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Abstract: This paper is concerned with a conjecture of Guillemin and Melrose that
the length spectrum of a strictly convex bounded domain together with the spectra
of the linear Poincare maps corresponding to the periodic broken geodesies in Ω
determine uniquely the billiard ball map up to a symplectic conjugation. We consider
continuous deformations of bounded domains Ωs, s £ [0,1], with smooth boundaries
and suppose that ΩQ is strictly convex and that the length spectrum does not change
along the deformation. We prove that Ωs is strictly convex for any s along the
deformation and that for different values of the parameter s the corresponding billiard
ball maps are symplectically equivalent to each other on the union of the invariant
KAM circles. We prove as well that the KAM circles and the restriction of the billiard
ball map on them are spectral invariants of the Laplacian with Dirichlet (Neumann)
boundary conditions for suitable deformations of strictly convex domains.

1. Introduction

This paper is concerned with certain length spectrum invariants of a strictly convex and
bounded planar domain Ω with a smooth boundary dΩ. The motivation for studying
such invariants comes from the inverse spectral problem formulated by Kac [12]. It
is known [10, 18], that the length spectrum %(Ω) of Ω is encoded in the spectrum of
the Laplace operator Δ in Ω with Dirichlet (Neumann) boundary conditions, and that
J2?(β) can be extracted from the spectrum of Δ by means of the Poisson formula at
least for generic domains. In this connection, Guillemin and Melrose [9] formulated
the conjecture that the length spectrum of Ω and the spectra of the linear Poincare
maps of the periodic broken geodesies of Ω form together a complete set of symplectic
invariants for the corresponding billiard ball map B. As it was mentioned in [9], this
conjecture seems to be a little optimistic and the local version of it is more hopeful.

The first result in this direction was obtained by Marvizi and Melrose [16] who
described new length spectrum invariants of a strictly convex domain 17, studying the
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asymptotics of the lengths of the closed broken geodesies approaching the boundary
dΩ. Let us take lmn arbitrarily in the set Sy(Ω\ ra, n) of lengths of all closed broken
geodesies of Ω with n vertices and winding number ra. When m is fixed and n tends
to infinity, lmn has an asymptotic expansion in powers of n~2. The corresponding
coefficients cmk, k — 1,2,.. ., do not depend on the choice of lmn in J2?(ί2; m, n) and
they are length spectrum as well as spectral invariants of Ω [16]. Colin de Verdiere
[4] proved that the labeled length spectrum and the spectra of the linear Poincare
maps determine uniquely the Birkhoff invariants of a closed and elliptic broken ray
in Ω C R2. Recently this result was generalized in higher dimensions as well as for
contact manifolds by Franςoise and Guillemin [8].

De la Llave, Marco and Moriyόn [15] proved that there are no non-trivial
deformations of exact symplectic mappings Bs, s e [0,1], leaving the period spectrum
fixed when Bs are Anosov's mappings on a symplectic manifold. One of the reasons
for symplectic rigidity in [15] is that all periodic points of Bs are hyperbolic and
form a dense set. Although the billiard ball map of a strictly convex domain is in the
opposite situation, conjugation can still be made on a large part of the domain of Bs.

Consider the billiard ball map B corresponding to a strictly convex domain Ω with
a smooth boundary. B is an exact symplectic map which is close to a completely
integrable one near the boundary. Using that fact Lazutkin [14] proved that there
exists a large family of invariant KAM circles Λ(ω) of B with rotation numbers ω in
a Cantor subset θ of a positive Lebesgue measure in [0, ε), ε > 0. The corresponding
caustics C(ω) are strictly convex and smooth curves in Ω accumulating at dΩ.

There are two invariants related to any invariant curve Λ(ω), namely the length
t(ώ) of the caustic C(ώ) and the Lazutkin parameter t(ω) [1, 14], (see also Sect. 2).

We prove in this paper that the vector function

θ 3 ω-> (l(ω),t(ω)) (1.1)

is a length spectrum invariant for continuous deformations of the domain. The main
result (see Theorem 2.1) says that the length spectrum determines uniquely (up to a
symplectic conjugation) the invariant circles Λ(ω), ω G θ, as well as the restriction
of B on them for continuous deformations of Ω. We prove as well that the vector
function (1.1), the invariant circles A(ω\ ω G (9, and the restriction of B on them are
spectral invariants of the Laplacian with Dirichlet (Neumann) boundary conditions
for suitable continuous deformations of Ω. The marked length spectrum of a bounded
strictly convex domain is a map that assigns to any pair of positive integers (m, n),
1 < m < n/2, the length of the longest (shortest) periodic broken geodesic in
J^(β, m, n). Let Ωl and Ω2 be two strictly convex and bounded domains with smooth
boundaries. Suppose that the corresponding marked length spectra coincide. Then we
show that the corresponding vector functions (1.1) coincide and the billiard ball maps
are conjugated to each other on the union of the KAM invariant circles which improves
Theorem 3 in [13].

The paper is organized as follows: In Sect. 2 we define the length spectrum S?(Ω)
of a bounded domain with a smooth boundary and formulate the main result about the
length spectrum invariants of continuous deformations of a strictly convex domain
(see Theorem 2.1). Section 3 is devoted to a symplectic version of the KAM theorem
for the billiard ball map which is the basic tool in the proof of the main results. First we
introduce action-angle coordinates (0, r) <G T x R, T = R/2πZ, for the approximated
interpolating Hamiltonian of .B. In these coordinates B is a small perturbation of the
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completely integrable map

T x Γ 3 (0, r) -* (θ + (τ°)'(r), r), r°(r) - -f C(r)3/2,

where Γ = (/ - ε, Z), 2π/ = ^ is the length of the boundary dΩ, and £(/) = 0, the first
derivative ζ'(l) < 0, and ζ > 0 in Γ. Moreover, T x {/} is a connected component
of the boundary dΣ of the phase space Σ of B. We fix a Cantor subset θ of rotation
numbers determined via a small denominator condition which has a positive Lebesgue
measure in the interval [0, ε), ε > 0. Applying suitable KAM theorem we construct a
symplectic normal form of B on the union of the invariant circles of B with rotation
numbers in θ. In other words, we find symplectic coordinates (φ, I) G T x R and
smooth functions K(I) and Q(φ, I) in R and T x R respectively such that

B(φ, I) = (φ + τ'(/), /) + Q(φ, /), τ(I) =

in T x Γ, where K(ΐ) = 0, K'(ΐ) < 0 and K > 0 in Γ while the vector function Q
has a zero of infinite order on T x E, and the Cantor set E is defined by

E = {/ G Γ : τ'(I)/2π G θ}.

Denote by ^(ω) the map inverse to the frequency mapping

Γ 3 I -> τ/(/)/2π.

The restriction of the functions ̂  and r o ̂  on θ is a symplectic invariant of B and
it has a simple geometric meaning. We prove in Sect. 4 that βί(ώ) is equal to t(ω)/2π
while τ(^(α;)) = — ί(α ) for any c<; G θ. In particular, the Legendre transform

of τ(/)/2π is given on θ by

2π^(ω) = ωt(ω) + t(ω), Vα; G θ. (1.2)

In Sect. 5 we complete the proof of Theorem 2.1. The main ideas here are:

1. Let [0,6] 9 s — » ,ί?s, 6 > 0, be a continuous deformation of strictly convex
bounded domains with smooth boundaries. Following an argument due to Birkhoff,
we prove that for any pair (m, n) G Z^_, 1 <m< n/2, the function

[0,6] 3 s -> Tmn(5) = max{t : t G ^(ί2θ,m,n)},

is continuous, and that Jzf(Γ2s) is a subset of R of Lebesgue measure zero for any s. If
the length spectrum of Ωs is independent of s along the deformation, the continuous
function Tmn(s) takes values in the set &(ΩS) = ^(ΩQ) which does not contain
intervals. Hence,

Tmn(s) = ΓTOn(0), se[0,6]. (1.3)

In other words, if the length spectrum of a strictly convex domain remains constant
along a small continuous deformation of the boundary then so does the marked length
spectrum. In particular, the results in [4] hold for such deformations.
2. Fix ω G θ and choose a sequence (πi .n^) G Z^_, j = 1, 2, . . ., such that

\rrij /rij — ω\ <n~ .

We prove that
= lim (Tm .n (s)/nΛ Vs G [0, 6], (1.4)

j— *00 3 3 J
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and taking into account (1.3) we obtain

&3(ώ) = ^ζ(cj), \/ω G θ, Vs G [0, 6].

Since θ has no isolated points, differentiating the last equality with respect to ω we
obtain

ls(ω) = £0(ω), ta(ώ) = ί0(cj), Vα; G θ, Vs G [0,6]. (1.5)

A close idea has been used in [21] to study the invariants of the period spectrum of
an elliptic periodic trajectory of a contact manifold.

Equality (1.4) is a consequence of the following important estimate (see Theo-
rem 5.1)

lmn - 2ττnJ7(ra/n)| < Cpn~p, \/p > 0, (1.6)

which holds for any pair (m,n) G Z+, 1 < ra < n/2, satisfying the inequality

dist(ra/n,<9) < rT1/2, (1.7)

and for any lmn arbitrary chosen in S£(Ω,πι,ri). Here, for each p > 0, Cp is a
positive constant which depends neither on m and n nor on the choice of lmn.

