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Abstract: Recently, Rogers' dilogarithm identities have attracted much attention in
the setting of conformal field theory as well as lattice model calculations. One of the
connecting threads is an identity of Richmond-Szekeres that appeared in the
computation of central charges in conformal field theory. We show that the
Richmond-Szekeres identity and its extension by Kirillov-Reshetikhin (equivalent
to an identity found earlier by Lewin) can be interpreted as a lift of a generator of
the third integral homology of a finite cyclic subgroup sitting inside the projective
special linear group of all 2 x 2 real matrices viewed as a discrete group. This
connection allows us to clarify a few of the assertions and conjectures stated in the
work of Nahm-Recknagel-Terhoven concerning the role of algebraic K-theory
and Thurston's program on hyperbolic 3-manifolds. Specifically, it is not related to
hyperbolic 3-manifolds as suggested but is more appropriately related to the group
manifold of the universal covering group of the projective special linear group of all
2 x 2 real matrices viewed as a topological group. This also resolves the weaker
version of the conjecture as formulated by Kirillov. We end with a summary of
a number of open conjectures on the mathematical side.

0. Introduction

Very recently, much has been written about the Rogers' dilogarithm identities and
its role in conformal field theory, see [BR, KKMM, FS, K, KR, KP, KN, KNS,
NRT]. For an excellent general survey for mathematicians concerning hyper-
geometric functions algebraic K-theory, algebraic geometry and conformal field
theory, see [V] and its extensive section of references. For a recent review from the
physics side, see [DKKMM]. In the present work, we limit our attention to the
special case of dilogarithm identities. In spirit, it fits into the program surveyed by
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Varchenko [V]. Some, though not all, of the relevant calculations have been
carried out on both sides of the fence. Conjectures abound even in this case. Most
of our task consists of pulling together items that are scattered in the literature in
various forms. The new ingredient is to give a direct interpretation in terms of
group homology to account for the Richmond-Szekeres identity, see [RS], and its
extension by Kirillov-Reshetikhin, see [KR, II, (2.33) and Appendix 2], see also
Lewin [LI, (5.117) and (5.119) and L2, p. 19-20]. What we show is that the basic
identities are those found by Rogers in [R]. Rogers' dilogarithm function then
leads to a real valued cohomology class defined on the third integral homology of
the universal covering group of PSL(2, R), viewed as a discrete group. The Rich-
mond-Szekeres identity, see [RS and LI, (5.119)], and the Kirillov-Reshetikhin (or
the equivalent Lewin) identities, see [KR II, (2.33) and Appendix 2; LI, (5.117)], are
the reesults of restricting the evaluation of this cohomology class (the real part of
the second Cheeger-Chern-Simons class) to the inverse image of a suitable homol-
ogy class that covered the generator of a suitable finite cyclic subgroup. This will
then provide partial clarification of some of the assertions and conjectures made by
Nahm-Recknagel-Terhoven [NRT] related to algebraic K-theory [Bl] and Thur-
ston's program on hyperbolic 3-manifolds, [Th]. Specifically, we show that it is
more appropriately related to the group manifold underlying the universal cover-
ing group of PSL(2, R).

1. Rogers' Dilogarithm

Rogers' dilogarithm (also called Rogers' L-function) was defined in [R]:

1 f ϊ l o g x ΐ l o g ( l - x ) I
L(x) = - - < J - - dx + J - dx >

2 [ J

0 l - x J x J

= Σί + r0ogχ) σog(i-χ)), o < x < ι . (i.i)
n>0 H Z

L(x) is real analytic, strictly increasing and limx^ιL(x) = π2/6.

Rogers showed that L satisfied the following two basic identities:

L(x) + L(l - x) = π2/6, 0 < x < 1 , (1.2)

, 0 < x, y < 1 . (1.3)
- xy j V 1 - xy

If we use (1.2), take Sj = (1 — x)/(l — xy) and s2 = y(l — x)/(l — xy) so that
y = $2/Sί and x = (1 — Sι)/(l — s2) with 0 < s2 < sl < 1, then (1.3) is seen to be
equivalent to:

2

= — , 0 < s2 < Si < 1 .

(1.4)
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I fwesetη = sf1, and define L(r) = — L(r - 1)for r > 1, then (1.4) can be rewritten
in the form:

(1.5)

Motivated by [DS1], Rogers' dilogarithm was shifted in [PS] to:

Lps(x) = L(x) - π2/6 = - L(l - x), 0 < x < 1 . (1.6)

If we replace L by Lps throughout, then (1.2) and (1.4) become:

Lps(x) + LPS(1 - x) = - π2/6 , (1.7)

Lps(x) - L™(y] + Lps (?} - Lfs

(1.8)

A huge number of identities have been found in connection with Rogers'
dilogarithm, see [LI]. The situation is somewhat similar, and is often, related to
trigonometry, where the basic identities are the two additional formulae for the sine
and cosine function, which are just the coordinate description of the group law for
SO (2) or U(l). This analogy can be made more precise. Namely, U(l), more
appropriately, GL(1, C) ̂  C x is just the first Cheeger-Chern-Simons character-
istic class in disguise. This is well-known and tends to be overlooked.

