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Abstract: We develop a new method, based on renormalization group ideas (block
decimation procedure), to prove, under an assumption of strong mixing in a finite cube
ΛQ, a Logarithmic Sobolev Inequality for the Gibbs state of a discrete spin system.
As a consequence we derive the hypercontractivity of the Markov semigroup of the
associated Glauber dynamics and the exponential convergence to equilibrium in the
uniform norm in all volumes A "multiples" of the cube ΛQ.

1. Preliminaries, Definitions, and Results

In this paper we analyze the problem of the approach to equilibrium for a general,
not necessarily ferromagnetic, Glauber dynamics, i.e. a single spin flip stochastic
dynamics reversible with respect to the Gibbs measure of a classical discrete spin
system with finite range, translation invariant interaction. We prove that, if the Gibbs
measure satisfies a Strong Mixing Condition on a large enough finite cube y!0, then the
Glauber dynamics reaches the equilibrium exponentially fast in time in the uniform
norm, in any finite or infinite volume Λ, provided that A is a "multiple" of the basic
cube ΛQ. Such a result has already been proved in our previous papers [MO1, MO2] in
the so-called "attractive case" by ad hoc methods. Here we prove the result in greater
generality by proving a Logarithmic Sobolev Inequality for the Gibbs measure of the
system. We refer to [MO2] for a general introduction to the problem of approach to
equilibrium in the one phase region for Glauber dynamics; in particular in [MO2]
one finds a critical discussion of the various finite volume mixing conditions for the
Gibbs state and of the role played by the shape of the volumes involved when getting
near to a line of first order phase transition. We also refer the reader to the beautiful
series of papers by Zegarlinski [Zl, Z2, Z3] and Zegarlinski and Stroock [SZ1, SZ2,
SZ3], where the theory of the Logarithmic Sobolev Inequality for Gibbs states was
developed and its role in the proof of fast convergence to equilibrium of general, not
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necessarily attractive, Glauber dynamics was clarified. We suggest in particular the
interested reader look at the nice review in [S].

In order to precisely state our results and for the reader's convenience, we recall
here the model and the notation of the first paper of this series.

1. The Model. We will consider lattice spin systems with a finite single spin state
space S. We take for simplicity S = {— 1,-fl} and we will denote by σ = σΛ an
element of the configuration space ΩΛ = SΛ in a subset Λ C Zd. The symbol σx or
σ(x) will always denote the value of the spin at the site x £ Λ in the configuration σ.

The energy associated to a configuration σ G ΩΛ when the boundary condition
outside A is r G ΩΛC is given by:

ΈΓA(σ) = HA(σ r) = £ Ux [] (<"% > d D
x:xn./v0 xex

where, in general, στ denotes the configuration:

= o * » z e Λ ,
c

and the potential U = {UX,X CC Zd}, where X CC Zd means that X is a finite
subset of Zd, satisfies the following hypotheses:

HI. Finite range: Ξ3r > 0 : Ux = 0 z/diam JΓ > r (we use Euclidean distance denoted,
in the sequel, by distj.

H2. Translation invariance

VX CC Zd , Vfc G Zd , ί/χ+fc - Ux .

Because of the hypothesis HI, Hr

A(σ) depends only on τx for x in 9+yl:

,Λ) < r} . (1.3)

With the energy function HA(σ) we construct the usual Gibbs measure in Λ with b.c.
r e ΩΛc given by:

where the normalization factor, or partition function, is given by

σ)). (1.5)

If there exists a unique limiting Gibbs measure for A — >• Zd, independent on r, it will
be denoted by μ.

Remark. Notice that, for future notation convenience, we have included the usual —β
factor in the Boltzman weight (1.4) directly in the energy H\(σ).

Next we define the stochastic jump dynamics, given by a continuous time Markov

process on Ω = S7* that will be studied in the sequel. Discrete time versions can
also be considered.

Given Λ CC Zd let

D(Λ) = {f:Ω^ R:f(η) = /(σ) if ηx = σx MX e A}
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be the set of cylindrical functions with support Λ. The set

D = \J D(Λ)
A

is the set of cylindrical functions and by C(Ω) we denote the set of all continuous
functions on Ω = f] Sx, Sx = S with respect to the product topology of discrete

X

topologies on 5.
The dynamics is defined by means of its generator L which is given, for / G D,

by:

Lf(σ) = Y^cx(σ,a)(f(σx'a) - /(σ)), (1.6)
x,a

where σx'α is the configuration obtained from σ by setting the spin at x equal to the
value a and the non-negative quantities cx(σ, α) are called "jump rates."

We will also consider the Markov process associated to the above described jump
rates in a finite volume A with boundary conditions τ outside Λ. By this we mean the
dynamics on ΩΛ generated by Lr

Λ defined as before starting from the jump rates

where, given τ G ΩAC and σ e ΩΛ, σr has been defined in (1.2).
The general hypotheses on the jump rates, that we shall always assume, are the

following ones:

H3. Finite range r. This means that η(y) — σ(y) V x , y : | y — x\ < r implies
cx(σ,a) = cx(η,a).

H4. Translation invariance. That is ifη(y) = σ(y + x) Vy, then cx+y(σ, a) — cy(η, α).

H5. Positivity and boundedness. There exist two positive constants kv,k2 such that

0 < kλ < inf c (σ, α) < sup c (σ, α) < fc2 .
σ'x'α σ,x,a

H6. Reversibility with respect to the Gibbs measure μ (infinite or infinite volume):

X3x

Σuxl[(σx'a)y\cx(σx'a,σx) \/x e Zd . (1.7)

X3χ y<ΞX )

A similar equation holds in finite volume Λ with boundary conditions r, provided
that we replace in (1.7) σ with the configuration σr.

It is immediate to check that, in finite volume, reversibility implies that the
unique invariant measure of the dynamics coincides with the Gibbs measure μr

A.
This important fact holds also in infinite volume provided that there exists a unique
Gibbs measure in the thermodynamic limit and that all the invariant measures of the
dynamics are Gibbsian.

