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Abstract: We prove inequality (1) for the modified Steiner functional A(M), which
extends the notion of the integral of mean curvature for convex surfaces. For the
proof, we also establish an expression for A(M) in terms of an integral over all
hyperplanes intersecting the polyhedral surface M.

1. Introduction

In the articles [1, 4, 5] the authors suggest a new version of string theory, which
can be considered as a natural extension of the Feynman-Kac integral over paths
to an integral over surfaces. Both amplitudes coincide in the case when the surface
degenerates into a single particle world line.

The string has been conjectured to describe a wide variety of physical pheno-
mena, including strong interaction, the three dimensional Ising model, and unified
models incorporating gravity. The Feynman integral for the string is just the partition
function for the randomly fluctuating surfaces, and in this statistical approach the
surface is associated with a connected polyhedral surface embedded in euclidean
space.

To prove the convergence of the partition function for this new string, the authors
of [4, 5] require a lower estimate for the action A(M) on which the theory is based.
The purpose of the present note is to prove the inequality

A(M) > 2πA , (1)

where A(M) is the modified Steiner functional as introduced in [1, 4, 5] and A is
the diameter of the polyhedral surface M in R^. We also establish an expression
for A(M) in terms of an integral over all hyperplanes intersecting the polyhedral
surface M.
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2. Proof of the Inequality

We recall the definition of A(M).

Definition Let M be an embedded connected closed polyhedral surface in eu-
clidean space R^ (d^3). Let J\(M) be the set of edges of M. For e E J\(M) we
denote by L(e) the length of e and by φ), where 0 < φ) < π, the angle between
the two faces of M incident with e. Then the modified Steiner functional is defined
by

L(e)[π ~ φ)] .
)

Theorem If Δ denotes the diameter of M, then

A(M) > 2πA . (2)

Proof. We first consider a simple closed polygon P in R^. For a vertex υ of P, we
denote by φ), where 0 < φ) < π, the angle between the two edges of P incident
with υ. The (absolute) total curvature of P is defined by

ιc(P) := - φ)] ,
V

where the sum extends over the vertices of P. It is known that

/c(P)^2π (3)

(FencheΓs inequality for polygons; see e.g., [2]).
In the proof of inequality (1) we shall use some integral geometry, in particular

the space 8d_λ of hyperplanes in R^ with its (suitably normalized) rigid motion
invariant measure μd-\\ see, e.g., [6]. According to [6], (1.9), the measure μd-\
can be represented as follows. For a nonnegative measurable function/ on εd

d_λ we
have

00

//φ r f_ι = / f f(Hu,τ)dτdσ(u) .
c d cί/— 1— oo

</-!

Here Sd~l := {u G Rd : \\u\\ = 1} is the unit sphere of Rd,

Hu,τ := {x E R^ : (jc,ιι> = τ}, u E Sd~l, τ G R ,

is a general hypeφlane with unit normal vector u, and σ is the spherical Lebesgue
measure on Sd~~l, normalized to total measure 1. By ( , •) we denote the scalar
product in R^.

The hyperplane H G ε$_ l is said to intersect the polyhedral surface M in general
position if H ΓΊMΦ0 and H does not contain a vertex of M. In that case, the
intersection of H with an edge of M is either empty or a point, and the intersection
of H with a face of M is either empty or a segment. It follows that the intersection
H Π M is the union of finitely many simple closed polygons P\(H\ . . . ,Pk(H), and
from inequality (3) (applied in H instead of Rd) we have

κ(H Π M) := κ(Pλ(H)) + + κ(Pk(H))^2π .

