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Abstract: The aim of this paper is to prove that if V is a strictly convex poten-
tial with quadratic behavior at oo, then the quotient μ2/Mι between the largest
eigenvalue and the second eigenvalue of the Kac operator defined on L2(Rm) by
exp —V(x)/2 - exp Δx exp —V(x)/2, where Δx is the Laplacian on Rm satisfies the
condition:

μ2/Mι < exp - cosh-1(σ -f

where σ is such that Hess V(x) > σ > 0.

1. Introduction

In some problems in statistical mechanics on a lattice Z2, a mechanism of reduction
to a one dimensional lattice permits to reduce the general questions about correlations
or thermodynamic limit to corresponding spectral properties for a compact operator
Kv associated to a C°° potential V by the formula:

Kv = exp -V/2 exp Δ exp -V/2,

where Δ is the usual Laplacian on Rm. It was proved in [22], that in the case of the
Schrδdinger operator, the assumption that V is strictly convex uniformly in Mm, that
is satisfying for some σ > 0,

inf(HessΐOCr) = σ > 0 , (1.1)
X

permits to get a minoration of the splitting between the second eigenvalue λ2 and the
first eigenvalue Λ^

\2-\ > \/2σ. (1.2)

This condition appears to be optimal in the case of the harmonic oscillator in the sense
that we get equality. So it is natural to ask for the same type question in the case
of the Kac operator. Under condition (1.1) (and some conditions on the derivatives),
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the operator Kv is compact and its spectrum is given by a sequence of eigenvalues
tending to Oμ^ that we order by the conditon: μ3 > μ3+\

Moreover μl is simple and so it is again interesting to study the quotient: μ2/μ\
and to have a universal estimate of 1 - μ2/Mι in me case when V is strictly convex.

This question was to our knowledge open (at least in this general framework) but
there are results of this type in quantum field theory for particular cases (see the book
of Glimm and Jaffe [3]), as was mentioned to us by T. Spencer in 1991. The main
goal of this article is the proof of the following:

Theorem 1.1. Let V be a C°° potential satisfying (1.1) and the condition

\(D«V}(x)\<Ca for a

then the quotient (μ2/μι) satisfies:

μ2/μλ < exp -(cosh'^l 4- σ)/2) . (1.3)

Remark 1.2. This result is not optimal and we think it is possible to improve it in

μ2/μ1 < exp -(coshΓ^l + σ)) , (1.4)

which is what we hope from the study of the "harmonic" Kac operator (see
Appendix A).

Remark 1.3. In the case of the specific problem posed by M. Kac in [13], the potential
was:

m 771

(1/4) (xk)
2 ~\ncosh(^/2(xk + xk+l)) , (1.5)

fc=l fc=l

and the assumptions of the theorem are satisfied if

σ = ( l - 4 z / ) / 2 > 0 . (1.6)

In particular, the majoration given by Theorem 1.1 is independent of the dimension
m.

We recall that in this Kac model the splitting appears in the computation of the
correlation between two lines which is given in this Kac model (see [13]) by:

ρ(r) = Jtirn^ MΓ u?(x) - tanh[^/2(x { + x2)]u™(x)dmx , (1.7)
m~^°° /} _9 \ J /

J *•

where u™(x) is the eigenvector corresponding to the eigenvalue μ^.

As r tends to oo, the behavior depends heavily on (μ2/μ1). In the convex case we
find, using the inequality

the majoration:

+ x2)]u?(x)dmx J < ρ(r) < (μ2/μl)
r . (1.8)

/

So we get in the convex case

lim ρ(r) = 0 ,
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uniformly with respect to m, and more precisely the exponential decay is controlled
in function of μ2/Mι We d° not know if the quantity

+ x2)]uf(x)drnx

vanishes or not but this is irrelevant for the majoration.
This last question will be more important in the non-convex case where it is

conjectured by [14] that:
lim μ7(ra)/μι(ra) = 1. (1.9)

m^oo

Finally, let us mention that different questions on the splitting are solved, in general
in the semiclassical context, in the case of the Schrόdinger equation ([15, 8, 19, 16,
20, 21, 10]) and in the case of the Kac operator ([13, 2 and 4])-

