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Abstract: A complete classification of the physical modular invariant partition
functions for the WZNW models is known for very few affine algebras and levels,
the most significant being all levels of SU(2), and level 1 of all simple algebras. In
this paper we solve the classification problem for S U (3) modular invariant parti-
tion functions, all levels. Our approach will also be applicable to other affine Lie
algebras, and we include some preliminary work in that direction, including
a sketch of a new proof for SU(2).

1. Introduction

The classification of all rational conformal field theories (RCFTs) is clearly a desir-
able pursuit. In spite of tremendous progress in our understanding of RCFTs, we
still find ourselves far from our ultimate goal. The problem can be somewhat
simplified by focusing on the building blocks, the Wess-Zumino-Novikov-Witten
(WZNW) models [41, 28, 16] associated with simple Lie algebras. Unfortunately,
a full classification of even these models is still lacking. Only in the special cases of
Sl/(2)k [6, 23,15] and level 1 for all simple affine algebras [19, 9,11] has a list of
physical modular invariant partition functions been proven to be complete. The
generalization of these proofs to higher ranks and levels has been plagued with
difficulties due to the explosively increasing numbers of non-physical modular
invariants. In this article we attempt to develop the tools necessary for this
generalization, and successfully apply the new technique to SU(3)k.

The partition function of a WZNW conformal field theory associated with
affine Lie algebra (= current Lie algebra on S1) [20, 25, 3] g and level k can be
written as

χk

λ is the normalized character [21] of the representation of g with (horizontal)
highest weight λ and level /c; it is a function of a complex vector z and a complex
number τ. The algebra g is the untwisted affine extension #(1) of a simple Lie
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algebra g (this extends in the obvious way to semi-simple algebras). The (finite) sum
in Eq. (1.1) is over the horizontal highest weights AL, λR of level k.

There are three properties the sum in Eq. (1.1) must satisfy in order to be
interpreted as the partition function of a physically sensible conformal field theory:

(PI) modular ίnvarίance. This is equivalent to the two conditions:

Z(zLzR\τ+l) = Z(zLzR\τ)9 (1.2a)

exp[- kπί(z2

L/τ - zf/τ*)]Z(zL/τ, zR/τ\ - 1/τ) = Z(zLzR\τ); (1.2b)

(P2) posίtίvίty and integrality. The coefficients N^LχR in Eq. (1.1) must be non-
negative integers; and

(P3) uniqueness of vacuum, λ = 0 is a possible highest weight vector, for any g and
k. We must have NQQ = 1 (in the following sections we will change notations
slightly, and this will become Npp = 1).

We will call any modular invariant function Z of the form (1.1), an invariant.
Z will be called positive if in addition each N^R ^ 0, and physical if it satisfies (PI),
(P2), and (P3). Our task is to find all physical invariants corresponding to each
algebra g and level k.

An invariant satisfying (PI), (P2) and (P3) is still not necessarily the partition
function of a conformal field theory obeying duality and CPT-invariance. If it is, we
will call it strongly physical. These are the invariants of interest to physics. We will
discuss the additional properties satisfied by strongly physical invariants (most
importantly, that they become automorphism invariants when written in terms of
the characters of their maximal chiral algebras) at the beginning of Sect. 5.

Much work has been done over the past few years on finding these physical
invariants. But there has been comparatively little progress in the task of determin-
ing all physical invariants belonging to certain choices of g and k: all physical
invariants for g = Al are known, for any level k [6, 23, 15]; all level 1 physical
invariants have been found for simple g - namely, g = An [19, 9], and g = Bnί Cn,
A*> £β,7,8> F4, G2 [11]; and all A2 level k ones are known when k + 3 is prime [33]
(this work has recently been extended - see the Note at the end of this paper). Some
work in classifying the heterotic physical invariants has also been done [12].

Unfortunately, enough simplifications apply to the level 1 cases, and to the A±
case, to make it unclear how to extend those arguments to more general cases. In
this paper we will focus on the case g = A2, although our primary interest lies in
developing tools applicable to other algebras (see Sect. 6). There are several known
physical invariants for A2 [7, 26]. These will be given in Eqs. (2.7). The question this
paper addresses is the completeness of this list. Two results in this direction are
already known: the list is complete for k + 3 prime [33]; the list is complete for
k ^ 32 [18].

