14]. We call these DS reductions manifestly based on the sl(2) embeddings the
canonical DS reductions and the resultant ^"-algebras the WyF-algebras, where & is
the simple Lie algebra and 5^ C & is the sl(2) subalgebra. One of the salient features
of the ^F-algebras is that the conformal weights of the elements in the ^-bas is
are determined by the si(2) spins in the decomposition of the adjoint representation
of & under J^7, and the basis elements are naturally associated to the highest weight
vectors in this decomposition. Motivated by their natural, group theoretic definition,
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and by the fact that at present the canonical DS reductions are the only KM reductions
known to produce ^"-algebras, it is expected that the ^F-algebras should have an
important role to play in the classification of ^-algebras.

Our main purpose in this paper is to show that the possible noncanonical DS
reductions are severely restricted. We do manage to construct some noncanonical DS
reductions, but their ^"-algebras turn out to be direct products of ^Γ-algebras and
"free field" algebras. Another purpose is to clarify the notion of DS reductions, and
thus furnish a framework which could be used in further study of KM reductions.

We shall present here a stronger version of our earlier theorem given in [23] which
shows that an sl(2) embedding can be associated to every DS type KM reduction.
Most considerations in this paper on general DS reductions will be based on this
crucial structural result. The source of the inevitable sl(2) structure given by the
theorem is that the existence of a ^"-basis in 3B (more precisely, we shall only need
the existence of a quasi-primary basis for this) requires the element of & defining the
improvement term of the Virasoro density to be the semisimple element (or "defining
vector" in the terminology of [27]) of an sl(2) subalgebra. An immediate consequence
of the 5/(2) structure is that the conformal weights A of the elements in the ^-basis
must necessarily be integral or half-integral. More importantly, since the classification
of sl(2) embeddings is known, the sl{2) theorem reduces the problem of listing all
DS reductions to the problem of finding the possible different DS reductions that may
belong to a given s/(2) embedding. The new results obtained in this paper indicate that
the possible DS reductions corresponding to a given sl(2) embedding are extremely
restricted. We shall prove that, due again to the existence of a ^-basis (or quasi-
primary basis), the dimension of the gauge subalgebra defining the constraints must
be at least half the maximal dimension allowed by first classness, which is attained
in the canonical DS reduction, and give restrictions on the position of the gauge
subalgebra inside S? with respect to the 5/(2) embedding. We then show that if the
conformal weights of the SP^-basis are nonnegative A > 0, which is the case for all
^-algebras known to date, then the sectors A > - must be the same as those in the

corresponding W^ -algebra. This result may be thought of as complementary (and
consistent) to a result in [31] on the possible conformal spectra of ^-algebras, since
our assumptions are different. (A more detailed comparison between the results of
[31] and our results can be found in the Discussion.) Another important result of this
paper is that we shall prove, by providing examples, the existence of noncanonical DS
reductions to S^-algebras where there occur extra weights A = 0, ^, 1 in addition to
the canonical spectrum. However, in all those noncanoncial examples the ^-algebra
turns out to be a direct product of the ^ f -algebra with trivial "free fields" carrying
the extra weights, and thus it is essentially equivalent to the S^F-algebra.

It is clear that the DS reductions form only a special subset of the possible
conformally invariant Hamiltonian KM reductions, and it is natural to inquire about
the situation in the general case. This question appears largely unexplored at present,
but the series of examples considered in the Appendix of this paper gives support to
the expectation that in the general case the ring JB is not freely generated. Consider,
for example, the "VF^-algebras" proposed by Polyakov and Bershadsky [28, 29] using
KM reductions with a mixed (first class and second class) system of constraints for
S? — sl(ri). An investigation [30] showed that the invariant ring 38 can be defined
similarly to the case of the DS reductions, but there is no guarantee that 3% is freely
generated, since DS gauge fixing is not applicable, apart from the cases W% with
n odd which are in fact equivalent to particular ^F-algebras. In other words, in
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general the familiar Bershadsky-Polyakov reductions cannot be expected to yield W-
algebras in the usual sense of the word, since they fail on requirement (A). Focusing
on the particular cases of the W|n-algebras, we shall prove that M is indeed not
freely generated. On this basis we believe that the structure of the invariant ring ^
is in general much more complicated than in the case of DS type reductions, which
provides the justification for adopting the applicability of DS gauge fixing as one of
the main assumptions underlying our present study.

This paper is organized as follows. To clarify the notion of the DS approach to
classical ^-algebras in the more general framework of Hamiltonian KM reductions,
we provide in Sect. 2 a detailed account of the DS approach and in particular of
the canonical DS reductions leading to the W^f -algebras. Section 3 contains the
sl(2) theorem, which associates an sl(2) embedding to every DS reduction. Section
4 deals with the restrictions on the possible DS reductions belonging to the same
sl{2) embedding. Section 5 gives the argument on the spectrum of the conformal
weights, and the new examples of noncanonical DS reductions. In Sect. 6 we give
our conclusions, discuss the relationship of our results with those in [31], and
point out some open problems. We conclude with the statement of the conjecture
mentioned in the Abstract and the discussion of some open questions. There is also
an appendix containing as illustration the W^n-eductions which lead to nonfreely
generated invariant rings j^L

2. Classical ^"-Algebras

By definition, a classical W*-algebra is a Poisson bracket algebra built on a finite
number of independent fields Wa(z), a = 1,.. ., N9 defined on the circle Sι, according
to the following requirements. First, the defining Poisson bracket relations are of the
form 1

{Wb(z), Wc(w)} = ] Γ Pι

hc (Wx(w\..., WN(w)) δ(i\z - w), (2.1)

where the P£c appearing in the finite sum (i = 0,1,2,...) on the right hand side are
differential polynomials in the generator fields {Wa}^=ι, with constant terms allowed.
Second, Wx satisfies the Virasoro Poisson bracket algebra,

{W^z), Wx(w)} = -W[(w)δ(z -w) + 2W1(w)δ'(z -w) + —δ'"(z - w). (2.2)

Third, the rest of the generators Wa, a = 2 , . . . , N, are conformal primary fields with
respect to W{,

{Wyiz),Wa(w)} = -W'a(w)δ(z-w)+ΔaWa{w)δ'{z-w), a = 2,...,N. (2.3)

The classical Virasoro centre c and the conformal weights Δa, a = 2, ...,JV,
are (in general complex) numbers. These constant parameters and the "structure
polynomials" P£c are restricted by the antisymmetry and the Jacobi identity of the

1 Conventions: δ(z - w) := ^ Σnez zn~lw~n is the delta-function on Sι (\z\ = \w\ = 1) for

which fdzf(z)δ(z - w) = f(w); we use δ{i\z - w) = (4Λ% δ(z - w). The Virasoro Wγ(z) in

(2.2) and the KM current J(z) in (2.4) have their Laurent modes, Ln := i§ dzW{(z)zn+ι and
Jn := —ifdz J(z)zn, which fulfil the standard Virasoro and affine KM algebras with centre c and
k, respectively (up to an overall factor (—i) to be replaced by 1 upon quantization)
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Poisson bracket. Two classical ^'-algebras are regarded to be equivalent if their
defining relations can be brought to the same form by a differential polynomial
change of basis, Wa —* Wa = W"α(Wi, , WN), such that the inverse transformation,
Wa —» Wa = H^W^,. . . , WN) is also given by differential polynomials.

In principle, one can construct classical 7/'"-algebras by determining the constant
parameters and the structure polynomials directly from the requirements of antisym-
metry and Jacobi identity. However, in practice this is hard to carry out systematically,
and for this reason in this paper we are interested in the DS reduction approach where
these requirements are guaranteed by construction. Moreover, this approach enables
us to quantize the resulting algebras directly through the BRST procedure.

2.1. The DS Reduction Approach to Classical W-Algebras

The general strategy of the DS reduction approach to constructing classical W-
algebras may be formulated as follows. Consider a finite dimensional complex simple
Lie algebra '.£ with the ad-invariant, nondegenerate scalar product ( , ). Denote by
.76' the space of .'^-valued smooth functions on the circle,,76' \— { J(z) | J(z) G £'},
and let .76' carry the "KM Poisson bracket algebra" given by

{(α, J(z)) , (/?, J(w))} = <[α, β], J(z))δ(z - w)

+ K(a, β)δ\z - w), Vα, β G V, (2.4)

where k = -2πK φ 0 is the KM level. (In other words, the space .%' is the fixed
level Poisson subspace of the dual of the afflne KM Lie algebra carrying the Lie-
Poisson bracket.) We henceforth set the constant K to 1 for notational simplicity. Let
us choose a subalgebra Γ c %\ with a basis {7^ and an element M G ̂  in such a
way that the following constraints:

φΊ(z) = 0, where φτ(z) := (7 ? , J(z) - M), (2.5)

are first class. This means that the scalar product ( , ) and the antisymmetric 2-form
ωM on .r^ defined by

ωM(a,β) : = ( M , [ α , / ί ] ) , Va,βe Z\ (2.6)

vanish when restricted to Γ. The constraint surface, ,76'Γ c J6\ defined by (2.5)
consists of currents of the form

J(z) = M + j(z), j(z) e Γ 1 , (2.7)

and the first class constraints φ% generate gauge transformations on it,

j —-> Ade/0") := ef(j + M)e~f - M + (ef)'e-f , /(2) e Γ. (2.8)

We are interested in the gauge invariant differential polynomials in j(z) since, as we
shall see below, under certain conditions they furnish a classical W "-algebra.

