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Abstract: Recently, Rogers’ dilogarithm identities have attracted much attention in
the setting of conformal field theory as well as lattice model calculations. One of the
connecting threads is an identity of Richmond-Szekeres that appeared in the
computation of central charges in conformal field theory. We show that the
Richmond-Szekeres identity and its extension by Kirillov—Reshetikhin (equivalent
to an identity found earlier by Lewin) can be interpreted as a lift of a generator of
the third integral homology of a finite cyclic subgroup sitting inside the projective
special linear group of all 2 x2 real matrices viewed as a discrete group. This
connection allows us to clarify a few of the assertions and conjectures stated in the
work of Nahm—-Recknagel-Terhoven concerning the role of algebraic K-theory
and Thurston’s program on hyperbolic 3-manifolds. Specifically, it is not related to
hyperbolic 3-manifolds as suggested but is more appropriately related to the group
manifold of the universal covering group of the projective special linear group of all
2 x 2 real matrices viewed as a topological group. This also resolves the weaker
version of the conjecture as formulated by Kirillov. We end with a summary of
a number of open conjectures on the mathematical side.

0. Introduction

Very recently, much has been written about the Rogers’ dilogarithm identities and
its role in conformal field theory, see [BR, KKMM, FS, K, KR, KP, KN, KNS,
NRT]. For an excellent general survey for mathematicians concerning hyper-
geometric functions algebraic K-theory, algebraic geometry and conformal field
theory, see [ V] and its extensive section of references. For a recent review from the
physics side, see [DKKMM]. In the present work, we limit our attention to the
special case of dilogarithm identities. In spirit, it fits into the program surveyed by
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Varchenko [V]. Some, though not all, of the relevant calculations have been
carried out on both sides of the fence. Conjectures abound even in this case. Most
of our task consists of pulling together items that are scattered in the literature in
various forms. The new ingredient is to give a direct interpretation in terms of
group homology to account for the Richmond-Szekeres identity, see [RS], and its
extension by Kirillov—Reshetikhin, see [KR, 11, (2.33) and Appendix 2], see also
Lewin [L1, (5.117) and (5.119) and L2, p. 19-20]. What we show is that the basic
identities are those found by Rogers in [R]. Rogers’ dilogarithm function then
leads to a real valued cohomology class defined on the third integral homology of
the universal covering group of PSL(2, R), viewed as a discrete group. The Rich-
mond-Szekeres identity, see [RS and L1, (5.119)], and the Kirillov—Reshetikhin (or
the equivalent Lewin) identities, see [KR 11, (2.33) and Appendix 2; L1, (5.117)], are
the reesults of restricting the evaluation of this cohomology class (the real part of
the second Cheeger—Chern—Simons class) to the inverse image of a suitable homol-
ogy class that covered the generator of a suitable finite cyclic subgroup. This will
then provide partial clarification of some of the assertions and conjectures made by
Nahm-Recknagel-Terhoven [NRT] related to algebraic K-theory [B1] and Thur-
ston’s program on hyperbolic 3-manifolds, [Th]. Specifically, we show that it is
more appropriately related to the group manifold underlying the universal cover-
ing group of PSL(2, R).

1. Rogers’ Dilogarithm

Rogers’ dilogarithm (also called Rogers’ L-function) was defined in [R]:

L(x) = —1{} log x dx + ’f_____log(lx— x)dx}

2 {pl—x 0

=Y g—:+%-(logx)°(log(1 —-x)), 0<x<1. (1.1)

n>0
L(x) is real analytic, strictly increasing and lim,_, ; L(x) = n%/6.
Rogers showed that L satisfied the following two basic identities:

L)+ L(1—x)=7%6, 0<x<1, (1.2)

L(x)+L(y)=L(xy)+L<x"‘y>+L(y"‘y), O<xy<l. (13)
1—xy 1 —xy

If we use (1.2), take s, = (1 — x)/(1 — xy) and s, = y(1 — x)/(1 — xy) so that

y=5,/sy and x = (1 — s1)/(1 — 5,) with 0 < s, < s; < 1, then (1.3) is seen to be
equivalent to:

1 — -1 1 — 2

L(Sl)_L(SZ)+L S_2 - L —Sl_l +L o1 =£‘, 0<52<Sl<1‘
Sy 1—52 ]—Sz 6

(1.4)
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If we set r; = s; !, and define L(r) = — L(r~ ') for r > 1, then (1.4) can be rewritten
in the form:
-1 1—ry!t 2
L) — L)+ L{2)—o(2== )+ (-2 ) =2 1<rn<r,.
ri ry—1 1—r; 6
(1.5)
Motivated by [DS1], Rogers’ dilogarithm was shifted in [PS] to:
LBS(x)=L(x)—n?/6= —L(1—x), 0<x<1. (1.6)
If we replace L by LS throughout, then (1.2) and (1.4) become:
LPS(x) + L1 — x) = — n?/6, (1.7
1—x1! 1—
L) — L) + L () — s (- =X ) s (-5 ) =0, 0<y<x<1.
X 1—y 1—y
(L.8)

A huge number of identities have been found in connection with Rogers’
dilogarithm, see [L1]. The situation is somewhat similar, and is often, related to
trigonometry, where the basic identities are the two additional formulae for the sine
and cosine function, which are just the coordinate description of the group law for
SO(2) or U(1). This analogy can be made more precise. Namely, U(1), more
appropriately, GL(1, C) =~ C* is just the first Cheeger—Chern—Simons character-
istic class in disguise. This is well-known and tends to be overlooked.
Richmond-Szekeres [RS] obtained the following identity (in a slightly different
form) from evaluating the coefficients of certain Rogers-Ramanujan partition
identities as generalized by Andrews—Gordon, cf. [L1; (5.119) and L2; p. 19]:

n’ 2r sin?6 T
Lid)=""52, dj=—m——r, O0=5—. 1.9
1:_<_zi:§r @) 6 2r+3 ! sin?(j + 1)0 2r+3 (1.9)
This has been extended by Kirillov—Reshetikhin [KR], cf. [L1; (5.117)], to:
n* 3(n—2) sin®0 7
L(dj)=—* = f=—. 1.10
léjgn—Z @)= 7 sin?(j + 1O’ n (1.10)

Apparently, identity (1.9) arose in the study of low-temperature asymptotics of
entropy in the RSOS-models, see [ABF, BR, and KP] while (1.10) arose in the
calculation of magnetic susceptibility in the XXZ model at small magnetic field, see
[KR]. They are connected to conformal field theory in terms of the identification of
the right-hand sides as the central charges of the non-unitary Virasoro minimal
model and with the level £ A"’ WZW model respectively, see [BPZ, Z2, K, KN,
KNS, DKKMM, KKMM, Te],. . .. Our goal is to show that these identities can
be understood in terms of the evaluation of a Cheeger—Chern—Simons character-
istic class on a generator of the third integral homology of a finite cyclic group of
order 2r + 3 and n respectively.

2. Geometry and Algebra of Volume Calculations

In any sort of volume computation, the volume is additive with respect to division
of the domain into a finite number of admissible pieces. Depending on the
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coordinates used to describe the domain, the volume function must then satisfy
some sort of “functional equation.” This is the geometric content behind the
Rogers’ dilogarithm identity. The geometric aspect was described in [D1] while
some of the relevant algebraic manipulations were carried out in [PS] (up to some
sign factors that only became important in [D1]). To get a precise description, it is
necessary to examine [DS1, DPS and Sa3]. These involved use of algebraic K-
theory. We review the ideas and results but omit the technical details.

To begin the review, we recall the definition of some commutative groups
(called the “scissors congruence groups”, cf. [DPS]). Let F denote a division ring
(we are only interested in three classical cases: R = real number, C = complex
numbers, H = quaternions). The abelian group P is generated by symbols: [x],
x in F, x & 0, 1 and satisfies the following identity for x =+ y:

[xyx~ '] = [y], (this is automatic for fields) , (2.1a)
] =D+ Dyl =[x =1y —1)]
+[x =Dy t=1]=0. (2.1b)

This group was studied in [DS1] for the case of F = C. It is closely related to, but
not identical to, the Bloch group that was studied in [B1]. A second abelian group
P(F) is defined by using generating symbols [[x]], x in F — {0,1}, with defining
relations:

same as (2.1) with [[z]] in place of [=] , (2.2)
[x11+[[x"'11=0, (23)
[[x1] + L[l — x]] = cons(F) (depending on F) . (2.4)

The following result can be found in [DPS]:
0->F*/(F*)? > Pg— P(F)> Oisexactfor F=R,C,H. (2.5)

The first map in (2.5) is defined by sending x in F — {0, 1} to [x] + [x~']. The
second map then sends [x] to [[x]]. In particular, when F = C, we may set
[x]=0for x = o0, 0,1 and remove the restriction x = y in (2.1) by adopting the
convention: meaningless symbols are taken to be zero, see [DS1]. For the division
ring H, we observe that every element of H is conjugate to an element of C, thus
P(H) is quotient of P(C).

