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Abstract: We construct a realization of the quantum affine algebra Uq(slN) of an

arbitrary level k in terms of free boson fields. In the q—>\ limit this realization

becomes the Wakimoto realization of slχ. The screening currents and the vertex

operators (primary fields) are also constructed; the former commutes with Uq(sl^)

modulo total difference, and the latter creates the Όq{slti) highest weight state from
the vacuum state of the boson Fock space.

1. Introduction

Chiral algebras such as the Virasoro and current algebras play a central role in
conformal field theory (CFT) in two dimensional space-time. This theory is a quan-
tum field theory (QFT) of massless particles, in other words, a (massive) QFT at a
critical point (renormalization-group fixed point) [1]. Perturbing CFT's suitably, we
get integrable massive QFT's [2, 3, 4]. In these theories, the Virasoro algebra does
not exist any longer. In many cases the quantum affine Lie algebra plays a crucial
role instead of the Virasoro algebra [5]. This quantum algebra is, for a large part,
at the origin of the integrability. Moreover it can almost determine the S-matrix of
the theory, e.g. sine-Gordon model [5].

The Wess-Zumino-Novikov-Witten (WZNW) model is a fundamental example of
CFT's; many CFT's can be realized through a coset construction of WZNW models.
The WZNW model has been studied based on the representation theory of the affine
Lie algebra. Correlation functions of this model, which are vacuum expectation
values of vertex operators, satisfy certain holomorphic differential equations, what
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is called, Knizhnik-Zamolodchikov (KZ) equations [6, 7]. We expect that the "q-
WZNW model," which has a symmetry of the quantum affine algebra, is a certain
massive deformation of the WZNW model. Correlation functions of the #-WZNW
model satisfy ^-difference equations (q-KZ equations) [8, 9]. Connection matrices
of solutions for q-KZ equations are related to elliptic solutions of the Yang-Baxter
equations of RSOS models [9]. An application of ^-vertex operators based on Uq(sl2)
was performed in diagonalization of the XXZ spin chain [10].

Free field realizations of the Virasoro and affine Lie algebras were useful for
studying representation theories [11] and calculating correlation functions [12, 13].
It is expected that this is also the case for the quantum affine algebras. In fact, the
integral formula for correlation functions of the local operators of the XXZ spin
chain was found by using the free boson realization of Uq(sl2) and bosonized q-
vertex operators [14, 15]. To study higher rank versions of the XXZ spin chain, sine-
Gordon model, etc., we need free field realizations of the quantum affine algebras.

In this paper we construct a free boson realization of the quantum affine algebra

Uq(slχ) with an arbitrary level k. In the q —> 1 limit, it becomes the bosonized

version of the Wakimoto realization of slχ [16, 17, 18]. Free field realizations of

Uqisljq) with level 1 were constructed in [19]. Free field realizations of Uqish) with

an arbitrary level were constructed by several authors [20, 21, 22, 23] and that

of Uq{sh) was obtained by the present authors [24]. We construct a free boson

realization of Uq(slχ) by affinizing the Heisenberg realization (^-difference operator
realization) of Uq(sl^) [25] and prove it by the OPE (operator product expansion)
technique. The screening currents and the vertex operators (primary fields) are also
constructed. They are necessary ingredients for calculating correlation functions.
A certain integral of the screening current commutes with Uq(sl^) and the vertex

operator creates the highest weight state of Uq(slN) from the vacuum state of the
boson Fock space.

This paper is organized as follows. In Sect. 2 we fix our notations and recall
the definition of Uqislx). We construct a free field realization of Uqisl^) in Sect. 3,
and the screening currents and the vertex operators in Sect. 4. Section 5 is devoted
to discussion. The grading operator is also bosonized. In Appendix A we present
the Heisenberg realization of Uq(sl^). In Appendix B ^-difference expressions of
our free field realization are given. In Appendix C, D we give useful formulas and
some details of calculations.

2. Notations

Throughout this paper, the complex numbers q and k are fixed, q is assumed to be
a generic value with \q\ < 1. We will use the standard symbol [x],

M - 7 ^ (2Λ)

and Σ"Zl* = 0, Γ Γ : > = f l - Let «,, Λ, ( l^ ig t f-1) , (ay)ι^JύN-u be the
simple roots, fundamental weights, the Cartan matrix of slχ respectively. ( , •) is the
symmetric bilinear form; (α, , ά, ) = ay, (/I;, aj) = δy . g stands for the dual Coxeter
number of slN, i.e., g = N.
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The ^-difference operator with a parameter α is defined by [20]

l. (2.2)
(q-q λ)z

The Jackson integral with parameters p G <C(|/?| < 1) and s G C x is defined by

5 0 0 def

Jf(z)dpZ = s(l — p)Σf(sPn)Pn - (2-3)
0 «ez

These operations satisfy the following property:

SCO

J Λf(z)dpz = 0 for p = q2a. (2.4)
0

The deformed commutator with a parameter p G C is

[A,B]p^AB-pBA. (2.5)

The quantum affine algebra Uq{slN) is the associative algebra over C with
Chevalley generators ef, invertible tx (i — 0,1,... , N — 1), and the following rela-
tions [26]ι:

[ti,tj] = O9 (2.6)

and

^Ϋ'^'^fiefγ = 0 , (2.9)

where (aψt)0<..<N_ι is the Cartan matrix of the extended Dynkin diagram of sljγ
j r -ι def \nv Γ n , def -I-I-H Γ T

a n d L Ί ^ [r]![W-r]!> W ! = Γ U l M
Uq(slN) is isomorphic to the associative algebra over C with Drinfeld generators

E±* (n G TL\ H^(neZ- {0}), invertible K{ (i = 1,2,... ,N - 1), invertible 7, and
the following relations [27]:

y : central element, (2.10)

[KhHl] = 0, KiE^'Kr1 = q±a*E^ , (2.11)

[Hι

n9Hi] = -[clijn]7"'Ί_"δn+m,0 , (2.12)

(2.13)

(2.14)

1 For the grading operator d, see Sect 5
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and

% = 0 , (2.15)

= 0 foray = 0 , (2.16)

, = 0

for ay = - 1 . (2.17)

Here ι/4,n are defined by the following equation:

^ exp (±(q - Ϊ " 1 ) Σ # > - " ) (2-18)
n£Έ \ ±«>0 /

Let Hι

Q be defined by

^ ^ 1 ^ ) (2.19)

then Eqs (2.11)-(2.13) hold for H^ (n e Έ)2. Equation (2.11) is derived from Eqs.
(2.12), (2.13).

Defining the fields H\z\ E^(z) and ψi(z) as

H\z) ^

4ί&= Σ4&-", (2-20)

nez

the above relations can be rewritten as formal power series equations:
(w)] = 0, (2.21)

(z - <f*y-χw)(z - q-a«yw)\l/i(z)\l/j_(w)

= (z - qa«yw)(z - q-aiJy-ιwW_(w)Ψi(z) , (2.22)

(z - ^^y^iw^i ίz^^ ' ίw) = (q±aijz - y^w)E±J(w)φi(z) , (2.23)

(z - ^±^yτ^w)£'±J'(z)ι/(i(w) = (q±a9z - yτ^w)\jjί{w)E±J{z) , (2.24)

(2.25)

and

2 In the case of n = 0, ^* should be understood as limn^o^* For example, lim«^o^[«] —

^ ^ , l im n _ 0 ^K«]^Ϊ7=τ = 0, l im^o^K^y^^ 1 " 1 = ̂ τ α ί / I n t h e following, this conven-

tion is assumed



Free Boson Realization of Uq(slN) 65

(z - q±a«w)E±'i{z)E±'J{w) = {q±aH - w)E±J(w)E±'i(z) , (2.26)

E±\z)E±'j{w) = E±'\w)E±\z) for ay = 0 , (2.27)

E±'i{zx)E±'i{z2)E±'i{w) -(q + q~1)E±'i(zι)E±J(w)E±'i(z2)

+E±J{w)E±\zι)E±'\z1)

+(reρlacement: z\ <-»• z2) = 0 for α,y = — 1 , (2.28)

where (5(x) is given by

δ(x) = Σ x" • (2-29)

Correspondence between Chevalley generators and Drinfeld generators are [27]:

tt^Ki (i=l,...,N-l), (2.30)

(i=l,...,N-l), (2.31)

...K~ll, (2.32)

e+ ~ [E-^-\[E-'N~2,[...,[E^,E-\^ ...],_,],_,

(2.33)

E+*-χE$»-\ . (2.34)

Uq{slN) has the Hopf algebra structure. We take its coproduct Δ as

Δ(ti) = tt <g> tt, (2.35)

J(e+) = β + ® 1 + /, ® e,+ , (2.36)

J(eΓ) = ef ® /f' + 1 ® ef , (2.37)

and its antipode S is

S(tt) = tr\ S(e+) = -trιe+, S{eγ) =-έr* . (2.38)

An explicit coproduct formula for all the Drinfeld generators has not been obtained.