It is well known (see [L]) that under the above conditions L(Lr

A} generates a unique
positive selfadjoint contraction semigroup on the space L2(Ω, dμ) (L2(ΩA, dμr

A)) that

will be denoted by Tt or Tt

Λ'r.
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2. The Logarithmic Sobolev Inequality and Hypercontractivity ofTt. In order to intro-
duce the Logarithmic Sobolev Inequality (LSI) we have to define the differentiation
operator on the functions of the spin configurations. We set:

dσχf(σ) = f ( σ ) - \ [/(σ*'+1) + /(σ**-1)] , (1.8)

where σx>+1, respectively σx'~l, is the configuration obtained from σ by setting the
spin at x equal to +1, respectively —1. Given a subset A of the lattice Zd the symbol
(VΛ/)2 will be a shorthand notation for the expression ]Γ) (dσχf(σ))2.

xζA

Finally we define the "standard" Logarithmic Sobolev Constant cs(z/) for an
arbitrary measure v on ΩΛ as the smallest number c such that for any non-negative
function /: ΩΛ — » R the following inequality holds:

K/2log(/)) < cz/((VΛ/)2) + K/2)log((K/2))1/2) , (1.9)

where v(f) denotes the average of the function / with respect to the measure z/.
In the sequel we will refer to (1.9) as the "standard" Logarithmic Sobolev

Inequality for v. It is very important to observe that if we denote by

the Dirichlet form associated to the generator I7A and we take in (1.9) v — μr

A, then
the term:

satisfies the estimate:

(/,/) < μ τ

Λ ( ( V Λ f ) ) < (4 min
x,α,σ

Therefore, if μ\ satisfies the "standard" Logarithmic Sobolev Inequality (1.9), with
standard logarithmic Sobolev constant cs(μr

A), then it also satisfies the Logarithmic

Sobolev Inequality for the semigroup Γ/1'7" relative to the measure μr

A:

MΛ(/2log(/)) < %(μ^)^(/,/) + /x^(/2)log((μ^(/2))1/2) (1.10)

with logarithmic Sobolev constant (4k2)~lcs(μΊ

A) < %(μ^) < (4kl)~lcs(μr

A) because
of H5. Thus the "standard" Logarithmic Sobolev Inequality and the Logarithmic
Sobolev Inequality for the Dirichlet form & are equivalent and in the sequel, whenever
confusion does not arise, we will call both of them the Logarithmic Sobolev Inequality.

Remark. From the above discussion it also immediately follows that, if αJ>Λ(σ, α) and

c£>yl(σ, α) are two different jump rates satisfying H3. . .H6, and if & and & are the
corresponding Dirichlet forms, then we have:

and

Cχ(μr

A) > max ̂ ^ cg(μ\) . (1.12)
x'α'σcx' (σ,α)

Remark. In the case when the single spin space consists of TV elements with TV > 2,
the definition of the differentiation operator is no longer so clear. One possibility (see
[SZ3]) is to set:

( f ) x , (1.13)
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where (f)x is the average with respect to the uniform measure on S of the function
/, considered as a function of the single spin σx. Another possibility is to order the
elements of S as sl , . . . , SN and to set:

a g/(a)= / ( g < + l )" / W (1.14)

if σx =
Both definitions are reasonable and equivalent in the sense that:

i) φσj) = o,
ii) there exists a finite positive constant fc0 (in general depending on N) such that:

(fcoΓ1 W, /) < /^((v^/)2) < «(Λ /) ,
where the definition of the generator L and of the Gibbs measure in this more general
setting is the obvious one.

Although, in some sense, the choice of the differentiation operator reflects the
choice of the dynamics for the single spin at "infinite temperature" (a uniform
sampling in the first case or a symmetric random walk in the second case), because
of ii) above, one is free to choose whatever definition is more suited to the methods
of proof. In particular if, as we do, one wants to treat dσχ as much as possible as a
continuous derivative, then the second definition seems more suited.

The above "ambiguity" points out that the logarithmic Sobolev constant is not
intrinsically associated to the Gibbs measure but, rather, to the pair (μ, V).

As it is well known since the basic work by Gross [Gl] (see also [G2]), the
Logarithmic Sobolev Inequality for the Gibbs state μτ

Λ is strictly connected with the

hypercontractivity properties of the Markov semigroup T/1'7", where:

Tt 'r is hyp ere ontr active with respect to μr

A if there exists a constant c(Λ, r) such
that

V(p,^0 with p<q<l + (p-l)e^. (L15)

More precisely, Gross' Theorem states that the constant φl, T) in (1.15) can be
taken equal to the logarithmic Sobolev constant %(μj).

Besides its intrinsic interest, hypercontractivity of the Markov semigroup Tt '
τ or

of Tt is a fundamental tool to transform, in the general case, exponential convergence
to equilibrium of the Glauber dynamics in the L2(dμ^)-sense into exponential
convergence to equilibrium in the L°°-sense. More exactly, for an interaction Ux

satisfying the general hypotheses HI, H2, one can easily prove the following theorem
(see [SZ2] Lemma 2.9 and Lemma 1.8 there):

Theorem 1.1. Let Γ be α, finite or infinite, class of subsets of Zd and suppose that
there is a constant c0 such that:

sup %(μ^) < c0 .
τ,/ί<ΞΓ

Then there exists a positive constant m and for any cylindrical (i.e. depending on
finitely many spins) f: J?Zd —> R there exists a finite constant C ̂  such that:

sup \Pt

τ'Λf - μr

Λ(f)\x < C} exp(-mί).
r,A€Γ
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Thus, in this way, the problem of proving exponentially fast approach to equilibrium
in the uniform norm for a Glauber dynamics is reduced to proving a bound on the
logarithmic Sobolev constant of the Gibbs state.

The real breakthrough in this direction was made a few years ago by Zegarlinski
[Zl, Z2, Z3], who proved, in particular, that, if the Gibbs state satisfies a weak
coupling condition similar to the old uniqueness Dobrushin's condition (single site)
[Dl], then the logarithmic Sobolev constant in a set A with boundary conditions r
is finite uniformly in Λ and r. In [Z2], in order to treat the one dimensional case
for all temperatures, the author uses intervals instead of points. This result was then
extended and generalized by Stroock and Zegarlinski [SZI, SZ2, SZ3] to spin systems
with single spin space given either by a compact Riemannian manifold or by a finite
discrete set. The main result of the above mentioned works is the equivalence of the
existence of a finite logarithmic Sobolev constant, independent of the volume and
of the external spin configuration, and the Dobrushin-Shlosman complete analyticity
[DS1, DS2] of the Gibbs state μ. Although the Stroock-Zegarlinski result yielded
very important progress in the general problem of relating the fast convergence to
equilibrium of the dynamics to "mixing" properties of the Gibbs measure, it cannot,
in general, be used concretely in order to establish results close to a line of a first
order phase transition since it requires good mixing properties of the measure μr

A in
volumes A of arbitrary shape (see [MO2], Sect. 2, for more details). As we have
discussed in detail in the first work of this series [MO2], if one is willing to produce
results really close to a line of a first order phase transition, one should consider the
Gibbs measure only on "fat" volumes like cubes or parallelipipeds with large enough
shortest side. This is exactly the subject of the present work.