Let <j% be the set of gauge invariant differential polynomials in the components of
j(z) (with constant terms allowed). This set is obviously closed with respect to linear
combination, ordinary multiplication and application of <9. We express this by saying
that ,/Z is a differential ring. On the other hand, the induced Poisson bracket carried
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by the gauge invariant functions on 3&Γ (inherited from the Poisson bracket on 5&)
also closes on M. Namely, if T, U e J§ one has

^u(J(^))9ιδ(z - w), (2.9)

where the sum is finite, and Pγjj G M because of the gauge invariance. This
implies that if M is a freely generated differential ring, i.e., if there exists a basis
{ W ^ } ^ C M such that any element of M can be expressed in a unique way as
a differential polynomial in the Wα's, then the KM Poisson brackets of the basis
elements give an algebra of the form (2.1). In particular, when it is possible to find a
W-basis of 3% - by which we mean such a free generating set for which (2.2) and
(2.3) also hold - then we have a classical ^-algebra because the Jacobi identity and
antisymmetry are guaranteed by construction. Thus, within this approach, our purpose
should just be to classify the KM reductions for which the invariant ring M is freely
generated and admits a SF"-basis.

2.7.7. Freely Generated Ring Due to DS Gauge. It is rather obvious that JB is not
freely generated for a generic first class reduction. For instance, the reductions
proposed by Polyakov and Bershadsky [28, 29] aimed at constructing the "W^-
algebras" lead in general to a nonfreely generated ring 3% (see the Appendix). To our
knowledge, the only systematic method by which one can produce free generators for
3% relies on the so called DS gauges, the existence of which places a strong restriction
on the reductions. These gauges may be defined as follows.

Definition (DS gauge). Given a set of first class constraints of type (2.5), we have a
DS gauge if the following conditions i) - iii) are met:

(i) There exists a diagonalizable element2 H E S? such that

[H, Γ] c Γ, [H,M] = -M. (2.10)

(ii) With a graded linear space V (i.e. [77, V] C V) defining a direct sum decompo-
sition,

Γ-1 = [M,Γ] + V, with VΓ)[M,Γ] = {0}, (2.11)

one can gauge-fix the constrained current (2.7) into the form belonging to the subspace
% C 3&Γ given by

Wv := {JI J(z) = M + jΌS(z), jΌS(z) eV}. (2.12)

(iii) The resultant gauge fixed current jDs(z) = JDSO'O2))* Z'Λ which the gauge orbit
passing through j(z) e 3&Γ meets the global gauge section Wv, is given by a
differential polynomial in the original current j(z).

Condition i) requires a special element H whose adjoint action ad# maps Γ
into itself and with respect to which M is an eigenvector with nonzero eigenvalue,
[H, M] = XM (for later convenience we have scaled H so that λ = — 1). Note that
it is not always possible to find such an H for a given pair (Γ, M), even if we take
into account that M can be redefined by M —* M + m, m E Γ-1-, which does not
affect the constraints (2.5). The main requirement given by ii), iii) is that Wv is a
global gauge section of (2.8) such that the components of the gauge fixed current j D S ,

2 A diagonalizable element defines a grading of W by means of its eigenvalues in the adjoint
representation, and is often referred to as a grading operator of &
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when considered as functions on 3&Γ, are elements of 3%. In particular, if Γ consists
of nilpotent elements of S? then iii) is implied by the stronger and more practical
requirement

(iii;) The gauge-fixing equation corresponding to the gauge section Wv,

j -> Ad e / j = efje~f + ( e / M e ~ / - M) + (ef)'e~f = j D S , (2.13a)

where
j(z) G Γ x , f(z) e Γ, jΌS(z) e V, (2.13b)

has a differential polynomial solution f{z) = f(j(z)).

In all known examples for which a DS gauge exists, Γ actually consists of nilpotent
elements and one has property iii)7. This will include all the examples given in this
paper.

When a DS gauge is available, we call the procedure by which the general first
class constrained current is transformed to such a gauge, i.e., whereby Eq. (2.13)
is solved, the DS gauge fixing procedure [11,23]. Note that in principle we need
not require that the solution be unique for the gauge transformation ef though it is
actually unique in all known examples. Like for any gauge invariant function, for any
P(j) e 3% we have

P(j) = P(Ad e-/ jΌS) = PO'DSO')) (2 14)

by inverting (2.13a). The point is that by using iii) this equation now implies that the
components of j D S ( j) form a generating set for %. Furthermore, these generators of
3% are independent since they reduce to independent current components in the DS
gauge, i.e., we have

j ω on Wv, (2.15)

which follows directly from the notion of gauge fixing. In conclusion, we see that if
a DS gauge exists then JB is freely generated, and a basis is given by the components

Clearly, the number of components of the gauge fixed current j D S should be
dim S? — 2dim/\ and this implies by (2.11-12) that the nondegeneracy condition,

K e r ( a d M ) n Γ = { 0 } , (2.16)

is a necessary condition for DS gauge fixing. On the other hand, we can provide a
reasonably simple sufficient condition for DS gauge fixing as follows [23]. Choose
a graded subspace θ c ^ which is dual to Γ with respect to the 2-form ωM, and
define V in (2.11) to be the space orthogonal to both Γ and Θ,

V:=Θ±ΠΓ±. (2.17)

In other words, add the gauge fixing conditions

χ k ( z ) : = (θk,J(z) - M) = 0 , θkeθ, (2.18)

to the first class constraints (2.5). If, in addition to the nondegeneracy condition (2.16),
one has

[β,n>iCΓ, (2.19)

where the subscript refers to the grading defined by iJ, and if Γ consists of nilpotent
elements of 5^, then by using V in (2.17) one indeed obtains a DS gauge. (We refer
the reader to [23] for a detailed description of the recursive DS gauge fixing procedure
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based on this sufficient condition.) A somewhat stronger sufficient condition for DS
gauge fixing is furnished by complementing (2.16) with the condition

Γ-1- C S ζ ^ . (2.20)

Equations (2.16) and (2.20) together imply

S^cΓcS^o, (2.21)

which ensures (2.19) and that Γ consists of nilpotent elements.
We also note the following further consequences of the definition of a DS gauge.

First, because of (2.15), the components of JDSOX^OX defined by means of a basis of
V, contain the corresponding components of j(z) in their linear terms. Second, for
the very same reason, the induced KM Poisson bracket algebra of the components of
JDSO'(Z)) c a n t>e identified with the Dirac bracket algebra carried by the components of
the gauge fixed current, where the second class constraints defining the Dirac bracket
are given by combining (2.5) and (2.18) together [14].

2.1.2. The Form of the Virasoro Density and the DS Mechanism. Having assumed
the existence of a DS gauge using the grading operator H 6 &, next we have to
ensure that the polynomial Poisson bracket algebra carried by <%> contains the Virasoro
subalgebra. For this we shall consider the following density,

LH:=^(J,J)-(H,J'). (2.22)

Indeed, one can easily check that this defines a gauge invariant Virasoro density, i.e.,
it not only fulfils the Virasoro algebra but also is an element of JB, provided that in
addition to (2.10) one has

H G Γ x . (2.23)

Of course, the relations (2.10) and (2.23) also imply that the conformal action
generated (for δ^z = —f(z)) by the charge Qf = § dzf(z)LH(z) on 3&,

6fJ := -{Qf , J } - fJ' + / ' ( J + [H, J]) + f"H, (2.24)

induces a conformal action on the space of gauge orbits in 3&Γ. We note that
the coefficient of the term (H, J7) in LH rescales according to the choice of λ in
[H, M] = AM; the value - 1 in (2.22) is adjusted for our choice λ = - 1 . Note also
that (2.23) is a rather mild additional assumption to the existence of a DS gauge, since
in the examples when DS gauges exist Γ is usually a strictly triangular subalgebra of
S? and (2.23) is automatic for the Cartan element H.

Based on the construction we described above, and motivated by the canonical DS
reductions which we will recall in the next section, we are interested in reductions
of KM Poisson bracket algebras to classical ^"-algebras through the following
mechanism:
(i) The first class constraints (2.5) admit a DS gauge with respect to a grading

operator H.
(ii) There exists a W -basis in the invariant ring JS with respect to the Virasoro density
Wx := LH.
These assumptions imply the existence of a basis of JB yielding a classical ^"-algebra
in the sense of Eqs. (2.1-3), and we believe that they are not much stronger than
requiring just this to be the case. (To the date of writing, we have no counterexample.)
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By definition, in this paper we call a KM reduction defined by first class constraints
of type (2.5) a DS reduction if the above DS mechanism i), ii) is applicable.

Before describing the canonical DS reductions where this mechanism is at work,
and whose uniqueness is the main question addressed later, we wish to mention
another consequence of the assumptions. Namely, we observe from (2.24) that if
f" — 0 then the infinitesimal conformal transformation generated by Q^ leaves the
DS gauge fixed current form invariant, and we have

δf iDs = / / D S + / Ό D S + [#> JDSD > for / " = 0. (2.25)

Since / " = 0 holds for the infinitesimal scale transformation for which f(z) ~ z, we
see from (2.25) that the components of j D S 0 ) have definite scale dimensions given
by shifting the grades of the corresponding basis elements of V in (2.11) by +1.

2.2. The Canonical DS Reductions and the W^ -Algebras

The DS mechanism works in the canonical DS reductions which are associated to the
5/(2) embeddings in & in the following way. Let y = {M_,M0, M + } c & be an
5/(2) subalgebra with standard commutation relations

[Mo, M ± ] = ± M ± , [M+,M_]= 2M0. (2.26)

Consider the grading of ^ defined by the eigenvalues of ad M o = [Mo> ],

W = J2 S?m, where [Mo, X] = mX, V I e S?m. (2.27)
m

Choose a subspace ^1 c ? i for which

^ M _ ( ^ I ,^i) = {0}, dim^i = idim^i, (2.28a)

and define the canonical subalgebra Γc by

Γ c : = . ^ i + ^ > i . (2.28b)

The canonical first class constraints are obtained from (2.5) by taking Γ := Γc and
M := M_, and thus the constrained current takes the form

J(z) = M_+ jc(z), jc(z) e Γ^ with Γ^ = [M_, ^ i ] + Sf>0 . (2.29)

Note that with respect to M := M_ the dimension of Γ = Γc is the maximal one
allowed by the first classness of the constraints and the nondegeneracy condition
(2.16). It is also easy to check that DS gauges are available by using H := Mo as
the grading operator and that LM G JB.