Let V(λ) be the Verma module over Uq(sl}i) generated by the highest weight

state I λ), such that

K

Hi

λ)

λ)

λ)

= En

= 0,

= r

--> λ) = 0 in > 0 ) , (2.39)

(2.40)

(2.41)

where the classical part of the highest weight is λ = Y^tS[ £ι A\.
Next we will introduce boson fields. For a set of bosonic oscillators an (n G Έ),

and zero modes βa,qa whose commutation relations are

[an,am] = npa(ή)δn+mfi, a0 = _ _χpa , (2.42)

\Pa> <U = Pa, \βn, 4J = 0 (/I + 0) , (2.43)
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where pa is a constant and pa(n) satisfies

Pa , (2.44)
-q~ J

we define free boson fields a(z\ α) and a±(z) as follows:

α(z; α) ̂ f - Σ p r ^ α | w | z - w + qa +pa\ogz , (2.45)

α±(z) d= ± f (q - ^ - ! ) E αwz"w +palog<l) ( 2 4 6 )

= ±{q - q-χ) ( Σ am'" + \aλ . (2.47)

We abbreviate a(z; 0) as α(z) = a(z; 0). In the q -^ 1 limit α(z; α) becomes the
free chiral boson field φ(z) used in the string theory and CFT (but the mean-
ing of z is different). Correspondence between α(z; α) and φ(z) = x — yf^A

^ ^ i s

α(z; α) - f V α ^

qa^y^VPa£- (2-48)

Moreover let us define boson fields with parameters L,M as follows:

α(Z,i,...,L r;Mi,...,M r |z ;α)

def ^ [ L ι n ] . . . [ L r n ] Un Λ\n\ n L χ . . . L r .** x , 0 A Q x
= Σ ί M z + ( ^ + ^ 1 O 8 Z ) ' ( 2 4 9 )

...,Ir;Afi,...,AfΓ | z)

We abbreviate these as

d

Z ; α ) , (2.51)

%j...%ra±)(z) = a±(LuL2,...,Lr;MnM2,...,Mr\z). (2.52)

Normal ordering prescription : : is defined by

p to right,move an (n > 0) and pa to right,

move an (n < 0) and qa to left.
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For example,

:exp(φ;α)): = exp(- £ ^(g-'z)-")e*V*exp(- £ £;(&)-") . (2.54)
\ lΛl / V n>0ln\ J

For multicomponent a1 (aι

n,p
ι

a,q
ι

a), we treat them similarly; [aι

n,ajm] =

nρ£(n)δn+m>o, etc. We can easily verify the following:

l l ^ a ί ] = -rnai , (2.55)

where p^λ^(ή) is an inverse of p\(«), i.e., ΣίPί(n)P<ϊl^J(n) = δiJ-

3. Free Boson Realization of Uq(slχ)

To construct the Drinfeld Uq(slχ) generators of level k in terms of free boson fields,
we need N2 - 1 free boson fields d (l^i^N - 1), tij and c« (1 ^ i < 7 ^iV). Their
commutation relations are

K , < ] - - [ ( * + flf)/i][^/i]5II+«lo, b l , ^ ] = (* + g)aij , (3.1)

^ ^ ^ [pt̂ /] = -^>' , 0.2)

fc9qf/] = όftf , (3.3)

and the remaining commutators vanish.
Let us define fields H\z\ ^ ( z ) and E^iz) (l^i^N - 1) as follows3:

Σ (^

— (replacement: x+(gαz) »-> x_(^~αz)for x = a9b), (3.4)

3 These operators are well-defined on the boson Fock space that will be defined in the next
section
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Σ Φ%*k+Λz) - b¥J(q*k+>-%))) :, (3.5)

(exp(Z/+

i+V^z) -φ

/ϊ + 1 (^- 1

Z ) - (b

x exp ( Σ:(fe+

>ί+1 (/"'*) - ^ ( / ^ ) ) ) :, (3-6)

v=
x

xexpf
V=7+l

)

7=i+2

x

+ j

tti^) f1'^1))) )̂ (3.7)
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where bti = 0, cu = 0 and (b + cf = bij + ciJ. These expressions are guessed from
free boson realizations of Uq(sl2) [20], Uq(sh) [24] and the Heisenberg realization

d ff fiq q

of Uqisl^) [25] (Appendix A), ^-difference expressions of these fields are given in
Appendix B. In the q —» 1 limit, Eqs. (3.4), (3.6) and (3.7) become the bosonized
version of the Wakimoto realization of sfa with level k [16, 17, 18].