Richmond-Szekeres [RS] obtained the following identity (in a slightly different
form) from evaluating the coefficients of certain Rogers-Ramanujan partition
identities as generalized by Andrews-Gordon, cf. [LI; (5.119) and L2; p. 19]:

~6 2r + 3' -gin20 + l ) θ ' 2r + 3 '

This has been extended by Kirillov-Reshetikhin [KR], cf. [LI; (5.117)], to:

Apparently, identity (1.9) arose in the study of low-temperature asymptotics of
entropy in the RSOS-models, see [ABF, BR, and KP] while (1.10) arose in the
calculation of magnetic susceptibility in the XXZ model at small magnetic field, see
[KR]. They are connected to conformal field theory in terms of the identification of
the right-hand sides as the central charges of the non-unitary Virasoro minimal
model and with the level ( A{1) WZW model respectively, see [BPZ, Z2, K, KN,
KNS, DKKMM, KKMM, Te], . . . . Our goal is to show that these identities can
be understood in terms of the evaluation of a Cheeger-Chern-Simons character-
istic class on a generator of the third integral homology of a finite cyclic group of
order 2r + 3 and n respectively.

2. Geometry and Algebra of Volume Calculations

In any sort of volume computation, the volume is additive with respect to division
of the domain into a finite number of admissible pieces. Depending on the
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coordinates used to describe the domain, the volume function must then satisfy
some sort of "functional equation." This is the geometric content behind the
Rogers' dilogarithm identity. The geometric aspect was described in [Dl] while
some of the relevant algebraic manipulations were carried out in [PS] (up to some
sign factors that only became important in [Dl]). To get a precise description, it is
necessary to examine [DS1, DPS and Sa3]. These involved use of algebraic K-
theory. We review the ideas and results but omit the technical details.

To begin the review, we recall the definition of some commutative groups
(called the "scissors congruence groups", cf. [DPS]). Let F denote a division ring
(we are only interested in three classical cases: R = real number, C = complex
numbers, H = quaternions). The abelian group PF is generated by symbols: [x],
x in F, x Φ 0, 1 and satisfies the following identity for x Φ y:

[xyx"1] — [y], (this is automatic for fields) , (2.1a)

M - M + [x- V] - [(* - IΓ1^ - i)]

This group was studied in [DS1] for the case of F = C. It is closely related to, but
not identical to, the Bloch group that was studied in [Bl]. A second abelian group
P(F) is defined by using generating symbols [[x]], x in F — {0,1}, with defining
relations:

same as (2.1) with [[z]] in place of [z] , (2.2)

[M] + [[x~1]]^0, (2.3)

[M] + [[1 - x]] = cons(F) (depending on F) . (2.4)

The following result can be found in [DPS]:

0 -» F X/(F x )2 -> PF -» P(F) -» 0 is exact for F = R, C, H . (2.5)

The first map in (2.5) is defined by sending x in F - (0, 1} to [x] + [x"1]. The
second map then sends [x] to [[x]]. In particular, when F = C, we may set
[x] = 0 for x = oo , 0, 1 and remove the restriction x Φ y in (2.1) by adopting the
convention: meaningless symbols are taken to be zero, see [DS1]. For the division
ring H, we observe that every element of H is conjugate to an element of C, thus
P(H) is quotient of P(C).

The geometric content of (2.1b) is best seen by thinking in terms of a Euclidean
picture. Suppose we have 5 points in Euclidean 3-space so that pl9 p2,Pι form
a horizontal triangle while p0> P4 are respectively above and below the triangle. The
convex closure is divided by the triangle into two tetrahedra and also divided into
three tetrahedra by the line joining p0

 and p4, see (Fig. 1). Thus, if any function of
a tetrahedron is additive with respect to finite decompositions, it would follow from
(Fig. 1) that there should be a 5 term identity to be satisfied by such a function.

We examine the special case of F = C. Here PC — ̂ (Q is known to be
a Q-vector space of continuum dimension, see [DS1]. It is best to consider the
( — l)-eigenspace P(C)~ of P(C) under the action of complex conjugation. It is
classically known that the project! ve line P1(C) can be viewed as the boundary of
the hyperbolic 3-sρace. An ordered set of 4 non-coplanar points on P^Q (in terms
of the extended hyperbolic 3-space) determines a unique ideal (or totally asymp-
totic) tetrahedron of finite invariant volume (by using the constant negative
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Fig. 1. Dividing a poly tope in two different ways

curvature of hyperbolic 3-space). Since the orientation preserving isometry group is
PSL(2, C), we can take 3 of the 4 vertices to be oo , 0,1 the 4th point is then defined
to be the "cross-ratio" of the 4 distinct points (which may determine a degenerate
tetrahedron when they are coplanar). Equation (2.1b) is the result of taking
5 distinct points: oo , 0,1, x and y as pictured in (Fig. 1). For a general division ring
F, PF merely formalizes the discussion. The difference between P(F) and
PF amounts to permitting some of the vertices to be duplicated. Equations (2.3) and
(2.4) express the fact that oriented volume changes sign when the exchange of two
vertices reverses the orientation. The equality Pc = P(C) simply means that the
introduction of degenerate tetrahedra with duplicated vertices does not make any
difference (it does make a difference in the case of F = R). With (2.3) in place, it is
now evident that (1.7) and (1.8) are directly related to (2.4) and (2.1b). The problem
is that our explanation so far is based on F = C while Lps dealt with F = R.
This will be reviewed in the next section. It should be noted that the volume
calculation makes perfectly good sense for tetrahedra with vertices in the finite part
of the hyperbolic 3-space. It is known that any such tetrahedron can be written in
many different ways as a sum and difference of ideal tetrahedra, see [DS1].
A general volume formula for a tetrahedron is quite complicated. However, the
volume of an ideal tetrahedron is quite simple. It is given by the imaginary part of
the complexified Rogers dilogarithm function (up to normalization) evaluated at
the cross-ratio.

We end the present section by giving the structures and inter-relations of the
groups P(F), F - R, C, H with R c C c H: (The details can be found in [DPS]
and [Sa3].)