In Sect. 2 we will introduce the notation and terminology used in the later
sections, and sketch the strategy taken. Section 3 will find all permutation invariants
(see Eq. (3.1)) of A2, for each level. In Sect. 4 we find, for each /c, a list of weights
λ for which NQ], can be non-zero for some level k physical invariant N; this list
shows, among other things, that the only A2 physical invariants for k = 2, 4, 7, 8,
10, 11 (mod 12) are permutation invariants. Thus Sects. 3 and 4 succeed in finding
all A2 physical invariants for those levels. In Sect. 5 we complete the classification
for the remaining levels (except for the levels 3, 5, 6, 9, 12, 15 and 21, which we
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avoided because of extra complications arising at those fc), but to do this we need to
impose further physical conditions (namely, the duality and unitarity of the
underlying conformal field theory) so that the powerful analysis of [26] can be
applied - we find all A2 strongly physical invariants for those levels. Together with
[18] this concludes the A2 classification problem. In the final section we investigate
how well this approach extends to other algebras. The appendix includes a detailed
sketch of how this approach applies to A{.

The key advantage the approach developed in this paper has over previous
approaches is that explicit construction of the commutant is avoided, and positiv-
ity is imposed from the beginning. This significantly simplifies the analysis re-
quired.

The only remaining question for the A2 classification problem is to see if our
proof, which found all physical invariants for half the levels and all strongly physical
ones for the other half, can be strengthened so as to find all physical ones for all
levels - although all assumptions we have imposed are physically valid, it would be
nice to reduce these to the smallest number possible. A more interesting and
important question is to find other algebras which can be handled by analogous
methods.

2. Terminology and Sketch of Proof

Before we begin the main body of this paper, it is necessary to introduce some
notation and terminology. For a much more complete description of the rich
theory of Kac-Moody algebras, see e.g. [21, 17, 22]. We will restrict attention here
to the algebra g = A2, but similar comments hold for the other algebras. The few
facts about lattices which we need are included in e.g. [8].

The root = coroot lattice of g = A2 is also called A2. Let βl9 β2 denote the
fundamental weights of A2, and write p = βι + β2; βι and β2 span the dual lattice
A2 of A2. Throughout this paper we will identify the weight λ = mβl -f nβ2 with its
Dynkin labels (m, n).

An integrable irreducible representation of the affine Lie algebra g = A(

2

} is
given by a positive integer k (called the level) and a highest weight λeA2. The set of
all possible highest weights corresponding to level k representations is

p\ dJf {mjg1 + nβ21 m, rceZ, 0 ̂  m, n, m + n ̂  k} . (2.la)

We will find it more convenient to use instead the related set

Pk = p/c + 3 def |mjSι + n/?2 |m> neZ> o < m, n, m + n < fc + 3} . (2.1b)

Clearly, Pk = Pk+ + p, and pePk. For the remainder of this paper, the character
corresponding to the level k representation with highest weight
λ = mβl + nβ2ePk+ will be denoted

v ΐ — v f c

Λ,λ + p — Λ m + l , n + 1

The trivial representation of level fc, which is given by highest weight λ = 0,
corresponds then to the character χk

p = χk

il9 and (P3) becomes Nlifll = 1.
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Let ά0, ά1 ? &2 be the simple roots of A2. The 6 outer automorphisms of A2

are generated by h (order 2) and ω (order 3), where /ι(α0) = α0, M$ι) =
ά 2,Mα 2) = α1, and ω(ά0) = άi, co(όtι) = &2> ω(ά2) = άo On the weights
(m, n)ePk these become

/z(m, n) = (n, m) , (2.2a)

ω(m, n) = (fc + 3 - m - n, m) . (2.2b)

Note that ω2(m, w) = (n, fe + 3 — m — n). We will be encountering h and
ω throughout the paper.

The Weyl-Kac character formula gives us a convenient expression for the
character χ$:

where D(z\τ) Σ e(w)β - = + 3 A 2 ( 3 w ( z ) \ τ ) , (2.3b)

and Θ(v + Λ)(z\τ) ά= Σ exp[πrr(x + v)2 + 2πίz (x + t?)] . (2.3c)

Here, Wis the 6 element Weyl group of A2 and ε(w) = detwe{±l}. The variable
τeC satisfies Imτ > 0, and z = z1β1 -\- z2β2 is a complex vector. Unlike much of
the literature, we will retain z Φ 0, so an invariant here will usually be different from
its charge conjugate (2.7h).