From Eqs. (3.4) and (2.19), Hι

n and K{ are

N

+ aiq~*\n\ + Y^ (i^-Cf+y)!"! _ tf+iJq-(j+J-i)\n\\ (3 8)

i . . . . N

Kΐ = ^Σ(^έ I + ~ ^ 0 + A + Σ ipb ~Pb J ) (3 9)
7=1 y=i+l

We obtain the following proposition:

Proposition 1. H^φ^E^ in Eqs. (3.4)-(3.7) satisfy the relations Eqs. (2.10)-

(2.13) w/ίA y = qk, Eq. (2.28), and the following relations:

reg. + ^ — ( l—ιH(qlw) L—^Lfo-fwΛ , (3.10)
(q — q~)w \z — qkw z — q~fcw )

(z - q±ai^w)E±'i(z)E±J(w) - (q±a«z - w)E±J(w)E±'i(z) ~ reg., (3.11)

E^(z)E±J(w) - JE
f±J(>v)JE'±'/(z) - reg for ay = 0 , (3.12)

where the symbol ~ and ~ mean equality in the OPE sense (in other words
analytic continuation sense), and ~ means equality modulo regular parts.

Proof. A straightforward but tedious OPE calculation shows this proposition. We
give the useful formulas in Appendix C and how the poles cancel each other in
Appendix D. For Eq. (2.28) some explanation is needed. Let us denote OPE of
each term of E±il(z) as follows (see Appendix D for notation):

): . (3.13)

For / =j there are three cases:

and ffA(w,z) = / W~L , (3.14)
z —

and ffA(w,z) = / , (3.15)

and / r (w,z) = ^^~-z , (3.16)
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where t eZ depends on i, j , A, B, ±. For ay = — 1 there are two cases4:

and ffA(w,z) = qm, (3.17)

fϊAB(z,w) = qm and fξBA\w,z) = <fq ™ ~* , (3.18)

where m € Έ depends on i, j , A, B, ± . These OPE equations can be translated to
formal power series equations:

. ( 3 1

Equations (3.14)-(3.18) are translated to

and g^A(w,z) = q'(w-z)-ΣU±2L)\ (3-20)

9f(z,w)= ?V
2z-w)-Σ(ί± 2-)" and gf\w,z) = / , (3.21)

gi?B(z,w)=q< and fffdv.z) = q'(q±2w - z)- Σ U±2L)" , (3-22)

-)n and ^A(w,z) = qm , (3.23)

ί f few)=ί" and ί?
/fί(w,z) = 9 " ( ί = | : 1 w - z ) - Σ ( 9 : F l £ ) . (3-24)

respectively. A product of three E's can be expressed as

E±MAι\zι)E±MA2\z2)E±MA3\z3)

x:E±MAι\zι)E±MA2\z2)E±MA3\z3): . (3.25)

We remark that this is a consequence of the bosonic realization. Using this fact,
we obtain

\w) -(q + q-ι)E±AAλ\zχ)E±J{B\w)E±AA2\z2)

(w): . (3.26)

In each case, this coefficient is antisymmetric with respect to z\ and z2. Therefore
Eq. (2.28) holds. Π

For E , there are extra poles. However, we can discard them because they cancel each other
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We remark that Eqs. (3.10), (3.11), (3.12) imply Eqs. (2.25), (2.26), (2.27)
respectively. Therefore we obtain our main statement:

Corollary 2. H\ φ^., E±fi in Eqs. (3.4)-(3.7) realize the quantum affine algebra

in the Drίnfeld realization with γ = qk.

4. Screening Currents and Vertex Operators

To calculate correlation functions and investigate the irreducible representation, we
need screening operators, which commute with Uq(slχ). Let us define the screening
currents S*(z) (i = 1,...,N — 1) as follows:

(ί-

V) - (ft + c)

x expf Σ (bi^(qN-^z) - ^(^z))): . (4.2)
\«f=y+l /

We remark that S (z) is nothing else but E+'N~'(z) with replacement #j/ι->

_bN+\-j,N+i-ι^ φ + cyj ^φ + cyf+ι-jji+ι-i^ τ h e s e screening currents have the
following properties.

Proposition 3. S\ §' in Eqs. (4.1), (4.2) and H\ E^ in Eqs. (3.4H3.7) satisfy
the following relations:

[Hi,,S>(z)] = 0, (4.3)

E+\z)S>(w) ~ ^(w^+'Xz) ~ reg., (4.4)

reg. + δ'Jk+gdw

,z — w

and

(z - q-a^w)S\z)§(w) - (q-a«z - w)§(w)S\z) - reg., (4.6)

S\z)§{w) ~ §{w)S\z) - reg. for ay = 0 . (4.7)
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Proof. Straightforward (see Appendices C, D). D

Equations (4.3)-(4.5) can be expressed in the commutator form.

Corollary 4.

[i/',#(z)] = 0, (4.8)

[E^9ff(z)] = 09 (4.9)

) (4.10)

From this we get the desired property of the screening charges.