P(C) = P(C)+ (2.6)
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This is a Q- vector space direct sum in terms of its ± 1 eigenspaces under the action
of complex conjugation. Both summands have continuum dimension.

0 -» Q/Z -> P(R) -> P(C) + -> Λz(R/Z) ^ 0 is exact . (2.7)

P(R) is the direct sum of Q/Z and a Q-vector space of continuum dimension,

P(C)+ -» P(H) -> 0 is exact and P(H) ̂  Λz(R+) . (2.8)

The group P(C)~ is the "scissors congruence group" in hyperbolic 3-space, see
[DS1]. The kernel of the homomorphism in (2.8) is related to the "scissors
congruence group modulo decomposables" in spherical 3-space and is conjec-
turally equal to it, see [DPS]. These results depend on algebraic K-theory and use,
in particular, a special case of Suslin's celebrated solution of the conjecture of
Lichtenbaum-Quillen, see [Su2].

3. Rogers' Dilogarithm and Characteristic Classes

As reviewed in the preceding sections, there is a formal resemblance between the
Rogers' dilogarithm identities and volume calculation in hyperbolic 3-space. How-
ever, the underlying space is quite different. The explanations were carried out in
[Dl]. For the convenience of the reader, we review the results. The relevant
characteristic class is that of the Cheeger-Chern-Simons characteristic class c2

which lies in the third cohomology of SL(2, C) viewed as a discrete group and
where the coefficients lie in C/Z. In general, one has cn which lies in the (2n — l)th

cohomology group of GL(m, C), m^n, viewed as a discrete group, where the
coefficients lie in C/Z. The standard mathematical notation for this cohomology
group is H 2 " l (BGL(m, C)0, C/Z), this is the group cohomology where GL(m, C)
is given the discrete topology (the superscript δ emphasizes this fact). c1 is nothing
more than the determinant map with kernel SL(m, C). With the replacement of GL
by SL, έί becomes 0. The replacement of GL(m, C) by GL(n, C) arises from
homological stability theorems, see [Sul] (a simplified version can be found in
[Sa2]). In general, cn is conjectured to be connected to the rc-polylogarithm, see
[D2 and D3]. Although we are only interested in c2, we will state the results for
general n. The construction arises by starting with the Chern form cn (a 2n-form)
which represents an integral cohomology class of the classifying space BGL(n, C),
where GL(n, C) is now given the usual topology. Since we have replaced the usual
topology by the discrete topology (this amounts to "zero curvature conditions"), it
follows from Chern-Weil theory (where closed forms are viewed as complex
cohomology classes) that cn can be written as the differential of a (2n — l)-form, (for
n = 2 this is the Chern-Simons form that appears ubiquitously in physics). When
the coefficients are taken in C/Z, this (2n — l)-form is closed and leads to the class
tn in H2n-l(BGL(n, C)d, C/Z) through the exact sequence:

0 - » Z - > C ^ C / Z - + 0 . (3.1)

We now concentrate on n = 2. If we take the coefficients to be C/Z, then the
characteristic class c2 has a purely imaginary part and a real part. The purely
imaginary part has values in R and is related to volume calculation in hyperbolic
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3-space while the real part lies in R/Z and is related to volume calculation
in spherical 3-space. These volume calculations are classically known to
involve the dilogarithm function. See [C] for the details related to the work
of Lobatchevskii and Schlafli respectively. The integer ambiguity in the spherical
case arises from the fact that a large tetrahedron can be viewed as a small
tetrahedron on the "back side" of the sphere with a reversed orientation. Thus its
volume is only unique up to an integer multiple of the total volume of the spherical
3-space.

For the Rogers' dilogarithm, the space is actually the group-space S of the
universal covering group PSL(2, R). The task of defining a tetrahedron and
calculating its volume becomes more delicate. If we select a base point p in S, then
any point can be written as g(p) for a uniquely determined group element g of
PSL(2, R). We first define a left invariant "geodesic" in the group that joins 1 to
g (this definition is asymmetric). This can be accomplished by exponentiating
a Cartan decomposition of the Lie algebra of PSL(2, R). In essence, we coordinate
PSL(2, R) by R x H2, where H2 denotes the hyperbolic plane. Inductively, we can
than define a "geodesic cone" for any ordered set of n + 1 points, n ̂  0, see (Fig. 2).
This is similar to [GM] where Rogers dilogarithm appeared in terms of volumes in
Grassmann manifolds of 2-planes in R4. Our interpretation is dual to [GM] since
the transpose of a 4 x 2 matrix is a 2 x 4 matrix. Namely, for the ordered set
(po? •> Pn\ the cone is the collection of all points on the "geodesies" from pQ to the
"geodesic cone" inductively defined for ( p l 9 . . ., pn). For the definition of volume
(n = 3), the next step is to show that it is enough to consider the case where the
4 vertices are close to each other. In fact, in terms of the Cartan coordinates of the
group elements, one may assume that the θ-coordinates are strictly positive and
small (this involves changing by a boundary which causes no problem because the
volume is obtained by evaluating a 3-cocycle on the chain, in essence we invoke
Stokes' Theorem). We next form the boundary R x 5H2, where <3H2 = P1 (R) is the
projective line over the real numbers (which can be identified with { — oo} u R by
using the slopes in the right half plane as in [PS]). At this point, we begin to mimic
the hyperbolic 3-space and move p continuously towards {0} x P*(R) (this amounts
to right multiplication). When p lands on {0} xP1(R), so will all four vertices so
that we have the analog of an ideal hyperbolic tetrahedron. The volume (up to
a normalizing factor) is just the value of the Rogers dilogarithm evaluated on the
"cross ratio" of the ordered set of vertices viewed as points of P*(R) (adjustments

Fig. 2. Ordered "geodesic triangles"
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are needed for the degenerate cases). The situation now resembles the case of
spherical 3-space. Namely, the final volume will involve an integer (after normaliz-
ation) ambiguity which depends on the path of p. We ignore the question of
representing the original tetrahedron as sums and differences of these "ideal
tetrahedra" since our concern is to interpret the value of the Rogers' dilogarithm as
a volume.