2. Splitting and Thermodynamic Limit

Let us start from the well known property

(μ{Γ
p(K(^)(x,x}dx -> u{(x)2dx = 1 (2.1)f(

j

as p tend to oo, where (Ky ) Or, y) denotes the distribution kernel of (Kv)
p. Let us

analyze in more detail the convergence;

x)dx-l = (μ3/μιγ. (2.2)

j>2

Let us suppose that μ2 has multiplicity fc. We then get:

μ>fc+2)
P (2.3)

j>k+2

We observe now that ( Σ (^J^k+2^ can ^e interpreted as trKp where K is
\j>k+2 J

an operator of Trace class, and of norm 1 in J^(L2). We then write that:

so we get:

' i / V-^ T/ / \x7x)(-bx A r C ^ μ 7 I μ ι ) _^ v _ y ^ μ r , _ ι o / μ | y , ^^.T j

where C is independent of p.
Let us now take the logarithm and divide by p; we get

/1 Γ \
- I n μ j + ί - In (K(fi)(x,x)dxj = (fe/p)(μ2/μ1)

p(l + ̂ ι

with δ > 0.
Consequently a control by other means, of the following type:

/ I r λ
-h ( - In / (Kτ?)(x, x)dx 1 < Cexp—/3p

\P J )

-δp)) (2.5)
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for some C and some β > 0, will give the following majoration:

μ2/μι < exp -β . (2.6)

In the spirit of what has been done in [22, 9 and 11], it is then natural to try to
analyze if we can obtain a universal estimate of some (possibly) optimal /?, and as
a consequence we shall get a universal estimate for the splitting. Let us recall that,
in the case of the Schrδdinger operator, a universal estimate was obtained for the
splitting between the second eigenvalue λ2 and the first eigenvalue Xl in [21] (by
the maximum principle and a direct computation) and later in [9] as a consequence
of the Brascamp-Lieb inequalities [1] (see formula (1.2)). Here we have to think of
the correspondence λ^ = — In μ^ (which is asymptotically correct in the semiclassical
limit) between the eigenvalues μ^ of the Kac operator and the eigenvalues λ^ of the
Schrodinger operator. In order to prove the analogue of (1.2) for the Kac operator,

that is formula (1.3), we shall now observe that f(Ky )(x,x)dx can be written as:

/

/•
(K(p})(x,x)dx = I exp -<£(£!, ...,xp)dxλ,...,dxp (2.7)

with:
p

Φ(x l 5 . ..,*„) = £; (V(x3} + i \x3+l - Xj

 2) , (2.8)

j=ι

where # G Rm and where we take the convention that xp+1 = xv.
This integral looks like the integral we have considered in [1 1] but the assumptions

given in this paper are not satisfied; we shall however try to follow the strategy given
in this paper (and earlier in [22]). The theory developed more recently in [25] can be
applied modulo small modifications. Actually the theory of [11] works directly in the
case m — 1, so we have in some sense to find a version ot these theorems where R
is replaced by Rm with m fixed. We emphasize that it is p which will tend to oo and
we do not worry about convergence which was already proved.

3. Link with the Computation of a Correlation

So we begin to study the potential introduced in (2.8). For each coordinate of xi G Rm,
we shall use the notation xi = (xi3 ',j = 1, . . . , m). Let us recall the general strategy
chosen in [11] in order to analyze the quantity:

. . . , xp)dx(p} . (3.1)

Because we can consider a subsequence for a particular problem we shall take
p — 2ί which simplifies some notations.

We just introduce a ^-dependent family:

P / t

t) = ]Γ V(x3) + -
=ι V

(3.2)
/

where # G Rm and where we take the convention that xp+1 = xλ.