The W-bsLsis of JB is constructed by means of the "highest weight gauge" [14],
which is the particular DS gauge obtained by taking

V : = K e r ( a d M + ) (2.30)

in the direct sum decomposition of type (2.11). For this, we first fix a basis
{ Yι } C Ker(adM +) of highest weight vectors,

[Mo , YUn\ = lYltn , YM := MJ(M_,M+), (2.31)
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where n is a multiplicity index and (M_,Yι ) = 0 for Yι φ Yιv We then write
the current resulting from the gauge fixing, jhw(jc(z))> in the form

Z,π

and { Wln(jc)} C JB is a basis of the invariant ring. It turns out that, except W{1,
Wljn is a primary field of weight (I + 1) with respect to LMQ [15, 23]. The Virasoro
density Wx := L M Q given by

V^0 c) = - (M_ + j c , M_ + j c ) - (Mo, j ^ ) , (2.33a)

can be rewritten as

W îϋc) = ^(JhwS0c);Λwg0c)> + WlΛ(jc), (2.33b)

where

is the sZ(2) singlet part of j h w ( j c ) . The singlet components Wo (jc) generate a KM
algebra under the induced Poisson bracket, and the first term in (2.33b) is just the
corresponding Sugawara formula. The second term Wιx(jc) in (2.33b) is another
Virasoro density, that commutes with the singlet Sugawara density. We see from the
above that the required 5i^-basis, { Wa }^=1 c JB, N = dimKer(adM +), can be
obtained from the basis { Wι n } C JB by exchanging Wlλ with Wλ, and calling the
rest of the basis elements W2>..., WN. The resulting classical ^-algebra is called
the Wy -algebra. By the remark given at the end of Subsect. 2.1.1., the ^^-algebra
can be interpreted also as the Dirac bracket algebra carried by the components of
the current in the highest weight gauge (after the aforementioned change of basis is
made).

It is worth stressing that, apart from those sZ(2) embeddings for which there are
no singlets in the adjoint of W, the Wβ"-algebra contains the singlet KM subalgebra
generating the group of canonical transformations:

It follows that the generators of the Wjf -algebra given by the nonsinglet components
of j h w fall into representations of the Lie algebra of the singlets, and that one can
further reduce the ^f-algebra by using this sub-KM symmetry, i.e., by putting
constraints on the singlet components of j h w . However, such "secondary reductions"
do not in general lead to new ^"-algebras based on independent fields according to
the requirements (2.1-3) (see also the Appendix).

Having our hands on the above rather nice examples, it appears natural to ask
how close they are to an exhaustive set of ^-algebras that can be obtained through
the DS mechanism. This question will be even more natural after establishing in the
next section that in a certain sense there is indeed an si(2) embedding behind any
^-algebra obtained in this way.
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3. The Existence of an sl(2) Structure

In this section we prove a theorem, which allows one to associate an sl(2) embedding
to every reduction yielding a ^-algebra by means of the DS mechanism reviewed in
the previous section. More precisely, our assumption will be that JS is freely generated
due to the existence of a DS gauge and possesses a quasi-primary basis with respect
to LH. We shall then conclude that H G & must belong to an 5/(2) subalgebra.
This immediately implies that the conformal weights must be either integral or half-
integral in every W-algebra arising in this way. This theorem is a stronger version
of the previous result in [23], and the rest of the paper is devoted to uncovering its
implications. To make the proof as clear as possible we shall proceed through two
preliminary lemmas.

Consider conformally invariant first class constraints described by a triple
(Γ, M, H). The form of the constrained current is given by Eq. (2.7) and LH (2.22)

defines an element of the invariant ring 3%. For any vector field f{z)-r- G diff 5 1 , the
infinitesimal conformal transformation δ^J is generated by the charge Qj according
to (2.24). This conformal action preserves the constraint surface S%SΓ C 3&, and we
have

δf3 = ff + f'V + [HJV + f"H. (3.1)

Consider now the subspace of special configurations, W§ C 3Ί£Γ, given by

% := { J I J(z) = M + h(z)H } . (3.2)

This subspace W$ is invariant under conformal transformations, and the field h(z)
transforms according to

δfh = fti + f'h + f". (3.3)

By definition, U(z) is called a quasi-primary field of scale dimension A (which is
the conformal weight if U(z) is primary) if it transforms as

δfU = fU' + ΔfU (3.4)

under the Mδbius subgroup of the conformal group generated by the vector fields
with / / ; / = 0. As far as scale dimension Δ is concerned, it can be defined even for
a non-quasi-primary field U(z) if it satisfies (3.4) for f" = 0. For example, the field
h(z) is not quasi-primary but has scale dimension 1. We then have the following
statement.

Lemma 1. There is no quasi-primary differential polynomial p(J) on 5&Γ whose
restriction to W$ (3.2) satisfies

p(j)\% = Ah (3.5)

with a nonzero constant A.

Proof Since Wo is invariant under conformal transformations and Ah is not quasi-
primary for A Φ 0, we see that a differential polynomial p(j) satisfying (3.5) cannot
be quasi-primary. Q.E.D.

On the other hand, we also have the following statement.

Lemma 2. Suppose the constraints admit a DS gauge for which the complementary
space V in (2.11) is graded by H, and

H<£[M,Γ]. (3.6)
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Then there exists a gauge invariant differential polynomial PH(j) G JB whose
restriction to % (3.2) is proportional to the field h,

PH(j)\%=Ah, (3.7)

where A is a nonzero constant.

Proof Let j D S 0 ) £ V be the gauge transform of the general current j e 3&Γ to
the DS gauge. Recall that the components of jΌS(j) generate 3% and have scale
dimensions given by shifting the grades of the corresponding basis elements of V by
1. Recall also that the components of jΌS(j) contain the corresponding components
of j . From these facts and (3.6) we see that the restriction of (H,jΌS(j)) to gg (3.2)
contains a term proportional to h and has scale dimension 1. Clearly, we can thus
take PH(j) := (HJΌS(j)) to be the required element of JB. Q.E.D.

The 5/(2) theorem will result by combining the statements of the two lemmas.
The theorem uses the notion of a quasi-primary basis. By definition, the basis
{Wa}^=1 C 3% is a quasi-primary basis if the basis elements are quasi-primary fields
with respect to the given Virasoro density. Clearly, a ^-basis is a quasi-primary
basis.

Theorem. Suppose that the conformally invariant first class constraints described
by (Γ1, M, H) admit a DS gauge with respect to the grading operator H. Suppose
furthermore that there exists a quasi-primary basis of gauge invariant differential
polynomials {Wa}^=ι C 3B (N = dim & - 2dimΓ) with respect to LH. Then there
exists an element M+ G Γ such that the standard sl(2) commutation relations (2.26)
hold with M_ := M and Mo := H.

Proof Suppose that we have (3.6). Then by Lemma 2 we have an element PH(j) £ 3%
whose restriction to % has the property (3.7). On the other hand, since we assumed
a quasi-primary basis in 3% we can express PH(j) as a differential polynomial in the
basis,

PH(j) = P(Wx(j\ W2(j),..., WN(j)). (3.8)

When restricted to W§ the Wa(j)9s in the r.h.s. of (3.8) either vanish or become
quasi-primary differential polynomials in h. However, due to Lemma 1, none of the
nonvanishing ones can contain a term proportional to h and hence the r.h.s. of (3.8)
does not reduce to the expression Ah. Since this contradicts (3.7), we conlude that
(3.6) cannot hold. Thus there must exist an element 7 e Γ such that H — [M,7].
Decomposing 7 into a grade 1 part and the rest, 7 = ηx +7^1, we obtain [M, 7^] = 0
on account of the grading. The nondegeneracy condition (2.16) then implies η^x = 0 .
(The element 7 ^ must be in Γ, since Γ is assumed to be graded (2.10).) Thus 7 has
grade 1 and we have

fT = [M,7], and [#,7] = 7- (3-9)

Combining (3.9) with [H, M] = -M in (2.10), we find that the set {M, H, 7} forms
the required sl(2) subalgebra y = {M_, Mo, M + } of (2.26). Q.E.D.

Since a ^-basis is necessarily a quasi-primary basis, the theorem says that one can
always find an sl(2) subalgebra by the set given above for any ^"-algebra obtained
from DS reduction. This suggests that the ̂ F-algebras, which are manifestly based
on the sl(2) subalgebras of ^ , are in fact "natural" in the context of the DS reduction
approach. This in turn leads us to the question as to whether the !^f-algebras are
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the only classical ^-algebras that may be obtained from DS reduction. We shall try
to answer this question in the rest of the paper.

4. Restrictions on Γ for a Given sl(2) Embedding

In Sect. 3 we found that there exists an sl(2) embedding, 5? = {M_ = M,M0 =
H, M+ G Γ}, to any system of conformally invariant first class constraints given
by a triple (Γ, M, H) for which M is freely generated due to the existence of a DS
gauge and possesses a quasi-primary basis with respect to LH. This result reduces
the problem of listing all DS reductions to the problem of finding all allowed Γ's
for given sl(2) embeddings in & (whose classification is known), such that the
triple (T, M_, Mo) leads to a ^-algebra. In this section we shall see that the same
requirement used earlier to uncover the sl{2) structure, i.e., that there exists a quasi-
primary basis in M, also gives considerably strong restrictions on the allowed Γ. (As
in the previous section we only need to require the existence of a quasi-primary basis
in J^ rather than a ^-basis.) In particular, we shall prove that Γ must satisfy a certain
number of inequalities on the dimensions of its graded subspaces. The simplest ones
among them are

d i m Γ ς > i d i m S £ , V g > l , (4.1)

which imply that Γ>1 must be at least half as large as (JΊ

C)> 1. To derive (4.1), we
shall use a two-stepTOS gauge fixing procedure based on a se~mi-direct sum structure
of the gauge subalgebra Γ. We shall examine the existence of a quasi-primary basis
by asking if the DS gauge fixed current can be expressed as a differential polynomial
in such a basis. For this purpose it will be convenient to expand every element of
3% as a differential polynomial in the partially gauge fixed current provided by the
first step of the gauge fixing, described in Sect. 4.1. By inspecting the linear term in
the expansion of the fully DS gauge fixed current and requiring that it be compatible
with the existence of a quasi-primary basis, in Sect. 4.2 we shall prove a proposition
from which the inequalities in (4.1) follow.

