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Abstract: The paper deals with large deviation bounds for the proportion of
periodic orbits with irregular behavior for expansive dynamical systems with
specification, in particular, we obtain estimates for large deviations from the
equidistribution for closed geodesies on negatively curved manifolds. We derive
also large deviation bounds in the averaging principle when the fast motion is the
shift along periodic orbits.

1. Introduction

Let / f : M->M be a group of homeomorphisms of a compact metric space with
either discrete time teZ or continuous time ίeR. A point xeM is called periodic if
f*x = x for some ί>0 and the orbit {fsx, seZ or seΊR] of such x is called a closed
(or periodic) orbit containing x. Denote by CO the set of all closed orbits and by
COδ(t) those orbits from CO with some period in the interval [t — δ, t + δ~]. Let
yeCO, xey, and τ(y) denotes the least period of y. Then the mapί-^/'x sends
the Lebesgue measure on [0, τ(y)] to the measure τ(y)ζγ on y where ζγ =
My))"1 $o(y)δfsχds i n the continuous time case and ζy = (τ(y))~1Σ]i2\δfix in
the discrete time case, with δy standing for the unit mass at y. Set
μt,δ = Nt~δ Xγecoa(ί)Cy> where Nuδ = # {COδ(ή} is the number of elements in COδ(t)
which is finite if fι is an expansive dynamical system (see, for instance, [BW]). By
[Bl, B2, and B3] (see also [F] and [Pa]) μttδ weakly converges as ί-»oo to the
measure μmax with maximal entropy for / ' provided / ' is a hyperbolic dynamical
system and, in fact, the more general conditions of expansiveness and specification
will suffice. This was called by R. Bowen the equidistribution of closed orbits. For
ΓaCO set vttδ(Γ) = Nt-J # {ΓnCOδ(ή}. Then by [La],

Hmvuδ{yeCO:ζyφUμmJ=0 (1.1)
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for each open neighborhood Uμ^ of μmax with respect to the topology of weak
convergence on the space 0>(M) of probability measures on M. This means that
except for a small (tending to zero) proportion long periodic orbits are nearly
uniformly distributed according to μmax. The same results hold true if one considers
all periodic orbits γ with τ(γ)^t, i.e., when one replaces COδ(t\ JVί><5, and vttδ by
C0t — COt!2 (ί/2), Nt = Nt/2, ί/2, and vt = vί/2, t/i> respectively. In order to estimate this
small proportion of "irregular" periodic orbits one needs the large deviations
approach. I will prove here that for any δ > 0 small enough,

limsupt~ίlogvt>δ{yeCO\ CyeX}

= limsupt~1logvt{yeCO: ζyeK}S -inf {I(μ): μeK} (1.2)
ί->oo

for any closed Xc^(M) and

liminfr1 logvuδ{yeCO: ζγeG}

= liminfr1 logvt{yeCO: ζyeG}^-inf{I(μ): μeG} (1.3)

ί->oo

for any open Gc=^(M), where

{h(f1) — hu(f1) if μe^(M) is /"'-invariant ,, „

/(μ) = < . (1.4)
(oo, otherwise.

Here /ι(/1) = sup {hμif1): μe0>(M), μ is /'-invariant} is the topological entropy of
f1 and hμif1) is the Kolmogorov-Sinai entropy of f1 with respect to μ. In
particular, this yields bounds of large deviations from the equidistribution for
closed geodesies on negatively curved manifolds since the geodesic flow on such
manifolds is a hyperbolic (even Anosov) dynamical system. Remark that (1.2)
implies (1.1) but the main interest in (1.2) and (1.3) is in the precise bounds for sets
disjoint with some neighborhood of μmax. The above results require only the
expansivity and specification properties for / ' together with the density of func-
tions having unique equilibrium state in the space C(M) of all continuous functions
on M. So the results remain true for homeomorphisms of the Smale spaces (see
[Ru]) and for expanding maps of Riemannian manifolds. The latter can be reduced
to the homeomorphism case by taking the natural extension as in [Ru]. Of course,
the inequalities (1.2) and (1.3) are very close to the corresponding large deviation
results for dynamical systems from [Kil] and they follow in view of two possible
ways of obtaining the topological pressure: by means of (ε, ί)-seρarated sets and by
means of periodic orbits. Another problem which I treat in this paper is con-
nected with the averaging. Let M and N be compact Riemannian manifolds
and B be a bounded and Lipshitz continuous map from N x M to the tangent
bundle TN. Let

t),ft/Λy), xε(0)=χ, (1.5)
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where Xε(t) = XXjy(t)eN, ε>0 is a small parameter, and / ' is a smooth flow on
M generated by another C 1 vector field on M by means of the ordinary differential
equation