We are interested more generally with the rapid convergence of ln<5(p)(t)/p with:

(3.3)
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Here we observe that for t = 0,

<5<P>(0)=

The sequence ln<5(p)(0)/p is consequently stationary and we conclude that it is natural
to look for the logarithmic derivative with respect to t and to study the convergence
of:

T 2\— X2 IΦ

(3.4)

as p tends to oo.
Here we observe that by the structure of the phase Φ(p) we have:

Q(P, t) =

f exp-Φ(p\x{, . . . , x't)dx(p}. (3.5)
J p

We shall use this property and choose i — p/2. In order to study the convergence
with respect to p, we introduce as in [22] or later in [11] a new family depending on
p, interpolating for example between what we want for p and what we want for 2p.
Let us take

Φ(p'p\x', x"; t, s) = sΦ(2p\x', x" t) + (l- s) (Φ(p\x'\ t) + Φ(p\x"\ t ) ) . (3.6)

We are interested in a control of the convergence of ρ(2p, t) - ρ(p, t), with ρ(p, t)
defined ion (3.5). Similarly we introduce now:

exp -Φ(P'PV, x"; t, s)dx(2p}. (3.7)
J

We observe that:
ρ(2p,t) = £>(p,p, t, 1)

and

We have consequently to analzye the derivative with respect to s, of the expression
above. We observe indeed that if we get a uniform control with respect to (t, s) of
(daρ) (p,p, t, s) of the type:

|(<9s£)(p,p,M)| < Cexp-βp, (3.8)

we get also:
\ρ(2p,t)- £>(p,t)| < Cexp-βp, (3.9)
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and consequently:
/fy, (3.10)

where ρ(oo, t) = lim ρ(p, t) and C = C( ]Γ) exp -/32fc ).

But, for any function / on R2p x R2

t s), we have:

9a((f( •; s, *)>β>t) - (0β/( •; 5, t))8ίt - Cor(/,

where ( )st is the mean value with respect to the measure

exp _φ<P>P>dz(2P> exp -Φ(p^dx(2p},

and where for two functions / and g, Cor(/, g) is by definition given by:

Cor(/, £ ) = < ( / - < / > ) (£-(#>)>•

Here our specific / is independent of (s, t), and let us recall that:

3SΦ = 2xpxλ + 2x2pxp+l - 2xpxp+l - 2x2px{ .

We have consequently to control the correlation of / and g where / = \xτ — xi+v\
2

depends only of the variables xi^xi+l and g = dsΦ depends only of the variables
xp, x l 5 x2p,xp+1 and we recall that p = 2ί. So we have to analyze:

(3sρ)(ί,S) = Cor(K-z i+1 |
2,dsΦ). (3.11)

In the spirit of [22] or [11], we are waiting consequently for some exponential decay.
In order to simplify the notations we observe that the quantity we have to estimate is
a finite (independent of p) sum of correlations of the type Cor(/, g) with:

/ = xij ' Xkj ' 9 = xlv ' Xnv ">

where \i — k\ < 1, i — p/2 and / ,n are near 1 or p in Z/(2pZ) = Z(2p\ If / and g
were with bounded gradient, we should only have to follow the strategy of [11] and
analyze the mean value (v Vg), where v = Vu was the solution of the so-called
basic equation:

(*)V/ = (-Δ + VΦ V)v + (HessΦ)υ .

Let us remark that the same type of computations was performed for the study of
higher correlations in [11]. As in [11] we are now looking for a vector field v^^'^
defined on E2p x [0,1]2: (x, t, s) -> v(i*>p\x, t, s) G E2p (with E = Rm) solution of:

X^3 = <^)(t|β) + V ' VχΦ - άlVχ V . (3.12)

Note that (*) is simply obtained by derivation of (3.12). We omit sometimes the
reference to p, £, s in what follows in order to simplify the notations. Let us compute

nlnrΛ with- fϊk3 — T - T πlnr — Ύ - T,9 ) wiin. / — xϊ3 xkj, g — xlr xnr.
We then write:

,glnr) = (v%(x) xlr xnr) - (v%(x)) (xlr xnr)
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We shall prove in Sect. 4 that there exists β and C s.t.

sup \vΐ3

r(x)\ < Cexp -βp (3.14)
x

V i , j , l , r such that i = p/2, ί - j\ < 1, inf(|/ -p\, \l - l | , |/-2p|) < 1.
We then conclude that (v\3

r(x) xk^ xnr) and (v%r(x) - xkj xlr) have the same
majoration using the property that:

\(vl3

r(x) xkj - xnr)\ < sup \v%(x)\ (((xkj)
2) + (CO2))

X

and we have:

sup υ%(x)\ ( ( ( x k j )
2 ) + <(£nr)

2» < const,
X

using either the Brascamp-Lieb inequality [1] or again the trick that:

This permits to deduce the control of the two last terms from the control of sup \vk

j.(x)\
which will be also obtained in Sect. 4. x

Remark3.1. Let us remark also that if the so-called Lebowitz inequality (see for
example [18] or [3]) were satisfied, then we would have the inequalities:

and we would obtain a control in exp —2βp using (3.13). But we do not know if these
inequalities, which are related to ferromagnetic properties, are satisfied in our case.