The geometric content of (2.1b) is best seen by thinking in terms of a Euclidean
picture. Suppose we have 5 points in Euclidean 3-space so that p,;, p,, p; form
a horizontal triangle while p, p, are respectively above and below the triangle. The
convex closure is divided by the triangle into two tetrahedra and also divided into
three tetrahedra by the line joining p, and p4, see (Fig. 1). Thus, if any function of
a tetrahedron is additive with respect to finite decompositions, it would follow from
(Fig. 1) that there should be a 5 term identity to be satisfied by such a function.

We examine the special case of F = C. Here Pc = P(C) is known to be
a Q-vector space of continuum dimension, see [DS1]. It is best to consider the
( — 1)-eigenspace P(C)~ of P(C) under the action of complex conjugation. It is
classically known that the projective line P*(C) can be viewed as the boundary of
the hyperbolic 3-space. An ordered set of 4 non-coplanar points on P*(C) (in terms
of the extended hyperbolic 3-space) determines a unique ideal (or totally asymp-
totic) tetrahedron of finite invariant volume (by using the constant negative
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Fig. 1. Dividing a polytope in two different ways

curvature of hyperbolic 3-space). Since the orientation preserving isometry group is
PSL(2, C), we can take 3 of the 4 vertices to be o0, 0, 1 the 4'* point is then defined
to be the “cross-ratio” of the 4 distinct points (Which may determine a degenerate
tetrahedron when they are coplanar). Equation (2.1b) is the result of taking
5 distinct points: o0, 0, 1, x and y as pictured in (Fig. 1). For a general division ring
F, Pr merely formalizes the discussion. The difference between P(F) and
Py amounts to permitting some of the vertices to be duplicated. Equations (2.3) and
(2.4) express the fact that oriented volume changes sign when the exchange of two
vertices reverses the orientation. The equality Pc = P(C) simply means that the
introduction of degenerate tetrahedra with duplicated vertices does not make any
difference (it does make a difference in the case of F = R). With (2.3) in place, it is
now evident that (1.7) and (1.8) are directly related to (2.4) and (2.1b). The problem
is that our explanation so far is based on F = C while L? dealt with F = R.
This will be reviewed in the next section. It should be noted that the volume
calculation makes perfectly good sense for tetrahedra with vertices in the finite part
of the hyperbolic 3-space. It is known that any such tetrahedron can be written in
many different ways as a sum and difference of ideal tetrahedra, see [DS1].
A general volume formula for a tetrahedron is quite complicated. However, the
volume of an ideal tetrahedron is quite simple. It is given by the imaginary part of
the complexified Rogers dilogarithm function (up to normalization) evaluated at
the cross-ratio.

We end the present section by giving the structures and inter-relations of the
groups P(F), F = R, C,H with R « C < H: (The details can be found in [DPS]
and [Sa3].)

P(C)=P(C)" ®P(C)" . (2.6)
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This is a Q-vector space direct sum in terms of its =+ 1 eigenspaces under the action
of complex conjugation. Both summands have continuum dimension.

0 - Q/Z - P(R) » P(C)* —» AZ(R/Z) > 0 is exact . (2.7)
P(R) is the direct sum of Q/Z and a Q-vector space of continuum dimension,
P(C)* — P(H) - 0 is exact and P(H) ~ AZ(R*). (2.8)

The group P(C)™ is the “scissors congruence group” in hyperbolic 3-space, see
[DS1]. The kernel of the homomorphism in (2.8) is related to the “scissors
congruence group modulo decomposables” in spherical 3-space and is conjec-
turally equal to it, see [DPS]. These results depend on algebraic K-theory and use,
in particular, a special case of Suslin’s celebrated solution of the conjecture of
Lichtenbaum—Quillen, see [Su2].