We summarize this discussion in the form, cf. [Dl, Th. 1.11]:

Theorem 3.2. The restriction of the second Cheeger-Chern-Simons characteristic
class c2 to PSL(2, R) can be lifted to the universal covering group PSL(2, R) and is
then given by the Rogers dilogarithm (more precisely, by Lps through L).

A more detailed discussion will be given in the following sections.

4. Homology of Abstract Groups

The basic reference is [Br]. Let G be an abstract group. We consider the
non-homogeneous formulation of the integral homology of G with integer
coefficients Z. The jth chain group C/(G) is the free abelian group generated
by all j-tuples [gfι | IgfJ with gt ranging over G, ^ 1. C0(G) is the
infinite cyclic group generated by [•]. Such a j-cell should be identified with
each of the formal j-simplices (#0, 0o#ι, 0o#ι g2, - > 0o0ι> , 9j) as g0 ranges
over G. The boundary homomorphism: d/iC^G) -> C< /_1(G) is defined by
translating the usual boundary of the formal -simplex. For example,
^3[0ι I 9 2 1 # 3 ] = [021£3] ~ [0ι02 #3] + [0ι1020a] - [0! \02] The jth integral
homology group of G, H/G, Z), or simply H,(G), is defined to be ker dj/im dj+ί.
H0(G) is just Z while H^G) is canonically the commutator quotient group
of G with the class of [#] mapped onto the coset of g in the commutator
quotient group. We note that homology groups can also defined for any G-module
M (e.g. any vector space on which G acts by means of linear transformations).
This generalization is often needed for computational purposes and requires
more care.

In general, the procedure described in the preceding paragraph is not
very revealing. Somewhat more revealing is to use the action of G of a
suitably selected set X. Typically, we end up describing the homology groups
through a spectral sequence that reveals a composition series. If X is the
underlying set of G under the left multiplication action and the spectral sequence
"degenerates." In the case of PSL(2, R), we can take the space X to be that
of P*(R) = {0} xP*(R) which is viewed as part of the boundary of the group
space S. The spectral sequence is the algebraic procedure to keep track of
the geometry. If p is a base point in the group space S, the 3-cell \_g\\g2\9i~\
is an abstraction of the "geodesic" 3-simplex (p,g\(p\g\g2(p\9ι929^(p)} in
the group space S. If p is moved to oo = R(J) in P1^)? then we have an
"ideal" 3-simplex. Although the action of PSL(2, R)~on § is faithful, its action on
P*(R) is not. In fact, it factors through PSL(2, R) by way of the following exact
sequence:

0 -> Z c -> PSL(2, Rf-> PSL(2, R) -> 1 . (4.1)
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The results in [PS] and [DPS] can be recast and summed up by the following
commutative diagram of maps where the rows and columns are exact:

0 0

1 1
z -I* z c

I I
0 - > H3(S,Z) - » PS(R) (4.2)

I I"
0 -» Z2 - > H3(S, Z) -!->. P(R) -ίl» Λz(R+)

1 I
o o

In (4.2), we abuse the notation and set S = PSL(2, R). PS(R) is the abelian group
generated by all cross-ratio symbols {r} — ( oo , 0, 1, r), r e R x υ { oo }, and sub-
jected to the defining relations, cf. (1.5), (1.8):

ι<"<r- (4 31

{r} + {r-i} = 0, r > l , (4.4)

{oo} = 2{2}= -2{l/2} and {1} = 0 , (4.5)

{_ r } = {! + r-i} + {oo} ? r > o . (4.6)

These involve slight modifications of the results in [PS]. The group PS(R) is
isomorphic to the group H3(W/S) of [PS] if we simply view (4.4) through (4.6) as
the definition of {s} for 0 < s < 1, s = oo or 1 and s < 0 respectively. More
precisely, we take as j-cells the ordered (j + l)-tuples of elements of the universal
covering group R of PSO(2, R) so that the convex closure of these points cover an
interval of length less than π (length of PSO(2, R))). Moreover, we also enlarge the
action to the "universal covering group" of PGL(2, R). We note that in general, the
universal covering group of a disconnected Lie group is not well defined. In the
present case, it is well defined and happens to be a semi-direct product of the
universal covering group of PSL(2, R) by an element of order 2 that inverts its
infinite cyclic center. The later results in [DPS] and [Sa3] showed that H3(fΓ/S) is
a Q- vector space. In [PS], it was shown that H2(W/S)/Z 48 {2} c H3(SL(2, R), Z)
and that H3( W/S)/Z 12 {2} ^ PR ID H3(PSL(2, R), Z). The first arose by showing
that a certain element c( — 1, — 1) = 8c is mapped onto ± 48 {2} (with a little care,
the image is —48 {2}). The second involves a direct argument. We note that
H3(SL(2,R), Z) maps surjectively to H3(PSL(2, R), Z) with kernel Z4. This ac-
counts for various Z2's. Equation (4.2) now results from (2.5) with c mapped by
η onto - 6 [[2]] in P(R), namely, P(R) ^ H3(^/S)/Z 6 {2}. From Sect. 1, we
have a subjective homomorphism:

Lps: PS(R)-»R, Lps({s}) = L(s) - ^- = - L(\ - s\ 0 < s ^ 1 . (4.7)
6
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In particular, Lps({l/2}) - - π2/U and Lps({r}) - L(l - r'1), for 1 ̂  r ^ oo.
This leads to surjective homomorphisms:

£RS: PR-»RmodZ (π2) ,

LPS(R) : P(R) -» R mod

Using (2.5) and (2.7) we then have:

Z^s : H3 (PSL(2, R), Z) - > R mod Z (π 2) ,

LPS(R): H3(PSL(2,R),Z) - > R m o d Z y . (4.9)

Lps is injective on torsion elements and LPS(R) maps an element of order m to one of
order m or ra/2 according to m is odd or even.