Because ί and k are near, we can not use (3.14) for the two first terms in the
left-hand side of (3.13):

/ qj J (γ\ . γ , γ \ / n , J ( γ\\ . I γ . γ \ (^ 1 <\

\ukj{χ) xlr xnrl W f c j W / \ x/r xnr/ > \J L J )

which is the correlation Cor(υ^ , glnr).

Let wlki be the solution of (*) with / = vl

k . We shall have to prove that wϊkj

has essentially the same properties as V?^J. On the other hand we have:

Cor(ί^, glnr) = (w^ xnr) + (w% xlr). (3.16)

If we prove that:
sup\wίkj\lr < Cexp-βp (3.17)

X

under the same conditions as in (3.14), we shall have the following control for

•βp. (3.18)

Finally we have proved, that if (3.14) and (3.17) are satisfied, then (3.7) is satisfied
and Theorem 1.1 is proved for some β. The next section will be devoted to the
proof of (3.14) and (3.17) with the computation of a very explicit β. Let us finally
observe that in order to get (2.6) for some /30, it is sufficient to have (3.18) for any



638 B. Helffer

4. Maximum Principle

In the preceding sections we have seen that, as in [11], the control of the correlation
will be a consequence of the fact that v]3

r(x) and wlj%! are small if I or n and i are far
from each other. For the first term, it will be obtained by proving that the vector v1^
belongs to a spcae l^(E) associated to a weight ρ defined on Z(2p) = Z/2pZ such
that

ρ(i) = exp -φ/2) , ρ(p) = ρ(p + 1) = ρ(l) - ρ(2p) = 1

and whose logarithm is controlled. These weights were introduced and then used in
different papers [22, 9, 11, 25]. The main difference is here that we need a kind of
vector- valued version: R is replaced by E = Rm. In our case, we can apply almost
directly (with only small modifications) the results of [25] but we repeat the argument
in order to be complete. The only new technical point is to define properly a suitable
norm on these weighted spaces. In order to see how the maximum principle can be
used, let us introduce the normed spaces:

l~(E) = {* = (*!, . . . , x2p) G £2p; 1 1 1*| I L,^ = s u p ρ ( j ) \ \ X j \ \ E }
j

and
ll

ρ(E) = {!/ = (2/j, . . . , y2p) G E2?' \\\y\\\lίβtE = ]Γ ρ(j) \\yj\\E} .

3

We remark here that there are different ways to express this norm. We can for example
write that

\\\X\\\oo,ρ,E = SUP XX'IK'HS'
uel\/ρ(ZVP\R );\u\lΛ/ρ<l

or another way is to use the duality between V^(E) and l\ , (E) and to write:

I I N I I o o > e > E = SUP

We shall use also the identification of E2p with Θ-Ej with E isometric to a finite
dimensional real Hubert space E (actually E = Rm). We want now to work with the
Maximum Principle applied to the basic equation:

w = (-Δ + VΦ V)v + (HessΦ)τ;. (4.1)

Let us consider a point x0, where I I I ^ O z O H l o o ^ # is maximal. As in [11] or [25] we
can by using cutoff functions reduce to a situation where we suppose that w and v,
Vw and Vυ tend to 0 at oo. Then there exists y in l\/ρ(E) with H I s / I H ^ i / ^ = 1
such that:

(υ(x0),y) =

Let us use this property in (4.1); we get:

(w(x),y) = (-Δ + VΦ - V) (v(x),y) -h

If we observe now that (v(x),y) takes it maximum at x0, we get:

, y ) . (4.2)
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We rewrite this equation using the natural decomposition of HessΦ which will be
considered as a 2p x 2p block matrix where each coefficient (HessΦ)^ is an element
in S$(Ek, E ). We then use the decomposition in the sum of a diagonal part (elements
in 3?(E)) and a non-diagonal part, and we get:

Σ<
j

< \\\w(x0)\\\. (4.3)

Here we observe that y3 is necessary colinear to VJ(XQ): v3 = β3y3 with β3 > 0, and
using the assumption of strict positivity of M :

M3j > σ!dE with σ > 0 , (4.4)

we get:

and finally we have obtained:

(σ-δ)\\\v(x0)\\\<\\\w(x0)\\\, (4.5)

where δ is the norm in £?(l°°) of the 2p x 2p block matrix whose coefficients are
0 on the diagonal and equal to \\ρ(j)ρ(k)~lM.jk\\(,f(E E ) f°r 3 ̂  ^ °̂ we §et an

estimation if: (σ — S) > 0. We now verify the assumption in our case. We have (where
the indices are considered as elements of

M3j = Hess V + tl,

(4.6)

Mjk = 0 if k?j,j±l.

It is then clear that the assumptions are verified for σ > 0 and ρ = 1 . But we shall
have to use weights ρ such that

exp -K < ρj + ) ρ j < exP « »

and we get the condition:

σ + t > (t/2) sup(ρ(j)/ρ(j + 1) + ρ(j)/ρ(j - 1)) ,
j

recalling the convention that ρ is a weight satisfying

ρ(p) = ρ(p+l) = ρ ( l ) = ρ(2p) = I .

(If we want later to work with I1 norms, we will need the stronger condition:

max (sup(ρ(j)/ρ(j + 1) + ρ(j)/ρ(j - 1)),
V 3

2(σ + t)/t .)

Here we follow the arguments in [22] (see also [11]). Let μ(j) = ρ(j + l)/ρ(j). If
we assume that

eχp-£ < MJ + Ό/μO') <
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for a small ξ > 0, then we get the condition that:

k

or equivalently:

I ln(0(fc + l)/ρ(fc))| < cosh- '((exp -ξ) (σ + t)/t) .

But we can take ξ as small as we want in the future. So we meet the condition:

coshft < (1 + σ/ί) for 0 < ί < l .

This is at t = 1 that the condition is the strongest, so we get:

cosh ft < (1 H-σ). (4.7)

This suggests the idea that the exponential convergence in our problem will be
directly measured by σ which measures the strict convexity of V. Actually, we have
verified all the properties for s = 1 but all the arguments go through for the phase
φ(p>p\xf , x"\ t, s) and uniformly with respect to the parameters s, t.

Remark 4.1. Sjόstrand's Maximum Principle. In order to verify that we are in the
framework of the theory developed by [25], let us recall some definitions introduced
by the author. Let us consider a finite dimensional real Banach space B and B* is
the dual space.

If A : B — » B is a linear map and if ε > 0, we say that A satisfies rap(ε) (with
respect to the space B), if the following property is satisfied:

If vεB, yeB* and (v,y) = \\v\\B \\y\\B* , ^ g)

then (Av,y) > ε\\v\\ B \\y\\ B* .

What we have used in our proof is exactly the property that HessΦp'p satisfies
(mp(σ - 5)) with B = 1™(E) and uniformly with respect to the different parameters
p, t, s. In order to relate with the proof we give above, we have just to observe that
if v and y satisfy (υ,y) = \\v\\ B \\y\\ B*, then: Vj = βjyj with βj > 0 (see above).

Proof of 3.14. Let us now apply the result to the estimate of v]3

r(x} with i = p/2
and I = 1, p,p + 1 or 2p. We observe that in the basic equation, the gradient
of the function x — > xi3 is bounded by Cexp — ftp/2 in 1™(E) for ρ(q) =

exp — κd(q, {p,p + 1, . . . , 2p, 1}). Under the condition (4.7) on ft we get the same
property for sup ρ(q) \\vl

q

j(x)\\E. In particular we get forq = l the following property
X

that for any ft satisfying (4.7) there exists a constant Cκ such that

sup \v%(x)\ < Cκ exp -κp/2 . (4.9)
x

Proof of 3.17. In order to analyze w^r

j , we observe that, according to the equation
satisfied by wlk° :