^f °y=y. (1.6)

If y belongs to a periodic orbit γ of f then by the standard averaging principle
(see, for instance,_[SV]) the solution Xx,y(t) of (1.5) is close for small ε and ίe[0, Γ ]
to the solution Xy(t) = XXt7(t) of the equation

AV (+\ _ _ _
D (V (+\\ v (C\\ -v (λ Ί\
Dy\Λ. y\l))i Λ.y[\J) — Λ , ^1. /)

where By(x) = (τ(γ))"* J τ

o

ω £(x, / ^ ) Λ and, recall, τ(y) is the least period of γ. Still, if
one wants to describe Xx,y(t) for small but fixed ε and all y lying on periodic orbits
then the standard averaging principle does not help since Xx,y(t) is (5-close to
XXfy(t) only for εfgε(y, <5), where ε(y, 3) depends not only on τ(γ) but on yeCO itself.
Thus in order to obtain a global picture on the averaging along periodic orbits one
has to employ the large deviation approach to averaging similarly to [Ki2]. In
a certain sense, this will give a more detailed description of long periodic orbits
than (1.2) and (1.3). Namely, let C0T(N) be the space of continuous curves φ = {φte
N9 ίe[0, Γ ] } o n i V with the metric

Poτ(φ,Ψ)= sup dN(φt9ψt)9 φ9 φeC0T(N) , (1.8)

where dM and dN denote distances on M and AT, respectively. Let CO*, COf(t), and
COf denote the sets of points lying on orbits from CO, COδ(t), and COt, respect-
ively. Introduce the probability measures v£δ and vf* on COf(t) and COf by

v*δ(Γ) = $ ζy(Γny)dvuδ(y) = Nt-J £ ζy(Γny) (1.9)
γeCOδ(t)

for ΓczCO* and vf(Γ) equal to the same expression with vuδ, Ntfδ, and COδ{t)
replaced by vt, Nt, and COt, respectively.

I will show that for φeC0T(N), φo = x ,

/ 1 \
vf/β.a{j>eCO*: poτ(Xε

x,y,φ)<δ} x exp — S o τ ( φ ) , (1.10)
ε-0 \ « /

where x means a logarithmic asymptotic in the sense specified in Sect. 3 and
Soτ(φ)^Q is a functional which differs from oo if and only if the curve φ is
a combination of averaged motions Xμ(t) satisfying

Bμ(Xμ(ή), Bμ(x)=$ B(x,y)dμ(y) (1.11)Bμ(Xμ(at M

with μ being an invariant measure of the flow / ' . Furthermore, Soτ(φ) = 0 if and
only if φt = Xμmax(t) for all ίe[0, Γ ] . In this sense, the most "probable" behavior of
Xε

Xfy has to be close to the motion averaged with respect to the measure with
maximal entropy. The relation (1.10) remains true if vf/ε>(5 is replaced by vί/fi.
Maybe for the first time in connection with the averaging problems I apply here the
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contraction principle from large deviations which, in particular, simplifies some of
the arguments from [Ki2].

Assuming certain properties of Bμmax one can obtain further estimates corres-
ponding to unbounded time intervals. In the last section I consider averaging for
parabolic second order partial differential equations and stochastic differential
equations employing the contraction principle.