Corollary 5. If the Jackson integrals of the screening currents Eq. (4.1),

jS\z)dpz, p = q*k+<K (4.11)
0

are convergent, they commute with Uq{sl^) generated by Eqs. (3.4)-(3.7).

Next we will construct the vertex operators (primary fields), which create the
Uq(slN) highest weight states from the vacuum state of the boson Fock space. The
vacuum state of the boson Fock space, |0), is defined by

(4.12)

Let \pa,Pb,Pc) be

^-JJ

a+ Σ PΪ(-i)ft+ Σ

then \ρa,Pb,Pc) is the highest weight state of the boson Fock space, i.e.,

cfn\pa,Pb,Pc) = bϊ\pa,pb,pc) = 4\pa,pb,pc) = 0 (w > 0), (4.14)

PalPaiPbiPc) =Pa\Pa,Pb,Pc), Pχ\Pa,Pb,Pc) = Pχ\pa9Pb9Pc) (* = b,c) . (4.15)

The boson Fock space F(pa,pb,pc) is generated by oscillators of negative mode on
the highest weight state \pa,Pb>Pc} Et'1 change pb — pc only, Sι

n changes pa and
Pb —pc, Hι

n does not change pa, p^ pc- |/?α,0,0) has the following property:

Proposition 6. H\ E±4 in Eqs. (3.4)-(3.7) act on |pα,0,0) as follows:

Xn\paΛ0) =0 (n>0 X = H\E^), (4.16)

E+>i\PaΛ0)=0, (4.17)

Hi\pa9090)=pi\pa9090). (4.18)

Proof Straightforward. Xn (n > 0) annihilate \pa,Pb,Pc) with/ty +pc = 0, and Epι

annihilate |/?α,0,0). D

This property is just the highest weight state condition of Uq{slN).
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Corollary 7. Using the highest weight state \pa,0,0) = K/1,...,ίN~ ι)90,0), we get

the highest weight left module of Uq(slχ\ V(λ),

F(V\...,SN~l%r,-r), (4.19)

where the classical part of the highest weight is λ — ̂ λA\Λ h ̂ N~1ΛN-I =

As is well known in CFT, this module is reducible.

Let us define the vertex operator with a weight λ = (7 1,. . ., ίN~ ι) and a param-

eter α, φλ(z; α), as follows:

The highest weight state of Uq(slχ), \(/ι

9..., (N *), 0,0), is created from the vacuum
|0) by this operator with any parameters α and β,

K Λ . . . , ^ " 1 ) ^ ) = limφ\qβz;a)\0) . (4.21)
z—> 0

Moreover this vertex operator has the following properties.

Proposition 8. φl in Eq. (4.20) and H\E^ in Eqs. (3.4) - (3.7) satisfy the fol-
lowing relations:

[H^φ\z;α)] - X-\βiή\q-^q^n\znφ\z\α), (4.22)

[Eϊ>\φ\z;oc)] = 0, (4.23)

and

(z — q^'w)E~>ι(z)φλ ( w; ) ~ (q''z — w)φλ I w; 1 E~'ι(z)

\ 2 ) \ 2 J
- reg. (4.24)

Proof Straightforward. We use the ^-analogue of the inverse of the Cartan matrix:

^ [airn] [min(rJ)n][(N - max(rj))/ι] = g

We remark that Eq. (4.24) can be rewritten as

(4.26)

From φλ(qβz; α) with appropriate α and 8̂, we can construct the ^-vertex operator
^( z ) [9], which has an intertwining property. We will discuss this problem in the
next section.
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5. Discussion

In this paper we have constructed a free boson realization of Uq{slN). We can also
bosonize the grading operator d. d is defined by the property for the Chevalley
generators,

[</,*/] = 0, [d,ef] =±δiOef, (5.1)

or equivalently, for the Drinfeld generators,

[d,Hl]=nHi

n, [d,Efi}=nE^. (5.2)

Using Eqs. (2.55) and (4.25), let us define the ^-analogue of the Virasoro LQ operator
[17, 18] as follows:

def V . n [min(ij>][(N - max(i,j))n] j

° 2 ^ i i -n[nW + g)n] [Nn][n]

- T T : cu —^4 : +- y βϋ', (5.3)

where p1 = 1, i.e., p = (1,1,. . . , 1) = Y^Ί1 Λ is the half sum of positive roots of
slχ. Then d — —LQ satisfies Eq. (5.2) on the representation space given in Corollary.
7. The Lo eigenvalue of l^ 1,---,^" 1)^^) is ^/cιγψ +2?) - ^(A,A +
2p).