(*)vKj) = (~Δ + VΦ ' V)iϋ ί fc j + (HessΦ)w ΐA* . (4.10)

We have only to verify that V(^) is bounded by Cexp -ftp/2 in 1™(E) with the
same ρ's.
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But this leads to the control of the 2p x 2p block matrix Vvυ which is again
controlled by the maximum principle once one remarks that Vv is a solution of the
second basic equation:

(-Δ + VΦ V)Vυ + (HessΦ) o Vv + Vυ o (HessΦ) = (Φ(3) υ) , (4.11)

where (Φ(3) | v) is the contraction of Φ(3) and v. Using the property mp(σ - δ) we
obtain as in [25] (we omit the cutoff argument) that:

sup ||Vι;(a;)||^(B) < Cκ sup ||{Φ(3)(x) | v(x))\\#(B) > (4 12)
X X

where B — l^(E). Let us now compute:

But we now observe that the components Φ ( } ,r, of Φ(3) vanish unless p' = q' = r'
and therefore we get:

using the property that ||^u||zoo(£;) is bounded for the weight ρ0 = 1. So we get:
£?0

We then deduce immediately by chosing a — ak — (δ3J/) G Ek, which is bounded in

1™(E) by Cexp-κp/2, that (Vvij)a = (Vυj^ ) is also bounded by Cexp-κp/2 in
1™(E), and using Eq. (4.10) the same property for wik .

Remark 4. 2. If we come back to our estimate of the convergence, we have obtained
the estimate

(μ2/μι) < exp -(1 - ε) (cosh-^l + σ))/2 , Vε ,

with σ — inf λmin(Hess V(x)). So we get that:

(μ2/Mι) < exp -(cosh-1(l + σ))/2 .

If we compare with the result we can obtain in the case m = 1, V(x) — σx2 (see
Appendix A), we have already mentioned that we have probably lost a factor 1/2.
This loss can probably be eliminated by using the techniques of the second part of
[22] associated with techniqtres of [25]. It will probably be useful to improve our
estimates on the correlations introduced in Sect. 3. We shall probably need for that
other "basic equations" deduced of the first one by differentiation. We hope to come
back later to this point.
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A. Harmonic Oscillator and Harmonic Kac Operator

We want to compare:

exp(-x2/2) exp(t(d/dxf) exp(-x2/2) , (A 1)

with
exp -(-t(d/dx)2 + x2) for t > 0. (A.2)

As is well known, everything can be computed explicitly (see for example [26]) and
we reproduce some of the formulas for completeness. The distribution kernel of the
operator defined in (A.I) is explicitly given by:

2-1τr-1/2 - t~l/2 exp(-(x2 + y2)/2 - (x - y)2/4t). (A.3)

On the other hand, it is well known that:

π-ι/2 . κι/2 eχp(_κ[z(x2 + y2) - 2xy]) (AA)

is the distributional kernel of:

exp[-[ln(* + Vz2 - 1)/4K\A2 - 1] - [-d2/d2 + 4K2(z2 - l)x2]]. (A.5)

We observe now that the two kernels coincide if K = l/4t and z — (2t + 1). We
have consequently:

exp(-x2/2) - exp(t(d/dx)2) exp(-x2/2)

- exp[-[ln(2 + Λ/z2 - \}/4K^z2 - 1]

x [-d2/d2 + 4K2(z2 - l)x2]] (A.6)

with: K=l/4t and z = (2t+l).
We then obtain the explicit computation of the eigenvalues of

exp(-x2/2) Qxp(t(d/dx)2) exp(-x2/2)

as: exρ(-(n - l/2))ln(z + \/z2 - l))(n > l,n G N).
In order to come back to our notation above we compute the formula for the

operator exp(—σx2/4) Qxp(h2(d/dx)2) exp(—σx2/4) and we get for the eigenvalues

/V
μn - exp(-((2n - l)/2)cosh~1(σ/ι2 + 1)), (A.7)

and the splitting is given by:

μ2/μv — exp — cosh-1(l + σ/ι2). (A.8)

So in the case when h — 1, we see that we have lost one factor 1/2 inside
the exponential. In the semi-classical limit, we recover the result on the harmonic
oscillator that:

]n(μ2/μ]) (h) =
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