2. Large Deviations

In the discrete time case a dynamical system fx on M is called expansive if there
exists δo>0 such that for any pair of points x + y in M there is neZ so that
dM{f"x,fny)>δo In the continuous time case f\ teWL is called expansive if for
every η >0 there exists δo(η) > 0 so that dM(fx, fs(t)y) < δo(η) for all ίeR, for a pair
of points x,yeM, and for a continuous function 5: IR->IR with 5(0) = 0 implies
y=fux for some we[ — η, γ(]. Next, f\ teΈ satisfies specification if for each
η there is an integer L(η) so that if t0, . . . , tn + 1eZ satisfy ti+1^ti-\-L(η% then
for any x0, . . . , xneM there exists xeM with ftn+i-to+uη)χ=.χ a n c j
dM{fιx,fι~tixi)<η{oxaΆle[ti, tί+1— L(γ\)\ ι = 0,1, . . . , n. In the continuous time
case f\ ί e R is said to satisfy specification if for each η there is L(η) so that if
£o> 5ί«+ieIR satisfy ti+1^ti-\-L(η)9 then for any x0, . . . ,xneM there exists
xeCO*η(tn+1 —10) and a step function s(t) constant on each [tu ί i + i ] with
5[ί o , ί i ) = 0 and | s [ ί ί + 1 , ί / + 2 ) - 5 [ ί b ί ί + 1 ) | < ^ 7 such that rfM(/ί+s(ί)x,/ί-ίixί)<^ for
all te[thti+1-L(η)l

For geC(M) set Stg(x) = Yj

t

ί=og(fιx) for the discrete time case, and Stg(x) =
yog(fsx)ds for the continuous time case. Let V(f) be the set of geC(M) for which
there exist δ, K>0 such that sup o ^ s <ί dM(fsx/fsy)^δ implies \Stg(x) — Stg(y)\

2.1. Theorem. Suppose that fι is an expansive dynamical system on M satisfying
specification and such that V(f) is separable and dense in C(M). Then (1.2)—(1.4) hold
true for all δ>0 small enough.

Proof. For yeCOδ(t) let τt δ(y) denotes a period of γ in the interval [t — <5, t + δ~].
Then

where γeCOδ(t) and ||gr|| =sup{|</(x)|: xeM}. In the same way as in Lemma 4 of
[B3] and Lemma 2.8 of [F] it follows that for any geC{M) and δ small enough,

Σ , (2.2)
ί^00 yeCOδ(t)

where P(g) is the topological pressure of g which satisfies the variational principle
(see [Wa]),

P(g) = sup j Sgdμ + hμif1): μe^(M) is /'-invariant > . (2.3)

In particular, taking g = 0,

. (2.4)



Large Deviations Averaging and Periodic Orbits of Dynamical Systems 37

Thus by (2.1)-(2.4),

lim r * log j exp (tj gdζy)dvui(γ)
CO

= limr 1log(iV t:/ Σ exp(ήgdζy))
t~>0° \ y6CO4(t) /

im ΓMog

= P(g)-h{fι)= sup (igdμ-I(μ)) (2.5)

with J(μ) defined by (1.4) which is a convex lower semi-continuous functional since
/ ' is expansive, and so the entropy hμ(fγ) is upper semicontinuous, and affine in
μ (see, for instance, [DGS]). By [B4 and F] expansivity and specification yield that
for any geV(f) there exists a unique measure μgE^{Jί\ called the equilibrium
state for #, such that

P(g) = ̂ gdμ9-I(μgHh(f1). (2.6)

Since V(f) is dense in C(M) then by Theorem 2.1 from [Kil] these imply the large
deviation bounds (1.2) and (1.3) for the measures vtfδ. In order to obtain (1.2) and
(1.3) for vt I remark, first, that

. (2.7)
ί->oo

Indeed,

Nt-δtδ£Nt£Nttδ + Nt-2δ.a + + Nt-2kδtδ + N0tδ, (2.8)

where k is the integral part of tβδ. Thus (2.7) follows from (2.4) and (2.8). Next,
similarly to (2.8) for any Γc=CO,

(2.9)

Now (1.2) and (1.3) for vuδ together with (2.4), (2.7), and (2.9) yield (1.2) and (1.3) for
vt completing the proof. •

2.2. Remark. The same large deviation bounds hold true for the measures ωuδ and
ωt defined for ΓaCO by ωt>δ(Γ)=(ΣyeCOδ{t)τ(y))-1(ΣγeΓnCoδ(t)τ(y)) and
ωt = ωt/2,t/2 Indeed, for ΓczCO,

(t + δ)-1Nt:δHNt9δvUn-Ni)£ωtΛn£(t + ^^

(2.10)
and

(2.11)

and so (1.2) and (1.3) for ωuδ and ωt follow from (1.2) and (1.3) for vί><5 and vt.