3. The Results. In order to present the new results of the present work, we need to
recall the finite volume mixing condition that already played an important role in the
first paper of this series [MO2].

We say that a Gibbs measure μΛ on ΩΛ satisfies a strong mixing condition with
constants (7, 7 if for every subset Δ C Λ:

sup Var(μ^, μ) < Ce~ι ** , (1.16)

where μ\ Δ denotes the relatίvization (or projection) of the measure μr

A on ΩΔ, Var

is the variation distance and r^ = rx for x ̂  y.
We denote this condition by SM(A, C,7).
In [MO2] a lower bound on the gap in the spectrum of the generator L\ was

derived (see Theorem 1.2 below) under the assumption SM(Λ0, C, 7), where Λ0 is a
cube of side I/0, provided that, given C and 7, L0 is sufficiently large.

In what follows Γ will denote the class of all subsets of Zd given by the union of
translates of the cube ΛQ such that their vertices lay on the rescaled lattice £0Z

d. The
constants C and 7 appearing in our mixing condition will be fixed once and for all.

Theorem 1.2. There exists a positive constant L depending only on the rang e_of the
interaction and on the dimension d such that if 5M(I/0, C, 7) holds with L0 > L then:
i) there exists a positive constant m0 such that for any A G Γ and for any function f

in L2(dμτ

Λ):

< \\f - ̂ (

ii) There exist constants C' and 7' such that for any Λ G -Γ, SM(Λ, C1 ', 7') holds.
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Corollary 1.1. There exists a positive constant L depending only on the range of the
interaction and on the dimension d such that if SM(LQ, C, 7) holds with L0 > L then
there exists a positive constant m such that for any pair of cylindrical functions f and
g with supports Sf and Sg and for any Λ e Γ, with Sf, Sg C Λ, one has:

where \X\ denotes the cardinality of the set X C Zd.
Here we considerably strengthen parti) of Theorem 1.2 by proving the following

theorem:

Theorem 1.3. There exists a positive constant L depending only on the range of the
interaction and on the dimension d, such that if SM(L^ C, 7) holds with L0 > L then
there exists a positive constant c0 such that for any A £ Γ and any boundary condition
T the logarithmic Sobolev constant c%τ is bounded by c0.

Moreover, there exists a positive constant ra such that for any Λ G Γ1, any
cylindrical function / there exists a positive constant Cf, depending only on /, such
that:

PtΛI - A£(/)loo < Cf exp(-mί) .

The second part of the above theorem proves Theorem 4.2 of [MO2] in the non-
attractive case.

4. The Strategy of the Proofs. We conclude this introduction by describing the
ideas behind the proof of Theorem 1.3 and by comparing them with the Stroock-
Zegarlinski ' s approach.

Our proof is divided into two distinct parts:
1) In this first part (see Sect. 2) we show that any Gibbs measure v on a set A which
is the (finite or infinite) union of certain "blocks" Λλ . . . Λy . . . (e.g. cubes of side / or

single sites of the lattice Zd) has a logarithmic Sobolev constant which is not larger
than a suitable constant depending on the maximum size of the blocks provided that
the interaction (not necessarily of finite range) between the blocks is very weak in a
suitable sense. A simple example of such a situation is represented by a Gibbs state
at high temperature, but the result is more general since we do not assume that the
interaction inside each block is weak.

The result is a perturbative one since, as it is well known [Gl], if there is no
interaction between the blocks then the logarithmic Sobolev constant of z/ is not
larger than

2) In the second part (see Sect. 3) of our approach we use renormalization group, in
the form known as decimation (i.e. integration over a certain subset of the variables
σx), to show that, in the assumption of the theorem, the Gibbs state μr

A after a finite
(< 2d) number of decimations becomes a new Gibbs measure exactly of the type
discussed in part 1). It is then a relatively easy task to derive the boundedness of the
logarithmic Sobolev constant of μr

A.
As it is well known since the work of Olivieri [O] and Olivieri and Picco [OP],

the mixing condition SM(ΛQ, C, 7) implies that if the decimation is done over blocks
of a sufficiently large size (see for instance [EPS] for pathologies that may occur
if the size is not large enough) then it is possible to control, e.g. by a converging
cluster expansion, the effective potential of the renormalized measure and to show
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that it satisfies the weak coupling condition needed in part 1). This is, however, more
than what it is actually needed, since the hypotheses of part 1 are fulfilled by the
renormalized measure as soon as the truncated two point correlation functions of the
original Gibbs measure μ\ decay exponentially fast. This is exactly the content of
Corollary 1.1 above; therefore the method can avoid the lengthy computations of the
cluster expansion.

We want to notice at this point a difference in the role played by the DLR structure
of Gibbs measures in our approach and in the one used by Zegarlinski and Stroock-
Zegarlinski. For simplicity let us consider the case when the Dobrushin's uniqueness
condition holds true. For instance in [Zl] Zegarlinski uses in a crucial way the
following property of the Gibbs local specification operation EΛ:

where {ik G Zά}keN is a suitable sequence going infinitely many times through each
site of the lattice and μ is the unique infinite volume Gibbs state. A similar property is
used in [SZ3] in the case when the Dobrushin-Shlosman complete analyticity condition
holds true.

In the present paper, on the contrary, we use the following simple general property
valid for any probability measure v on a finite space Ω:

Clearly, if the measure v is a Gibbs measure corresponding to a given potential, then
the DLR property enters in the explicit computation of the conditional probabilities
v(Ai Ai+1 U . . . U An).

After the completion of this work we learned that also Lu and Yau, in their work on
the gap for the Kawasaki dynamics for the Ising model [LY], obtained, by martingale
techniques, a uniform bound on the Logarithmic Sobolev Constant of μr

A, where A
is an arbitrary cube of the lattice, under the assumption that SM(Λ, (7, 7) holds for
all finite generalized cubes A

2. Logarithmic Sobolev Inequality for Weakly Coupled Gibbs Measures

In this section we prove two results that will play a crucial role in the derivation
of the logarithmic Sobolev inequality (LSI) for Gibbs measures satisfying a finite
volume mixing condition. In order to present our results we need to precisely define
the setting of the problem and the notation that we will adopt in the sequel. We warn
the reader that in this section we do not assume the finite range condition (HI); in
this situation we will denote the potential by Φ instead of U.