Remarks 4.10. (i) In using the extension to PGL(2, R) and its universal covering
group, [[r]] is the usual cross-ratio symbol associated to (oo,0, 1, r) for r in
R - {0, 1}, see [PS]. Thus, {r} is mapped to [[r]]. (ii) H3(PSL(2, R), Z) is conjec-
tured to be equal to H3(PSL(2, Ralg), Z), where Ralg denote the field of all real
algebraic numbers. This follows from a similar conjecture for C in place of R. Thus,
the two maps in (4.9) are not expected to be surjective. So far, all the non-trivial
elements in the image are obtained by using algebraic numbers, (iii) It is both
convenient and essential to consider the group H3(PSL(2, C), Z) or
H3(SL(2, C), Z). Namely, C admits a huge group of automorphisms while R has
only the trivial automorphism. While we do not know the injectivity of
c2: H3(SL(2, C), Z) -> C/Z, we do know that each non-zero element of
H3(SL(2, Calg), Z) can be detected by a composition c2 ° τ for a suitable automor-
phism τ of C. This is a theorem of Borel, see [B]. Except when τ is the identity or the
complex conjugation map, the image τ(R) is everywhere dense in C. It is the use of
the hyperbolic volume interpretation that ultimately leads to conclusion that
H3(SL(2, C), Z) and H3(SL(2, R), Z) both contain a Q-vector subspace of infinite
dimension.

5. Connection with Richmond-Szekeres and Kirillov-Reshetikhin Identities

Granting the assertions in the preceding reviews, we can now describe the relation
of the above discussions with the Richmond-Szekeres identity (1.9) and the exten-
sion by Kirillov-Reshetikhin (1.10). As described in [PS], if G is a cyclic group of
order m with generator g, then the following chain is a (2j — l)-cycle and its class
generates H2j_ t (G, Z) ̂  Zm, j > 0:

cm} = Σ [0I *ι 1 9 1 - I Xj-110]> */ ranβe over G independently . (5.1)

More generally, £[# ί (1) |xι|. . . |X j- i |0 i ( < / ) ] is homologous to i(l). . . i(j) c^\
The superscript is used to remind us that the class behaves as aj t h power character
on the cyclic groups. We now map G into S = PSL(2, R) by sending g to the
following matrix:

Γ cos Θ — sin Θ Ί π

[_ sin θ cos Θ J ' m
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The map σ in (4.2) sending H3(S, Z) into P(R) is obtained by sending the 3-cell
[0ι 102 1 0a] to tne cross-ratio symbol of ( oo , g±( oo ), g1g2( oo ), #ι#203( °o ))• Here
oo = R(?), r = R(J), more generally, y/x - R(*), x ^ 0 and PGL(2, R) acts on

these lines through matrix multiplication. However, as discussed in Sect. 3, in the
evaluation of volume, chains may be modified by boundaries. For the special form
of the 3-cells that appears in c%\ this is not a serious problem. In any event, we
have a canonical identification of the torsion subgroup:

tor(H3(PSL(2, R), Z)) =• Qπ/Zπ, the rational rotations in PSO(2, R) . (5.2)

We now consider cm = c^2) and note that σ(cm) is of order m or m/2 in P(R)
according to m is odd or even. Thus, we will restrict ourselves to m > 2. [0|0J'I0]
corresponds to ( oo , g( oo ), gj+2( oo )). Except when 7 = 0, m — 2, m — 1, this is just
[[QJVej-ιβj+ι]], where Qj = Qj(θ) = sin (7 + l)θ/sinθ, θ = π/m.

When ; = 0, [0|1|0] is 0 under the usual normalization. The corresponding
formal 3-cell has two identical adjacent vertices and represents 0.

When 7 = m — 2 > 0. We have the formal 3-cell ( oo , — 1, 1, oo ) independent of
m. It is the same as ( oo , 0, 1, oo) and is assigned the cross ratio symbol { oo }. By
taking the boundary of { oo , 0, 1, 2, oo }, {00} is seen to be homologous to
2 {2}- -2(1/2} as in (4.5).

When 7' = m — 1 _• 2. We have the formal 3-cell ( oo , 0, oo , 0) independent of m.
It is the boundary of ( oo , 0, oo , 0, 1). Thus, we set it to 0.