2.3. Remark. By [Bl and B4] the conditions of Theorem 2.1 are satisfied if fι is
a smooth dynamical system restricted to a basic hyperbolic set, in particular, in
case of an Anosov dynamical system. Then V(f) contains all Holder continuous
functions, and so it is dense in C(M). Since the geodesic flow on a compact
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manifold of negative curvature is an Anosov flow and closed geodesies are in
one-to-one correspondence to periodic orbits of the corresponding geodesic flow,
then (1.2) and (1.3) give large deviation bounds for closed geodesies on negatively
curved manifolds where CO, COδ(t\ and COt should stand for sets of closed
geodesies, for those with length in the interval [t — δ, ί + <5], and for those with
length not exceeding ί, respectively.

2.4. Remark. Theorem 2.1 remains valid for subshifts of finite type after making it
aperiodic by the usual trick (see [Si] and Example 3 in [B3]). By [We] and [Si]
irreducible sofic systems satisfy specification and since the functions constant on
cylinder sets are both in V(f) and dense in C{M) then these dynamical systems
also satisfy the conditions of Theorem 2.1 (see also Sect. 6 in [KT]). I thank B.
Weiss for clarifying this point for me. In view of the equivalence of subshifts of finite
type and finite oriented graphs we obtain as a corollary large deviations results for
numbers of closed paths in such graphs with prescribed average properties.

2.5. Remark. By the usual contraction type argument (see Corollary 2.1 in [Kil])
(1.2) and (1.3) yield large deviation bounds for integrals of functions. Namely,
let gl9. . ., gneC(M) and define φn: ^(M)-»IRW by φnμ = (j g1dμ, j* g2dμ,. . ., J
gndμ). Set Jn(α) = inf{/(μ): φnμ = oc} if oceφn^

>(M) and Jw(α)=oo if ocφφn^(M).
Then for any closed X<=RM,

Umsupt~~1\ogvttδ{γeCO: φnζγ€K}
ί-> oo

= limsupΓ1 logvt{yeCO: φnζyeK}^-MJn(<*), (2.12)
ί-*oo oceK

and for any open Gc=RM,

l iminfί" 1 l o g v ^ y e C O : φMCyeG}
f->oo

t->oo αeG

Again by the contraction principle it is easy to obtain also large deviation bounds
for measures uniformly distributed on periodic orbits with additional restrictions
\φnζγ — oc\^δt ~1 as suggested in [La]. Then one ends up with functionals l(μ) with

3. Averaging: Bounded Time

I start with the following result similar to Theorem 2.1 from [Ki2].

3.1. Theorem. Let f be an expansive dynamical system on M satisfying specifica-
tion. Then for any continuous function q(t, y) = qt(y) o n [0, T~\ x M, T>0 and δ>0
small enough the limit

lim εlog J exp ε" 1 j qt(ft/εy)dt )dv%td(y) = ̂  Piq^dt-Thif1) (3.1)
ε^O CO* V 0 / 0

exists. The limit remains the same ifv*/ε,δ is replaced by v*/ε, (o*/ε,δ = ζγd(θτ/ε,δ(y)> or
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Proof. By the uniform continuity of q(t, y) one concludes in the same way as in
Sect. 3 from [Ki2] that the assertion of Theorem 3.1 is equivalent to the statement
that for any continuous functions qu..., qkeC(M) and for any numbers
0 = t0<t1 <- - -<tk-1<tk = Tone has

limβlog j expίV 1 £ J qi(fs/εy)ds)dv$/ε>δ(y)
ε-»0 CO* \ i - 1 ίf-i /

= Yj{ti-ti-ί)P{qi)-Th{p). (3.2)
i = 0

Set ai = tiT~1, i = l9. . . , feand

D(t,y) = exp(Σ J qi(fsy)ds) . (3.3)
\i=ί cii-ίt /

Taking ί = 7 ε ~ 1 we see that (3.2) is equivalent to

lim ΓHog J D(t9y)dv*δ(y)= Σ ( f l i - f l i - i W - * ! / 1 ) , (3-4)
ί-»-oo CO* i = 0

which, in turn, is equivalent to

τ(y) k

lim ΓHog X f D(tjsyy)ds= X (α.-α^OPί^), (3.5)
ί-*oo yeCOd(ί) 0 i = 0

where yy is any point on γeCOδ(ή. For fixed τc>0 set y{=fjκyy for 7 = 0,1,. . . , ny