L The Setting of the Problem, Let Λ be a finite subset of the lattice Zd such that
A = Λl U y! 2U,..., \JΛN with A Π Λ = 0 if i ^ j, sup |yl | < oo and let ΩΛ be the

ί,N

space of configurations ΩA = {—l,-hl}Λ. Let also Φx, X C Zd, be a "potential"
such that for any "boundary" configuration η e Ωzd\Λ and any configuration σ e ΩΛ,

the following Hamiltonian is finite:

ΦχH(ση)x. (2.1)
x€X
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If for convenience we denote by HA,(σΛ.) the sum:

#XK>= Σ *χll <<"?>*' (2 2)

then the total Hamiltonian can be written as:

(2.3)

where the term Wη(σ) represents now the interaction between the sets Λi9 i = I . . . N.
Given the Hamiltonian Hη(σ), we will denote by μη the corresponding Gibbs

measure.
In the sequel, together with the measure μη, we will need also other Gibbs measures

that are obtained from μη by integrating out one by one the variables σΛ , j = 1 , 2 . . .
(decimation procedure). More precisely for any i = 1, . . . , N we define a new Gibbs
measure μ> on the space

as the relativization to Ω^ of the measure μη:

Obviously the measure μl>l is also a Gibbs measure with a new Hamiltonian:

' " "Σ **Π'
^j = l

where ZA

 A^'A'_
 ΛN is the partition function in Λl U . . . U Λi_l with boundary

conditions 77, σA^,..., σΛjv.

Finally, we will denote by z/^'Tι+1' 'rjv the measure on ί?Λ. obtained from μrί>i

by conditioning to the event that the spin configurations σA , . . . , σA are equal to

the spin configurations r i+1,... ,TN. We will write ί//^'r*+1' 'τ^ as:

? ' " ? T Λ j v ) ) , (2.6)
?

where ^ Ξ ^(r^ ,...,τA ,77) is a normalization factor and the "effective"

interaction

is given by:

^(>ΛΛ+1,. .,TΛ j v)

= #(>;)(σA ;τA.+l,...,τΛlf)- H^(rΛt, rΛ + ],..., TΛN ), (2.7)

where f^ is a given reference configuration in Λi (e.g. all spins up).
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2. Assumptions and Results. We are now in a position to precisely state the hypotheses
on the "potential" Φx that we need in order to prove the main results of this section.

Assumptions, a) There exists a positive constant ε such that:

i-l

sup ]Γ sup \9σχW^(σ)\ < ε (2.8)

and
TV

sup ^ sup \dσχWfa(σ)\ < ε. (2.9)

b) There exists a positive constant α0 such that:

N

sup \d ωWβΛσ)^ < α0 (2.10)

and
sup sup ]Γ IS^W^ίσ)!^ <α0sup|4

c) There exists a positive constant α^ such that for any JV, any 77, any z = 1, . . . , JV,
any / G L2(ΩΩ^d^'Tτ+l''"'TN) and any value of the conditioning spins τί+1, . . . , r^
one has:

'r->-^

(2.11)

Remark. Assumptions a) and b) are clearly expressing some decay property of the
effective interaction of the Gibbs measures μ>r The reason why in this section we do
not require finite range of the interaction is that after a few steps of our decimation
procedure, even a Gibbs state corresponding to a finite range interaction will be
transformed into a new Gibbs measure corresponding to an effective interaction with
unbounded range at least in some directions.

Assumption c) looks somewhat more mysterious but nevertheless plays an impor-
tant role. In some sense c) is a hypothesis of rapid approach to equilibrium for a
heat bath or Metropolis dynamics in Λi9 reversible with respect to the Gibbs measure
Z/^'TZ+I''"'T]V. Using the arguments of Sect. 1, §2, the constant a\ becomes in fact
proportional to the inverse of the gap of the generator of the dynamics, i.e. a\ is
proportional to the relaxation time in the "block" Λi. In the perturbation argument
given below, the constant ε, which expresses the weak coupling between the blocks
Λl . . . ΛN, will always appear multiplied by the constant a\, and therefore the true
"small" parameter of the analysis becomes the "coupling among the blocks x the
relaxation time in a single block."

We will see in the next section that all the above assumptions follow from the
finite volume mixing condition SM(C, 7, L) defined in Sect. 1 provided that L is
large enough and that the set Λ consists of a union of sufficiently "fat" subsets of the
lattice Zd.

Under the above assumptions the following two theorems hold.
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Theorem 2.1. Given the constant a^for any δ > 0 there exists ε0 = ε0(α1?^) such
that if εsup \Ai\ < ε0, then:

τ

supcs(μη) < ( l - fδ) sup sup ca(ι>?'Tt+1""tTN).
η i η,τz+l,...,τN

Remark. If we denote by ρ the uniform measure on the single spin state space 5, it
is rather easy to see that

(see e.g. Lemma 5.1 in [HS]).
In turn, using the very definition of the measure z/J?'Tι+1' ' r A Γ

j it is not difficult to
check that

^Λ^/T Γ/
:*)

V

Thus the logarithmic Sobolev constant cs(^'Tϊ+1'" 'TAΓ) is finite uniformly in i and N
if one has a good control on the interaction Φx since, as it is well known, cs(ρ) is
finite.

Theorem 2.2. Given the constants α0 and al there exists ε0 = επ(αn,αι) such that
if ε sup \Λτ\ < ε0, f/ze« ί/zere emf ίw6> constants α2, α3 depending on α0

i

that for any function f : ΩZd -+ R the following inequality holds:

+ α3 sup |Λ

Theorem 2.2 is a technical result which will be needed in Sect. 3.
Remark. Notice that in Theorem 2.2 the function / is a function from ΩZd to

R and thus it may depend also on the boundary spins η. Therefore the expression
(μr?(/2))1/2 may depend on the spins η which are involved in the derivatives VZd\^
in two ways: through the Gibbs measure μη and through the function /.

3. Proof of Theorem 2.L If there was no interaction among the sets Λi then the
total Gibbs measure μη would have been a product measure and the proof of the
theorem would be a very simple exercise. However, our hypotheses say that the
mutual interaction among the sets Λi is very weak in a suitable sense and it is
therefore natural to try to make some perturbation theory around the non-interacting
case. Because of the structure of the LSI, we found convenient first of all to write the
average μη(f) of an arbitrary function / in a form that resembles as much as possible
that of the average of / over a product measure. This form is as follows:

μη(f) = 4( ι̂ ( - K'T2'-'rN(/) - - 0 . (2.12)

If we now apply this representation of μ η ( f ) to the function /2log(/) we get:

(2.13)



498 F. Martinelli, E. Olivieri

where
/ ?7,T7,. . . ,T/V\

cl = sup cβ(z/1"
 /v).

T2v ,Tjv,77

Next we define the new function

and, more generally:

g. = (^'rϊ+1'-'τjv(^2_1))1/2 . (2.14)

With these notation if we iterate (2.13) we obtain:

^

where
/ 77,T7 + l , . . . , T J V / v

q = sup ca(yi

 τ+l N).