4.1. Gauge Fixing with Respect to M+

In order to implement the first step of the two-step gauge fixing for the system given
by the triple (Γ, M_, Mo), let us write the first class constrained current J(z) e 3&Γ

in the form:

J(z) = M_ + h(z)M0 + j+(z)M+ + t(z), with t(z) £ ^ΠS^-1. (4.2)

That this is possible follows from M o e Γ1^ (2.23), and from M+ e Γ (and hence
M+ E Γ^ which is required by the Theorem in Sect. 3. The conformal transformation
(2.24) then reads

δfh = fh'+f'h+f" , δfj+ = /j + 2 / % , δft = ft'+f\t+[M0,t]). (4.3)

It will be useful to consider the subgroup of the gauge group generated by M+, which
acts on J(z) according to

/ι->/ι + 2α, j -* j + + a' -ah-a2 , t-> eaM+te~aM+ . (4.4)
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A complete, polynomial gauge fixing of this gauge freedom is obtained by restricting
the current to the form

I(z) = M_ + ω(z)M+ + u(z), with u(z) e ^ Π ^ . (4.5)

The general current (4.2) is transformed to this M+-gauge section by choosing the

parameter a(z) to be a(z) = —^h(z). As a result, the differential polynomials given
by

are invariant under the M+ -transformations (4.4), and freely generate the ring of
the M+ -gauge invariant differential polynomials. Since every .Γ-gauge invariant
differential polynomial is necessarily M+-gauge invariant (since M+ e Γ), we see
that every P E JB can be expressed in terms of the M+-gauge invariants, u and ω.
In more detail, we can write

Yii%ω), (4.7)

where the P% are uniquely determined differential polynomials that are homogeneous
of degree i in their arguments u9 ω. This expansion is very convenient for inves-
tigating the transformation properties of differential polynomials under infinitesimal
Mobius transformations (/'" = 0), because the expansion is covariant under such
transformations. Indeed, from (4.3) and (4.6) we find that u and ω transform in a
linear, homogeneous way under Mobius transformations:

δfu = fuf + f'{u + [Mo, u\) - l-f"[M+M , δfω = fω1 + 2f'ω . (4.8)

(For completeness, we note that under a general conformal transformation δ^ω picks
up also the usual / ; / / term.) Since the conformal transformation of a differential
polynomial is determined through the transformation of its arguments, we obtain

f i f ) . (4.9)

As a consequence, we find that a differential polynomial P(u,ω) = Y^P^u^ω) is

quasi-primary of scale dimension Δ if and only if Pτ(u,ω) is quasi-primary of scale
dimension Δ for all i. On account of this, we have the following general idea for
deriving restrictions on Γ from requiring the existence of a quasi-primary basis in %\
We should look at the linear, quadratic etc. terms in the expansion of the components
of the DS gauge fixed current jΌS(u,ω) that generate JB9 and inspect the conditions
under which they can be expressed as differential polynomials in homogeneous, quasi-
primary differential polynomials in u and ω, since such differential polynomials enter
the expansion of the quasi-primary basis.

We shall see shortly how the above idea works in the simplest linear case, but
before that we wish to mention some further features of the gauge fixing with respect
to M+. First, this partial gauge fixing is stable under the subgroup of the gauge group
generated by

^, (4.10)

i.e., by the subalgebra Γ c Γ defined by removing M + from Γ so that the rest is

orthogonal to M_. The stability of the M+-gauge section (4.5) under the Γ-gauge



Classical ^-Algebras Obtained from DS Reductions 413

transformations can be seen explicitly by observing the Γ-invariance of the partial
gauge fixing condition,

(M0,J(z))=0, (4.11)

that restricts the current to the form (4.5). Second, Γ has the following semi-direct
sum structure:

Γ = span{M+} φs Γ, (i.e., [M+, Γ] c Γ). (4.12)

Accordingly, one can write the element 0(2) = eΊ{z\ 7(2) G Γ, of the gauge group
in the product form

g(z) = e^(z) - e

a{z)M+ with 7(2) E f, (4.13)

and thereby fix the M+ -gauge-freedom first in the way given above, and fix the

Γ-gauge-freedom subsequently. Having performed the first step, from now on we
regard I(z) in (4.5) as our new variable, whose components have the transformation
rule (4.8) under the Mobius group and upon which the further Γ gauge fixings are to
be performed. The variables u, ω are simpler to deal with than the original variables
t, j + , h, since the Mobius group acts homogeneously on the former (4.8) whereas it
acts inhomogeneously on the latter (4.3).

4.2. Half-Maximality of Γ from the Linear Terms

Below we prove a proposition from which the dimensional estimate (4.1) will follow
as a corollary. The proof will be based on a preliminary lemma, which is an analogue
of Lemma 1 of Sect. 3.

Let q G {1,^,2, ^j } t>e fixed and (if exists) choose a nonzero element

T_q £ (Γ±)_q. As can be readily seen, we have

M + q ) ^ 0 . (4.14)

Define W[T_q\ to be the following subspace of the space of M+-gauge fixed currents
given by (4.5):

*max

nT_q] := { / I I(z) = M_ +Σvi_q(z)(βdM+)i(T_q)} , (4.15)

where im a x is the largest natural number for which (ad M + ) 2 m a x (Γ_ g ) ^ 0 (from (4.14)
we have zmax > 2q), and the current components v^^z) are arbitrary. In other
words, the special configurations W\T_q\ are given by the M+-gauge-fixed current
(4.5), where all the components including ω vanish, except for a single "M+-string"
of ΐx-fields, namely, the υi_q{zY^. The point is that the subspace W\T_q\ is invariant
under the Mobius transformations (4.8), which act on I{z) G %'[T_ ] as

δfVi_q = fv't_q + (1 + i - q)f'Vi_q - ^/ 'V,- i >

Vi = 0, . . . , i m a x , («_,_! = 0 ) . (4.16)

This means that, under this transformation, the notion of quasi-primary differential
polynomials is well-defined even when restricted to the subspace W[T_q\.
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Let us set bq = 0 or | for q integral or half-integral, respectively. Then for any
integer 0 < k < q — bq — 1, the most general linear differential expression of scale
dimension k + bq -f 1 that can be formed from I(z) G W[T_q\ is given by

2 = 1

where the A2 are arbitrary constants. We then have the following auxiliary statement.

Lemma. If the linear differential polynomial pk in (4.17) is quasi-primary on %?[T_q],
then Ao = Ofor 0<k<q-bq-l.

Proof. By computing the Mόbius transformation of pk in (4.17) through (4.16), we
obtain

SfPk = fPk + (fc + \ + WPk + f"U(pk), (4.18)

where

q+k+bq

For pfc to be quasi-primary on W[T_q\ one must have U(pk) = 0 for any current
7(2:) G W\T_q\ The observation that the coefficient of A% in (4.19) vanishes for
i = 2k + 2bq + 1 (which occurs for 0 < & < q - bq — 1) leads at once to
^2k+2bq

 = A2k+2bq-\ = - = Ax = Ao = 0. Q.E.D.

We now prove the main result of the section.

Proposition. Suppose that there exist a DS gauge and a quasi-primary basis in 3% {at

the linear level). Then for q — 1, ^ ? 2, ^, ., Γ must satisfy the following relations:

(adAtf+)«+fc+6« ( ( Γ X ) _ J C [M_,Γk+bq+ι], Vk = 0 , 1 , . . . ,q - bq - 1 , (4.20)

where bq = 0 or ^ depending on whether q is integral or half-integral.

Proof We can transform the M+-gauge fixed current I(z) in (4.5) to the fully DS

gauge fixed current by a Γ-gauge-transformation, and the components of the resulting
jΌS(u,ω) e V freely generate JB, where V is given in (2.11) which defines the DS
gauge. It follows from the differential polynomial nature of the DS gauge fixing that,
when decomposed according to (4.7), the linear terms of the components of jΌS(u, ω),
defined by using some graded basis of V, contain the corresponding components of
I(z). We also know (cf. Section 2) that the components of jΌS(u,ω) have definite
scale dimensions. From these facts it follows that if (4.20) did not hold for some q
and some k, then we could find a component P(u, ω) G M of jΌS(u, ω) whose linear
term Pγ{u, ω) reduces to an expression of the form (4.17) with Ao ^ 0 when restricted
to a subspace W[T_q] defined for a T_q with (adM+)^+A;+6<?(Γ_g) φ [M_,Γk+hq+ι\.
On the other hand, if there exists a quasi-primary basis in M, then this P(u, ω) can
be expressed as a differential polynomial in the basis, and thus Pλ(u,ω) must be a
differential linear combination of the quasi-primary linear terms of the basis elements,
that is,

ι

(4.21)
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where Qτ(u,ω) is a linear quasi-primary differential polynomial of scale dimension
i. Since Px(u,ω) contains the term vk+b , Qk+b +ι(u,ω) must contain it as well.
Clearly, this is a contradiction, because due to the lemma there is no such quasi-
primary differential polynomial of the form (4.7) whose linear term contains a nonzero
multiple of vk+b when restricted to W[T_q\. We therefore conlude that (4.20) must

hold. Q.E.D.3 q

From the above proposition, we easily obtain the following dimensional bounds.

Corollary. For all q > 1 and 0 < k < q — bq — I, we have

dim Γq + dim Γk+bq+ι > dim Sζ. (4.22)

Proof. From (4.14) we obtain

dim [ ( a d M + ) ^ + 6 * ((ΓJL)_,)] = dimCr^)^ - dim ¥_q - άimΓq

S ? - d i m Γ g . (4.23)

On the other hand, from (4.20) and the nondegeneracy condition (2.16) we have

dim [(adM +)*+ f c + 6« ( ( Γ x ) _ g ) ] < dim[M_,Γk+bq+ί] = dimΓk+bq+ι. (4.24)

Combining (4.23) and (4.24) we get (4.22). The inequalities (4.1) are recovered upon
choosing k = q — bq - 1. Q.E.D.