By the commutant Ωk we mean the (complex) space of all functions

Z(zLzR\τ)= Σ ΛΓ^χ5(zL,τ)χJ'(zΛ,τ)* (2.4)
λ,λ'ePk

invariant under the modular group, i.e. those Z in (2.4) satisfying (PI). It is not
hard to show that two functions Z and Z' are equal iff their coefficient (or mass)
matrices N and N' are equal; we will use the invariant Z interchangeably with
its matrix N.

The functions χ\ behave quite nicely under the modular transformations
τ -> τ + 1 and τ -» — 1/τ:

χ ί ( z , τ + l ) = Σ (F(kV;d'(z,τ), where (2.5a)

i πi
L j= eχp| πί—-π -J^, (2.5b)

= ek(— m2 — mn — n2 + k + 3)5m,m-<5M j n- (2.5c)

χk

λ(z/τ, - 1/τ) = exp[/cπ/z2/τ] Σ (S(k>)u χ*>(z,τ), where (2.5d)

(2.5e), /-
(Jk + 3)73
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— ί
{ek(2mmf + mn' -h nm' + Inn'}

\

+ ek( — mm' — 2mn' — nn' + nm')

+ βfc(— mm' H- mn' — 2nm' — nn')

— ek( — 2mn' — mm' — nn' — 2nm')

— ek(2mm' + mn' -f nm' — nn')

— ek( — mm' H- mn' -f nm' + 2nn')} , (2.5f)

where in (2.5c, f) we have λ = mβ1 + nβ2, λ' = mfβ1 + n'β2 and the function ek is

[ o * ~I
— — . The matrices T(k} and S(k) are unitary and
3(/c + 3) J

symmetric.
Note that Z = £N;u'ώ;ί* eΩ* iff both

>) = N , (2.6a)

) - N . (2.6b)

Recall the outer automorphisms h and ω given in (2.2). The known physical
invariants of A2 are:

= Σ I x " l 2 > (2 7a)

= Σ X»..xS«— (»,»), for /c ^0 (mod 3) and /c ^4; (2.7b)
( m, n)ePk

= ^ Σ lΛ» + χU.-) + χU».-)l2. f o r / c = 0(mod3); (2.7c)
•̂  (m,n)eP k

m Ξ n(mod 3)

χf ; 4 | 2 + |χi,3 + z i . i l 2 (2.7d)

= l χ ? , ι + χ?.10 + χ?0 l l + χl> 5

d= |χ?.ι + χ?0 l l

(2.7e)

χ.* 2) (2.7f)



238 T. Gannon

p def
> 2 1 —

χf ί .2

+ 1*16,7 + X%16 + Xlβ.1 + UΛ6 + Ills + U\ί

+ xll.s + χi.1!! + *& + *& + x?,1: + xf.Sl 2 (2.7g)
together with their conjugations Zc under h, defined by:

= Σ JVmnxm-xLxmV, (2.7h)
λ,λ'ePk

where Z is given by (2.4). Note that ^3 = ̂ C

3, ^6 = ̂ C

6, <f(

9

1} = <ί(

9

1)c, and
<^2i = <^2i In the case of restricted characters χ(0, τ), Z = Zc.

Our goal is to prove that this list is complete: in particular we will prove

Theorem l(a). For fc = 2, 4, 7, 8, 10, 11 (mod 12), and k = 1, ίλe set of all physical
invariants for A2 is given by Eqs. (2.7);

l(b). For k = 0, 1, 3, 5, 6, 9 (mod 12), fc φ 3, 5, 6, 9, 12, 15, 21, the set of all
strongly physical invariants for A2 is given by Eqs. (2.7).

(The terms physical invariant and strongly physical invariant are defined in
Sect. 1.)

Two partial results are already known. In [33] this theorem is proven for fc + 3
prime. They accomplish this by very explicitly computing a basis for the commu-
tant, then finding all the positive invariants, and lastly imposing the uniqueness
condition J V l l f l ι = 1. Unfortunately this explicitness makes it very difficult to
apply their approach to more general fc. A second partial result is the computer
search in [18]. Using the Roberts-Terao- Warner lattice method [31, 40], it finds
a basis for the commutant for a given fc, and then imposes positivity and uniqueness
of the vacuum. The proof given in [11] that lattice partition functions span the
commutant guarantees the completeness of this search. In this way it has verified
that the list in Eqs. (2.7) is complete for all fc ̂  32 (it also applies this technique to
the three other rank 2 algebras). This program thus fills in all of the holes of
Theorem l(b).