We are thus left with the estimate of the term:

]Γ c^ίίV^ft,!)2). (2.16)
i

This is done in the next proposition where we show that, by paying a small price if
the constant ε is small enough, one can safely replace in (2.16) the functions gi_l

with the function /.

Proposition 2.1. Given the constant al,for any δ > 0 there exists ε0 = e0(oil, δ) such
that if ε sup \A^ < ε0 then:

<d
f * - - 0 ' - f Λ ~ ~ I*

i i

Before giving the proof of the proposition let us finish the proof of the theorem.
If we use the result of the proposition we see that for any δ > 0 there exists
ε0 = ε0(α1?<5) such that if εsup|yl j < ε, then the r.h.s. of (2.15) can be bounded

i
above by:

~~ /2))1/2), (2.17)

i.e.
supcs(//0 < (1 + <S)sup sup cs(^'n+1'-'T]V),

η i τ ΐ+1,...,τjv

and the theorem follows.

Proof of Proposition 2.1. One technical complication of working with discrete spins
and discrete derivatives is that the latter do not enjoy exactly the same properties of
the usual continuous derivatives like Leibniz rule and so forth.

Therefore before entering into the details of the proof let us give some elementary
results concerning discrete derivatives that will be frequently used later on. Properties
a), b), c), d), e) follow only from the definition of dσχ and are true in general whereas
property f) is a consequence of assumption c) above on the interaction. A proof can
be found in the Appendix.
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In what follows (f)χ will denote the average of the function f(σx) with respect

to the measure \(δ+ι + <5_j) and, for any given x G A- with j > ί,

.^Γ'. .-r1

Then we have:

c) If / is non-negative then f(σx) <
d) Given x G A with j > i:

dv

+ Π

where | [dTχ

expression:

x, + l x,+l x,+ l

is a convenient way to denote the

(/(PT)...)

e) ("Leibniz rule"). Let / be non-negative. Then, for i > 2:

f)

We are now ready to start our computations.
Since we have to estimate terms like (VΛ g^)2, we start to estimate the following

quantity:

where x is an arbitrary site in the set AΓ Following Zegarlinski and using a) above,
we observe that it is sufficient to estimate

by

to get that

(2.18)
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Using d) and e) above with / replaced by /2, we get:

^ f̂e+1

+Σ Π
(2.19)

The first term in the r.h.s. of (2.19), using the Schwartz inequality, and properties a)
and b), is bounded from above by:

/ ' \3 / 22 Π λ * {(e?' 'TJV( «T2'-'TJV(/2) )1/2),
\ .7=1-1 /

x ^7'-'^(... (v^-TN((drχf)
2).. .)1/2 . (2.20)

Using ί) above, the second term in the r.h.s. of (2.19) is bounded from above by:

Σ Σ λ,1
Z_^ I Z—> J
fc=l \-M-l

(2.21)

Using the definition of the function gk_\ we have:

)]
1/2

and thus, using again a) and the Schwartz inequality, we get that (2.21) is bounded
above by:

• fe+i \ Ί

Π A?K ( XJ. X J / u\^

k=\

(2.22)

We now define:

= SUP

k+l

Π

and
3/2
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With this notation, if we put together (2.20) and (2.22), we obtain that:

\dTχlvlτΓ'TN( (^T2" "TN(f2) . - O i l

'/2

2))]1/2} (2.23)
fc=l J

i.e., using (2.18),

+ Σ f̂c["£.?' "'T J V< - (^'T2'-'r]V((VΛfe5fc_ι)2))]1/2 - (2.24)
fc=l

Thus, using the above bound, we get that

< pB?_ι<"£.?""'TJV( Kl7ί' "'TJV((0Λ/)2) •)

+ l4kfΣ^)Σ^[^' 'rN( ^Γ2' 'TN((V^5fc_,)2))] (2.25)
\ f c = l / k=l

for any p > 1, α > 1 with - -f- - = 1.
P Q

In conclusion, by summing (2.24) over the index i, we obtain for the initial
expression ^ μη((VΛ ft_!)2) the bound:

V μV((VΛg_,)2)<
/ J 1

\ k=l / k=l )

At this point we use our decay assumption a) on the interaction in order to estimate
the numbers Bi and V^k.

From the definition of Xj one has immediately that for j < ί:

sup λj < exp U sup \drχW^\\. (2.27)
i \ i J

Therefore:

Bi_l < exp ( 8 y^ sup \3Tχ W^ } < exp(8ε) < 1 -f lOε (2.28)

if ε is small enough.

i-l

iV
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Similarly:

k=l

N

V V , < CεZ^j l >κ —
i=k+\

for a suitable constant C (which depends on al but not on ε) and any sufficiently
small ε.

Thus the second term in the r.h.s. of (2.26) is smaller than:

TV

sup |Λ.|g(Cε)2 ]Γ μη((ΦAkgk_ΐ)2)). (2.29)
1 k=ι

Therefore if sup \Λx\q(Cε)2 < I we get from (2.26), (2.28) and (2.29) that:

if we choose for example q — - and ε sufficiently small. The proposition is proved.

4. Proof of Theorem 2.2. We proceed very similarly to the proof of Proposition 2.1.
By doing the same kind of computations as in (2.18), . . . ,(2.24) we obtain that:

(2.30)
\ *—' Λ / i
\ k=l / )

where

It is important to observe at this point that in general Vxk is not small. Assumption
a) (see (2.8) or (2.9)) in fact concerns only the interaction between different blocks
while in some sense Vx k measures the interaction between one block Λk and the
boundary spin ηx. However, thanks to assumption b) (see (2.10)) and using (2.27),
we have that:

SUP ^,fc ^ 2α1α0sup|Λ t |exp
i

< sup|yl-|2α1Q;0exp(4α0). (2.31)
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Thus if we sum over x e Zά\Λ the second term in the r.h.s. of (2.30), we get, after
a Schwartz inequality:

N

lk=l

/A \
exp(8α0) > zΛ(. . . (ι% fc+1""' N((VV gk,)

2)]. (2.32)
1 ^_^ Λ V f c Λ I

\ f e = l /

Using the identity:

4( ("Γfc+1'" '' .... _
and Proposition 2.1, we see that if ε is small enough there exists a constant α3 such
that:

~ N

Σ V if* ( f l,^rfc+i' 'rΛVx,k^N( ' ' \"k

(2.33)

Analogously if we sum over a; 6 Zd\yl the first term in the r.h.s. of (2.30) we get:

2( sup Π ^ - ΐ ' ' ' ' ' T N ( ^^^

(2.34)

If we finally combine (2.34) and (2.33) we obtain the theorem with α2 =
2exp(8α0).