We have also constructed the screening currents and the vertex operators. Using

these, we can start the representation theory and calculation of correlation functions.

Like SIN [28, 29], it is expected that the projection from the boson Fock space to

the irreducible Uq(slχ) representation space can be done by BRST cohomology

technique. In fact, recently, this procedure has been worked out for Uq(sl2) [30].
The BRST operator is constructed by using the screening current.

To calculate the Jackson integral formulas for the correlation functions, which
are solutions of the q-KZ equation, we must first prepare the ^-vertex operators
Φ. We will restrict ourselves to the type I [10] vertex operator Φy^λ{z): V(μ) —>

V(y) <S> Vfc. Φ^Yλ{z) can be constructed from φ\q$z\ α) with appropriate α, β. From

Eq. (4.24), we choose α = — k-ψ . This choice agrees with refs. [31] (Uq(sl2) with

an arbitrary level k) and [32] (vector representation of Uq{slχ) with k = 1). Starting

from φ\z) =f φι (z; -ψ^j , we define φfu Jn(z) as follows:

[Φί ( ) V % ί λ § α α Λ (5.4)
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To determine /?, we must specify the finite dimensional representation of Uq(slκ).
Results of refs. [31, 32] suggest β = k + g. Once the finite dimensional represen-
tation is obtained and β is determined, we can construct the ^-vertex operator
Φy^λ(z) from our φfu , ί n (#^) Then, we can calculate correlation functions of
the ^-vertex operators in the standard way. These problems are now under investi-
gation.

To extend our results to arbitrary quantum affine Lie algebras, it may be im-
portant to consider the geometrical interpretation of the free boson realization. For
q—\ case, the β—γ system is suitable for the geometrical interpretation [17]. For
qή=l case, we define the quantum β-γ fields, j?f5±(z) (α = ±l),y#(z), as follows:

j : exP(M*) (* + c)(q±ι

S ( ^ ω (* + )(±ι

βx,±(z) = (gjg-ifr : e xP(M*) - (* + c)(q±ιz)) : , (5.5)

^ ω " (* + c)(q±ιz)) : , (5.6)

(5.7)

where we suppress the superscript ij. They are not free fields any longer. They
satisfy

(z - qa+a'w)βa>β(z)β«Άw) = (<la+a'z ~ w) βjsMβUz) (ε> e' = ± ) > (5-8)

β±ι*(z)βψiM") = βψiM")β±ιAz). (5-9)

(z - ?τlw)j8±i,±(z)y(w) = (<7Tl* - * ) ϊ ( w f o W . (5 1 0 )

(z - ?τlw)Kz)i?±,,τ(w) = (q^z - w)β±UΨ(w)y(z), (5.11)

γ(z)γ(w) = γ(w)γ(z). (5.12)

Our free boson realization of Uq(sliv) is reexpressed by these quantum β—γ fields. In
the q —• 1 limit, j8α>+(z) — βa,-(z) and y(z) become usual j8(z) and y(z) respectively.
These j?α,±? 7 fields are the affinization of ^-oscillator {μώ — q±ιa^a = q^^);a —•
γ, ώ -^ β^+ — j?α5_ (see Appendix A). We expect that our realization in terms of
the quantum β-γ system acts on the ̂ -deformed semi-infinite flag manifold [17].

Our free boson realization may also be useful to analyze the ̂ -analogue of the
Virasoro and W algebras by the Hamiltonian reduction, and the representation at
the critical level k = —g.
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and discussions We would also like to thank T. Eguchi, E Frenkel, M. Jimbo, T. Miwa, A.
Nakayashiki, M. Noumi, and Y. Yamada for helpful discussions.

Appendix A

For the reader's convenience, we give the result of [25], the Heisenberg realization
of Uqisljf) with the weight λ[ G C. Let us consider variables Xy and derivatives
3̂ 7 ( 1 ^ / <j^N). Their commutation relations are

9xifjf = δu'δjji, others = 0 . (A.I)

J
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Standard Chevalley generators of Uq{sl^\efji — qhi(i = 1,...,N — 1), are realized
as follows:

ht = - Σ (<Vi - #J4) +λt- Σ (ΰtj - ΰMJ) , (A.2)

ef *? j>U— [<Vi] ^ - Σ ^ l ^ - ^ , (A.3)

Γ f Σ [#] Σ ^ L

- Σ ^ ^ - [*»!,/] / - Σ t / ^ - ^ /), (A.4)

, n def p def i n def Λ

where 1% - JC,> ^ , X , , = 1,#, , = 0.