The proof of (1.6) is based on the KAM theorem and on a Birkhoff-Lewis type
theorem. An alternative and simpler proof of (1.4) can be obtained following the
proof of Theorem 3 in [13]. One can consider (1.6) as a nontrivial generalization of
Theorem 5.15, [16]. Indeed, since 0 G θ, if we fix ra, let n go to infinity, and expand
17 (t) in Taylor series at t = 0, we obtain the result in [16] mentioned above as a
consequence of (1.6) (see Corollary 5.1). The invariants cmk of Marvizi and Melrose
are explicitly given by the Taylor coefficients of 17(t) at t = 0. We use essentially
(1.6) and its proof when studying the spectral invariants of the Laplace operator in
Ω. Note that instead of 1/2 in the exponent in the right-hand-side of (1.7) one can
take any 0 < ε < 1.
3. We assume that Ωs is strictly convex only in a small interval [0,60), 60 > 0. To
show that Ωs is strictly convex for any s in [0,1] along the deformation, we use (1.5)
as well as the integral invariants /^+1)(0) of Marvizi and Melrose [16] which are
integrals of polynomials of the curvature of dΩ and its derivatives. In particular we
prove that J(/c+1)(0) = 2ττ^g(/c)(0), k= 1,2, . . . , where 3&(f) is the function inverse to
t = K(I) and JB(k\0) are the corresponding derivatives at t = 0.

Section 6 is devoted to spectral invariants of the Laplacian Δ = —d2/dx\—d2/dx\
in Ω with Dirichlet (Neumann) boundary conditions. We suppose that Ω is a strictly
convex bounded domain in R2 with a smooth boundary. Then, the spectrum of
A consists of non-negative eigenvalues tending to infinity. Guillemin and Melrose
formulated in [9] the conjecture that the spectrum of the Laplace operator in Ω with
Dirichlet (Neumann) boundary conditions determines uniquely the billiard ball map.
Partial affirmative answer to this conjecture is given in Sect. 6 (see Theorem 6.2). We
prove that the vector function (1.1), the invariant circles Λ(ω), ω G β, as well as the
restriction of the billiard ball map on them are spectral invariants of the Laplacian
for suitable continuous deformations of a strictly convex domain. In particular, the
corresponding billiard ball maps are conjugated to each other on a large subset of Σ
of a positive Lebesgue measure. We investigate the singularities of the distribution

Z(t) = trace cos(tΔl/2) = (l/2)^exρ(iλί), (1.8)
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where the sum is taken over all λ with λ2 in the spectrum of A counted with
multiplicity. The singular support of Z(t) satisfies the Poisson relation

sing. supp. Z(t) C {T G R : ±T G % \Ω)} U {0} (1.9)

[2, 18]. The inverse relation may not always be true, because singularities created
by different closed broken geodesies may cancel each other. It is known that (1.9)
turns into equality in the generic case when all periodic broken geodesies are non-
degenerate and of different lengths [18].

Let (ra,n) G Z^_ satisfy (1.7). In Sect. 6 we prove under the natural condition
(6.1) that

Tmn £ Sinβ SUPP Z

if n > n0(Ω). Hence, a large part of the marked length spectrum is encoded in the
spectrum of the Laplacian for such domains. For m = 1 and n sufficiently large this
result has been proved in [16]. The main idea in [16] is to write Z(t) in a neighborhood
of Tln as a Lagrangian distribution with a suitable phase function and then to apply
a result of Soga. We use another representation on Z(t) in a neighborhood of Tmn

which is based on the KAM theorem and the results obtained in Sect. 5.

2. Length Spectrum

Let Ω be a bounded domain in R2 with a smooth boundary dΩ. The length spectrum
£?(Ω) of Ω is defined as_the set of lengths of all periodic generalized geodesies 7 of
Ω (7 is the projection on Ω of a closed generalized bicharacteristic of the Hamiltonian
p(x, 0 = \ξ\2 — 1, (cf. [11], Def. 24.3.7)). By definition, if 7 is a primitive generalized
geodesic of Ω of length £,(7) then nL(j) belongs to the length spectrum of Ω for
any n-positive and integer. Suppose in addition that Ω is strictly convex. Then any
generalized bicharaceristic of Ω is either a broken bicharacteristic reflecting at the
boundary by the usual law of the geometric optics or it is a gliding ray traveling along
the boundary. Hence, J^(β) = ̂ b(Ω) U SZ(βίϊ) in this case where ^b(Ω) is the set
of lengths of all closed broken geodesies and 5§(dΩ) — {nl : n G N}, ί being the
length of the boundary.

The broken bicharacteristic flow induces a discrete dynamical system on the
boundary

B : Σ -> Σ, Σ = {(x,ξ) G T*dΩ : \ξ\ < 1},

called billiard ball map which is defined as follows: Pick ρ = (x,0 in T*dΩ with
|ξ| < 1 and set ρ± = τr^(ρ) — (x^e±(ρ)). Here e^(ρ) G (R2)* are unit convectors
such that

±{e±(x,0,n(x)) > 0, {e±(x,0,^> = M, V^ G TxdΩ,

n(x) being the inward normal to dΩ at x. Via the canonical inner product in R2 we
identify e±(ρ) with a vector e±(ρ) in R2. The bicharacteristic

R 3 t -> (x + te + ,e+)

of 5*R2 = {(y,η) G T*R2 : \η\ = 1} passing through π+(ρ) intersects (T*R2),aβ at

a second point (y, e+). Define η G T*dΩ by the equality
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Then \η\ < 1 and B sends (x, ξ) to (y, η). Moreover, any point in dΣ is a fixed point
ofB.

Defined in this way the billiard ball map is exact symplectic in the interior of Σ1,
indeed

5*σ-σ = dT, (2.1)

where σ is the canonical one-form in T*dΩ and T(x,y) = x — y\ is the distance
between x and y in R2, y being the first component of B(x,ξ) = (y, η) (see Proposition
2.3 in [9]).

Near the boundary of Σ the billiard ball map B is a small perturbation of a
completely integrable map for which the KAM theorem can be applied [17, 14]. In
particular, there exists a large family of invariant circles Λ(ω) of B enumerated by
their rotation numbers ω G θ, where Θ is a Cantor subset of the interval (0,1/2] with
a positive measure (see Sect. 3). For each ω G θ, denote by C(ω) the corresponding
caustic in Ω, i.e. the envelope of the rays {x + te+(x,ξ) : t > 0}, (#,£) 6 ^l(α ),
issuing from Λ(α ). Then C(ω) is a smooth and strictly convex curve in Ω and the
boundary dΩ is an evolute of C(ω) [14]. In other words, if we loop a string with a
suitable length T(ώ) around C(ω), lean a pen against it and draw, we get dΩ. The
Lazutkin parameter of C(ω) is defined by

t(ώ) = TM - ^M,

where £(ω) is the length of C(ω).
We consider a continuous deformation

[0,1] 3 8 -> Ωs c R2 (2.2)

of bounded domains with smooth boundaries dΩs — {xs(t) : t G T}, such that the
mapping [0,1] 3 s —> xs( ) G C°°(T,R2) is continuous. For any strictly convex
domain Ωs we denote by Bs, Λs(ω) and Cs(ώ) the corresponding billiard ball map,
invariant circle and caustic with a rotation number ω. Consider the Cantor set θ
defined by (3.9). According to (3.19), the union Λs of the invariant circles Λs(ω)9

ω G β, is a set of positive Lebesgue measure in T*dΩs. The main result in this
paper is:

Theorem 2.1. Let [0,1] G s —> Ωs be a continuous deformation of bounded domains
in R2 with smooth boundaries. Suppose that Ω0 is strictly convex and

J2?(ββ) = ̂ (βo), se[0,l]. (2.3)

Then:
(i) Ωs is strictly convex for any s G [0,1],

(ii) there exists a continuous family of smooth exact symplectic mappings

such that

χs(ΛQ(ω)) = Λs(ώ), Vω G (9, (2.4)

χaoB0 = Baoχa on A) (2.5)

for any s G [0,1],
(iii) for any ω G Θ there exists a continuous family of caustics [0,1] —> Cs(ω) in Ωs

and
I8(ώ) = lQ(ω), ts(ω) = t0(cj), s G [0,1]. (2.6)
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3. KAM Theorem

In this section we formulate a symplectic version of the KAM theorem for a family of
exact symplectic mappings depending continuously on a parameter which will be the
basic technical tool in the proof of the main results. This theorem is close to Theorem
1.1 in [21]. First we consider a continuous deformation of bounded strictly convex
domains ΩS9 s G [0, 6], b > 0, in R2, with smooth boundaries ΘΩS of length ίs, and
introduce action-angle coordinates for the approximated interpolating Hamiltonians
of the corresponding billiard ball maps Bs .