3. Decimation Approach to the Logarithmic Sobolev Constant

7. Proof of Theorem 1.3. In this section we prove our main result namely Theo-
rem 1.3.

The result holds in any dimension but for the sake of simplicity of the exposition
we will discuss explicitly only the two dimensional case. As already announced in
Sect. 1, our proof is based upon ideas coming from rigorous renormalization group in
classical statistical mechanics in the form known as decimation. We begin therefore
by illustrating our decimation procedure.

For any odd integer L0 let us consider the renormalized lattice Zd(L0) = L0Z
d C

Zd and let us define for any x e Zd(L0) the block QLo(x) as the square in the
original lattice, centered at x and of side L0. We will collect the blocks QLQ(x) into
four different families, denoted in the sequel by the letters A, B, C, D, according to
whether the coordinates of their centers x are (even, odd), (even, even), (odd, even),
or (odd, odd). We will also order in some way the blocks belonging to the same
family so that they will be denoted by A l 5 A 2 , . . . , A n,.. ., etc.
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Let now Λ(LQ) be a finite subset of Zd(L0), let A = \J QLQ(x) and let μη be

the Gibbs state in Λ corresponding to the Hamiltonian (1.1) with some fixed boundary
condition η outisde Λ. Given μη we will consider new measures, denoted by:

on the finite sets ΩAπΛ, ΩBπA, ΩCπΛ, ΩDnΛ. Such measures are defined in analogy
with the measures Z/T*+1'"TJV of Sect. 2 as follows:

^A'TB'TC is simply obtained from the Gibbs measure μη by conditioning the
spins in A Π Λ, B Π Λ, C Π Λ to have the prescribed values τA, τB, τc. To construct
k£Λ>Tβ we first integrate out the spins σD in μη and then we condition to the spins
in A Γ) Λ, B Π Λ to have the prescribed values TA,TB. Similarly to construct z/^Λ we
first integrate out the spins σD and σc in μη and then we condition to the spins in
A ΓΊ A to have the values rA. VA is simply the relativization of μη to A Π Λ.

Remark. We observe that by construction the intersection between the family of blocks
of type A with the set Λ consists of a finite collection of blocks say Aλ, A2, . . . , ANA

and the same for the other families.
In the notation for the measures vΓ

Ί

A'TB'rc , etc. obtained after the decimation, we
often omit, for convenience, the superscript η.

We are now in a position to start our calculations. Given an arbitrary function
f:ΩΛ-*Rwe write, following [OP]:

μη(f2 log(/)) - ̂ A(^B

A^cΛtTB^τ

D

ΛtTBlTC(f2 log(/))))) (3.2)

Let us now define c(L0) to be the largest among the logarithmic Sobolev constant
(LSC) of the measures

Ί/ uTA Ί;TA'TB

 7y
rA'rB'rCVA->VB ->VC ιVΌ '

more precisely:

c(L0) = sup max{c>A), cβ(z/^), cβ(z/JA>Tβ), cs(^Λ'Tβ'τc)} .
TA.^B^C

With this notation and if we apply the logarithmic Sobolev inequality to Z/^A'TB'TC,
we obtain that the r.h.s. of (3.2) is bounded above by:

(3.3)

Next we define the new functions:

With these notation, if we iterate (3.3), we obtain:

< c(L0) [μη(

(3.4)

The proof of Theorem 1.3 will immediately follow from the next result:
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Theorem 3.1. Let us use {*, r*} to denote a generic pair among:

{A, η} {B, τAη} {C, τArBη} {£>, rAτBrcη}

and let ZΛ£* be the corresponding Gibbs measure. There exists a constant L such that
if SM(L, (7, 7) holds for some L > L, then there exists L0 > L such that if L0 > L0

then there exist two constants α0 and al such that:

i)
c(L0) < oo ,

ϋ)

for any x £ *.

Before giving the proof of the above crucial result, let us first complete the proof
of the main theorem.

If we apply ii) of Theorem 3.1 to μη((VΛAgB)
2) we get that:

We have thus succeeded in moving the gradient from the function gB to the function
gc. If we continue this procedure two more times we end up with all the gradients
acting on the original function /. More explicitly, after three repeated applications of
ii) of Theorem 3.1, we have that:

< a2μ
η((VΛf)

2ϊ (3.5)

for a suitable constant α2. The same estimate of course applies also to the terms:

/ΛCV^fc)2) and μη((VΛcgD)2).

In conclusion we have shown that:

<cU0K((VΛ/)2), (3.6)

provided that 5M(L, (7, 7) holds for some L large enough and the size of the blocks
of the decimation was also sufficiently large.

Theorem (1.3) is proved.

2. Proof of Theorem 3.1. The main idea of the proof is to show that, if we denote
by yl j . . . ΛN* the blocks in the family *, then, in the hypotheses of the theorem

and provided that the parameter I/0 is large enough, the measure z/J satisfies the
assumptions a), b) and c) of Theorems 2.1, 2.2 with constants α0,θ4 uniformly
bounded in the side L0 of the blocks of the decimation and in the boundary conditions,
with the constant ε going exponentially fast to zero as I/0 — > oo.

In order to verify a) and b) we first need to write in a convenient way the derivative
with respect to a conditioning spin of the effective potential appearing in any of the
measures (3.1). One possibility is to use a cluster expansion to write down the effective
potential; there is, however, another way in which the derivative with respect to a
conditioning spin of the effective potential becomes essentially a truncated correlation
function of a suitable pair of local observables computed with respect to the original
Gibbs measure μη. That is of course very convenient since (see Theorem 1.2) it has
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been proved that in the hypotheses of the theorem the truncated correlation functions
of the measure μη decay exponentially fast.

So let us discuss the second way in a rather general setting.
Suppose that we are given a subset A — Λ{ U Λ2 U Λ3 of the lattice Zd and a

Gibbs measure μ on {— 1,+!}^ with Hamiltonian H(σΛ ,σΛ ,σΛ ) corresponding
to a interaction Φ with finite norm

H Φ | | =

Let
H(σΛι,σΛ2) = \og(Zσ

Λ

Λ^σΛi) (3.7)

be the effective Hamiltonian after the integration of the σ3 variables in Λ3 and let

rtfVΛl) = 6(σΛl,σΛ2) - H(r^σΛ2) (3.8)

be the effective interaction entering in the conditional Gibbs measure of the spins σΛ

given the spins σA/ι after the decimation of the spins σ Λ^ [see (2.6)]. In (3.8) rλ is
an arbitrary reference configuration of the spins σA , e.g. all the spins up. Then we
have:

Lemma 3.1. For each x e Λ2 and y G Λl there exist two functions fx * ' 2(0"/ι3)

and gy

 l ' 2 (σΛ ) w/ίλ the following properties:
i) / ύwd g, as functions of the spins σΛ , have support in a ball centered at x and y

respectively with radius equal to the range of the interaction Φ.
ϋ)

s u p / ( σ ^ 3 )
>σΛ2'

σΛ3

sup |^Λ''σΛ2(σ/l3)|<exP(2||Φ||).