The approach taken here is somewhat different.
Call an invariant p-decoupled if Nptλ = Nλyf) = 0 for all λ φ p. Hence such an

invariant can be written in the form

For example, the only p-decoupled invariants in Eqs. (2.7) are (2.7a, b) and their
conjugates. A valuable observation was made in [11] (see also [14, 26]):

Lemma 1. A p-decoupled physical invariant is a permutation invariant (defined in Eq.
(3.1) below).

All permutation invariants are found in the following section. In Sect. 4 we
proceed to show that for some levels, any physical invariant must be a permutation
invariant, thus proving Theorem 1 for those levels.

A second observation made in [11] (see also the Note at the end of this paper)
connects more directly with the lattice method of [31, 40]. First note the following:
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It is proven in [21] that for any λeA*, either

γ φ)θ (j^L + Jk + 3A2 }l D = 0 (2.8a)

holds identically (where Θ and D are defined in Eqs. (2.3c, b), respectively), or there
exists a w'e W and a λ'ePk such that λ = w ' ( λ ' ) (mod(/c -f 3)A2), and hence

6(w')χ*' . (2.8b)

By the parity ε(λ) of λ we mean ε(A) = 0 if (2.8a) holds, and ε(λ) = ε(w') if (2.8b)
does. When ε(λ) Φ 0, let [Λ,]k denote the (unique) weight λ' in (2.8b).

Now choose any λL, λRePk. We showed in [11], for each f relatively prime to
3(/c + 3), that e(SλL)ε(SλR) φ 0, and that for any level k invariant Z in (2.4),

NλlλR = ε(nL)ε(nR)N[aM,λR]k . (2.9)

We did this by first showing it for lattice partition functions, where it is obvious,
and then referring to the result that lattice partition functions span the commutant.
A similar derivation of (2.9) can be made using the construction in [4] (and general-
ized in [11]) of the Weyl-unfolded commutant.

Ύ relatively prime to 3(/c + 3)" is equivalent here (and in Lemma 2 below) to
the statement Ύ relatively prime to the order L of the vector (λL; λR) with respect to
the lattice ((k + 3)A2; (k + 3)A2)" - indeed that is how (2.9) is expressed in [11].
Examples of (2.9) for k = 5 and k = 9 are given in [11]. Of course, it also holds for
all other algebras. Equation (2.9) (as well as Lemma 2 below) is used in [18] to
eliminate "redundant" coefficients Nλλ>, and hence moderate memory problems. Its
main value for our purpose lies in its trivial consequence:

Lemma 2. Let λ,λ'ePk. If some £ relatively prime to 3(fc + 3) satisfies
= — 1, then N^^ = 0 for any positive invariant N.

The analogue of Lemma 2 holds for all algebras. Lemma 2 constitutes an
extremely strong constraint on which λ, λ' e Pk may couple - i.e. have Nχ>λ> Φ 0 - in
some positive invariant N. It hints that the space Ω + spanned by the positive
invariants of level k may have much smaller dimension than the full commutant Ωk

and so may be a much more convenient space to work with. Indeed, although the
dimension of the commutant Ωk goes to infinity with /c, dimΏ + = 4 for many
k [18]. Our approach involves using Lemma 2 to keep our analysis restricted as
much as possible to the space Ω +, instead of Ωk.

A final tool that we will mention here also holds for any positive invariant of
any algebra and level, and exploits the fact that the product NN' of two invariants
is also an invariant (this can be read off from Eqs. (2.6)). It is proved using the
Perron-Frobenius theory of non-negative matrices [29, 10, 24, 35], can be thought
of as a generalization of Theorem 4 in [11]. It will be used in Sect. 5 to significantly
restrict the possibilities for the coefficient matrix N of physical invariants.