with wy = integral part of κ~γτ(y\ where yyeyeCO. Then (3.5) is equivalent to

lim r 1 log Σ £ D(t9yi)= Σ (fli-flί-iJPίft) (3.6)
ί->-oo γeCOδ(t) j = 0 i = 0

Recall that a set £<=M is called (/?, ί)-separated if zi,z2eE, zxφz2 implies
supo^ s ^ ί d M (/ s z 1 ,/ s z 2 )>β. It follows from Lemmas 1-3 in [B3] and Lemmas 2.1-
2.6 in [F] that if β>0 is small enough then for any family Eβtt of maximal
(jS, ί)-separated sets

lim ΓHog Σ D(ί,z)= Σ to-αi-i)P(«i) (3.7)

The equality of the left-hand sides of (3.6) and (3.7) for small δ and β follows in
the same way as in the proof of Lemma 4 in [B3] and Lemma 2.8 in [F],
completing the proof of (3.1). In the same way as in Sect. 2 one derives that the limit
remains the same if v*/ε><5 is replaced by v*/c, by cύτ/ε,δ = Cγdcθτ/ε,δ(yX or by

$ε = ζydωτ/ε(y). ' •

Next, I will derive large deviation estimates for solutions Xε

x,y(t) of (1.5) from
Theorem 2.1 in [Kil] and Theorem 3.1 above by the "contraction principle"
argument. Set π ^ Γ " 1 Jjδ(sj*ι*y)ds, yeM which belongs to the space
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Γ ] x M ) of probability measures on [0,Γ]xM. If q(t, y) =
qt(y)eC([0, Γ] x M), then I can rewrite (3.1) as

limεlog J expίε"1 j qdπε

y)dv%tδ(y)
ε~*° CO* 0

(3.8)

=μp(τ-
0

= sup

where

'q^-Hf^dt

($qdη-I0T((η)),

ll(ηt)dt
Q

oo, otherwise

if dη=—
T

ηte0>{M)

dηtdt and

is /^-invariant;

and I(ηt) is defined by (1.4).
Assume that V(f) is dense in C(M\ then since F(/) is closed under linear

operations it is easy to see that the set

VOτ(f) = {q(t,y) = qt(y)eC([_0, Γ] xM): qteV(f) for all ίe[0, Γ]}

is dense in C([0, Γ] x M). In view of [B3 and F] for each qe Voτ(f) there exists
a unique ηqeέP([0, T~\ x M) on which the supremum in the right-hand side of (3.8)
is attained and, in fact, dηq = dμτ-iqtdt, where μg for ge V(f) is the unique measure
satisfying (2.6). Thus Theorem 2.1 from [Kil] together with Theorem 3.1 above
yield

l imsupεlogv^l j ; : πε

yeK}^ -inf{/0 Γ(μ): μeK}
ε-» 0

for any closed K <= & ([0, Γ] x M) and (3.10)

lim infε logv^^^ π£eG} ̂  -inf{/0 Γ(μ):
0

for any open G c ^ ( [ 0 J ] x M). (3.11)

he subspace Jicz^([0, T~\ x M) of measures μ such that dμ=—dμtdt, μte

ίe[0, Γ] define the map Ψx: Jί^C0T{N\ xeN by φ = Ψxμ with

J f (3.12)
0 M

where 1? is the same as in (1.5), which is well defined since B is Lipshitz continuous.
Then Ψ is a continuous map if one takes the topology of weak convergence on
^([0, Γ] x M) and the metric (1.8) on COΓ(A0 Clearly, Xε

x>y = Ψxπ
ε

y

τ. Then (3.10)
and (3.11) imply that for S0T(φ) = mϊμ{I0T(μ): Ψxμ = φ},

limsupεlogv5vM{j;: XΛ

XtyeR}£-wί{S0T(φ): μeK} (3.13)
0
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for any closed KczC0T(N) and

^ l j ; : Xe

Xtye&}^ -mϊ{S0T(φ): ψeG) (3.14)
£-•0

for any open GczC0T(N)9 where Soτ(φ) is defined to be oo if φφΨxJί. The
transition from (3.10) and (3.11) to (3.13) and (3.14) is one of the versions of the,
so-called, "contraction principle" and I appreciate a useful remark of R. Liptser
concerning it. In view of (3.9) and (3.12),