The relations (4.20) restrict the size of Γ considerably as well as its position in S?
with respect to the sl(2) subalgebra S*. To derive (4.20) we only used the requirement
that the linear terms of the DS gauge fixed current should be expressible in terms of
the linear terms of a quasi-primary basis of JB. It is plausible that by carrying on the
analysis to the quadratic and higher levels one should obtain further restrictions on
Γ from the requirement of the existence of a quasi-primary basis. Unfortunately, it
appears at the moment that such an analysis does not yield a clearcut condition on
Γ, and for this reason this issue will not be pursued further in this paper.

5. Conformal Spectrum and Decoupling in Noncanonical DS Reductions

Suppose that we construct a W-algebm by using the DS mechanism but not by a
canonical DS reduction described in Sect. 2. Suppose also that in the ^"-algebra
no negative conformal weight occurs (in fact, so far we have no example with a
negative weight) with respect to LM . We shall then show in Sect. 5.1 that the

Δ > | part of the conformal spectrum, given by the weights of the basis elements
in the 5^-basis (or quasi-primary basis), is completely fixed by the sl(2) subalgebra
y2 C 5^ associated to the reduction by the theorem of Sect. 3. In other words, the
Δ > 2 part of the conformal spectrum is the same as for the corresponding Wϊjf -
algebra obtained by canonical DS reduction. In the subsequent Sects. 5.2 and 5.3
we show by examples that there do exist noncanonical DS reductions, where the
resultant ^ - a l g e b r a s possess extra 'Ίow-lying" weights Δ G { θ , - , l } in addition

3 If Γ is known to be graded by the sl(2) Casimir, then for fixed q the conditions in (4.20) for
k > 0 all follow from that for k = 0
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to the canonical conformal spectrum of Wjf. However, we find that these W-
algebras are not essentially different from the ^F-algebras, since they decouple
into the direct product of a ^F-subalgebra and a system of free fields. It would be
interesting to know whether the decoupling mechanism we exhibit here in specific
examples works in other noncanonical DS reductions too. As far as the decoupling of
weight I fields is concerned, one may expect this to be a general phenomenon in DS
reductions by analogy with the general decoupling theorem established in the context
of meromorphic conformal field theory by Goddard and Schwimmer [32].

5.7. Conformal Spectrum from the s/(2) Embedding

Consider a ^-algebra resulting from DS reduction. Let V be the graded complemen-
tary space defining the DS gauge, given in (2.11). By the theorem of Sect. 3, we can
assume that the grading is by the 5/(2) generator Mo. We noted in Sect. 2 (see (2.25))
that the generators of JB provided by the components of jΌS(j) have definite scale
dimensions obtained from the grades of the basis of V by a shift by + 1 . This clearly
implies that the spectrum of conformal weights in any Si^-basis (or quasi-primary
basis) of JB, with respect to L M Q , is determined by the spectrum of Mo-grades in V
in the same way.

Let us now consider the case where no negative conformal weight occurs in our
^"-algebra. Note that we have the equality

dim Vm = dim S?m - dim Γ_m - dim Γ m + 1 , Vm, (5.1)

on account of the decomposition (2.11) and the nondegeneracy condition (2.16). If
we combine this equality with the nonnegativity assumption,

dim Vm = 0 for m<-]-, (5.2)

then we get the formula

1
dim Vm = dim S^ — dim S^ + 1 for m > - . (5.3)

2
This tells us that the A > ^ sectors of the conformal weights of the generators of our
^-algebra are necessarily the same as for the W^f -algebra, where 5? is the 5/(2)
containing Mo. Thus the conformal spectrum can be different only for the weight 0

and 2 sectors (which do not exist in the canonical case), and the weight 1 sector. By
summing over all the grades in (5.1) and comparing it with the corresponding sum
taken for the canonical DS reduction, we derive the formula for the dimension of
these sectors,

dim V_! + dim V_ i + (dim Vo - dim (Vc)0) = 2(dim Γc - dim Γ ) . (5.4)

Note that the dimension of Γc is the maximal one allowed by the first-classness of
the constraints and the nondegeneracy condition (2.16), and that (V^)o is the space
of sl(2) singlets in 2^. It is also useful to spell out from (5.1) the dimensions of the
extra sectors more explicitly,

dim Vo — dim (V .̂)o = dim V_ { — dim 5^ — dim Γ{ — dim Γo ,

dim V i = dim &\ - 2dim ΓΊ .
~ 2 2 2
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This means that we must have at least as many conformal vectors as in the canonical
case, the number of extra conformal vectors equals that of the conformal scalars,
and conformal spinors occur whenever dim Γι is smaller than in the canonical case.

We next present examples where such extra low-lying fields indeed occur, and shall
see that, in those examples, the ^-algebra decouples into the direct product of a
subalgebra isomorphic to Wj? and extra "free fields" of weight 0, - and 1.

5.2. Decoupling of Weight ^ Fields

Consider a half-integral sl(2) embedding y = {M_,M0, M+} C &. Recall that the
canonical first class constraints are defined by Γc in (2.28) and restrict the current
to the form given in (2.29). In this section we are interested in noncanonical DS
reductions that are "marginal modifications" of the canonical DS reduction obtained
by removing some of the canonical constraints belonging to grade | elements of Γc.
This means that our modified gauge subalgebra Γ is of the type

%CfCΓ c > (5.6)

and the constraint surface JEr consists of currents of the form

J(z) = M_ + i ω , j(z) e r1-, with r x = ( Γ x ) _ i + ^ > 0 . (5.7)

From the sufficient condition (2.21), the gauge group admits the DS gauge fixing (with
the grading defined by Mo) and hence the corresponding ring M is freely generated.
It is also clear that LMQ G J8, but it is not obvious whether there exists a ^-basis
in M. However, one sees from (5.6) that if there is a Si^-basis in 3% then it must
contain a subset of generators whose conformal weights coincide with those of the

F and 2(dim Γc — dim Γ) additional conformal spinors (see (5.5)). In fact,

below we shall exhibit two subrings, M\ and 3%>, in M, and the section is devoted

to proving the following statements:

(i) The subrings M\ and M are closed (in the usual local sense given in (2.9)) with

respect to the induced Poisson bracket carried by M, and commute with each other
under the Poisson bracket,
(ii) The subring M\ C M is freely generated by a basis consisting of weight |

bosonic free fields^
(iii) The subring M is freely generated by a basis subject to the Wy -algebra under
the Poisson bracket. ^_
(iv) The union of the bases of M\ and M gives a basis of 3%.

(v) The Virasoro generator LM G JB is the sum of the Virasoro generators of the

subrings JB\ and 3B, LMQ = S§\ -f S%.

(vi) The 5^-basis of M is obtained from the decoupled basis in iv) by replacing the

Virasoro generator 5% of the Wy -algebra carried by M by LMQ G i^.

Let us begin by considering the subalgebra Γ c ! ? given by

f : = f i + 3 | i > (5.8)
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where the subspace Γi c ?i is defined by

[M_,fi] = ( Γ ± ) _ i . (5.9)

One easily verifies the following relations satisfied by the subalgebras introduced
above:

[Γ,Γ]cΓ, [M_,f]cΓ±, fcΓ 1 , (5.10a)

Ker (ad M _) Π Γ = {0}, (5.10b)

Γ± = [M_,Γ] +Ker (ad M + ) , (5.10c)

ΓcΓccΓ. (5.10d)

As we shall see shortly, the construction will mainly depend on these relations.
Defining

φa(z) := (a,J(z)) - (α,M_), a G &, (5.11)

we see that (5.10a) is equivalent to the equation,

{Φ^z),φΊ(w)}\jeΓ=0, 7 ^ f , Ί e Γ . (5.12)

This implies that the KM transformations generated by Γ,

J —> AάeFJ := eFJe~F + (e F ) / e" J ? , F(*) G f, (5.13)

which contain the gauge transformations corresponding to F(z) G Γ9 are well-defined
on the constraint surface 3&Γ (i.e., preserve the form (5.7)). Therefore we can define

3% C 3& to be the subring consisting of the Γ-invariant (invariant under (5.13))

differential polynomials on 3£Γ. It also follows from (5.12) that 3% is closed with

respect to the induced Poisson bracket carried by 3%, i.e., if T, U G J§, then P^u in

(2.9) belongs to 3%. Furthermore, by writing Γ in the form,

f = Γ+, with n Γ = {0}, (5.14)

we obtain from (5.12) that the current components φσ(z), σ G are Γ-invariant on
%Γ and hence belong to 3%. We define 3%\ to be the subring of 3% generated by

these current components. It is easy to see that the induced Poisson bracket closes on
3%\ too in the usual local sense. To finish the proof of statement i), we just note that

3% and 3% i commute with each other under the Poisson bracket since 3% consists of

Γ-invariants, and the current components φσ, that generate the differential ring 3Bι

by definition, generate infinitesimal /"-transformations through the Poisson bracket.
In order to establish ii), we make a concrete choice for the space in (5.14)

(the subring 3%\ is easily seen to be independent of the choice). We do this by first

choosing a subspace @\ C &\ on which the 2-form ωM_ vanishes and for which

&\ = &>i + @\, with Φ>\ appearing in the definition of Γc (2.28). It follows that if

we define the subspaces &,& C Γ\ by requiring

and @ := @x Π [M_, A ̂  , (5.15a)
2 2
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then we can take

: = ^ + ̂ . (5.15b)

These definitions guarantee that we can choose bases {X{} C ̂ , {Yτ} C (2 so that
we have

(5.16)

The corresponding basis of 3B\ is given by the current components

p (z) := φXt(z) and ^(z) := φYχ(z), (5.17)

whose Poisson brackets read

{pτ(z), qk{w)}\πΓ = διkδ(z - w),

{Pi(z),Pk(w)}\jίΓΓ = tiiWi %(W))W;Γ = °

One readily checks that these elements of JB are weight | conformal primary fields
both with respect to LMQ and with respect to their own free field Virasoro density
S§\ given by

%\ =\Y}3!x<lx-Viti- (5-19)

Thus we have exhibited the basis of JB\ claimed in statement ii).