Performing a suitable change of the variables in R2, we consider Ωs, s G [0, 6], as
a Riemannian manifold with a base Ω — ΩQ and metric gs depending continuously
on s. The boundary dΩs is given by dΩ equipped with the induced metric g®. The
corresponding billiard ball map Bs is defined in the same manner as in Sect. 2. Its
phase space coincides with the coball bundle

Let us denote by ΘΣ+ one of the two components of the boundary of Σs . Since
3ΩS is strictly geodesically convex, Bs can be written as a small perturbation of a
completely integrable map as follows (see [16]): there exists a smooth function ζs

called an approximated interpolating Hamiltonian which defines dΣ+ (ζs = 0 and
Vζs ^ 0 on dΣs)9 ζs > 0 on Σs , and such that in any local coordinates ρ = (x,ζ)
in a local chart U in T*dΩ we have

Ba(ρ) = exp(-2Cs(£)12#ζs)(£) + Ra(ρ), ρeΣsnU, (3.1)

R8(ρ) = 0(CS°°(£)) at dΣ+ n U. (3.2)

Here t — > exp(tH"^)(^) stands for the integral curve of the Hamiltonian vector field
H^s starting at ρ G Σs, Rs is a continuous family of smooth functions in U, and
(3.2) means that

\d2dj R8(x,ξ)\ < CNαβζs(x,ξ)N, (x,0 G E/, (3.3)

for any indices α,β,N. Moreover, the mapping [0,6] 3 s — > ζs( ) 6 C°°(T*dΩ) is
continuous.

We are going to describe action-angle coordinates for the Hamiltonian ζs. To
simplify the notations we drop the index s. Denote by Mr the closed curve {ζ = r}
in T*dΩ, where r varies in a small neighborhood of the origin. For any ρ e Mr

consider the map R 3 t — » exp(tHζ)(ρ) e Mr and denote by 2πΠ(r) its period.
Let S be a section transversal to M0 in Σ1. It is equipped with local coordinates
S 3 ρ — > ζ(ρ). Denote by f̂ the discrete group in R x 5 generated by

R X 5 9 (ί, C(^)) -> (* + 2πΠ(ζ(ρ)), ζ(ρ)).

Let (R x S)/& be the corresponding factor space. It is a symplectic manifold, dζ Λ dt
is a symplectic two-form on it, and the mapping

R x S 3 (t, 0) -> exp(ίifc)(0) 6 T*9ί2

lifts to a symplectic diffeomorphism from (R x S)/^ to a neighborhood of M0 .
Making suitable symplectic change of the variables in R x 5,

θ = t/Π(ζ), r =
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we can suppose that @ is generated by (0,r) — > (θ + 2π, r) while the symplectic
two-form becomes d# Λ dr. It is easy to see that the first derivative g'(ζ) = —Π(ζ),
which yields

C

r(C) = - / Π(t} dt + l, 1 = 1(0) = ί/2π. (3.4)

Denote by ζ(r) the function inverse to r(Q. We have obtained symplectic coordinates
( θ s ( x , ξ ) , r a ( x , ξ ) ) in a neighborhood of ΘΣ+ in T*dΩ with values in T x R such
that <9Γ+ = {rs = 18}, ls = ls/2π and Σs c {rs < /J. Fix ε > 0 and set
Γβ = (/ β -ε,/ β ) ,A β = T x Γ β .

The exact symplectic map Bs is generated in these coordinates by the function

Ga(θ, r) = - ̂ Cs(r)3/2 + Qa(θ, r), (θ, r) G A8, (3.5)

where

θ , l β ) = 0, V 0 e T , (3.6)

for any indices α > 0, β > 0, and s & [0, 6]. Hereafter we say that Gs generates the
exact symplectic map Bs in As if

graph(ββ) = { ( B a ( x , ξ ) , ( x , ξ ) ) : (x,ξ) € AJ

is parameterized by

graphCBJ =i[θ,r- -7^(0, r); θ - -^(0, r), r : (0, r) G
L \ dθ or '

where

: l , V ( 0 , r ) G A s .

Multiplying Gs by a cut-off function we can suppose that it is equal to zero for
r < ls — 2ε/3. From now on we denote by Bs the corresponding modified exact
symplectic mappings. Note that Bs, ζs as well as the exact symplectic mappings ψ®
defined by

depend continuously on s in the corresponding C°° semi-norms.
The billiard ball map Bs is a small perturbation of the completely integrable

mapping generated in As by r^(r) = — ^CsW3^2- m wnat follows we apply a
symplectic version of the KAM theorem to Bs which is close to Theorem 1.1 in
[21]. In contrast to [21], the generating function τf(r) has singularity at r = ls .

As a consequence of (2.3) and Lemma 5.2 we easily obtain is — 1Q in [0, 6]. Indeed,
the continuous function [0, b] 3 s — > ίs takes values in the set <S?(ΩS) — <S?(Ω0) which
does not contain intervals, according to Lemma 5.2. Hence, is does not depend on s.
To simplify the notations we set Γ = Γ0 and A = A0 .

We are going to define the Cantor set θ. Fix σ > 1, μ > 0, and for any α > 0
and N G Z+ define the Cantor set θ(α, μ, N) by the small denominator condition as
follows:

θ(a,μ,N) = {ω G R : lα;^ - k2\ > μaN\k\~σ for any k = (k^k2) G Z2 \ {0}}.
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Fix 0 < C < 1 and 0 < α0 < 0, and denote

θ*(α, μ, TV) = θ(α, μ, N) Π [Cα, C~la], 0 < α < α0 . (3.8)

Consider the Cantor subset of [0, 1/2) defined by

Θ = U{β*(α, μ, TV) : 0 < α < ε(μ, JV), W G Z+ } U {0}, (3.9)

where

while the positive constants εN will be specified later.
This set is of a positive Lebesgue measure in R and even

ε - meas(<9 Π [0,ε)) < Cpε
p, 0 < ε < ε0 , (3.10)

where Cp is a positive constant for any p > 1. The following theorem provides a
symplectic normal form for the family of symplectic mappings Bs in a neighborhood
of dΣ+ . As above we assume that Bs is generated by a function Gs in A and that
Bs coincides with the identity mapping in T x [/0 — ε, /0 — 2ε/3].

Theorem 3.1. Lei [0, 6] 9 s — > Bs G C°°(A, A) be a continuous deformation of exact
symplectic mappings. Suppose that the corresponding generating functions Gs satisfy
(3.5) and (3.6), and is — i^for any s. Then there is a Cantor set Θ defined by (3.9)
with suitable εN > 0 and there exist continuous in [0, 6] families of exact symplectic
mappings ψs e C°°(T x E,T x R) and functions Ks e C°°(R), Q°s G C°°(T x R)

(i) ίίs(/0) = 0, ^(/0) < 0, Ks(t) > 0 in Γ, and the exact symplectic map
B® = φ~ 1 o B o φs is generated in A by

) = τs(I) + Q°s(φ,I), τs(I) = -\Ks(lγ'2, (^J)eA, (3.11)

where

QQ

s(φJ) = 0 on TxEs (3.12)

a«J £?e - {/ G Γ : τ'8(I)/2π G θ}.
(ii) Ks, Q°s, and the generating function Ss(θ, I) ofψs satisfy the estimates

\DJ(Ka(I) - C(/))| + \D?DPQ°s(φ, D\ < Caβp\lϋ - J|" , (3.13)

\DJDlSa(θ,T)\<Caβp\lϋ-I\v (3.14)

in T x [/0 — ε0, i0 + ε0], ε0 > 0,/<9r αn^ s G [0, 6] and any indices a > 0, β > 0
p>0.
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The proof of Theorem 3.1 is given in the Appendix. First we construct exact
symplectic mappings conjugating the billiard ball maps Bs in suitable domains away
from the singularity set {r = /0} of Bs and then we patch them together using the
uniqueness of the KAM circle with a given rotation number. Proposition A.I plays
an important role here.

In view of (3.6), (3.13), and the equality is — £Q, the frequency map

Γ 3 I -> ω = τ'8(I)/2π G (0,α;0), α;0 > α0 , (3.15)

is invertible if Γ is sufficiently small. Denote by ^ζ(ω) the inverse map to (3.15) in
[0,u;0). Then Es = fla(θ) and we have

0(cΛ 1Q = £ 0 / 2 π , cs = π277s(0)3 > 0. (3.16)

Moreover, ^s(ω) can be extended to a smooth even function in M. Set χs — ψ® oψs ,
where ψ® is defined by (3.7). Since Es has no isolated points, (3.12) means that Q®
has a zero of infinite order at T x Es. In particular,

B°s(φ,I) = (φ + τ's(I),I), (φ,I)€ΊxEa, (3.17)

and

[0,6] 3 s -> Λa(ω) = χs(Ύx {/s(ω)}} (3.18)

is a continuous family of invariant circles of Bs with a rotation number ω G θ which
accumulate at dΣ+ — χs(T x {/0}) since j^(0) = /0. Denote by Λs the union of the
invariant circles Λs(ω), ω G θ, and consider the function

where /ίs is introduced by Theorem 3.1. Since Q® has a zero of infinite order at Es

and IQ £ Es, hs is an approximated interpolating Hamiltonian of Bs . Thus we obtain

Corollary 3.1. We have

BS(Q) = exp ( - 2hs(ρ^2Hhs)(ρ) + R8(ρ), ρ£ΣsKU,

in any local coordinates in a chart U in T*dΩ where Rs(ρ) G C°°(U) is continuous
with respect to s G [0, 6] and Rs has a zero of infinite order at As Π U.

