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Abstract: A complete classification of the physical modular invariant partition
functions for the WZNW models is known for very few affine algebras and levels,
the most significant being all levels of SU(2), and level 1 of all simple algebras. In
this paper we solve the classification problem for S U (3) modular invariant parti-
tion functions, all levels. Our approach will also be applicable to other affine Lie
algebras, and we include some preliminary work in that direction, including
a sketch of a new proof for SU(2).

1. Introduction

The classification of all rational conformal field theories (RCFTs) is clearly a desir-
able pursuit. In spite of tremendous progress in our understanding of RCFTs, we
still find ourselves far from our ultimate goal. The problem can be somewhat
simplified by focusing on the building blocks, the Wess-Zumino-Novikov-Witten
(WZNW) models [41, 28, 16] associated with simple Lie algebras. Unfortunately,
a full classification of even these models is still lacking. Only in the special cases of
Sl/(2)k [6, 23,15] and level 1 for all simple affine algebras [19, 9,11] has a list of
physical modular invariant partition functions been proven to be complete. The
generalization of these proofs to higher ranks and levels has been plagued with
difficulties due to the explosively increasing numbers of non-physical modular
invariants. In this article we attempt to develop the tools necessary for this
generalization, and successfully apply the new technique to SU(3)k.

The partition function of a WZNW conformal field theory associated with
affine Lie algebra (= current Lie algebra on S1) [20, 25, 3] g and level k can be
written as

χk

λ is the normalized character [21] of the representation of g with (horizontal)
highest weight λ and level /c; it is a function of a complex vector z and a complex
number τ. The algebra g is the untwisted affine extension #(1) of a simple Lie
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algebra g (this extends in the obvious way to semi-simple algebras). The (finite) sum
in Eq. (1.1) is over the horizontal highest weights AL, λR of level k.

There are three properties the sum in Eq. (1.1) must satisfy in order to be
interpreted as the partition function of a physically sensible conformal field theory:

(PI) modular ίnvarίance. This is equivalent to the two conditions:

Z(zLzR\τ+l) = Z(zLzR\τ)9 (1.2a)

exp[- kπί(z2

L/τ - zf/τ*)]Z(zL/τ, zR/τ\ - 1/τ) = Z(zLzR\τ); (1.2b)

(P2) posίtίvίty and integrality. The coefficients N^LχR in Eq. (1.1) must be non-
negative integers; and

(P3) uniqueness of vacuum, λ = 0 is a possible highest weight vector, for any g and
k. We must have NQQ = 1 (in the following sections we will change notations
slightly, and this will become Npp = 1).

We will call any modular invariant function Z of the form (1.1), an invariant.
Z will be called positive if in addition each N^R ^ 0, and physical if it satisfies (PI),
(P2), and (P3). Our task is to find all physical invariants corresponding to each
algebra g and level k.

An invariant satisfying (PI), (P2) and (P3) is still not necessarily the partition
function of a conformal field theory obeying duality and CPT-invariance. If it is, we
will call it strongly physical. These are the invariants of interest to physics. We will
discuss the additional properties satisfied by strongly physical invariants (most
importantly, that they become automorphism invariants when written in terms of
the characters of their maximal chiral algebras) at the beginning of Sect. 5.

Much work has been done over the past few years on finding these physical
invariants. But there has been comparatively little progress in the task of determin-
ing all physical invariants belonging to certain choices of g and k: all physical
invariants for g = Al are known, for any level k [6, 23, 15]; all level 1 physical
invariants have been found for simple g - namely, g = An [19, 9], and g = Bnί Cn,
A*> £β,7,8> F4, G2 [11]; and all A2 level k ones are known when k + 3 is prime [33]
(this work has recently been extended - see the Note at the end of this paper). Some
work in classifying the heterotic physical invariants has also been done [12].

Unfortunately, enough simplifications apply to the level 1 cases, and to the A±
case, to make it unclear how to extend those arguments to more general cases. In
this paper we will focus on the case g = A2, although our primary interest lies in
developing tools applicable to other algebras (see Sect. 6). There are several known
physical invariants for A2 [7, 26]. These will be given in Eqs. (2.7). The question this
paper addresses is the completeness of this list. Two results in this direction are
already known: the list is complete for k + 3 prime [33]; the list is complete for
k ^ 32 [18].

In Sect. 2 we will introduce the notation and terminology used in the later
sections, and sketch the strategy taken. Section 3 will find all permutation invariants
(see Eq. (3.1)) of A2, for each level. In Sect. 4 we find, for each /c, a list of weights
λ for which NQ], can be non-zero for some level k physical invariant N; this list
shows, among other things, that the only A2 physical invariants for k = 2, 4, 7, 8,
10, 11 (mod 12) are permutation invariants. Thus Sects. 3 and 4 succeed in finding
all A2 physical invariants for those levels. In Sect. 5 we complete the classification
for the remaining levels (except for the levels 3, 5, 6, 9, 12, 15 and 21, which we
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avoided because of extra complications arising at those fc), but to do this we need to
impose further physical conditions (namely, the duality and unitarity of the
underlying conformal field theory) so that the powerful analysis of [26] can be
applied - we find all A2 strongly physical invariants for those levels. Together with
[18] this concludes the A2 classification problem. In the final section we investigate
how well this approach extends to other algebras. The appendix includes a detailed
sketch of how this approach applies to A{.