Our free field realization of Uqfslw) is obtained by the following replacement
with suitable argument:

(A.6)

(A.7)

Appendix B

In this appendix, we reexpress Eqs. (3.4), (3.6), (3.7) and (4.1) by using the q-
difference operator. These expressions are not unique and we give one of them.

Using the following formulas:

l ^ - (a+(q«z) - a-(q-az)) = ιdIφ; α) = Σβ-ί""1"^"""1 - (B l)
μ zyq — q μ

c){qz)) - exp(±bΨ(z) -(b + c){q-ιz))):
(q - q )z

=:! δz(exp(-c(z))) exp(-fe(z; T 1)): , (B.2)

{q_\-\y

= -M dz ίexp Γ± (±aλ (z; α)] ) exp U (±<λ (z; a-M)Y., (B.3)
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( W ) ) - e χ P

Eqs. (3.4), (3.6), (3.7) and (4.1) are rewritten as follows:

; \ +j -1) - ^ (̂  \g

= - E : exp

x (exp ( - ^ ί + 1 (^-^))) exp (-V'i+ι (q>-ιz; - l ) )

x i3, (exp (-e" (^"(*+y)z))) exp ( - ^ (g-*+»z; l))

x exp f Σ

( B 5 )

; f) + , ί > ( " ( z ; I + j ) -bi+hj (z; \+j - 0 ) ) (B 6)

x exp Σ mi+l tf~ιz) - bei (/z)) : , (B.7)

: - £ : exp ((* + cy i+1(q-(k+J)z))
7=1

" 2

- Σ
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j=i+2

x exp U ( )

(B.8)

Si(z) = -:exp(-

xidj exp (-cij (cf^z)) exp {-bUj iq^^z; l))

x exp Σ (6'+1/ (/- / + 1z) - ft^f (^"'z)) : . (B.9)

These expressions are adequate for taking the q —> 1 limit, because there is no

denominator # — g" 1. In this limit α<3z, ί ^- j^a) (z α), ί ί̂- jfi-a±\ (z) become

(xdZ9 M\ M,α(zXQ respectively. Equations (3.4), (3.6) and (3.7) become the bosonized

version of the Wakimoto realization of slχ with level k [16,17,18]; βij(z) and yij\z)
are expressed in terms of W(z) and cij(z) with # = 1 as follows [33]:

βu(z) = _ . δ z ( e x p (-^(z))) exp (-V\z)) : , (B.10)

/ ( z ) = : e x p ( ( 4 + c ) ^ ) ) : . (B.ll)

Appendix C

In this appendix we give useful formulas.
First we give formulas for a boson a in Sect. 2 (see the footnote below Eq.

(2.19)).

[Λ,£]commute with A,B => μ,e 5 ] = [A,B]eB, (C.I)

(C.2)

"•• (*••• π°*)»]=±β(τ-> w - »->ι£::3:::K!]^ ^ (C3)

"••(τr- Έ"
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( C 5 )

] [L\n]---[L'sn] n

( C 7 )

= _ [Iiw] •••[£,»] [L>] [L>] « - ( β + Λ |»| /w

„ Φ o [^i "I t^«] K«] WM M2 ^

Li Lr LΊ L' , w

-Ml...MrM[...M>P^-Z ' ( C 8 )

where Θ(P) is a step function, Θ(P) = 1(0) when the proposition P is true (false).
These are formal power series equations.

Next we give specific formulas often used in proofs. For calculation of [H'n, *],

K,<4(z)] = ±θ(τn > 0)(q - q~X)\{k + g)n][ayn]Z" , (C.9)

l^U^~aWz" » (CIO)

[bn,b±(z)] = ψθ(τn > OX? - q-ι)hnfzn , (C.ll)

where we suppress the superscript of bi}'. For OPE calculation,

exp(ab+(z))exp(βb- (w))

(z - wf

(z -
(C13)

Z-^- j : exp (βb(w)): exp (α6+(z)) , (C.14)
qz-wj



80 H. Awata, S. Odake, J. Shiraishi
z — ow \

— exp (βb_ (w)): exp (<xb(z)):
qz-wj

) fβ: eχp(ocb(z) + /»_(")): , (C.15)
qz-w

exp (ct+ (q 29z) J exp (ai_ (q *?w))

z - q"vw z -
z — q~aϋw z — qay-2{<k+9)w

a \ \

(C.16)

exp ' 2

-:exp -

exp [ά_ (q * wjj
qaijz _ q-(k+g)w

^ ( ι ) [z;
' 2

where α and jS are parameters and ~ means equality in the OPE sense (analytic
continuation sense).

exp(Z? + c)fs commute each other because pb(n) + pc(n) = 0.