We are going to show in Proposition 4.1 that hs(ρ) coincides with (3ts(ω)/4)2/3

for any ρ G Λs(ω) and ω G (9, where £s(u;) is the Lazutkin parameter of the invariant
circle Λs(ω). Note that, according to (3.10),

meas(ί7) - meas (U Π Λs) < C N(meas(U))N , s G [0, 6], (3.19)

for any sufficiently small neighborhood U of ΘΣ+.
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4. Caustics and Lazutkin's Parameter

This section is devoted to the geometry of the caustics of a strictly convex domain.
Our aim is to give a simple geometric interpretation of the function

where Ks is introduced by Theorem 3.1 and ̂ 8 is the function inverse to the frequency
map defined above. To simplify the notations we drop the index s.

Fix ω G θ and consider the invariant circle Λ(ώ) of B and the corresponding
caustic C(ω) with a rotation number ω. Take ρ = (x,0 arbitrarily in Λ(ω). The
projections t -> x + te±(ρ) of the bicharacteristics of £*R2 = {(y,η) G T*R2 :

I η I = 1} passing through π^(ρ) are tangent to the caustic C(ω) which is smooth and
strictly convex (see [14]). Let y^ = y±(o) be the corresponding points of tangency.
Denote by \xy±\ the distance between x and y^ and by \y~ ^ y+\ the length of the
shortest arc in C(ω) connecting y~ with y+. The Lazutkin parameter of the caustic
C(ω) is given by

t(ω) = \xy~ + \xy+\ - y~ ^ y+

and it does not depend on the choice of x G dΩ (see [14, 1]). As above denote by
£(ω) the length of the caustic C(ω). The main result in this section is:

Proposition 4.1. For any ω G θ we have

βΓ(ω) = t(ώ)/2π, τ(/(ω)) = -t(ω). (4.1)

Proof. Consider the flow-out

Λl(ω) = { exp(tHg)(π+(ρ)) : ρ G A(ω), 0 < t < q(ρ)}

of A(ω) with respect to the Hamiltonian g(y, η) — \η\ — 1, (y, η) G T*E2, where q(ρ)
is the time t for which a point starting at x and travelling with unit speed along the ray
t — > x -f te+(ρ)\ t > 0, reaches τ/+ G C(α ). Then ̂  is a Lagrangian submanifold
of T*R2 whose boundary consists of two components, namely

and the cosphere bundle

S*C(ω) = { ( y , η ) G T*R2 : y G C(u ), \η\ = l}.

By Stokes theorem,

f ίt(ω) — I ηdy— I ξdx = 2πj^(ω),
J J

S*C(ω) Λ(ω)

since the map x — ψ® o ψ conjugating B to its symplectic normal form (3.11) and
(3.12) is exact symplectic. This proves the first part of the claim.

To prove the second equality in (4.1) we use a symplectic trick which is due
to Guillemin and Melrose [9] and Colin de Verdiere [4]. Denote by σ0 = I dφ the
symplectic one-form in Γ*T. Since BQ = χ~l o B o x is an exact symplectic map
with a generating function GQ(φ,I) = τ(J) -f QQ(φ,I) given by Theorem 3.1, it is
easy to see that

(β°)*σ0 - σ0 = df, (4.2)
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where
/(¥>, /) - IT' (I) - τ(Γ) + F(φ, /), (φ, /) G T x Γ, (4.3)

and the function

has a zero of infinite order on the Cantor set T x E in view of (3.12). On the other
hand, (2.1) implies

B*σ-σ = dT°, σ = ξdx, (4.4)

on Σ1, where T°(α;, £) = T(x, y(x, £)) = x — y(x, ξ)\ and y(x, ξ) is the first component
of B(x,ξ). Since x is exact symplectic,

χ*σ - σ° - dΦ, Φ G C°°(T*T). (4.5)

Now, (4.2), (4.4) and (4.5) yield together the following useful equality:

f(ψ, /) - T\χ(ψ, /)) + Φ(p, /) - Φ(B V ί)) + C, (v, /) G A, (4.6)

where C is a constant. Taking 1 = 1 = £/2π we get C = 0.
We are ready to prove the second equality in Proposition 4.1. Take #° G Λ(α ) and

consider the orbit g of B defined by gi = B^g° — (x j5 ^), j = 0, 1, ---- Denote by

'̂ - (^,^M) - χ" V), j = 0, 1, . - - ,

the corresponding orbit of 5°. For any k e N denote by mk the number of rotations
that a point makes moving around dΩ in a positive direction from x0 to xfc and
passing successively through each xj9 j < k. Then

t(ω) = lim f > TV) - ^*-ί(ω) . (4.7)
k->oo \ K ̂  k I

On the other hand, (3.12), (4.3) and (4.6) imply

T°(( '̂) = 2πωβ>(uj) — τ(^(ω)) -f- Φ(φ + 2τrjcj, ^(uj)) — Φ(φ -f- 2π(j -f- l)u;, (̂α;)).

Hence, the average action on g = (g 0 ,g±, . . . ) is equal to

/, k \

lim -> T"(g3) \ =2πω&(ώ)-τ(&(ώ)\ (4.8)
/c-+oo \ A: ^—' /

the right-hand side being just the Legendre transform of τ(/)/2π times 2π. Moreover,

i ίmk\
. 1™ I -7r = "fc-*oo v /c y

while ί(ω) = 2πβf(ω). Now, (4.7) and (4.8) yield together the second equality in
(4.1). This completes the proof of the proposition. D

Consider the approximated interpolating Hamiltonian h(x,ξ) = K(χ~l(x,ξ)) of
B introduced by Corollary 3.2. For r > 0 small enough we set as in Sect. 3
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and denote

ι/(r) - / dt , (4.9)

Mr

where the Poisson bracket

{M} = Hht= !• (4 10)

It is easy to show that the set of Taylor coefficients of z/(r) at r = 0 is algebraically
equivalent to the set of Taylor coefficients of K(I) at / = /. Indeed, performing a
symplectic change of the variables (x, ξ) = χ(φ, /), (</?, /) G T x Γ1, and using (4.10)
we easily get

K'(I)v(K(Γft = 2π, / G £. (4.11)

Denote by 38 the function inverse to / -> K(I) and set £ = {K(I) : I e E}. Then

0 e E and (4.11) implies

z/(r) = 2π^'(r), r e E. (4.12)

The Taylor coefficients of z/(t) at t = 0, also called integral invariants, have been
investigated by Marvizi and Melrose [16]. They are given by integrals on ΘΩ of
certain polynomials of the curvature κ(x) of dΩ and its derivatives. In particular,
(4.6) in [16] and (4.12) yield together

j^'(O) = -- / /φ;)2/3 dx,
7Γ J

(4.13)

(4.14)

0

5. Marked Length Spectrum and Asymptotics of the Average Action

Fix b > 0 such that dΩs is strictly convex for any 0 < s < b. Consider the set
5^(J?s,ra,n) of the periodic broken geodesies 7 of Ωs with n > 2 vertices and
winding number m < n/2 and denote by J^(βs,m, n) the set of lengths of all 7
in ^(Ωs,m,n). The set 3?(Ωs,m,ri) is compact and we define the marked length
spectrum of Ωs as a map that assigns to any two integers (m, n), 1 <m< n/2, the
maximal length

Following an idea due to G. Birkhoff we easily prove

Lemma 5.1, The set S§(Ωs,m, n), 1 < m < n/2, is not empty for any s e [0, b]. The
function

is continuous.
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Proof. As above consider Ωs as Ω = Ω0 equipped with a suitable Riemannian metric
|| \\2

S which depends continuously on s. Denote by θ : R —» dΩ a smooth covering
of dΩ, θ(x + 1) = 0(x), x G R. Consider the function

5S(X 1 ?. . . ,X n ) = I I^Xj) - 0(x 2 ) l ls ~^ ϊ~ ll#(xn) ~ #( x n+l)l ls>

and set

Obviously Ss is a continuous and periodic function in M with a period e = ( l , . . . , l ) .
Moreover, the factor space M/Ze is compact. The triangle inequality shows that the
set

consists only of points internal for M. Hence, 5S is smooth on M™ax. Moreover,
VSs(p) = 0 at p = (xl , . . . , xn) G Ms if and only if θ(xl), . . . , θ(xn) are successive
vertices of a closed broken geodesic of Ωs which belongs to S?(ΩS, m, n). Therefore,
the set ^(ί?s, m, n) is not empty for any 5 € [α, b]. Moreover,

Tmn(s) = sup{5s(p) : p 6 M}

is continuous in s G [0, 6]. D

Lemma 5.2. 77z£ Lebesgue measure of ^(Ωs) is zero.

Proof. Let 7 be a periodic broken geodesic in &(ΩS, m, n). Then length (7) = Ss(p)
for some p G M such that VSs(p) = 0. Applying Sard's theorem we obtain that
J2?(j?s,ra,n) has Lebesgue measure zero which proves the claim. D

Using (2.3), Lemma 5.1 and Lemma 5.2 we easily obtain

Γmn(s) = Tmn(0), s €[0,6]. (5.1)

Indeed, according to (2.3) the continuous function Tmn(s) takes values in
which does not contain intervals in view of Lemma 5.2. Hence, Tmn(s) should be
constant in [0, b]. We have proved that if the length spectrum remains constant along a
continuous deformation of Ωs then so does the marked length spectrum. We are going
to show that the marked length spectrum determines uniquely the vector function (1.1).