It follows that
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/:= / κ(HC\M}dμd^(H)^2πμd,λ({H £8^ : //ΠMΦ0}), (4)
cd
t-d-i

since the set of all hyperplanes intersecting M, but not in general position, has
μ^_ι -measure zero. Let S be a segment connecting two points of M with maximal
distance, so that the length of S is equal to the diameter A of M. Let s be a unit
vector parallel to S. Then

—1 — oo

oo

/ Δ\(u9s)\dσ(u)
Sd-ι

Here 1̂  denotes the indicator function of X. By c ι , . . . , C 6 we denote constants
depending only on the dimension d. We have proved that

/ > c2A . (5)

On the other hand, if the hyperplane H intersects M in general position, we can
write

[ π - β ( M , e , H ) ] 9 (6)

where β(M,e,H) is defined as follows. If H meets the edge e (and hence the
relative interior of e) and if F\,Fι are the two faces of M incident with e, then
β(M,e,H) G (0,π) is the angle between the segments H Γ\F\ and H ΠF2 at the
point H Π e. If H does not meet e, we put β(M,e,H) = π. We can now write

/ = Σ f [π-β(M9e9H)]dμd,l(H). (7)
ee^1(M)^_1

Let e G ι̂(M) be a fixed edge. We have

f[π~β(M,e,Hu,τ)]dτdσ(u)
— oo

[π - β(M, e,HuM}\L(e)\ (u9 w(e)) \dσ(u) , (8)
Sd-l

where x is some fixed point in the relative interior of the edge e and w(e) denotes
a unit vector parallel to the edge e.

Let Fι,F2 be the two faces of M incident with e and let α(β) G (0,π) be the
angle between F\ and F2, as defined initially. We assert that

/ [π - ^(M,e,//Mj(,,w))]KW,w(e))|c/σ(W) = c5[π - α(e)] . (9)
Sd-\
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For the proof we may aasume, without loss of generality, that x is the origin of Rd.
The integral in (9) can be written in the form

J:= f fVWvj-UH) , (10)

where C-d

d_l denotes the space of (d — l)-dimensional linear subspaces of R^ and
vj_ι is its normalized invariant measure; the function/ is defined by

/(//) = [π - β(M,e,H)]\{uH,w(e))\ ,

where UH is a unit normal vector of H. The edge e and the two adjacent faces
F\9F2 of M lie in a 3 -dimensional linear subspace A of R . For v^_ι -almost all
H € Cd

d_l9 the intersection A Γ\H is a 2-dimensional linear subspace. In that case,
the angle β(M,e,H) depends only on M and this subspace, so that we can write
β(M,e,H) = β(M9e9AΠH). Moreover,

\(uH,w(e)}\ = \(uH,uAΠH)(uAΠH,w(e))\ ,

where UAΠH is a unit normal vector of A Γ\H in A.
Using a general formula of integral geometry, one can write the integral (10) in

the form

= c3 /

Here C^ denotes the space of 2-dimensional linear subspaces of A and v^ is the
normalized invariant measure on this space. For fixed L G <£\9S£L

d_λ denotes the
space of hyperplanes containing L, and v^_λ is the invariant measure on this space.
[H,A] is a certain function depending only on the relative position- of H and A\ it is
invariant under simultaneous rotations of H and A. The identity above is equivalent
to a special case of formula (14.40) in Santalό [3], but written in the style of [6].
Applying this to our present situation, we obtain

J = c3f f [π- β(M,e,H)]\(uH,uAnH)(uAΓ}H,w(e))\

= c3f[π-β(M,e,L)]\(uLMe))\

= c4 / [π -

The final integral is a mean value over 2-dimensional linear subspaces in a 3-
dimensional euclidean space. Its value can be obtained from the more general
Theorem 3.2.1 in [6]. In this way we arrive at
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J = c5[π-cc(e)] ,

which proves (9)
Taking (4), (7), (8), (9) together, we deduce that

A(M) > c6A. (11)

In order to find the optimal constant c6 for which (11) holds generally, we consider
the boundary Mε of a triangular prism with height A and base a regular triangle
with edge length ε. For ε —> 0, the diameter of M£ tends to Δ and A(Mε) tends to
2πΔ. It follows that cβ^2π. On the other hand, from the way inequality (11) was
obtained it is easy to see that A(M) > A(Me), if ε > 0 is sufficiently small. Thus
cβ — 2π is the optimal constant.

3. Concluding Remark

We want to stress that the representation (7) turns out to be very useful for studying
more complicated models [1, 4, 5] and various phenomena.

The first author of this work has been supported by the Alexander von Humboldt
Foundation.
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