Appendix D

In this appendix we give how poles cancel each other in OPE of E+>ι(z) and
E~J(w),E~'ι(z) and E~J(w\E±>ι(z) and SJ'(w). Let us denote each term of Eqs.
(3.6), (3.7), (4.1) as follows:5

E+\z) = E {E+Ml)(z) + E+M*\Z)) , (D.I)
7=1

5 For example, E+J^2\z) = (^_~l1)z:exp ((ό + cy 'V"1^)) x (-l)expί fr7

-(ft + c y ^ 1 ^ ^ ) ) x exp (Σ/Ii ( ^ + 1 ( / - ^ )
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j=i+2

Σ
y=i+i

(D.2)

(D.3)

I.

For / = 7 , OPE E+>ι(z)E J(w) has poles at z = qkw and z = q kw. They come from
LJ \£ JLJ \ " / Λ11VA X-/ \Δι JLJ \ J vaUvvll VC1V.

Some terms of ̂ +>I(z)^~*/'(w) have other poles but all these poles cancel in pairs.
We give these poles (z = q*w) and pairs (E+^A\z)E~J(B)(w) and

α G4) (5) (C) (D)

(i) y = ι - i t - 2 ^ (Λl) (Λ2) (^+1,2) (if+1,1)

(ϋ) y = / + 1 -Jt - 2€ + 1 (Λ 1) (Λ 2) (/, 2)

(iii) 7 = i - l t + 1 ( ί-1,1) (7+2,1) (i,l) C/,2)
* + l (/-1,1) σ + 2,2) (i,2) (7,2)
* + l O',l) (7 + 2,2) (i,2) σ + 2,1)

(iv) 7 = / - 2 Λ + /-7 (7,1) (ί+1,1) (7 + 1,1) (ί, 1)
* + ι -J σ» 1) 0' +1 ?2) σ + 1> 2) (Ϊ, 1)
k + i-j (7 + 1,1) 0 + 1,2) (7 + 1,2) ( i + l , l ) .

II. E~'i(z)E~ίJ(w).

E~>i(z)E~>J(w) has poles at z = #~fli>"w. Some terms of this OPE have extra poles.
But these extra poles (z = qaw) cancel in the following pairs (E~^A\z)E~^B\w)

and E~'i(c\z)E~J(D\w)).

a (A) (B) (C) (D)

(i) j = i-\ 2k + i+j 0-1,2) 0,2) 0,1) 0 + 2,2)

(ii) jύί-2 2k + i+j 0,2) 0,1) 0 + 1 , 1 ) 0 + 1,2)
2 * + ι + 7 0,2) 0,2) 0 + 1 , 2 ) (ί + 1,2)
2 * + i + 7 0 + 1 , 2 ) (z,l) 0 + 1 , 1 ) (ί,2).

III. E+'i(z)S'(w).

Poles (z = qaw) cancel in the following pairs (E+^A\z)Si(B\w) and

(A) (B) (C) (D)

0+1,2) 0,2) 0+1,1)
0,2) 0+1,2) 0+1,1)
0+1,2) 0,2) 0+1,1)
0,2) 0+1,2) 0+1,2).

IV. E~*

(i) j =

IIΛ

/ N-
- 1 N-

N -
N-

i-j

i-j
i-j
i —j

(U)
σi)
σi)
σ,2)
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For i =7, OPE E~\z)Si(w) has poles at z = qk+gw and z = q~^k+^w. They come
from E~^l\z)Sj(N;i\w) and E-^iΛ\z)^'^ι\w) respectively.

Some terms of E~'ι(z)SI(w) have other poles but all these poles cancel in pairs.
Poles (z - qaw) and pairs (E~^A\z)^B\w) and E~^c\z)^D\w)) are

α (A) (B) (C) (D)

(i) 7 = / k-N + 2i + 2 (ι,2) C/+1.2) (ί + 2,2)
Jc-N + 2i? (/,1) (/,2) (/+1,2)

(ϋ) y = / + l k-N + 2{-\ (S,l) (Λ2) (Λ2) (/,1)

(iii) y ^ i - 1 -k-g + i-j (j,l) (i + l,l) ( + l.l) ( U )
-k-g + i-j (j,2) (U) O i) ft 2)
-k-g + i-j (j,2) (i+1,1) (/ + 1,1) ft 2).

Note Added. To ensure the intertwining property of the vertex operators for

more general finite dimensional representations than vector representation, we must

slightly modify φλ(z;a) in (4.20) as follows:

where

y=i 7=1+1 7=i

with an arbitrary constant μ G C.

This vertex operator defines the type I vertex operator Φy^λ(z): V(μ) —> F(v) (8)

F^ with the finite dimensional representation V^ of Uq(sljq) of [34].
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