Λ2\σΛl'σΛ2

lΛ3

where ( f ) ^ 1 ' 2 is the conditional average of the observable f with respect to the
original Gibbs state given that the spins in Λl and Λ2 are equal to σΛι and σA^ and
{/; g) denotes the usual truncated expectation.

Proof. Let for x G Λ2 and y G Λl9

ίΓσΛ''σX2(σΛj) - H"ΛI 'σ^2(σ/l3)),
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If we use (3.7), (3.8) and the definition of dσ(x^ we obtain:

507

σΛ

sup

SUP \9σΛ2(x)(H(σΛl, σΛ2) - H(σy

Λι, σΛz

X

L I ' Λ2)/i, 2)

l ,σΛ

-log

/Λ,

(3.10)

Using log(l +x) < x if x > 0 we get immediately that the r.h.s. of (3.10) is bounded
by:

^exp(4||Φ||) sup K/Γ1^

log (3.11)

The lemma is proved.
One can now apply the above lemma to verify assumptions a) and b) of Sect. 2,

§ 2 for each one of the measures (3.1), by conveniently choosing the sets Λl,Λ2,Λ3.
Since the discussion is the same for anyone of the measures (3.1), let us treat in detail
only one of them, say v^.

Thus let us suppose that we have fixed a block of type B, say BΓ and let us

consider the effective interaction W^(σB.;σB ι . . .) obtained from the potential

corresponding to the Gibbs measure vr^ after the integration of the variables
σB . . . σB while keeping the variables σB. . . . fixed. If we set

and

we can write:

= C(JDuί\jBk

\k<j

yi2 - zd\U! u Λ2) - (zd\vi) u (A u U 5 V

(3.12)

(3.13)

where
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with

Π ". Π
TΛ being a reference configuration, is the effective interaction obtained from the

original potential {Ux} after integration over the variables σΛ^ while keeping fixed
the variables σΛΊ.

By construction:

\9σχW
σ

Λ^(σΛι\< \\U\\ if dist(x,y!2)<r,

rσA
\dσχW^2(σΛl)\=0 otherwise,

where r is the range of the interaction U.
Therefore, since L0 is larger than r, in order to verify assumption a) (or b)), it is

sufficient to estimate

This will be done by means of Lemma 3.1.
Let x be a site in Bi, with i > j; in order to apply Lemma 3.1, we observe that

since I/0 is greater than the range of the interaction, then the above defined function

gy

Al'σΛ<1 does not depend on σ(x) if y G Bj and x G B^ Therefore in this case the
second term in the r.h.s. of iii) of the lemma is zero and we get:

jup^ \dσ(x)W^(σ)\

< y^ exp(4||Φ||) sup K/Γ^1'^2;^1'^2)^1'^2 (3.14)
y<EBj σΛv°Λ2

Using now Theorem 2.1 we see that there exist constants C and m, depending only
on the norm of the original interaction and on its range r, such that for any sufficiently
large L0 the r.h.s. of (3.14) is smaller than:

C y^ exp(—m x — y) (3.15)

which implies that:

j-i
sup ;> sup \dσ(x]WΛ

 2(σ)| 0 0<ε (3.16)

with e.g. ε = exp ί — — L0 j for any sufficiently large L0.

In a very similar way one checks the bounds (2.9) and (2.10).

Remark. The conclusion of the above discussion is that the effective potential between
any two sites x and y, defined for example as dσ(x}dσ(^H with H the effective
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hamiltonian of any of the measures (3.1), decays exponentially fast in the distance
between x and y. This implies in particular that in the second inequality in b) of
Sect. 2 we can replace sup \Bi = L$ with L$~~l.

i

In order to complete the proof of Theorem 3.1 we are left with the problem of
verifying assumption c) of Sect. 2. The idea at this point is to show that assumption
c) is equivalent to a lower bound on the gap of the generator of the Glauber dynamics
defined in Sect. 1, reversible with respect to z/J*. In turn, such a lower bound will
follow from Theorem 1.2,i). As before we do the computations only for i/^ the other
cases being analogous.

We keep the notation (3.12), (3.13) and we denote by vλ the conditional distribution
on ΩΛ of the relativization to Λ1\JΛ2 of the original Gibbs measure μη. For simplicity,
in i/j, we have omitted to specify the boundary conditions τ\ since all our estimates
will hold uniformly in r{ . First of all we observe that, from assumption H5 on the jump
rates and Theorem 1.2i), it follows, for any / G L2(ΛΛ , dz/j) with z/j(/) — μ η ( f ) — 0,
that:

/)2) = ^((VΛ/)2). (3.17)

Therefore we get immediately that:

) - / ( σ y l ) ] 2 < ! . 1 ( ( V Λ , / ) 2 ) , (3.18)

i.e. assumption c) holds true with the constant α, = I —-
\mo,

Part ii) of the theorem now follows immediately from Theorem 2.2.
To get part i), namely a uniform upper bound on c(L0), we use Theorem 2.1 to

write:
ί+l...

c(L0) < sup supcs(^r ),
{*,τ*} i

where z/7" is the measure on the iίh-block (ordered in some way, e.g. lexicograph-
ically) of the family * with boundary conditions r*, obtained by integrating out the
variables in the first i — I blocks while keeping fixed, equal to rl+l . . ., the variables
in the i + 1 . . . blocks.

Using the remark after Theorem 2.1 it is sufficient to show that the sup-norm
of the Radon-Nikodym derivative of z/^+1 with respect to the uniform measure,

-, is bounded uniformly in the boundary spins and in the size of the

original volume A.
One possibility would be to prove a bound on the interaction of the Gibbs measure

z/J . However, by recalling that z/J itself comes from the decimation of the original
Gibbs measure μη, we easily get that:

<exp^2 Y]

where Λt is the 2th-block of the family * and {Ux} is the original , finite range
potential.

The theorem is proved.
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4. An Application to a Non-Ferromagnetic Model

We conclude this paper by considering a non-ferromagnetic model in two dimensions,
obtained by adding a small antiferromagnetic next nearest-neighbor coupling to the
standard ferromagnetic Ising model with small positive external field.