T

S0T(φ) = ίmϊ{I(μ): φt = Bμ(φt\ μeSP(M) is /'-invariant} dt (3.15)
o

with Bμ defined in (1.11), provided for Lebesgue almost all £e[0, Γ ] there exists an
/'-invariant μt for which φt = Bμt(φ\ and S0τ(φ) = co, otherwise. It follows from
Sect. 9.1 of [IT] that Soτ(φ) is a lower semicontinuous functional on C0T(N),
S Ό Γ ^ O , and Soτ(φ) = 0 if and only if φt = Bμmax(φt) for all ίe[0, Γ ] , where μmaxis the
unique /'-invariant probability measure such that μμmax (f1) = h(f1).

Set Φa

Oτ(x) = {φeCoτ{N): φo = x, Soτ(φ)^a}. Since Soτ{φ) is lower semicon-
tinuous then Φoτ(x) is a closed set. Moreover, it is easy to see that Φ S Γ W is
compact for any a< oo. Then one can rewrite (3.13) and (3.14) in the following form
(cf. Sect. 3.3 in [FW]).

3.2. Theorem. Suppose that the conditions of Theorem 2.1 are satisfied and B in (1.5)
is Lipshίtz continuous. Then for any α, j3,Λ>0, each δ>0 small enough, and every
φeC0T(N), φo = x there exists ε o > 0 such that for all εe(0, εo),

£ (3.16)

and

^ \ (3.17)

with poτ defined by (1.8). The functional Soτ(φ) is finite if and only ifφt = Bn(φt)for
some p-inυariant vteέP(M) and Lebesgue almost all £e[0, Γ ] and Soτ(φ) = 0 if and
only if φt = Bμmax(φt)for all ίe[0, 71]. The estimates (3.16) and (3.17) remain true if
vf/e,a is replaced by vτ/ε, ωt/Btδ, or ωτ/ε.

This theorem says that "most likely" Xε

x,y(t) will stay close to the averaged
motion φt = Bμmax(φt)i φo = x. Still, for a set of/s with an exponentially small in ε~1

measure Xx,y(t) may stay near any curve φeC0T(N) satisfying φt = Bμt(φt) with
/^invariant μte^(M). Other motions for Xε

x,y(t) may occur only for / s from sets
whose measure decrease as ε->0 faster than exponentially in ε" 1 .

3.3. Remark. One can derive Theorem 3.2 via Theorem 2.1 from [Fr] in the same
way as in [Ki2] but [Fr] deals with limits of the type (3.1) for integrals with respect
to a measure independent of ε though here vTjε>δ depends on ε, and so in order to
use [Fr] one has to generalize a bit Theorem 2.1 from there which is also possible.

3.4. Remark. The dynamical systems from Remark 2.3 satisfy the conditions of
Theorem 3.2 since these conditions are the same as in Theorem 2.1.
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3.5. Remark. Define the map Ψx: 0>(M)-+COT(N), xeN by φ = Ψxμ with φt =
x + ίoίMB(ΨS> y)dμ(y)ds, then Ψx is a continuous map. For φeΨxέ?(M) set

) = inf {/(μ): μ e ^ ( M ) and Ψxμ = φ} (3.18)

and S(φ)= oo if φφΨx 0>(M). Since Xx,γ=Ψxζγ with Xx > y defined by (1.7), then
Theorem 2.1 together with the "contraction principle" type argument yield that for
any T9 α, β,λ>0, each (5 > 0 small enough, and every φeC0T(N), φo = x there exists
ί o > 0 such that for all t}>t0,

\ (3.19)

and

vuδ{yeCO: Poτ(Xx,γ, Φa

oτ(x))^β}^xpί--£(a-λ)\ , (3.20)

where ΦoT(x) = {φeCoτ(N): φo = x, S(φ)^a}. The same inequalities will hold true
if vtfδ is replaced by vt, ω ί > δ, or ωt. One can rewrite (3.18) in the form

S(φ) = inϊ{I(μ): μe^(M) is /"-invariant and φt = Bμ(φt) for all ίe[0, Γ]}

(3.21)

with S(φ)=oo if it is not defined by (3.21). Thus S(φ)<oo if and only if φ = Xμ for
some /'-invariant μ and S(φ) = 0 if and only if φ = Xμmax.