To see how the preceding assignments work, we consider the cases: m = 3 and 4.
When m = 3, σ(c3) = [[ oo ]] and LPS({ oo }) = π2/6. This represents an ele-

ment of order 3 in R mod Z (π2/2).
When m = 4, σ(c4) = [[oo ]] + [[2]] and Lps({ oo }) + Lps({2}) = π2/6 +

π2/12 = π2/4. This represents an element of order 2 in R mod Z(π2/2).
We now go to the general case. For m > 2, we have:

σ(cj=[[oo]]+ ϊ|
JJ

. "
The above calculatioin is purely formal and the only reason that θ is chosen to be
π/m arises from the fact that the expression in (5.1) represents the image of an
element of order m or m/2 in H3 (S, Z). The expression for Qj is well known in terms
of representation theory. Namely, consider the irreducible representations of
SL(2, C) of finite dimension. It is well known that there is exactly one in each
dimension n + 1 ̂  1. It is realized in the nth symmetric powers of the fundamental
representation of SL(2, C) on C2. This is the spin n/2 representation in physics.
Evidently, the matrix diag(z, z~ *) is represented by diag(zn, zn~2, . . . , z~"). Qfj(θ) is
just the trace of diag(z, z"1) in the spin j/2 representation where z = exp(z#). The
following lemma results from looking at the character of the representation theory
SL(2, C):

Lemma 5.4. Let S(i) denote the ίth symmetric tensor representation of SL(2, C),
i>0. Let 7, p, q>0. Then S(p +j - 1)® S(q +j - 1) ^ S(p - 1) (x) S(q - 1)
®S(p + q +7 — l)(x) S(j — 1) holds. (Note: the representation S(ι) has degree
i + 1.)
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For the proof it is enough to look at diag(z, z 1). If we consider the special case
of z = exp(ι0), p = q = 1, we get Q? = Qi-ίQi+ί + 1. Since β2 = ί/dj by defini-
tion, we have:

(5.5)

for

] for

The right-hand side of (5.5) is [[oo ]] + 2.

m = 2 f c + l and is [[oo ]] + [[(1 - 4Γ1]] + 2.
m - 2fc + 2.

We next have the following elementary result:

Lemma 5.6. Let F : Q -> Q be an additive homomorphism so that F(Z) c Z and so
ffcflf F: Q/Z ̂  Q/Z. Γfen F = ± Id. // F(l/3) Ξ - 1/3 mod Z, then F = - Id.

Proo/ Recall that F is just multiplication by a rational number because division by
integers is unique. The two restrictions on F force F to be multiplication by ± 1.
The final restriction forces F to be minus identity.

We can now apply Lemma 5.6 to obtain the following:

Theorem 5.7. For m ̂  3, LPS(σ(cw)) = — π2/m mod Z (π2/2). In general, we have
the congruence Kirillov-Reshetikhin identity:

sin 2π \
m

siir
m

π2 3(m-2) π2 /π 2

—-^ ^^ - —modZ —
6 m m V 2

/

in particular, we have the congruence Richmond-Szekeres identity for m = 2k + 1:

Σ
siir

2/c+ 1

\
s n 0'+

π2 2k - 2)
—7- -̂
6 (2fc+ 1

2 k + 1 /

Proo/ We already know that Q {2} is the inverse image of the torsion subgroup of
P(R) in PS(R). Moreover, LPS:Q{2} -> Qπ2 is an isomorphism that carries 6(2}
onto π2/2. The torsion subgroup of H3(PSL(2, R),Z) is identified with Qπ/Zπ,
where the elements cm arising from rotation by π/m in PSO(2, R) and σ(cm) has
order m or m/2 in P(R) according to whether m is odd or even. Since cm corresponds
to π/m in Qπ/Zπ, Lemma 5.6 shows that LPS(R)(σ(cm)) must be + π2/m in Qπ2

mod Z (π2/2). When m = 3, we saw that the image is π2/6 = π2/2 — π2/3. It
follows that LPS(R)(σ(cm)) = - π2/mmod Z (π2/2). This is just the general con-
gruence identity. The more precise equality was proved in [KR-II, (2.33) and
Appendix 2.] by an analytic argument.

Let m = 2k+L By (4.4), (4.7), and sin(π - φ) = sin φ, Lps(R)(σ(cm)) =
π2/6 + 2ΣjL(dj), i^j^k-l. Next π2/2 - π2/(2k + 1) = (2k - l)π2/2(2/c + 1)

= π2/6 + (4fe — 4)π2/6(2k + 1). The congruence immediately follows.
If we use the fact that LPS is injective on Q {2}, we have the immediate corollary:

Corollary 5.8. In PS(R\ 4(m - 3) {2} = i

Equivalently, 6(m-2) {2} = wΣι< <m-2 i

. < m _ 3 > 2.
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We may obtain more congruence identities by computing the image in P(R) of
a representative for the class p q c£\ 0 < p, q < m. Namely, we take ΐ(l) = p and
1(2) = q in the extension of (5.1). There are at most 4 exceptional symbols to
consider according to j mod m. When j = 0, we always have 0. We therefore assume
0 < j < m. If j = — p or — q, depending on p = q or p ή= q, we end up with either
0 or — { oo }. Finally, if j = — p — q mod m (this forces p + q Φ m), then the symbl
is { oo } as before. The general congruence identity then takes on the following
form:

Theorem 5.9. Let Lps denote the shifted Rogers' dilogarithm as in (4.7). Let m > 0,
0 < p, q < m. Let

sm(p+j}θ sm(q+j)Θ π
δj(p9 q; m) = -r— — — — - - — — , 0 < j < m , 0 = -.

sιn/0 sm(p + q +j)θ m

We then have the following congruence with the understanding that: the index j is to
skip over the cases, — p, — q, — p — q mod m; and δa^b is the Kronecker delta
modm:

We note that the number (1 — djp}) lies in R — {0, 1} after we exclude the excep-
tional cases. It is easy to see that sin(x -f p)θ/smx is strictly decreasing in x. Thus,
δj(p, q; m) can be negative. In general, it is necessary to use the defining properties
(4.3)-(4.7) of Lps in order to express the congruence in terms of L. If we use Lemma
5.4, it is easy to see that:

smpθ smqθ

In the case of p = q = 1, the right-hand side is strictly between 0 and 1 so that (4.4)
and (4.7) recover the congruence in Theorem 5.7. However, for general, p, q, we do
not have a good way to determine the "integral ambiguity" implicit in lifting the
congruence to an identity. This resembles the classical treatment of Gauss' treat-
ment of Gauss' quadratic reciprocity theorem in number theory via the use of
Gauss' sums.