3. Rogers’ Dilogarithm and Characteristic Classes

As reviewed in the preceding sections, there is a formal resemblance between the
Rogers’ dilogarithm identities and volume calculation in hyperbolic 3-space. How-
ever, the underlying space is quite different. The explanations were carried out in
[D1]. For the convenience of the reader, we review the results. The relevant
characteristic class is that of the Cheeger—Chern—Simons characteristic class ¢,
which lies in the third cohomology of SL(2, C) viewed as a discrete group and
where the coefficients lie in C/Z. In general, one has &, which lies in the (2n — 1)®
cohomology group of GL(m, C), m = n, viewed as a discrete group, where the
coefficients lie in C/Z. The standard mathematical notation for this cohomology
group is H*"~! (BGL(m, C)°, C/Z), this is the group cohomology where GL(m, C)
is given the discrete topology (the superscript d emphasizes this fact). ¢; is nothing
more than the determinant map with kernel SL (m, C). With the replacement of GL
by SL, é; becomes 0. The replacement of GL(m, C) by GL(n, C) arises from
homological stability theorems, see [Sul] (a simplified version can be found in
[Sa2]). In general, ¢, is conjectured to be connected to the n-polylogarithm, see
[D2 and D3]. Although we are only interested in é,, we will state the results for
general n. The construction arises by starting with the Chern form ¢, (a 2n-form)
which represents an integral cohomology class of the classifying space BGL(n, C),
where GL(n, C) is now given the usual topology. Since we have replaced the usual
topology by the discrete topology (this amounts to “zero curvature conditions”), it
follows from Chern—Weil theory (where closed forms are viewed as complex
cohomology classes) that ¢, can be written as the differential of a (2n — 1)-form, (for
n = 2 this is the Chern—Simons form that appears ubiquitously in physics). When
the coefficients are taken in C/Z, this (2n — 1)-form is closed and leads to the class
¢, in H*""1(BGL(n, C)°, C/Z) through the exact sequence:

0-Z->C->C/Z-0. (3.1)
We now concentrate on n = 2. If we take the coefficients to be C/Z, then the

characteristic class ¢, has a purely imaginary part and a real part. The purely
imaginary part has values in R and is related to volume calculation in hyperbolic
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3-space while the real part lies in R/Z and is related to volume calculation
in spherical 3-space. These volume calculations are classically known to
involve the dilogarithm function. See [C] for the details related to the work
of Lobatchevskii and Schlifli respectively. The integer ambiguity in the spherical
case arises from the fact that a large tetrahedron can be viewed as a small
tetrahedron on the “back side” of the sphere with a reversed orientation. Thus its
volume is only unique up to an integer multiple of the total volume of the spherical
3-space.

For the Rogers’ dilogarithm, the space is actually the group-space S of the
universal covering group PSL(2,R). The task of defining a tetrahedron and
calculating its volume becomes more delicate. If we select a base point p in S, then
any point_can be written as g(p) for a uniquely determined group element g of
PSL(2, R). We first define a left invariant “geodesic” in the group that joins 1 to
g (this definition is asymmetric). This can be accomplished by exponentiating
a Cartan decomposition of the Lie algebra of PSL(2, R). In essence, we coordinate
PSL(2, R) by R x H2, where H? denotes the hyperbolic plane. Inductively, we can
than define a “geodesic cone” for any ordered set of n + 1 points, n = 0, see (Fig. 2).
This is similar to [GM] where Rogers dilogarithm appeared in terms of volumes in
Grassmann manifolds of 2-planes in R*. Our interpretation is dual to [GM] since
the transpose of a 4 x2 matrix is a 2 x4 matrix. Namely, for the ordered set
(pos - - - » Pn), the cone is the collection of all points on the “geodesics” from p, to the
“geodesic cone” inductively defined for (py, . . ., p,). For the definition of volume
(n = 3), the next step is to show that it is enough to consider the case where the
4 vertices are close to each other. In fact, in terms of the Cartan coordinates of the
group elements, one may assume that the f-coordinates are strictly positive and
small (this involves changing by a boundary which causes no problem because the
volume is obtained by evaluating a 3-cocycle on the chain, in essence we invoke
Stokes’ Theorem). We next form the boundary R x 0H?, where dH? = P!(R) is the
projective line over the real numbers (which can be identified with { — c0} U R by
using the slopes in the right half plane as in [PS]). At this point, we begin to mimic
the hyperbolic 3-space and move p continuously towards {0} x P!(R) (this amounts
to right multiplication). When p lands on {0} x P*(R), so will all four vertices so
that we have the analog of an ideal hyperbolic tetrahedron. The volume (up to
a normalizing factor) is just the value of the Rogers dilogarithm evaluated on the
“cross ratio” of the ordered set of vertices viewed as points of P1(R) (adjustments

Po Q,

Fig. 2. Ordered “geodesic triangles”