The key advantage the approach developed in this paper has over previous
approaches is that explicit construction of the commutant is avoided, and positiv-
ity is imposed from the beginning. This significantly simplifies the analysis re-
quired.

The only remaining question for the A2 classification problem is to see if our
proof, which found all physical invariants for half the levels and all strongly physical
ones for the other half, can be strengthened so as to find all physical ones for all
levels - although all assumptions we have imposed are physically valid, it would be
nice to reduce these to the smallest number possible. A more interesting and
important question is to find other algebras which can be handled by analogous
methods.

2. Terminology and Sketch of Proof

Before we begin the main body of this paper, it is necessary to introduce some
notation and terminology. For a much more complete description of the rich
theory of Kac-Moody algebras, see e.g. [21, 17, 22]. We will restrict attention here
to the algebra g = A2, but similar comments hold for the other algebras. The few
facts about lattices which we need are included in e.g. [8].

The root = coroot lattice of g = A2 is also called A2. Let βl9 β2 denote the
fundamental weights of A2, and write p = βι + β2; βι and β2 span the dual lattice
A2 of A2. Throughout this paper we will identify the weight λ = mβl -f nβ2 with its
Dynkin labels (m, n).

An integrable irreducible representation of the affine Lie algebra g = A(

2

} is
given by a positive integer k (called the level) and a highest weight λeA2. The set of
all possible highest weights corresponding to level k representations is

p\ dJf {mjg1 + nβ21 m, rceZ, 0 ̂  m, n, m + n ̂  k} . (2.la)

We will find it more convenient to use instead the related set

Pk = p/c + 3 def |mjSι + n/?2 |m> neZ> o < m, n, m + n < fc + 3} . (2.1b)

Clearly, Pk = Pk+ + p, and pePk. For the remainder of this paper, the character
corresponding to the level k representation with highest weight
λ = mβl + nβ2ePk+ will be denoted

v ΐ — v f c

Λ,λ + p — Λ m + l , n + 1

The trivial representation of level fc, which is given by highest weight λ = 0,
corresponds then to the character χk

p = χk

il9 and (P3) becomes Nlifll = 1.
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Let ά0, ά1 ? &2 be the simple roots of A2. The 6 outer automorphisms of A2

are generated by h (order 2) and ω (order 3), where /ι(α0) = α0, M$ι) =
ά 2,Mα 2) = α1, and ω(ά0) = άi, co(όtι) = &2> ω(ά2) = άo On the weights
(m, n)ePk these become

/z(m, n) = (n, m) , (2.2a)

ω(m, n) = (fc + 3 - m - n, m) . (2.2b)

Note that ω2(m, w) = (n, fe + 3 — m — n). We will be encountering h and
ω throughout the paper.

The Weyl-Kac character formula gives us a convenient expression for the
character χ$:

where D(z\τ) Σ e(w)β - = + 3 A 2 ( 3 w ( z ) \ τ ) , (2.3b)

and Θ(v + Λ)(z\τ) ά= Σ exp[πrr(x + v)2 + 2πίz (x + t?)] . (2.3c)

Here, Wis the 6 element Weyl group of A2 and ε(w) = detwe{±l}. The variable
τeC satisfies Imτ > 0, and z = z1β1 -\- z2β2 is a complex vector. Unlike much of
the literature, we will retain z Φ 0, so an invariant here will usually be different from
its charge conjugate (2.7h).

By the commutant Ωk we mean the (complex) space of all functions

Z(zLzR\τ)= Σ ΛΓ^χ5(zL,τ)χJ'(zΛ,τ)* (2.4)
λ,λ'ePk

invariant under the modular group, i.e. those Z in (2.4) satisfying (PI). It is not
hard to show that two functions Z and Z' are equal iff their coefficient (or mass)
matrices N and N' are equal; we will use the invariant Z interchangeably with
its matrix N.

The functions χ\ behave quite nicely under the modular transformations
τ -> τ + 1 and τ -» — 1/τ:

χ ί ( z , τ + l ) = Σ (F(kV;d'(z,τ), where (2.5a)

i πi
L j= eχp| πί—-π -J^, (2.5b)

= ek(— m2 — mn — n2 + k + 3)5m,m-<5M j n- (2.5c)

χk

λ(z/τ, - 1/τ) = exp[/cπ/z2/τ] Σ (S(k>)u χ*>(z,τ), where (2.5d)

(2.5e), /-
(Jk + 3)73
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— ί
{ek(2mmf + mn' -h nm' + Inn'}

\

+ ek( — mm' — 2mn' — nn' + nm')

+ βfc(— mm' H- mn' — 2nm' — nn')

— ek( — 2mn' — mm' — nn' — 2nm')

— ek(2mm' + mn' -f nm' — nn')