Any matrix M can be written as a direct sum @iM{ of indecomposable blocks
Mf. By a non-negative matrix we mean a square matrix M with non-negative real
entries. Any such matrix has a non-negative real eigenvalue r = r(M) with the



240 T. Gannon

property that r ^ | s \ for all other (possibly complex) eigenvalues s of M. The
number r(M) has many nice properties, for example:

min £ My ̂  r(M) ^ max £ My , (2.10a)
' j l j

and if M is indecomposable, either equality holds iff each row sum £. My is equal;
and

maxMiigr(M), (2.10b)
ί

and if M is indecomposable and symmetric, equality happens in (2.10b) iff M is
a 1 x 1 matrix M = (Mn). Also, there is an eigenvector v with eigenvalue r whose
components v{ are all non-negative reals.

Lemma 3. Let Z = ̂  ^λλΊλlλ1 be a positive invariant, for any algebra and any level.
Write N as a direct sum of indecomposable blocks

N =

/N0 0 - 0 \

0 N1 ... 0
(2.10c)

\ 0 0 ... NL

where NQ is the block "containing" Npp. Then r(N^) ^ r(NQ) for all £. If in addition
N is a symmetric matrix, and if for all £ with r(N^) = r(N0) we have (N^)2 = c^N^
for some constant c/, then for each m, either r(Nm) = r(N0) or Nm = (0).

Proof. Suppose r(Λ/V ) > r ( N Q ) for /0>
 and choose any r satisfying

i ΐ \n

r(N0) <r < r(Nf0). Consider the limits as n -> oo of each I - N; 1 . It is easy to

show (e.g. using Jordan blocks) that if all eigenvalues λ of a matrix M have norm
/ I \n

I λ\ < 1, then the limit of M" is the 0-matrix. In particular, the limit of I - N0 J will

be 0. What happens to ί -.

Let v be an eigenvector of Λ^o with eigenvalue τy0 = r(Nt0), whose components
/ I \n

are non-negative reals. Then I - Λ//0 I v = (τγo/r)ntλ By positivity, this implies that

1 \"
- NSO I will have some arbitrarily large components as n increases.

/ I \n

The matrix I - N J will correspond to a positive invariant, for each n, and will

/ i V
be the direct sum of the blocks ( - N; I . Taking n sufficiently large, Eq. (5.2) of

[11] can now be used to give us a contradiction.
Thus r(ΛΓ,) ̂  r(JV0).
If N2 = m^Nf, then by the above argument r(N^) = m/. The remainder of the

proof is as in Theorem 4 of [11]. QED
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The conditions in the last sentence of the lemma can be weakened somewhat,
but this is all that we will need in this paper. A commonly occurring example of
a matrix M with the property M2 = mM is the n x n matrix

t

Mn.<= : |. (nod)

Here, r(MΛy) = m = /n.
The strategy adopted in this paper is three-fold.

Sect. 3 Find all permutation invariants for each level k. We accomplish this by
repeatedly exploiting the facts that this permutation must be a symmetry of
both S($ and the fusion rules N$v.

Sect. 4 For each fe, use Lemma 2 to find all weights λ e Pk which can couple to p in
some positive invariant N. The argument is elementary but tedious and
involves investigating several cases. There are surprisingly few such λ\ the
results are compiled in Lemma 4. There will always be at least one such
weight, namely p itself. When this is the only one, then Lemma 1 tells us
that any physical invariant of that level must necessarily be a permutation
invariant, and so must be on the list found in Sect. 3.

Sect. 5 The remaining levels, which have nontrivial p-couplings, must now be
considered. To do them, we use [26], together with Lemma 3, to write
down the characters of all possible maximal extensions of A2 consistent
with Lemma 4; if there are any such extensions, we then find their
symmetries by mimicking the argument of Sect. 3.

In this paper we only make use of Lemma 2 for λ' = p. It is quite possible that
apply it to other weights will permit us to avoid using [26] in Sect. 5, and so could
yield a classification proof for those levels which assumes only (PI), (P2), (P3),
instead of exploiting in addition the existence and properties of the maximally
extended chiral algebras of the theory. A more interesting possibility is to exploit
more of the rich algebraic structure of Ωk.

3. The Permutation Invariants

By a permutation invariant (sometimes called an automorphism invariant) we mean
an invariant of the form

Z= Xλώ, (3.1a)

for some permutation σ of Pk. In this section we will find all A2 permutation
invariants, for each fc. In particular, we will prove the following theorem:

Theorem 2. The only level k permutation invariants for A2 are J/Λ, stf\ for k =
0 (mod 3), and j/k, j/£, @k, @c

k for k φ 0 (mod 3).