Remark 5.10. In Theorem 5.7, the rational numbers, (2k — 2)/(2k + 1), are the
"so-called" effective central charge of the (2, 2k 4- 1) Virasoro minimal model.
Similarly, the rational number 3//(/ + 2) is the central charge of the level
f y4[1 )WZW model. Both are models in conformal field theory. In our present
setting, they are identified as specific values of the evaluation of the
Cheeger-Chern-Simons characteristic class on the third integral homology of the
universal covering group PSL(2, R) of PSL(2, R) (viewed as a discrete group).
These homology classes are the lifts of the torsion classes for PSL(2, R).

In the recent work of Kirillov [K] concerning a conjecture of Nahm on the
spectrum of rational conformal field theory [NRT], the following abelian subgroup
W of Q was considered:

W = Σ nfL(α()/i(l)l n, e Z, α, € R ' n Q .
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From our discussion, it is clear that W contains both 1 as well as — 1/m mod Z for
every positive integer m. Thus, W is simply Q. In the conjecture of Nahm, one is
more concerned with the set of effective central charges and nt is assumed to be
non-negative. This subset is closed under addition because one can form a tensor
product of models. Our discussion only pins down the fractional part of such
central charges while the integral parts apparently spread the central charges out in
a way that resembled the volume distribution of hyperbolic 3-manifolds. In the
present approach, these effective central charges are volumes of certain 3-cycles in
a totally different space - the compactification of the universal covering group of
PSL(2, R). These 3-cycles can be viewed as "orbifolds" since they arise from the
finite cyclic subgroups of SL(2, R). It should also be noted that the central charge of
the Virasoro algebra is the value of a degree two cohomology class while our
description is on the level of degree three group cohomology, but for the Lie group
viewed as a discrete group. The precise relation between these cohomologies is not
too well understood. On the level of classifying spaces of topological groups, there
is the well known conjecture, see [M] and [FM]:

Conjecture of Friedlander-Milnor. Let G be any Lie group and let p be a prime. Then
Hi(BGδ, Zp) -+ Ht(BG, Zp) is an isomorphism (it is known to be surjective).

6. The "Beta Map" and Various Conjectures

In the work of Nahm-Recknagel-Terhoeven, [NRT], speculations were made
about the relevance of algebraic K-theory, Bloch groups [Bl], geometry of hyper-
bolic 3-manifolds, [Th], as well as the "physical meaning" of a "beta map." To
some extent, we have clarified the first three of these. Namely, the connection
between the effective central charge in rational conformal field theory with alge-
braic K-theory and Bloch groups, [Bl], can be made by way of the second
characteristic class of Cheeger-Chern-Simons and its interpretation via volume
calculation in the universal covering group space of PSL(2, R). Specifically, it is
not connected with the volume calculation in hyperbolic 3-space. (Note: According
to Thurston's work, [Th], volume of hyperbolic 3-manifolds is a topological
invariant.) Roughly speaking, the difference rests with a missing factor of ( — 1)1/2.
We next clarify the "beta map." In terms of diagram (4.2), the "beta map"
is denoted by:

Λ 2 :P(R)^Λ Z

2 (R X ) , <*2([[r]]) = r Λ (r - 1), r > l . (6.1)

d2 arises as the second differential in a spectral sequence. It is defined by solving
a "descent equation." This is typical of the higher differential maps in a spectral
sequence. The exactness of the rows in (4.2) showed that ker d2 = im σ. If we move
up to the level of PS(R), it is then clear that the vanishing of the d2-invariant
characterizes the elements of H3(PSL(2, R), Z). The origin of d2 comes from
the Dehn invariant in Euclidean 3-space. In 1900, Dehn used it to solve Hubert's
Third Problem and extended it to hyperbolic and spherical 3-space, see [DS2].
By working with P(C), see [DS1] and [DPS], d2 then incorporates both versions
of the Dehn invariants. In the present case, we would interpret d2 in terms of
"ideal polyhedra" in S. As pointed out in [PS], the following conjecture is
still open:
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Conjecture 6.2. Lps: H3(PSL(2, R)~ Z) -> R is injective.

We already mentioned the following conjecture along this line:

Conjecture 6.3. H3(PSL(2, Ralg)~ Z) -» H3(PSL(2, R)~ Z) is bijectiυe.

The preceding conjecture is a special case of the more general "folklore" conjecture:

Conjecture 6.4. H3(SL(2, Calg), Z) -> H3(SL(2, C), Z) is bίjective.

More precisely, Conjecture 6.3 is equivalent to any of the corresponding conjec-
tures for a nontrivial quotient group of PSL(2, R), for example PSL(2, R).
H3(SL(2, R), Z) is known to be isomorphic to the fixed point set of H3(SL(2, C), Z),
see [Sa3]. The map in Conjecture 6.4 is known to be injective, see [Su2]. Thus
Conjectures 6.3 and 6.4 would follow from:

Conjecture 6.5. H3(SL(2, Calg), Z) -» H3(SL(2, C), Z) is surjectiυe.