3.6. Remark. For a domain KczJV set

(3.22)

and τ* i y(K)=oo if Xe

Xty(t)eVfor all ί^O. Then it follows easily from Theorem 3.2
(cf. [Fr]) that

ε-*0

= mϊ{SOt(φ): O ^ ί ^ Γ , φeC0T(Nl φo = x, φtφV}9 (3.23)

provided δ > 0 is small enough and V is a connected open domain with a compact
closure P. The limit remains the same if v*/ε,δ is replaced by v*/ε, ω*/εj<5, and ω* / ε.

5.7 Remark. One can consider other types of large deviations in this situation.
Consider, for instance, the equation

dXε (t) 1

- ^ d =B'(X'x,,(t),fy) with B°(x, y) = l B(x,fl'y)ds . (3.24)

Let Ψx be the map from 0>(M) to Coτ(φ) defined by Ψxμ = φ with

Ψt = x + \ds\B{φsJ
sy)dμ{y). (3.25)

0 M

Then X ^ = ψxζ
8

y9 where CJ = βJ o/eδf.yds. Note that if μ is /'-invariant then (3.25)
becomes φt = x + γods\MB(φs,y)dμ(y). Thus if one has the large deviation esti-
mates for ζε

y with the rate function /(μ), then for Xε

Xty one has estimates of the form
(3.16) and (3.17) with S0T(φ) = inϊ{I(μ): Ψxμ = φ}=inf{I(μ): μe&{M) is /'-invari-
ant and φt = Bμ(φt) for all te [0, 71] }, i.e. with the same functional as in Remark 3.5.
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4. Averaging: Unbounded Time

Similarly to [Ki2] one can consider solutions of (1.5) on unbounded time intervals.
Denote by X(ή = X(x)(t)the solution of (1.11) with μ = μmax and X(0) = x. Define the
flow F* on N by Ftx = X(x)(t). Let Fbe a connected open set in N with a compact
closure V. Put

R(x,z) = mΐ{S0T(φ): 7 ^ 0 , φeC0T(N), φo = x, φτ = z} (4.1)

and Rd(x) = in{{R(x, z): zedV}, where <3Fis the boundary of V.

4.1. Theorem. Let M be a basic hyperbolic set of the flow f% (see, for instance, [B1]).
Assume also that Θ is an attracting fixed point of the dynamical system F* whose
domain of attraction contains a compact set V which is the closure of a domain Vwith
the smooth boundary dV and for each zedV, (Bμmax(z), n(z))<0 but there exists
a ^-invariant μ such that (Bμ(z), n(z))z>0, where n(z) is the exterior normal to dV at
z and (, )z denotes the Riemannian inner product in TZN. Then for any xe V and each
λ>0,

(4.2)

provided ^ ^

Proof I only sketch the proof here since ideologically it is close to the proof of
Theorem 2.3 from [Ki2]. The main idea consists in the following. Suppose that
Rd{®)< oo. Then for any α>0 small enough and each β>0 there exist T1 = T1.Λtβ

and φΘ = φΘ>a>βeC0T(N) such that φ% = Θ, dN(φΘ

Tί, V)^a, and
S0Tl{φΘ)^Rdψ) + β. One can pick up also T2 = T2,λ such that
FTl Va{y: dM(y, Θ)^λ} with λ small enough. Next, one applies a Markov prop-
erty type argument saying that either Xε

Xty(t), x close to Θ, exits from V staying
close to φΘ for the time Tx or X^TJe Fand Xx,y(T1 + T2) is again close to Θ and
we repeat this process. The v*-iΓl><Γmeasure of those yeCO* for which Xε

x,y(t)
performs the first type of motion can be estimated by Theorem 3.2. So first one has
to approximate certain sequences of periodic orbits of periods ε~ίT1 and ε~1T2by
a periodic orbit yeCOδ(T(ε)) and then to estimate vf(ε)-measure of points on these
long orbits via products of measures v*-iΓl and vf-iT2 of points y on orbits from
COε-iTi and COε-iT2 for which Xx,y(t) performs the motions described above. To
do this one needs, in particular, the so-called shadowing property and not just the
specification, since the latter provides only a periodic orbit of a period
T(ε)± const εT(ε) approximating the above shorter periodic orbits which is not
good enough for (4.2). I refer the reader to [Ki2] in order to recover the details of
the proof of Theorem 4.1 along the same lines.