First we evaluate the average action on the periodic orbits of the billiard ball map.
To simplify the notations we drop the index 5. Consider the set Γ(m, n) of periodic
orbits g = (<71? . . . ,#n) of B of period n and winding number m. Any such orbit
gives rise to a periodic broken geodesic in &(Ω, m, n). Denote by L(g) the length of
the periodic broken geodesic of Ω associated with the periodic orbit g of B.

According to (4.8), the average action of any orbit {<7 0 >#ι> •}» 9j = B^(gQ)9

gQ E Λ(ω), of B on the invariant circle Λ(ω), ω E θ, is given by the Legendre
transform

(5.2)

of r(/)/2π. Note that &(ώ) can be extended to a smooth odd function in R since
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#(ω) is even, τ(I) = -ί^(/)3/2, K(1Q) = 0, K'(1Q) < 0 and (3.16) holds. Moreover,

2π^(iϋ) = ωi(ω) + t(ώ), \/ω G θ, (5.3)

in view of Proposition 4.1.
We impose the following condition on the pair (m, n) G N2:

dist(ra/n, θ) < n~1/2, 1 < m < n/2, (5.4)

where dist(z, θ) is the distance between z and θ. Here is the main result in this
section:

Theorem 5.1. For any (m, n) G N2 satisfying (5.4) (2τ?d #/τy g E Γ"(m, n) we have

\L(g)/n - 2π&(m/ri)\ < CNn~N , V7V > 0, (5.5)

where CN is a positive constant which depends only on N, B, and on the symplectic
transformation χ = ψ® o ψ.

Proof of Theorem 2.1. Fix ω G θ and choose a sequence (m ,n3) G N2, j G M,

satisfying (5.4). For any j G N pick a periodic orbit ̂  G Γs(πι^n^ of Bs such that

iβ(^) = Γm j n jW, 56 [0,6].

Theorem 5.1 yields

2π^(ω) = lira (Tm .„ . (s)/n ) , s e [0, 6],
j-^oo J J J /

and taking into account (5.1) we obtain

Since θ has no isolated points, differentiating the last equality with respect to ω we
obtain

Vω G θ, Vs G [0, 6],

which proves (2.6). In particular,

£s = £0, Ks(/) - K0(/), V/ G £?o, (5.6)

and using Theorem 3.1 we prove (ii), Theorem 2.1 for s G [0, 6].
It remains to show that Ωs is strictly convex for any s G [0,1]. Suppose that Ωs is

strictly convex for s < bQ but only convex for 5 = b0 . Consider the function ^Bs(r)

inverse to r = KS(I) and set Es = {K3(I) : I G E3}. Then (5.6) yields

ES = E0, Jgs(r) = ̂ 0(r), Vr G £0 ,

and since 0 G E0 we obtain

^(0)= 0̂(0), ,̂'(0) = J8"(0), s6[0,60). (5.7)

Denote by κg(a;), a; € 9/?s, the curvature of dΩs, set /s(α;) = κs(x)~1/3 for s < 60,

and define /6o(x) = K6o(a;)-1/3 if ^(a;) ^ 0, fb(j(x) = +00 if κ6o(x) = 0. The
second equality of (5.7) and (4.14) yield together

\fs(x)\2dx<C, se[0,60). (5.8)/
dΩs
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On the other hand, (4.13) and the first equality of (5.7) imply

κs(xs)>Cl >0, s e [0,60),

for some xs G dΩs . Then 0 < fs(xs) < C2, s G [0, 60), and using Taylor's formula
and (5.8) we obtain the estimate

H- |/»|) dx < C3, s G [0,60),

dΩs

which means that { f s : s G [0, 60)} is a compact subset of L2(dΩ) (we regard c?βs

as dΩ equipped with a suitable Riemannian metric). In particular, fbQ G L2(dΩ). On

the other hand, the curvature kb (x) > 0 and it has a zero of at least second order at

some x0 G dΩ. Hence,

in any local coordinates in a neighborhood of x0 in dΩ which implies fb ^ L2(dΩ).

Hence, ΘΩS is strictly convex for any s G [0,1]. The proof of Theorem 2.1 is
complete. D

Proof of Theorem 5.1. The proof is based on a suitable approximation of (B®)j(φ, /),
j < n, where B° is introduced by Theorem 3.1. Fix ε > 0 and consider a
neighborhood

V = {ρ G Σ : 0 < h(ρ) < ε}

of dΣ+ in Σ1, where /ι is the approximated interpolating Hamiltonian of B introduced
by Corollary 3.2. There exists ε0 > 0 such that if m/n < ε0 and (g l5 . . . ,gn) G
Γ(m, n), then # G V for each j < n. Indeed, denote by ί the maximal length
of the segments with end points Xj and x +l , j — 1, . . . ,n, where ^ = (x j5 ξ^),

x^+1 — X j . Then t < ra^Q/n < ε0^0 which implies ^ G V if ε0 is sufficiently small.

Let ω G θ C [0,α;0], ω0 < ε0 and m/n < ε0. We have g^ G V, j < n, for any
periodic orbit g = (gl , . . . , gn) G Γ(m, n). Let

0 = (01, ,0n)» 0 = (̂  » JP = X"1^-), X = Ψ° ° Ψ

Then ^ is a periodic orbit of B° of period n and winding number m, and ̂  G T x Γ,

Γ = (/0 — ε, Z0). According to Theorem 3.1, the map B° has the form

5 V D=(φ + τ'(I) + Q?(^, /), I + Q5(y>, /)) , (5.9)

where Q\ and Q^ have a zero of infinite order at T x E and E = ̂ (θ) C [/0 ~ ε, Z0],
We denote by yn and Jn suitable neighborhoods of θ and E,

-,ω0 : dist(ξ,θ) < 2n-'
zn /

Taking into account (3.16) we find a positive constant C0 > 0 such that

dist(/, E) < C0n~1/2 and Z0 - / > C^1^"2, VI G Jn, Vn G Z+ . (5.10)
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Proposition 5.1. For any integers N > 1, a > 0, and 0 < β < N, there exists a
constant CNa such that

\d«dP((By(ΨJ)-(φ + jτf(I)J))\<CNan-N, ( ^ J ) e T x Jn, (5.11)

for any 1 < j ' < n and any positive integer n.

Proof. Set U(φ,ξ) = (φ,^(ξ)\ (φ,ξ) G T x R, and consider the map B
U'1 o £° o [7 in T x (0, ω0). We have

where β = (J?! , R2) can be extended as a smooth mapping in T x R across ξ = 0.
Indeed, we have

0 = ;r-τ2π

where Q°, j = 1, 2, are given by (5.9), they are smooth in T x R, and have a zero of

infinite order at T x E. On the other hand, the singularity of r' at / = I is described
by

= 0, K'(l) < 0,

and we prove easily that Ry are smooth at ξ = 0 since I e E. Moreover,

|0£9ffl, (¥>,θ| < CNaβn-3N, j = 1,2, (5.12)

for any (y?, 0 G T x R such that dist(<9, 0 < 3n~1/2. Set

First we prove by induction with respect to j < n the inequalities

\Ξά -ξ\< jn-\ Φj-φ- 2πjξ\ < πj2n~

jn~4 < 3n"1/2, j < n, (5.13)

for any (<^, 0 G T x Vn and n > n{9 where n j is sufficiently large. In the same way,
making use of the third inequality in (5.13) as well as of (5.12) we obtain

|0£3f (£ ,̂0 - 0| + \d«dl(Φ3(φ,ζ) -φ- 2πjξ)\ < CNaβn~m , 1 < j < n,

in (φ, ξ) G T x Vn for any nonnegative integers α, /?, and JV. Conjugating B with [7
and using the estimate

KT(/)| < cβn
2β, / e J n )

which follows from (5.10) we complete the proof of Proposition 5.1. D

Consider the set Wn of all (φr, φ) e R2 such that

(ψ1 - φ)/2πn 6 Vn.