To prove the main statement iii), observe that (5.10b) is the analogue of the earlier
nondegeneracy condition (2.16) and (5.10c) is similar to decomposition (2.11) used
to define a DS gauge. This suggests that the subspace of currents £ξw given by

%, := { JI J(z) = M_+ jhv/(z), jhvf(z) e Ker (ad M + ) } , (5.20)

that defined the highest weight gauge for the canonical DS reduction, is a global,
polynomial section of the Γ-action (5.13) on 3&Γ. This follows if we show that the
equation (i.e., the analogue of (2.13)),

j —+ AάeFj := eF(j + M_)e~F - M_ + {eF)'e'F = j h w , (5.21a)

with

j(z) G Γ-1, F(z) G Γ, jhw(z) G Ker ( a d M + ) , (5.21b)

has a unique, differential polynomial solution F{z) = F(j(z)). Indeed, if this is so then

the resultant jhw(j(z)) is also a differential polynomial in j on account of Γ C ^>0,

which implies that Ad e Fj is a finite differential polynomial in F. The construction

then guarantees that the components of j h w ( j ) are /^-invariants and freely generate

,9B, in analogy with the way one constructs a basis of gauge invariants through DS
gauge fixing. Although we could verify the unique, polynomial solubility of (5.21)
directly by a recursive procedure based on the grading similarly as for DS gauge
fixing [23], it will be advantageous to solve (5.21) by a two-step procedure utilizing
that £ξw (5.20) is a gauge section in the canonical case. In the two-step procedure
first we reduce the current j G ΓL to the canonical form j c G Γ^~ and then employ
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the usual DS procedure to the highest weight gauge fixing available for the canonical
DS reduction. To implement this, we write the current j(z) E Γ x in the form

3(z) = ΣPiizWi, M_] + r(z), r(z) G Γj\ (5.22)
i

where {Yτ} C ̂  is the basis introduced earlier, pi is defined in (5.17), and we used
that ΓL = [M__,&] + Γ^ . Then we see that the first step is implemented by the KM
transformation

j—+Ade-P.γj:=jc(j). (5.23a)

In the second step the resultant current jc(j) e Γ^~ can be brought to the subspace
g^w (5.20) by a unique /^-transformation (which is a particular /"-transformation on
account of (5.10d)) since ^ w is known to represent a global gauge section for the
canonical DS reduction,

j c — * Ad e / c j c := j h w ( j c ) , with fceΓc. (5.23b)

After this two step process, the group element eF in (5.21) turns out to be

eF = efce~p'γ, (5.24)

where fc = fc(jc(j)) is a differential polynomial in its argument. This implies the
unique solubility of (5.21) for F since the group parameters F and (/c,p Y) are
related to each other in a one-to-one, polynomial manner on account of the grading.

From the unique, polynomial solubility of (5.21) we conclude that the ring M is freely
generated by the components of j h w ( j ) = j^(jc(j)), whose number is dim S?—2dim Γc

(notice that the function j h w 0 c ) appearing here is the same as that occurring in the
canonical case).

It is now not difficult to see that the Poisson bracket algebra formed by the basis

ΛiwO') °f t n e subring J%? is isomorphic to the W^-algebra. This follows from the
very fact that the components of jhw(j) are Γ-invariant and hence commute with the
canonical constraints, i.e., {φΊc(z), j\^{ji^))}\^Γ = 0 for V7C G Γc, and from the fact
that on the subspace gζw, jhw(j(z)) reduces to the highest weight gauge current jhw(z)
defined in (5.20). More explicitly, from the first fact we observe that for jhw(j(z)) the
Dirac bracket defined for the set of canonical second class constraints specifying the
constraint surface £ζw C 3& (5.20) is identical to the Poisson bracket,

OhwO'ω), ihwθ'(^))} = O h w ϋ ω ) , k ^ ^ w on gζw. (5.25)

Then from the second fact we see that the r.h.s. of (5.25) is equivalent to the Dirac
bracket of the current components jhw(z) entering the definition (5.20),

O'hwO'ω), JhwOXw))}* = {jhw(z), j h w ( ^ ) } * on ^ w . (5.26)

As mentioned in Sect. 2, the r.h.s. of (5.26) forms the W^ -algebra after the change
of the basis in which the M+ -component of jhw(z) is replaced by the Virasoro
density ^MoO'hw(^))- (Here jhv/(z) simply means the current defined on the subspace
gjjw (5.20) and is to be distinguished from the function jh w(j(^)) defined on 3&Γ.)
By combining the last two equations, and noting that {jhw(j(z)), jhw(j(w))} is Γ-
invariant and thus determined by its restriction to the section §ξw, we obtain the

p of JB required by statement iii) similarly as in the canonical case. Namely,
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we modify the basis provided by the components of jhw(j) by replacing the M+-

component of j h w 0 ) with the Virasoro density =2?0) G M given by

-^6') : = ̂ MoOhwC?)) = \{M_ + j h w ( j ) , M_ + j h w ( j )} , (5.27)

where we observed that (Mo, j h w ) = 0.
To demonstrate statement iv), we show that {p^ qi, j h w 0 ) } C ̂  is a basis of M.

We do this by showing that any Γ-invariant differential polynomial P(j) G JB can be
expressed as a differential polynomial in this set. For this purpose, it will be useful
to decompose the unique solution F(j) G Γ of (5.21) into a sum according to (5.14),

F = e + f , w i t h 6 6 , f e Γ . (5.28)

By substituting this into (5.21) and inspecting the lowest grade part of this equation,
we obtain

χ ; X ; y ; ) (5.29)

where pi9 qi are the gauge invariant components of j defined by (5.17). On account
of these equations and [, Γ] c Γ which holds for grading reasons, we can write

eF = ee+f =eq χ~p γef\ with / G Γ , (5.30)

where / = /(e, /) is determined by the Baker-Campbell-Hausdorff formula. We then
see by inverting (5.21) using (5.30) that j G Γ1- can be written in the form

J = Ad e _/(Ad e P .y_ q .χ j h w ) , (5.31)

where /, j h w are uniquely determined differential polynomials in j . If now P(j) G M
is an arbitrary Γ-invariant, then we have

P(j) = P(Aάe_f(AdeP.γ-q.x jhj) = P ( A d e P . γ - q . x j h w ) . (5.32)

This implies that the ring M is indeed generated by the set {p^,^, j h w 0')} C 3%. Of
course, the number of the elements in the basis set is

dim + dim W - 2 dimΓc = dim 2? - 2dimΓ, (5.33)

as required. Having proved statement iv) for specific bases of the subrings M\, M

by the above, the statement obviously holds for any two such bases as well.
Concerning statement v), observe first the following chain of the equalities:

J X J ) = LMoOhwO'cU))) = ^M00c0'))

= \(M- + JcU), M_ + jc(j)) - (Moj'c(j)), (5.34)

where all equalities are due to definitions except the second one, which is due to
the Γc-gauge-invariance of LMQ on the constraint surface J&Γc of the canonical DS
reduction. Then, by using (5.19) and (5.23a), it is a matter of direct verification to
derive

LMo(J) •= \(M_ +j,M_+ j) - <M0, j') = S§,_(j) + $iΐ), (5.35)

as claimed in statement v).
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Finally, since LM (J) e JB is linear in 3§ € M, statement vi) is now obvious from
the above.

In summary, in this section we have shown that the reduction belonging to Γ (5.6)
leads to a ^"-algebra that is isomorphic to the direct product of the SP^f-algebra with

a system of weight ^ bosonic free fields. The number of the (p, q) pairs is |dim (S^ί)

in the extreme case when Γ = 5 ^ , and 0 in the other extreme case Γ = Γc.

Obviously, the systems obtained by adding such free fields to the ^^-algebra cannot
be considered genuinely new ^"-algebras. The above construction whereby we have
seen the decoupling mainly depended on the properties collected under (5.10), but at
some points also on the specific grading structure of our example. In particular, the
fact that Γ in (5.6) differs from Γc only by elements in 5^ is a sufficient condition

for the construction to work in general. Nevertheless, this construction could perhaps
serve as a "prototype" in a more general study of noncanonical DS reductions of
Γ C Γc type (we have no other kind of noncanonical example). Although the range
of validity of this type of construction is not clear, it is certainly not restricted to the
above family of examples, as is illustrated by a new example in the next section.

5.3. Decoupling of Weight (0,1) Fields

The modifications of the canonical DS reductions described in the previous section
were obtained by removing some of the canonical constraints belonging to lowest
grade elements of Γc in the case of a half-integral sl(2) embedding. In the case of an
integral sl(2) embedding the same idea cannot be applied in general, since the DS
gauge fixing would not be applicable for the modified system of constraints. There are
however particular cases where the idea works, and we here present a simple example
based on the sl(2) subalgebra of the Lie algebra B2 belonging to a short root. We
shall see that the modified reduction leads to a ^-algebra that decouples into the
direct product of the corresponding ^f-algebra and a (p, q) pair of free fields with
conformal weights (0,1), quite analogously to what we have seen in Sect. 5.2.