It should be mentioned that the map H3(SU(2), Z) -> H3(SL(2, C), Z) has image
equal to the image of H3(SL(2, R), Z). In this connection, we have:

Conjecture 6.6. H3(SU(2), Z) -> H3(SL(2, C), Z) is injective.

Conjecture 6.7. c2: H3(SL(2, C), Z) -> C/Z is injective.

Conjecture 6.7 is equivalent to the conjunction of Conjecture 6.6 and the converse
of the Hubert's Third Problem for hyperbolic as well as spherical polytopes in
dimension 3. Namely, the Dehn invariant together with volume detect the scissors
congruence classes of such polytopes. The Euclidean case was solved by
Dehn-Sydler, see [DS2] for discussions. The best result in this direction is the
theorem of Borel, [Bo]:

BorePs Theorem. Suppose c is non-zero in H3(SL(2, Calg), Z), then c2(τ(c)) is non-
zero for a suitable automorphism τ of C.

We note that an illustration of the idea behind BoreΓs Theorem was the proof
given in [PS] that H3(SL(2, Calg), Z) contains a rational vector space of infinite
dimension. Recall, we consider a real algebra number rp satisfying the equation
Xp — X + 1 = 0,p an odd prime. d2({rp}) is therefore 0 and [[rj] then defines an
element of H3(SL(2, Ralg), Z). Since Lps is strictly monotone, there is no problem
showing that we have distinct elements. However, it is not obvious that these
elements are Q-linearly independent. This stronger statement was a combination of
Galois theory together with the use of the hyperbolic volume.

7. Concluding Remarks

In the present work, we showed that the effective central charges for certain models
in conformal field theory can be connected to the evaluation of a real valued
cohomology class on a suitable degree 3 homology class for the integral group
homology of the universal covering group PSL(2, R) of PSL(2, R). The important
point is that we have replaced the usual topology by the discrete topology. In
addition, instead of the hyperbolic 3-space, we use the group space of this universal
covering group. The particular homology clas is a suitable lift of a homology class
of finite order that generates the third integral homology of a finite cyclic subgroup
of PSL(2, R). The lift is connected with the Rogers' dilogarithm identities due to
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Richmond-Szekeres [RS] and Kirillov-Reshetikhin [KR]. The latter is equivalent
to an identity found earlier by Lewin [LI, (5.117); L2, p. 19]; the equivalence is in
exact parallel to the fact that Rogers' identity is equivalent to an earlier identity
found by Abel, see the authoritative historical accounts in Lewin [LI, p. 8-18; L2,
p. 1-25]. All these identities are shown to originate from the basic identities found
by Rogers [R]. Our route ends in the central charge identification but there are no
firm connections between any of the intermediate steps followed by us with the
intermediate steps used in solvable moels in conformal field theory. A casual
reading of [BPZ] and [Z2] does show that many appearances of cross-ratios.
However, instead of the complex numbers or the real numbers, we see meromor-
phic functions. This is also the basic theme in the work of Bloch [Bl]. On the
mathematical side, there are efforts to build up enormous structures to explain the
steps on the physics side. Our present effort does not do this. In particular, attempts
have been made to relate the various identities directly with torsion elements in
algebra K3 groups of the complex numbers, see [G]. Apparently, it has not been as
successful since the intermediate step of group homology appears to be essential in
our present state of understanding.

Another of the principal points in the present work is the fact that Rogers'
dilogarithm has long been known to be connected with the second
Cheeger-Chern-Simons characteristic class which is represented by the
Chern-Simons form that appears in many current theoretical physics investiga-
tions. This connection is related to the interplay between the "continuous" picture
and the "discrete" picture. On the mathematical side, we have a direct map on the
level of classifying spaces for groups equipped with two topologies: one discrete, the
other continuous. The map is the one that goes from the discrete to the continuous.
On the physics side, the passage from the discrete to the continuous is a subject of
debate since there does not appear to be a specific map from the discrete to the
continuous (in the mathematical sense). However, there are still a large number of
unresolved issues on the mathematical side. For example, the Virasoro algebra is
typically viewed as the algebraic substitute for the diffeomorphism group of the
circle. (More precisely, it may be viewed as the "pseudo-group" of holomorphic
maps on the sphere with two punctures.) This contains PSL(2, R) which acts as
a diffeomorphism group of the circle through the identification of the circle with
F^R). Our procedure replaces these infinite dimensional (pseudo-) groups by the
finite dimensional subgroups. However, it is also accompanied by the use of the
discrete topology. Although the process of playing off one topology against
another is familiar in foliation theory, it is not explored in the present work.

In passing, we would like to indicate that Rogers' dilogarithm has appeared in
various related works on the physics side. Aside from the work [BR] that led
Bazhanov to ask one of us (CHS) about the connection between [BR] and [PS] in
the summer 1987, there are the earlier works of Zamolodchikov [Z2] and Baxter
[B]. Specifically, in the appendix of [B], Rogers' dilogarithm appeared. This has
been extended recently in [BB] where they have shown that the 3-d models of
Zamolodchikov can be related to the earlier 2-d chiral Potts models considered in
[AMPTY, MPST, and BPA] after suitable generalizations. On the mathematics
side, Atiyah and Murray [A] have identified the algebraic curves in [BPA] and
[MPST] as the spectral curves of N magnetic monopoles arranged cyclically
around an axis in hyperbolic 3-space. In view of the fact that our present work
indicates that the group manifold PSL(2, R) is more appropriate than the
hyperbolic 3-space, one cannot help but ask if there might be an interesting
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mathematical theory of monopoles in PSL(2, R). Evidently, the present work raises
many more questions than it answers.
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