5. Averaging of PDE and SDE

In this section I consider large deviations via the contraction principle for para-
bolic second order partial differential equations and stochastic differential equa-
tions with coefficients incorporating a fast motion. Let M and N be compact
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Riemannian manifolds and

Ly= Σ α ' ;(* 'J ; )OT^+ Σ bi(x,y)—i,xeN,yeM

be a family of uniformly elliptic operators on N with coefficients C2 in x
and continuous in j ; . For μeSP(M) I denote also by Lμ the operator with the
coefficients <•(*) = JMαy(x, y)dμ(.y) and fe?(x) = JM&j(*, )>)<iμ()>), l^ij^n.

Set, again, ΛT = {μe^([0, Γ] x M): dμ=-dμtdt, μte0>(M)}. Consider the

map Ψg: ^#->C([0, Γ] x ΛΓ) given by Ψgμ = u with geC{N) and

tt(ί,x) = flί(x)-jLμ,iι(5,x)ώ, O ^ ί ^ Γ . (5.1)
o

Employing, for instance, the probabilistic representation of solutions of second
order parabolic equations (see [KS]) one can show that Ψg is well-defined and that
it is a continuous map provided Jt is taken with the topology of weak convergence
and C([0, T~\ xN) with the supremum norm. Now ifuyf9(t, x) is the solution of

du™d

{*'X) + Lr,.yuyjt, x) = 0, «;.,(0, x) = g (5.2)

and Uy^T'1 JjδiSffΦy)ds, then uε

ytg=Ψgπ
ε

y. Again knowing that πy has large
deviation estimates with the rate functional Ioτ given by (3.9), with / defined either
by (1.4) or by (3.14) from [Kil] depending on the measure for which the large
deviation bounds are needed, one obtains the large deviation bounds in the
averaging principle of the form

(5.3)

and

(5-4)

where Poτ(u9u) = s\xpxeMtte[OtT]\u(t9x)-u(t9x)\9 Φa

oτ{g) = {ueC(\_0, Γ]
xN): u(O,x) = g and Soτ(u)^a}9

Soτ(u) = M{Ioτ(μ):Ψgμ = u}

:y+Lμu = O,μe^(M) is /'-invariant>dt9 (5.5)

provided for Lebesgue almost all ίe[0, Γ] there exists a /s-invariant μ, for which
du
— + Lμtu = 0 and 50r(w) = oo, otherwise. Here μΓ>ε is one of the measures connected
with periodic orbits as in Sect. 3 or the measure m from Theorem 3.4 of [Kil].

Next, consider the following stochastic differential equation on N,

where the matrix σ(x, y) satisfies σ(x, }>)σ*(x, y) = {^ij{χ > y)) and ωt denotes the
Wiener process. Then uyfg(t, x) = Eg{XXiy(t)\ where E denotes the expectation (see,
for instance, [KS]). Again by the contraction principle type argument one can
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obtain the large deviation bounds for the process X%,y itself. Define the m a p ΨXj(0'.
Jί-*C0T(N) by Ψx,ωμ = φ(t9ω\ where

t t

φ(ί) = x + J σμs(φ(s))dωs + S bμs{φ{s))ds, ίe[0, Γ ] , (5.7)
o o

which is well-defined for almost all ω. Here σμ and bμ denote the integrals of σ and
b in y against μe^(M). In view of continuous dependence of solutions of stochastic
differential equations on coefficients the map ΨXt(0 is continuous for almost all ω.
Since X*Xty( 9 ω)= Ψx,ωnε

y one obtains the large deviation bounds for almost all
ω by the same routine as above with the functional SoT(φ) = inϊ{Ioτ(μ):
Ψx,ωμ = φ}.

One can consider also a fast process ζt/ε in place of ft/8y in (5.6), where ζt is, for
instance, a diffusion on M independent of wt in (5.6). The large deviations for the
resulting process follow in the same way, as above.

The need in averaging methods and, in particular, in large deviation estimates
there emerges when one considers small perturbations of Hamiltonian systems (see,
[AFr], and Remark 2.5 in [Ki2]). Deterministic perturbations by a small vector
field lead to an averaging of the type considered in Sect. 3 and in [Ki2]. Random
perturbations by a small diffusion lead to an averaging of the type considered in
this section.
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