The root diagram of the Lie algebra B2 consists of the vectors

±ev ± e 2 , ± ( e 1 = b e 2 ) . (5.36)

The algebra is spanned by the step operators and the Cartan elements,

which we normalize by [He , Ee] = Ee.. We consider the sl(2) subalgebra belonging
to the short root el9

M±:=E±eι, M0:=Heι. (5.38)

For the corresponding canonical DS reduction we have

Γc = Spm{Eeι+e2,Eei,Ee^e2}, (5.39)

and
Ker ( a d M + ) = s p a n ^ ^ i ^ , ^ ^ , ^ } . (5.40)

The adjoint representation decomposes under the sl(2) according t o l O = 3 x 3 + l.
The first class constraints of the modified reduction are determined by the pair (Γ, M)
where we define M : = M_ and

Γ : = s p a n { £ e i + e 2 , £ e i } . (5.41)
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One can directly check that the DS gauge fixing is applicable in this case. To see the
structure of the reduced system we proceed analogously as in Sect. 5.2. We define

Γ:=Γ+ , with : = s p a n { £ e i _ e 2 , £ e 2 } , (5.42)

and then the analogues of the relations in (5.10) are satisfied. By using these relations
we can verify also in this case that the Poisson bracket algebra carried by the ring, J8,
of Γ-invariant differential polynomials decouples into the direct product of the Wy-

subalgebra carried by the subring, J^l, of Γ-invariants, and the Γ-invariant currrent
components

p(z) := -±=(E J(z)) and q(z) := ~^{E J(z)) (5.43)
Λ/2 Λ/2

generating another subring, &@ιy On the constraint surface defined by Γ, these

current components satisfy the analogue of (5.18) (since (M_, [Ee _e^Ee ]} = 2 in

our convention). The notation ^( 0,i) reflects the fact that in this case p is a conformal

scalar and q is a conformal vector with respect to LMQ G J&. These conformal weights

are assigned to the pair (p, q) by the quadratic Virasoro density given by

Jg>((M) :=pfq, (5.44)

and LM G JB decomposes into the sum of this Virasoro density and that of the

^F-subalgebra, similarly as for the weight \ fields in Sect. 5.2.

6. Discussion

The purpose of the present paper was to gain a better understanding of the DS
reduction approach to classical ^-algebras in general, and in particular to investigate
the completeness of the ^F-algebras in the set of ^"-algebras that may be
obtained from DS reductions. On the basis of the definition given in Sect. 2, we
proved in Sect. 3 that all DS reductions can be determined by triples of the form
(Γ, M = M_,H = Mo), where 5^ = {M_,M0, M+} is an sl(2) subalgebra of the
underlying simple Lie algebra & and M + <G Γ. This way we reduced the problem
of listing all DS reductions to the problem of finding all possible Γ's for given 5/(2)
embeddings (whose classification is known). Then we went on to exhibit restrictions
on the allowed Γ"s in Sect. 4. The basic idea there was that by inspecting the expansion
of the DS gauge fixed current and requiring term by term that it be compatible
with the existence of a quasi-primary basis in M one obtains conditions on Γ. We
completed the analysis only at the linear level, but it should be possible to pin down
Γ more closely by analysing the quadratic and higher order terms of the expansion.
We also wish to emphasize at this point that the linear conditions on Γ given by
the proposition in Sect. 4.2 are to be combined with the requirements imposed on Γ
by the first classness of the constraints together with the severe restriction for the
existence of a DS gauge. All in all, we think Γ is already very much constrained by
these conditions, but further study would be needed to have the allowed Γ"s under
complete control, ideally by deriving their list.

We left the previous train of thoughts in Sect. 5 to some extent. We there first
showed that if the conformal weight spectrum resulting from a DS reduction is
nonnegative then its Δ > - subsector is necessarily the same as that of the
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corresponding ίl^p-algebra. We then found examples of new, noncanonical DS
reductions, which in principle yield new ^-algebras for which extra low-lying
weights Δ G {0,2,1} do occur. However, in the examples we also found a
mechanism whereby the resulting ^-algebras were identified as direct products of
^f-algebras and systems of free fields, i.e., they turned out to be not essentially
new.

Our theorem on an 5/(2) embedding being associated to every DS reduction and
our result on the conformal weights are consistent with the more abstract results in
[31] where an embedding of the Mobius si (2) into a finite Lie algebra was associated
to every classical ^-algebra with positive, half-integral conformal spectrum by using
completely different methods. More precisely, in [31] the classical ^-algebra was
viewed as the limit of a quantum one. This led to some unnecessarily restrictive
assumptions, which we removed in a recent paper [33]. But, even taking this into
account, the assumptions in [31] and in the present work are different. For instance,
refs. [31,33] exclude conformal scalars (and spinors), which are some of the free
fields that occur in our examples. It is known that our "DS sl(2) embedding" and the
"Mobius sl(2) embedding" of [31] are isomorphic for the canonical DS reductions
[31, 33], but it is not clear that they are isomorphic for all possible noncanonical DS
reductions which are the cases in which we are interested here. The exact relationship
between the results in [31,33] and the present paper will be clear when a more
complete classification of ^-algebras and DS reductions becomes available.

Pending such a complete classification, the results derived in this paper give a
strong support to the conjecture that the set of W-algebras with nonnegative spectra
A > 0 that may be obtained from DS reductions is exhausted by the Wy' -algebras
and decoupled systems consisting of W^f -algebras and systems of free fields. On the
basis of the results in [31, 33], it is also natural to ask whether the ^F-algebras are
exhaustive even outside the DS approach.

We wish close this paper by mentioning some other open questions related to
DS reductions, and to the above conjecture. First, let us recall that the definition of
the classical ^-algebra (and that of the DS reduction) assumes a preferred Virasoro
density. In view of the notion of isomorphism between classical ^-algebras, we are
naturally led to the following basic questions:
1. Are there nontrivial possibilities for finding two Si^-bases, {Wa} and {W"α}, both

freely generating an invariant ring JB, such that the weights Δa, Λa, and the centres

c, c, relative to W{ and Wγ respectively, are not identical?
2. Are there "accidental isomorphisms" between ^F-algebras belonging to group
theoretically inequivalent sl{2) embeddings?
We note here that the conformal structure is not unique in a rather trivial way in the
cases where the W'-basis contains a (p, q) pair, {p(z), q(w)} = δ(z — w), decoupled
from the rest, since one can assign conformal weights (h, 1 — h) to the pair with any
h by building an appropriate quadratic Virasoro density out of p, q.

Second, we used in Sects. 3 and 4 the notion of a quasi-primary basis, which
is in principle weaker than the notion of ^-basis, and derived conditions from
its existence by looking only at the linear part of the ring JB. Then in Sect. 5 we
derived results from the assumption that the conformal spectrum is nonnegative, and
constructed noncanonical DS reductions which were all found to lead to decoupled
systems containing a 55^f-subalgebra, but we made no attempt to establish these
results more generally. In fact, these questions are open:
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3. What is the full set of conditions implied by the existence of a ίi^-basis in the
invariant ring 3%P.
4. Does every ^-algebra obtained from a noncanonical DS reduction contain a
Wy -subalgebra? If it is so, is such an algebra always "completely reducible"?
5. Do DS reductions exist with negative conformal weights occurring in the 5^-basis
of % with respect to L M Q Ί

Third, the existence of a DS gauge is the only sufficient condition we are aware of
whereby one can guarantee the invariant ring M to be freely generated. In fact, we
have no nontrivial example for JB being freely generated without the applicability of
DS gauge fixing. Hence we should ask the following question:
6. Are there other sufficient conditions than the existence of a DS gauge for ensuring
that the invariant ring M is freely generated?

We also wish to note that in most KM reductions by first class constraints M may
not be freely generated, simply by a genericity argument. (We explicitly show the
non-existence of a free generating set for the examples in the Appendix.) Moreover,
if the reduction is by conformally invariant first class constraints then M may in
general be generated by invariants that include a Virasoro density and are subject
to differential polynomial relations. Thus there is a large set of extended conformal
algebras built on generating fields obeying differential-algebraic constraints that one
may derive from KM reduction, and it is an open question whether one can or cannot
make sense of quantum versions of such algebras.
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Note added. After the first version of this paper was submitted there appeared a preprint [35]
containing a decoupling algorithm and ref. [36] dealing with an example of classical coset
construction where the analogue of the ring M is infinitely generated. With regard to an aspect
of the sl(2) structure, we also wish to mention refs. [37, 38].

Appendix: W%n Examples of Nonfreely Generated Rings

In this appendix we consider the W2

2

n -algebras of [29] and show by inspection that the
corresponding ring 3% is not freely generated. These examples illustrate the difficulties
one has to face in general if one wants to describe the structure of the invariant ring
for KM reductions for which DS gauges do not exist. (These difficulties appear similar
to the ones encountered in the general case of the GKO coset construction [3]).

As discussed in [30], the W^-algebras can be obtained by reducing the KM
algebra of W — sl(2n) by first class constraints of type (2.5) with (Γ, M) being
the following. Consider the sl(2) subalgebra y = {M_,M0,M+} c sl(2ri) under
which the In dimensional representation decomposes into 2n = n + n, and note
that the singlets of Sf in the adjoint of slilri) form another sl(2) subalgebra
σ = {m_,m o ,ra + } C sliln). The gauge algebra Γ of the required first class
constraints is given by the semidirect sum

Γ = span{m+} θ s Γ c , ([m+, Γc] C Γ c), (A.I)

where Γc c sl(2ή) is the canonical subalgebra (2.28) belonging to y , and M = M_.
The DS gauge fixing is not applicable to these first class constraints since, on account
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of [M_, ra+] = 0, the nondegeneracy condition (2.16) is not satisfied. More precisely,
the Γc c Γ part of the gauge freedom can still be fixed in the usual differential
polynomial way, and after doing this [30] the independent components of the partially
gauge fixed current may be displayed as

0 -e) ' I C, S.-Ej' * - l , . . . , ( n - D (A.2)

Except Si that enters the Virasoro L := LM = e2 + Sλ linearly, all these fields
are primary; e, b have conformal weight 1, the fields with index i have conformal
weight (i +1). These components are differential polynomials in the original first class
constrained current, since they were obtained by applying the standard OS gauge fixing
to the Γc gauge freedom. It also follows [30] that the components

e, Si9 Ci, (A3)

are invariant under the residual gauge transformations generated by m + E Γ, while
the rest transforms according to

Eι-^Ei + aC,,

Bi—^Bi- 2aEi - a1Ci, (A.4)

b —> b - 2αe + oί .