Set

P°(y>, /) = (B°T(Ψ, Γ) = (φ + nτ'(J), /) + Qfo I),
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where Q = (Q1? Q2) is a smooth function in T x R. Using Proposition 5.1 we solve
the equation

φ' = φ + nτ/(I) + Ql(φJ)

with respect to / G Jn when (<p', (/?) G Wn and n is sufficiently large. This equation
is equivalent to

Qn(φ', φ, /), / G Jn, (y/, y>) G Wn, (5.14)

where, in view of (5.11) we have

" in WnxJn,

for any TV and any indices (α,/3,p) G Z+, p < N. Hence, (5.14) can be solved
by successive iterates for n > n0 and n0 sufficiently large. Denote by I(φ',ψ),
(φf , φ) G Wn, n > n0, the solution of (5.14). Then

' ~ φ)/2πri)\ < CNn~N , (φ' \φ) G Wn . (5.15)

In particular, graph(P°) can be parameterized over T x Jn by (φ' , φ) G Wn as follows:

graph(P°)= y ) 7 , ^ 7 , ^ ) , ^ - ^ 7 , :(^,^)G W n , (5.16)
I V oφ vψ J }

where Hn is a smooth and 2π-periodic function on R2 satisfying the equality

Choose m e N and suppose that (5.4) holds for the pair (m,n) G N2, n > n0.
Then (φ + 2πm, y?) G Wn for any ^ G R. Set

%0 = ^mn(^) = ̂ n(^ + 27Γm^ V)» V ^ M (5 17)

The function h(φ) is smooth and 2π-periodic in R- According to (5.16) there is one-
one correspondence between the critical points of hmn in T and the fixed points of
P° in T x Γ which is given by

Crit(Λmn) 3φ-> 9l(φ) = (φ, I(φ + 2πm, φ)) G Fix(P°). (5.18)

Then
n) 3ψ-+ g(φ) = (gλ(φ), . . . , gn(φ)) G Γ(m, n),

is one-one correspondence between the critical points of /ιmn and the periodic orbits
of B in Γ(m,n), and (5.15) implies

|/-^(m/n)| <CNn~N, (5.19)

at any periodic point (φ, I) of B° of periodic n and winding number m.
Take ^ = (#!, . . . , ̂ n) G Γ(m, n) and denote as before (φ^ , I } = χ~l(g3). Using

(4.6) we obtain

npί
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On the other hand,

\ f ( ψ j J 3 ) - 2ττ^(m/n)| < \τ(I3) - τ(^(m/n))|

+ \Ijτ'(I3) - β(m/n)τf(^(m/n)) + CNn~N .

We evaluate the right-hand side of the inequality above using Taylor's formula. We
have τ'(I)\ < C in Γ. Moreover,

where

according to (5.19). Then

< CNn~N

Hence, \ f ( φ ^ I j ) - 2π^7(m/n)\ < CNn~N which completes the proof of Theo-
rem 5.1. D

The function h introduced by (5.17) is going to play an important role in Sect.
6. Note that it is uniquely determined by (5.16) and (5.17) up to a constant and
we normalize it by taking Hn(φG,φ0 -f 2πra) = L(g(φ0y), where φ0 is a point in
Cήt(hrnn). Then we obtain

Lemma 5.3. We have

hmn(ψϊ = L(g(φ)\ Vφ G Crit(Λmn).

Proof. Taking into account (4.4) we get

.7=0

On the other hand,

(P°f(Idφ) -Idφ = dHn, P° = (χ~l o B o χ)n ,

in T x Jn, and

χ*(σ) -Idφ = dΦ, Φ G C°°(T x R),

since x is exact symplectic. Set T®(φ, /) = Tn(χ(φ, /)). Taking into account the
equalities above as well as the normalization of Hn we easily obtain

n(φ', φ) = Ί%(φ, I(φ' , φ)) -

+ Φ(φ, I(φ', φ)\ (φ' ', φ)tWn. (5.20)

Using (5.17) and (5.18) we complete the proof of the lemma. D
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The following result is a generalization of Theorem 5.15 in [16]

Corollary 5.1. Fix m € Z,+ and pick arbitrarily gπιn E Γ(m,n). Then

N

<c -2N-2

where

mk (2k +1)!

and CNrn are positive constants.

Proof. Since 0 G <9, the pair (ra,n) satisfies (5.4) if m is fixed and n > n{(m). Let
us expand &(t) in Taylor series at t = 0. The derivatives j7(2fc)(0) = 0 since the
function &(t) is odd. Applying Theorem 5.1 we prove the assertion. D

Remark 5.1. Since 0 E θ, we can write the coefficients crnk explicitly in terms of the
Taylor series of t = 0 of the restriction of the function i7(ω) on (9, which is given
by (5.3). Moreover, the relation between cmk and the integral invariants of Marvizi
and Melrose is explicitly given by (4.11) and (5.2).

Consider two strictly convex domains ΩQ and Ω{. Let B3, j — 0, 1 be the
corresponding billiard ball maps. Choosing the constant α0 in (3.8) sufficiently small
we obtain for any ω e Θ an invariant curve Λj(ώ) of Bj, j = 0, 1. The following
statement is a discrete version of Theorem 2.1.

Theorem 5.2. Let Ω3 , j = 1, 2, be strictly convex domains in R2 and

Γmn(0) = Γmn(l), V(m,n), 1 < m < n/2.

Then
^0(ω) = ^(α;), tQ(ω) = tl(ω), Vω G Θ,

exists an exact symplectic mapping χ : ΣQ — >• Σ1! ^wc/z ί/zαί

) = y l α ; ) and χ°B = Boχ on Λ(CC;), Vα; G β.

Theorem 5.2 follows from Theorem 5.1 and the arguments at the end of the proof of
Theorem 2.1.

6. Spectral Invariants

Let Ω be a bounded domain in R2 with a smooth boundary dΩ. Consider the Laplacian
A in Ω with Dirichlet (Neumann) boundary conditions, and the related distribution
Z(t) defined by (1.8).

Denote by S?( Ω) the set of all periodic generalized geodesies of Ω and consider the
set S^(J7; m, n) of the periodic broken geodesies in Ω corresponding to the periodic
orbits of B in Γ(m,n). Let ^mn(Ω) be the set of lengths of all periodic broken
geodesies in &(Ω) \ S?(Ω,m,n). In order to prevent cancellation of the singularity
of Z(i) created by the geodesies of maximal length Tmn in &(Ω\ m, n), we impose
the following condition:

This condition is satisfied for generic domains Ω (see [18]).
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Theorem 6.1. Let Ω be a strictly convex bounded domain in R2 with a smooth
boundary. Suppose that (m, n) £ N2 satisfies (5.4) and that (6.1) is fulfilled. Then

Tmn E sing. supp.(Z) (6.2)

holds ifn>nQ and n0 = n0(J?) is sufficiently large.

This statement generalizes Theorem 6.4 in [16] where it has been proved for ra = 1
and n sufficiently large. The main idea in [16] is to find suitable representation of Z(t)
in a neighborhood of Tmn as a Fourier integral on dΩ (see Proposition 6.11 in [16])
and then to apply a result of Soga [22]. When m is fixed and n > n^rri) is sufficiently
large Proposition 6.11 in [16] still holds. In the general case when (m, n) satisfies
(5.4) and n > n0(J7), we use another representation of Z(t) in a neighborhood of
Tmn which is close to that obtained in Proposition 5.4, [21]. Consider the function
h(φ) — hmn(φ), φ G T, defined by (5.17). For any z G C denote by Rez its real
part.

Proposition 6.1. Suppose that (m,n) satisfies (5.4), n > n0, and that (6.1.) /zo/Js. //
n0 = n0(β) is sufficiently large, we have

CO

Z(t) = ί ί Re(exp(iτ(ί - h(φ)) + ίπμja(ψ, T)) dφ dτ + Z(ΐ),
J J

0 T

where Z(t) is smooth at t — Tmn, μn is a Maslov index, and a(φ,τ) is a classical
symbol of order one with respect to r. Moreover, a(φ, r) = 0 for r < 1 and the
principal part of a is equal to a^(φ)r for r > 2, where aλ > 0 on T.

Applying Lemma 5.5 in [21] to the oscillatory integral given by Proposition 6.1
we prove Theorem 6.1.

Proof of Proposition 6.1. Consider the fundamental solution E(t,x,y) of the mixed
problem

where Dt = -id/dt, D2

X = D2

X} -f D^2, Dx^ = -id/dxj9 j = 1,2. The distribution

E is just the kernel of the operator cos(ί\/2ϊ). Denote by E^ the Schwartz kernel of

the operator exp(=pΐt\/Zι) and consider

Ω

Then, Z(ί) = Z+(t) + Z~(t) and Z~ = Z+ in a distribution sense where z is the
complex conjugated number to z G C. As in (6.14), [16], using (6.1) we obtain

dΩ
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where Z+ is smooth at Tmn and K+ belongs to the Hormander class

of Lagrangian distributions associated with the Lagrangian manifold

C; = {(*, x, 2/; r, ξ, r?) e T*(R x <9^ x 9/2) : t = Tn(y, -

where Tn(y,η) is introduced in Lemma 5.3. Choose neighborhoods V{ C V2 C C+
of the set

Cmn = {(*> ^> 2/ί r> £> *7) £ C+ i (2Λ -Vr) G Γ(m> n)}

Without loss of generality we can suppose that the complete symbol of K+ vanishes
outside V2 while its principal symbol is a positive function in Vj modulo a Maslov
factor. Denote by CQ a Lagrangian submanifold of T*(dΩ x dΩ) associated with the
graph of Bn,

Co = {(*, y\ ξ, r/) <E T*(δί2 x 0β); (x, 0 = Bn(y, -77), (y, η) e Γ},

and let V^0 C F2° C CQ be neighborhoods of the set

{(α,y;ξ,τ7) G C^; (y,-ry) G Γ(m,n)}.