We will show that if the antiferromagnetic n.n.n. coupling is small with respect
to the n.n. ferromagnetic one, then it is possible to find constants C and 7 such that
for all large enough L and all low enough temperatures, depending on L0, C and 7,
the system satisfies our mixing condition SM(A, C, 7). It is very likely (see e.g. the
examples in Sect. 2 of [MO2]) that the system, in the same range of the parameters,
does not satisfy the hypothesis of the main theorem in [SZ3].

If A denotes the square of side L (L odd) centered at the origin of Z2, then our
Hamiltonian reads as follows:

-l\ J ^ K_

(χ,y)cΛ (

" b.c., (4.1)

where Σ runs over the nearest neighbors pairs in Λ, Σ runs over me

next nearest neighbors pairs in A and b.c. contains the interaction with the boundary
configuration r. Notice that, in order to follow our convention (see Sect. 1.4)), we
have inserted the factor —β directly into the Hamiltonian.

Theorem 4.1. Let h > 0. There exist C,7,L such that for any 0 < K < — and

for any L > ϊ/, L odd, there exists β0 such that for any β > β$ the mixing condition
SM(Λ, C, 7) holds.

Proof. Let us denote by dist7 the following distance on Z2:

dist'(x, y) = max \xi-yi\, x, y G Zd .

Let
^ — {x £ A\ dist7(x, corners of A} > 1Q}

with

Thus ^ looks like a cross.
The theorem will immediately follow (see also Sect. 5 of [MO2]) if we can show

that for any L large enough, any boundary configuration r and any 0 < K < — the

ground state of H^(σ) is equal to +1 at all the sites x in &. Let in fact C and 7 be
such that:

Cexp(-7Λ/2/0) > 1. (4.2)

If, for any boundary condition τ, the ground state has the structure described above,
then, because of the screening effect of the plus spins in W the ground states in each
connected component (square) Qi9 i = 1, . . . , 4 of A\W is only affected by a change
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of a boundary spin τy9 y e d\-Qi Π d\A. Therefore we can always estimate the

quantity

sup Var(μ^μ^) , ΔcΛ (4.3)

appearing in SM(A, C, 7) by 1 when for some i = 1, . . . , 4,

or by 2μr

A(σx φ -f 1 for some x £ W} otherwise. In both cases we get an estimate
smaller than:

Cexp(-7dist(Ay))

for large enough β because of our choice of C and 7 and the fact that

lira μr

A(σ ^ ground state) = 0 . (4.4)
/3— *oo

In order to prove the above structure of the set of all the ground states we will use
the following "rules":

i) Let 7V~ be the number of minus spins in a ground state configuration. Then:

~ h

ii) In any ground state configuration there exists no horizontal or vertical segment of
minus spins (thought of as a thin rectangle) surrounded on two adjacent sides (one of
which is a "long" one) by plus spins and with at least a plus spin along a third side.
iii) In any ground state configuration there exists no PeierΓs contour with a horizontal
or vertical segment of length / > /0.
iv) In any ground state configuration if there exists a PeierΓs contour 7 with a right

angle at the side (xλ + |, x2 -f |) of the dual lattice, x = (xl^x2) G A, such that the

plus spins lay along the exterior of the angle then, starting from (xλ + -, x2 + ^ ) , the
contour 7 has to reach the vertical and horizontal boundary of A without bending.

Rules i), ii), iii) are easily verified by simple energy arguments if 4K < J. Rule
iv) is slightly more complicated. The proof goes as follows.

Without loss of generality let us suppose that the angle has the plus spins at its
right and bottom and let us suppose that the contour 7 has another right angle at

the site (xl — n -f 2^
X2 ~^~ 2) w^ xι ~~ n — -- * Using ii) the contour 7 at

the new angle can only bend down; moreover by ii), the minus spins above 7 at
the sites (xl — j,x2 + l)9 j = 1 . . n have to be surrounded from the left and from
above by minus spins. It is easy to see that if the spin at the side (xλ + I,x2 -f 2)
is minus then it is energetically convenient to flip to plus one all the minus spins at
the sites (xl - j, x2 + 1), j = 1 . . . n irrespectively of the value of the spin at the
site (xλ — n, x2 -f- 2), and the same if the spin at (x± — n, x2 4- 2) is minus. If the
spins at (xl — n, x2 + 2) and at (xl + 1, x2 + 2) are both plus then it is energetically
convenient to flip to plus all the minus spins at the sites (xλ — j, x2 + 1), j = I . . . n,
(xλ — j, x2 + 2), j = 1 . . . n. In any case the original configuration was certainly not
a ground state. Similar arguments cover all the other situations.

It is easy to show, at this point, that, for every r, the structure of the ground state
is the one depicted above.
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If L is taken large enough,

L2 > 4(3/0)
2[(4J -f 2K)L + l6K]/h,

then, using i), for any ground state it is possible to find a square Q* of side I = 3/0

completely filled up with pluses and strictly contained in W.
Using ii), iii), we know that on top of each face of Q* there exists a segment of

length lγ larger than Z0 of plus spins. If l{ < I then there is at least one right angle with
exterior + spins at one end of the concerned segment. If not, all the spins adjacent
from the exterior to that face of Q* are plus and we can repeat the argument. Then,
continuing in this way, starting from any face of Q*, either we get to dΛ on a parallel
segment of equal length I or, at a given step, we find a right angle inside Λ. Using
iv), by further decreasing the energy, we obtain a configuration containing a cross W
of plus spins centered inside Q* with width at least /0. The complement of W in Λ
splits into four disjoint rectangles Rl,R2,Rι>, R4. Each R^ by construction, contains
a square Qi of side /0 having a vertex coinciding with one of the four vertices of Λ.
By applying to the faces of Ri9 internal to Λ, a construction similar to the one leading
to W it is easy to show that it is energetically convenient to fill by pluses the sets
Ri\Qi so that we end up with a configuration where W is full of pluses.

Appendix

We prove formulae a).. .f) given at the beginning of the proof of Proposition 1.2.
The first three ones, a), b), c), are trivially verified. In order to derive d) we assume,

ra;,-l T2C,-1

without loss of generality, that τx — +1 and we let gf — —-——^ r̂ Then we

write:

where \[dr z/^r*+1'"-'™(.. .(ι/^'""r*](/)| denotes the expression:

(Al . l )
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Clearly (A 1.1) proves d).
The "Leibniz rule" e) follows by essentially the same argument.
In order to prove f) we follow Zegarlinski [Zl] and we write:

as:

where σΛ. and σΛ are two independent replicas in ΩΛ..
If we assume, without loss of generality, that gf(crΛ ) > 9^(d'A ) then, from the

definition of gf, we get:

The Schwartz inequality gives that:

which, in turn, implies, using (2.11) and (A1.3) above, that

i.e. the inequality f).
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