Thus the problem of finding a generating set for JB is reduced to the problem of
finding a generating set for the differential polynomial invariants in the components
in (A.2) under the very simple gauge transformation rule (A.4). We below investigate
this problem by using the following observations. First, notice that JB is graded by
scale dimension, i.e., the homogeneous pieces with respect to scale dimension belong
to JB separately for any element of JB. One sees this for example from the fact that
the gauge transformation (A.4) preserves scale dimension for scalar a. (One could
identify JB as a certain factor-ring, and see its being graded by scale dimension from
that too.) Thus it is natural to look for a homogeneous generating set in JB, i.e., one
consisting of elements having definite scale dimensions. Second, because the basic
ingredients in (A.2) from which the elements of JB are constructed have positive scale
dimensions, one sees that JB is positively graded, and the subspaces of JB with fixed
scale dimension have finite dimension.

This implies that if we want to select a homogeneous generating set, we can
proceed by starting from the elements of lowest scale dimension in JB and include
at each scale dimension a minimal set of elements in the generating set in such a
way that the elements of JB up to that scale dimension are differential polynomials
in these elements and the elements of lower scale dimension. We can implement this
procedure by inspection up to some finite scale dimension. On the other hand, if there
is a basis (free generating set) in 3B then the number of basis elements cannot be
greater than the number of degrees of freedom in the reduced system (obtained by
simple counting). Hence we can conclude the nonexistence of a homogeneous basis
in M either (a) if we have collected as many generators as the number of reduced
degrees of freedom and then exhibit an element of M that cannot be expressed as
a differential polynomial in these generators, or (b) if we find relations between the
selected generators after having completed the selection up to a given scale dimension.
By using this reasoning, we shall find that in the cases we consider the ring M does
not admit a homogeneous basis. As a consequence, it does not admit a 3^-basis,
since that would be a particular homogeneous basis. We think the nonexistence of a
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homogeneous free generating set implies that JB does not admit any free generating
set, but this will not be shown here. (We should note that the nature of the generating
set of ,9% has not been investigated so far, although the analogues of the above first
class constraints and a differential rational gauge fixing procedure were given in [30]
for Wι

k in general.) We first consider the simplest case n = 2, i.e., W2.

i) The case W^. In this case the reduced system contains 5 degrees of freedom since
the number of fields in (A.2) is now 6 and we have the one parameter gauge freedom
(A.4). It is clear that the 3 gauge invariant components e, S, C must be included
in the generating set of M we are looking for. (We suppress the index i in (A.2-4),
which in the present case takes only the value 1.) The next simplest gauge invariants
will be obtained by means of the rational gauge fixing

771

E —>E + aC = 0 => α = - — . (A.5)
O

By plugging back this value of the gauge parameter into (A.4), we obtain the following
2 differential rational gauge invariants:

B —-> {E2 + BC)/C := Rλ,

b —> (bC2 + 2eEC + {EC - E'C))/C2 \=R2.

By a similar argument used for a DS gauge fixed current (see (2.14)), it is easy
to see that it is possible to express all differential rational invariants, and thus also
the elements of M since polynomials are special rationals, as differential rational
functions in the components of the gauge fixed current resulting from the rational
gauge fixing. In particular, observing that the denominators in (A.6) are invariants
themselves, we obtain the elements of M given by the numerators of Rγ, R2,

X :=E2 + BC, P := bC2 + 2eEC + {EC - E'C). (A.7)

By inspection, it is not hard to see that there are in fact no simpler (i.e., ones with
lower scale dimension) elements of M in terms of which we could express X and P,
which contain B and 6, respectively. From this and the fact that the number of degrees
of freedom is 5, we conclude that either the set { e, L, C,X,P} is a homogeneous
basis for M, or otherwise there is no such free generating set in 3%. (If this was a
free generating set then it was also a Si^-basis. For this reason we exchanged the
generator S for the Virasoro L = e2 + S, which is obviously allowed.)

Let us next observe that the following combination of the rational invariants

K := C3R2 - {C)2Rι = b2C3 + AebEC2 + 4e2E2C + 2bC{EC - E'C)

+ 4e{E2C - EE'C) - B{Cf (A.8)

is a differential polynomial belonging to M. Since only P contains b in the
combination bC2, we see that K e 3$ cannot be expressed as a differential polynomial
in the set {e,L,C,X,P}. Therefore ,% does not admit a (homogeneous) free
generating set. Consistently, if we now say that the generating set of M will be
{e, L, C, X1P, K,... } then we receive 1 differential polynomial relation between the
first 6 generators,

P2 ~KC - {CfX - 0. (A.9)

Observe also that this generating set will not consist of a Virasoro and primary fields,
since K in (A.8) is not a primary field. Moreover, it should be stressed that we have
no argument even for the existence of a finite generating set in M\ We are not sure
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if a finite generating set exists in this case or not, but it is conceivable for example
that if we consider the elements of 3% only up to some finite scale dimension, then
we find a generating set for that part consisting of g elements with r relations in such
a way that g — r is always 5, but both g and r tend to oo as we increase the scale
dimension.

One can actually see already from the W4 case that 3% is never freely generated
for W2n because a similar argument may be applied to those cases, too. But it is
worth also having a closer look at the next case, where this can be seen even without
considering such a "tricky object" as K above (the "trick" there being the cancellation
of the terms proportional with 1/C, that are present before the subtraction in (A.8)).

ii) The case W6

2. The number of reduced degrees of freedom given by simple
counting is in this case 9. We have now 5 linear invariants in (A.3). By using rational
gauge fixing or just looking at the transformation rule of the capital letters in (A.4),
we obtain the following 4 quadratic invariants:

X1: = Ex+ BXCX, Xl2 : = 2EXE2 + BXC2 + CXB2 ,

X2: = E2 + B2C2, Y: = CXE2~C2EX.

It is clear that we have to include all the above linear and quadratic invariants in the
generating set of 3%. This already implies that ^ cannot be freely generated since
we can verify the relation

Y2 - C\X2 - C2XX + CXC2XX2 = 0. (A. 11)

Let us nevertheless continue the selection of the generating set a bit further. So far we
have 9 generators and 1 relation and none of the generators we already have contains
the component b. The simplest invariants involving b are the following 3 analogues
of P in (A.7),

pχ : = bC\ + 2eCxEx + (C[EX - CXE[),

P2 : = 2bCxC2 + 2e(ExC2 + E2CX) + (C[E2 + C'2EX - CXE'2 - C2E[), (A. 12)

P3 : = bC\ + 2eC2E2 + {C'2E2 - C2E
f

2).

It is easy to see that we also have to include these 3 invariants in the generating set
of 3% we are looking for. Together with these 3 generating elements we receive also
2 new relations:

C7,C72P2 - C\P, - C\P, + (C& - C[C2)Y = 0,

C\Pi - C\PX + (C1! C2)Y' - (C, C2)Ύ - 2eCΊ C2Y = 0.

Thus the counting of degrees of freedom, 9 = 12 — 3, is "correct" at this stage, though
the set

{e,L,Cι,S2,C2,XvX12,Y,X2,PuP2,P3}, (A.14)

where we exchanged Sx for L, is not a generating set of 3B. Indeed, in addition to
invariants like K in (A.8), one may check that for example the following elements
of 3% cannot be expressed as differential polynomials in this set,

Tx : = C2[bC2 + (C[EX - CxE[)f + 4eC2E2[bC2 + (C[EX - CXE[)]

- 4e2Cf B2,
/ A 1 ^\

T2: = Cι \bC\ + (C'2E2 - C2E'2)Ϋ + 4eC2

2£1 \bC\ + {C'2E2 - C2E'2)]

- 4e2C2

iBι.



Classical ^"-Algebras Obtained from DS Reductions 429

By adding these 2 invariants to the generating set, we also receive 2 new relations,
and it is not clear to us if the procedure would terminate at a certain higher scale
dimension or not. The only firm conclusion we can draw from the above is that ^
is not freely generated for W | and that the generating set (whatever it is) is pretty
complicated.

iii) Further remarks. Some further remarks are now in order. First, the analysis given
above clearly implies that &> is not freely generated also for any W%n. For example,
one can see this for any n > 3 simply by looking only at the corresponding linear
and quadratic invariants. The analogous statement is likely to be true for any Wι

k

(1 < I < fc), except the cases W2

2

n+1 which coincide with particular ^f-algebras
for 5? = sl(2n +1). More generally, we may expect the structure of the invariant ring
M to be similarly complicated for a generic KM reduction by first class constraints.
(For further study of the structure of these complicated rings, one can find references
on the mathematical literature on differential rings in [34].)

Finally, we wish to note that the above considered reduction of the KM algebra
by first class constraints can be naturally reinterpreted as the following two-step
reduction procedure [30]. The first step consists in reducing the KM algebra to
the ^f-algebra with & — sl(2n) and y given at the beginning of the appendix.
The second step consists in further reducing the 3^?-algebra by using its sub-KM
algebra given by the singlets (see also the remark at the end of Sect. 2.2.). This
sub-KM algebra is now just the sl(2) KM algebra of the components belonging to
σ = {m_,ra o ,m + } C Ker(adM +). The "secondary reduction" of the ^F-algebra
(i.e., the second step of the KM reduction) has been defined by putting the m+-
component - the lower-left entry of the first matrix in Eq. (A.2) - to the degenerate 0
value. The reader might wonder what happens if one puts that component to 1, rather
than 0, which means that one would perform a DS reduction on the singlet sub-KM
algebra as the secondary reduction of the ^?-algebra. In fact, one can verify that
this "DS reduction after DS reduction" gives no new kind of algebra; it leads just to
the ^i^-algebra, where ^ — y + σ, with the sum applied to the sZ(2) generators.

Clearly, this has a natural generalization, that is, DS reductions of W<jf -algebras to
other canonical algebras as far as there is a semisimple part in the singlet KM to
perform a secondary DS reduction. We leave this for a future study.
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