As in Lemma 5.7, [21], we find a Fourier oscillatory integral R(x, y, r) of the class

such that

Since Bn is an exact symplectic mapping, the Liouville class of CQ in Hl(C^ R) given
by the restriction of the canonical symplectic one form of T*(9j? x dΩ) on CQ is
trivial. In this case there is a complete analogy between the theory of the Lagrangian
distributions and the Fourier oscillatory integrals (see [7]). The only difference is
that the principal symbol of a Fourier oscillatory integral associated with CQ has an
additional Liouville factor

exρ(zτ/(0)), Q G CQ ,

where / is given by the restrictions on CQ of suitable phase functions generating CQ.
In our case, the principal symbol of R is equal to

exp(ίτTn(y, -η) + iπμn)

times a positive function in V® , the complete symbol of R vanishes outside V® and
R(x, y, r) = ON(τ~N) as r -> -oo for any TV > 0.

Denote by R(τ) the Fourier integral operator with a large parameter r whose
Schwartz kernel is R(x, y, r). Using Theorem 3.1 (here s is fixed) we shall conjugate
R(τ) to a Fourier integral operator on T with a large parameter r and phase function
hrnn(φ). Denote by C( the Lagrangian manifold

C{ = {(x, φ\ ξ, I) e T*(9ί? x T); (x, ξ) = χ(φ, -/)},

and observe that the Maslov bundle of C( is trivial since the projection

C{ 3 (x, φ\ ξ, I) -> (X, φ) G dΩ X T
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is a diffeomorphism. Indeed, we have χ~{(x,ξ) = (Φ(x,ξ),Ξ(x,ζ)\ where
ΘΞ/dξ ^ 0 on dΣ+ since the derivative with respect to ξ of the approximated
interpolating Hamiltonian h(x, ξ) — K(Ξ(x, ξ)) is different from zero on dΣ+. We
can replace χ by χ o ̂ , where κ(ψ, /) = (ψ + C7, /), C > 0. Then

(X o κ)-\x, 0 - (φ(χ, ξ) - CΞ(x, 0, Ξ(x, 0),

and we can solve the equation ψ — Φ(x,ξ) - CΞ(x,ξ) with respect to ξ if C is
sufficiently big.

As in [21], Lemma 5.8, (see also [51), we easily obtain

Lemma 6.1. Let Ψ(τ) be a pseudodifferential operator with a large parameter r with
symbol equal to one in T x In and equal to zero outside a neighborhood of this set in
T x Γ. There exists a Fourier integral operator A(r} of the class IQ(dΩ x T, C(, r)
such that

A*(τ)A(τ) = l?(r),

the principal symbol of A(τ) is equal to one on the lifting of T x Vn in C( and the
complete symbol of A(r) vanishes outside a small neighborhood of it.

The operator
R^r) = A*(τ)R(τ)A(τ) : L2(T) -> L2(T)

has a distribution kernel Rλ(ψ', ψ, r) in J°(T x T, C2, r), where

C'2 = {(ψr, ψ', I', I) e T*T2; (ψ1,11) = P\φ, -/)}, P° - (β°)*.

According to (5.16), C2 is generated by Hn(φ'',φ) + C, (φ1 ,φ) G Wn, where C is
constant. Hence we get

R^φ', φ, r} - exp(iτ(Hn(φ', φ) + C) + iπμn)b(φf, φ, r),

where 6 = 0 for r < 1 and 6((/97, φ, r) = i>j(</?', </?)r 4- 60(
(/)/' y) + is a classical

symbol of order one asτ^+oo, 6 = 0 outside a neighborhood of VFn, and 60 is
a positive function in Wn. On the other hand, comparing the Liouville factors of
R(x, y, r) and Rλ(ψ', φ, r), we obtain as in Sect. 5.4 in [21] and Sect. 3.2 in [3] that
C = 0.

The L2 -trace of -R(r) is equal to

trace R(τ) = trace Rλ(r) — I exp(iτh(φ) + ίπμn)b(φ + 2πm, </?, r

T

which completes the proof of Proposition 6.1. D

Using Theorem 6.1 and certain arguments from Sect. 5 we prove that the invariant
circles Λs(ω) and the restriction of the billiard ball map on them are spectral invariants
of the Laplacian for suitable continuous deformations of a strictly convex domain.
Define .^n(s) as Tmn(s) when Γs(m, n) is not empty and set ̂ n(s) = 0 otherwise.
We say that the deformation (2.2) satisfies the condition (JB)9 if for any pair of integers
(m, n), 1 < 77i < n/2, satisfying

dist(m/n,<9) < n~ 1 / 2,

the relation
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is fulfilled for s in a dense subset of [0,1]. Note that by definition ^n(s) does
not belong to the length spectrum of Ωs if the set Γs(m,ri) is empty. Moreover,
using arguments from [18] it could be proved that (Jl) is generic for continuous
deformations of the domain.

Theorem 6.2. Let ΩQ be a strictly convex bounded domain with a smooth boundary.
Suppose that (2.2) is a continuous deformation of ΩQ satisfying (3&) and that

Spec(Z\5) - Spec(Z\0), 0 < s < 1. (6.3)

Then:

(i) Ωs is strictly convex for any s G [0,1],
(ii) there exists a continuous family of smooth exact symplectic mappings

χs : T*dΩ0 -> T*ΘΩS

such that

χs(ΛQ(Ω)) = Λs(ω), and χs o BQ = Bs o χs on ΛQ(ω)

for any ω G <90 and any s G [0, 1],
(iii) for any ω G Θ0 there exists a continuous family of caustics [0, 1] — » Cs(ω) in Ωs

and
£,(ω) = l0(ω), ίβ(ω) = ί», s e [0, 1].

Proof. Take 6 > 0 such that ί?s are strictly convex for any s G [0, b]. Then
Jζ^n(s) = Tmn(s) is continuous in [0,6]. Fix ω G θ and suppose that the pair
(m, n) G N satisfies (5.4). We are going to prove that

Tmn(s) G sing. supp. Z0, Vs G [0, 6]. (6.4)

Take SQ G [0,6] and choose a sequence s tending to s0 such that Tmn(s ) ^

^mn(,ί?s ). Theorem 6.1 implies

On the other hand, Zs(t) = Z0(ί) for any s in view of (6.3) and we get (6.4) since
sing. supp. ZQ is a closed set and Tmn(s) is continuous. Using the Poisson relation
(1.9) we obtain

T ( s ) G J

Hence,
rmn(s) = Γmn(0), VsG[0,6] ,

and as in Theorem 2.1 we complete the proof of Theorem 6.2. D

Appendix

We are going to prove Theorem 3.1. As in Sect. 3 we fix Λf G Z+ and μ > 0, and
denote

where the positive constants εN will be specified later. Fix 0 < C 0 < C < 1,C 1 ^>1

sufficiently large, set Γα = [/0 — Ctα
2, 1Q — Cf 1α2], and denote

θ°(α, μ, A^) - θ(α, μ, A/") Π (C0α, C^1^, 0 < α < α0 ,

where C is fixed in (3.8). The following result is a counterpart of Theorem 1.1, [21]:
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Theorem A.I. Let [0, b] 3 s — » Bs G C°°(A, A) be a continuous deformation of exact
symplectic mappings satisfying the assumptions of Theorem 3.1 for any s in [0, b]. Then
for any N G Z+ there is εN > 0, and for any a G (0, ε(μ, TV)) ̂ ^ ex/sί continuous
in s G [0, 6] families of exact symplectic mappings χsa G C°°(T x R, T x
functions Ksa G C°°(R), Qsα G C°°(T x R) JMC/Z that Ksa(I) > 0 in Γ and:

(i) the exact symplectic mapping B®a — χ~^ o Bs o χsa is generated in A by

( ¥ > , / ) € A, (A.I)

and
Q°sa(φ,I) = 0 on T x £ s α , (A.2)

where Esa = {IeΓ: τ'sa(I)/2π e &>(a,μ,N)} C Γα,
(ii) χsα = 0 outside T x Γ"0 , <2ftJ /ίso , Q®sa , and the generating function Ssa(θ, /) of
χsa satisfy the estimates

Df(Kβa(I) - C(/))| + \DfDQQ

8a(φ,D\ < CβN\l, - I\N~a (A.3)

Dl < CβN\l0 - I\N-« (A.4)

in T x [i0 - ε0, /0 + ε0], ε0 > 0, /or 5 G [0, b] and any indices 0 < a < N, β >0,
where CβN depend neither on s nor on a and μ.

The proof of Theorem A.I is close to that of Theorem 1.1 in [21] and we are going
only to sketch it. It is based on Theorem A, [19] and on an idea of R. Douady [6]
(see also Appendix, [21]) to transform the initial problem for symplectic mappings to
a similar problem for Hamiltonian systems.

First we write the generating function Gs(θ, r) of Bs in the form

,r), (0,r) G A, (A.5)

where ζ®(r) is the Taylor polynomial of ζs(r) at r = /0 up to order Ml — N2 + 47V + 5
while Rs satisfies

\9ϊd?R3(θ,r)\<C\r-l0\
Ml \ (0 , r )eA, (A.6)

for any indices α > 0, β > 0, and s G [0, 6], and Rs depends continuously on s in
C°°(A). As in Sect. 3, we suppose that R3(θ, r) = 0 for r G [/0 - ε, /0 - 2ε/3]. Fix
d = α2 and set

where C2 > Cl > 1. Define Dd the same way as Dd with a constant C3 > C2 and
set _ ^

A - T2 x D, Ad - T2 x Dd .

Denote T/ = (y1? y2) G T2, ry = (7/^7/2) e D, ̂  = (9, ^ = r and rs°(r/) = -ίζ^)3^.

As in [6, 21], we first construct a Hamiltonian Hs(y,η) in A close to H®(η) =
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2τr7?2 H- τs (?7ι) and such that the Poincare map corresponding to the Hamiltonian flow

F*(ρ) of Hs on the level surface {Hs = 0} coincides with Bs. Set

A' = {(2/,τy) G A : H3(η) = 0, y2 = 0}

and denote by ιs : A — -> A7 the inclusion map

's(2/ι ̂ i) = (2/ι » °> f?ι > ~TS (f?ι)/27Γ)

Taking into account (A.5) and (A.6) we prove as in [13] and [21]

Lemma A.I. There exists a continuous in [0, b] family of Hamiltonians Hs G C°°(A)
such that

s(y,η) - H°(η))\ < Caβ\η,\M^ ,

Hs(y, η) = H®(η) in a neighborhood of A7 as well as outside Ad ,

Set HQ

S = HQ

S + (^)2, H'S=HS + (Hs)
2. Next we apply a KAM theorem to the

pair H® , ίί7 , which is a variant of Theorem A, [19], proved by J. Poschel (see also
Theorem 5.4 in [13]). As in [19] denote by σ (y, η) the map (y, η) — > (y, 777) and by

^ the respective Holder norms of the functions in Ad as well as

Denote by J^ the intersection of a neighborhood of (0, Z0) in C2 with the half -plane
{Re^2 < IQ} and set

1D)d + ρ= {z eΓ : z-η\< ρ for some r? G Dd}.

Next fix σ > 1, μ > 0, as in Sect. 3, set 7d = μdN/2 = μaN , and consider the
Cantor set

βd = { ω G R 2 : | {α;, fe> | > Ίd\
k\~σ for anY /c = (fc l 5 /c2) G Z2\{0}}.

Fix s0 G [0, 6]. The following KAM theorem is a variant of Theorem A in [19].

Theorem A.2. Let [0, 6] 3 s — > #!?(??) &e α continuous family of analytic functions in

Γ such that

l\\D<Cd-1/2, de(0,d0), (A.7)

where ρ = cd, 0 < c < 1, C > 0, and assume the map dH's/dη : Γ -^ C2 to be
invertible.

For any fixed λ > σ + 1 > 2, and a > 1, a ^ Λ = {i/\ -f j : z, j > 0 integer},

ί/z^re Z5 α positive ε independent of d, μ and s such that if H's G C°°(A) is continuous
in [0, 6], and

, p = a\ + \ + σ, (A.8)
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then:

(i) for any d G (0, cZ0) there is a neighborhood ί/(s0) ofsQ and continuous with respect

to s G C7(s0) families of functions Ssd G C°°(A), ίίsd G C°°(ID)2) swc/z ίλαί Ssd = 0

outside A and

T2 x

(ii) /6>r αrc y /? > α,

where p = βλ + A + σ <z«d β — β — (X — σ)/λ /s #6tf /« A

The proof of Theorem A.2 is similar to that of Theorem A in [19] (see also

Theorem 5.4 and the Appendix in [13]) and we omit it. The continuity of Ssd and
Hsd with respect to s G U(sQ) in the corresponding C°° spaces follows from the
arguments in A.2, Appendix, in [21].

Consider the pair H®, Hf

s defined above. Obviously, H® satisfies (A.7) if c is

sufficiently small. Fix λ > σ + 1 and β > 0 such that β = β — (λ - σ)/λ is not in Λ
and N < β < N + 1. Set p = β\ + λ + σ. Lemma A.2 implies

if d = α2 and

0 < α , M = N + 2, εN = ε/CN .

Hence, we can apply Theorem A.2. The corresponding function Ssd satisfies the
estimate

N+lnN+l
α

which implies

, ξ)\ < for 0 < α < ε(μ, TV), \q\ < N, (A.9)

where C'^ N do not depend on μ and α. Moreover, Ssd — 0 outside a neighborhood of

T x Dd in Ad and it generates an exact symplectic transformation taking εN smaller
if necessary. As in the Appendix, [21] we complete the proof of Theorem A.I.

We are going to patch together the exact symplectic mappings χsα . Fix AT- G Z+ ,
μj > 0 and α^ G (0, ε(μ^ 5^)), j = 1,2, and consider the corresponding functions
K and S given by Theorem A.I. Let χsj be the exact symplectic mapping withS3 sj

a generating function SSJ . Denote by

Γ3I-* τ>sj(I)/2π.

the inverse to the frequency mapping
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Proposition A.I. We have

(A.ll)

for any ω e θ1'2 := θV^μ^TV,) n θ°(α2,μ2,ΛΓ2), w/w« r •(/) = Sβl(0,/) -

/. The proof is close to that of Proposition A.5 in [21]. To simplify the notations
we drop the index s. Suppose that θ1'2 is not empty. Set Bj = χ~l o B o \ and

consider ψ = χ^1 o χ2 . Then £?2 — Ψ~l ° B\ ° Ψ and (4.2) implies

j = 1,2, (A. 12)

where

fj(φ,βj(ω))=2ιr#ί(ω), ω € θfί(aj,μj,Nj\ j = 1,2, (A. 13)

according to (4.3). On the other hand,

V>*σ0 -σ0 = d0, (A. 14)

where 0 is a smooth function in A. As in the proof of (4.6) we deduce from (A. 12)
and (A. 14) that

f2(φ, I) = fλ(ψ(φ, /)) + φ(φ, I) - φ(B2(φ, /)) + C, (φ, /) G A, (A.15)

where C — 0. As the invariant circles Λ(ω) are uniquely determined by their rotation
numbers ω G θ, we have

'φ(Ίx^2(ω))=Txβl(ω), ω G θ1'2. (A. 16)

Using (A. 13) and (A. 16) we obtain

2π^(w) - 2π^(ω) + φfa&W] ~ Φ(ψ + w,^(ω)), (^ω) G T x θ1'2,

which implies
2π^(α;) - 2π^(ω), ω G θ1'2 .

Since θ1'2 has no isolated points, differentiating the last equality with respect to ω
we prove (A. 10).

According to (A. 10) and (A. 16) we have

) = Ίx &(ω), ω G θ1'2' ,

and we obtain

V^SΊίβ^M) - VθS2(θ,&(ω)), (θ,ω) G T x θ1'2.

This proves (A.ll). D

Proof of Theorem 3.1. First we fix TV in Z+ . Take α0 = ε(μ, TV), ^ =

7^ — μ0α^, 0 < μ0 < μ, and denote by KS (I) and 5^(0,7) the corresponding
functions given by Theorem A.I for α = α j ? j = 1,2, ____ Replacing S5J (0,7) by
Ssj(θ,I) - 5βJ(0,7) we can suppose that SθJ (0,7) = 0. Using Proposition A.I,
(A.3) and (A.4), and applying a suitable Whitney extension theorem we find smooth
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functions ^(ω\ K?(I) and 5f (#,/) in R and T x R respectively which depend
continuously on s and such that the equalities

as well as their derivatives with respect to (θ,ώ) are satisfied in AJ = T x
θQ(a^μG^N). Denote by χ^ the exact symplectic mapping generated by S^ and
by (φ, I) the corresponding symplectic coordinates in T x R. Then

is generated by

rjV) + Q?(φ, I), rf (I) = -f #β"(/)3/2,

where Q^(φ> I) is a smooth function and Q^(φ^s

N(ω)) has a zero of infinite order
on each AJ, j = 1,2, — Fix μ0 = μC^ and take α <G [ a j , c ί j _ l ] , d = a2. Then

7_7 < 7^-1 < 7d anc* me Cantor set (9*(α, μ, AT) is contained in the union of the sets

Aj~l and A-7. Hence, Q°(φ,βr

s

N(ω)) has a zero of infinite order on

ΘN = U{6>*(α, μ, TV) : 0 < α < ε(μ,

Moreover, liTf , Qf and 5f satisfy (A.3) and (A.4). Take integers N2 > TVj > 1,

7^
pick α in (0, ε(μ, AΓ2)], and set 7^ = μα^? . Then 72 < ^\ and we obtain

Using Proposition A.I as well as (A.3) and (A.4) we obtain smooth (in the sense of
Whitney) functions ̂ (ω), Ks(^(ω}} and Ss(θ,^s(ω)} in θ and T x θ respectively
such that

for any (θ,ω) G T x θ. Denote by Ss(θ,ω) and (cj) suitable smooth Whitney

extensions of 5s(0,^(u;)), (0,u;) G T x θ and fls(ώ), ω G θ, which depend

continuously on s. Let K^(7) be the function inverse to ω — > ^s(ω). Taking χs

to be the exact symplectic mapping generated by SS(Θ,I) = SS(Θ,K'S(I)) and using
(A.3) and (A.4) we complete the proof of Theorem 3.1. D
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