— ek( — mm' H- mn' -f nm' + 2nn')} , (2.5f)

where in (2.5c, f) we have λ = mβ1 + nβ2, λ' = mfβ1 + n'β2 and the function ek is

[ o * ~I
— — . The matrices T(k} and S(k) are unitary and
3(/c + 3) J

symmetric.
Note that Z = £N;u'ώ;ί* eΩ* iff both

>) = N , (2.6a)

) - N . (2.6b)

Recall the outer automorphisms h and ω given in (2.2). The known physical
invariants of A2 are:

= Σ I x " l 2 > (2 7a)

= Σ X»..xS«— (»,»), for /c ^0 (mod 3) and /c ^4; (2.7b)
( m, n)ePk

= ^ Σ lΛ» + χU.-) + χU».-)l2. f o r / c = 0(mod3); (2.7c)
•̂  (m,n)eP k

m Ξ n(mod 3)

χf ; 4 | 2 + |χi,3 + z i . i l 2 (2.7d)

= l χ ? , ι + χ?.10 + χ?0 l l + χl> 5

d= |χ?.ι + χ?0 l l

(2.7e)

χ.* 2) (2.7f)
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p def
> 2 1 —

χf ί .2

+ 1*16,7 + X%16 + Xlβ.1 + UΛ6 + Ills + U\ί

+ xll.s + χi.1!! + *& + *& + x?,1: + xf.Sl 2 (2.7g)
together with their conjugations Zc under h, defined by:

= Σ JVmnxm-xLxmV, (2.7h)
λ,λ'ePk

where Z is given by (2.4). Note that ^3 = ̂ C

3, ^6 = ̂ C

6, <f(

9

1} = <ί(

9

1)c, and
<^2i = <^2i In the case of restricted characters χ(0, τ), Z = Zc.

Our goal is to prove that this list is complete: in particular we will prove

Theorem l(a). For fc = 2, 4, 7, 8, 10, 11 (mod 12), and k = 1, ίλe set of all physical
invariants for A2 is given by Eqs. (2.7);

l(b). For k = 0, 1, 3, 5, 6, 9 (mod 12), fc φ 3, 5, 6, 9, 12, 15, 21, the set of all
strongly physical invariants for A2 is given by Eqs. (2.7).

(The terms physical invariant and strongly physical invariant are defined in
Sect. 1.)

Two partial results are already known. In [33] this theorem is proven for fc + 3
prime. They accomplish this by very explicitly computing a basis for the commu-
tant, then finding all the positive invariants, and lastly imposing the uniqueness
condition J V l l f l ι = 1. Unfortunately this explicitness makes it very difficult to
apply their approach to more general fc. A second partial result is the computer
search in [18]. Using the Roberts-Terao- Warner lattice method [31, 40], it finds
a basis for the commutant for a given fc, and then imposes positivity and uniqueness
of the vacuum. The proof given in [11] that lattice partition functions span the
commutant guarantees the completeness of this search. In this way it has verified
that the list in Eqs. (2.7) is complete for all fc ̂  32 (it also applies this technique to
the three other rank 2 algebras). This program thus fills in all of the holes of
Theorem l(b).

The approach taken here is somewhat different.
Call an invariant p-decoupled if Nptλ = Nλyf) = 0 for all λ φ p. Hence such an

invariant can be written in the form

For example, the only p-decoupled invariants in Eqs. (2.7) are (2.7a, b) and their
conjugates. A valuable observation was made in [11] (see also [14, 26]):

Lemma 1. A p-decoupled physical invariant is a permutation invariant (defined in Eq.
(3.1) below).

All permutation invariants are found in the following section. In Sect. 4 we
proceed to show that for some levels, any physical invariant must be a permutation
invariant, thus proving Theorem 1 for those levels.

A second observation made in [11] (see also the Note at the end of this paper)
connects more directly with the lattice method of [31, 40]. First note the following:
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It is proven in [21] that for any λeA*, either

γ φ)θ (j^L + Jk + 3A2 }l D = 0 (2.8a)

holds identically (where Θ and D are defined in Eqs. (2.3c, b), respectively), or there
exists a w'e W and a λ'ePk such that λ = w ' ( λ ' ) (mod(/c -f 3)A2), and hence

6(w')χ*' . (2.8b)

By the parity ε(λ) of λ we mean ε(A) = 0 if (2.8a) holds, and ε(λ) = ε(w') if (2.8b)
does. When ε(λ) Φ 0, let [Λ,]k denote the (unique) weight λ' in (2.8b).

Now choose any λL, λRePk. We showed in [11], for each f relatively prime to
3(/c + 3), that e(SλL)ε(SλR) φ 0, and that for any level k invariant Z in (2.4),

NλlλR = ε(nL)ε(nR)N[aM,λR]k . (2.9)

We did this by first showing it for lattice partition functions, where it is obvious,
and then referring to the result that lattice partition functions span the commutant.
A similar derivation of (2.9) can be made using the construction in [4] (and general-
ized in [11]) of the Weyl-unfolded commutant.

Ύ relatively prime to 3(/c + 3)" is equivalent here (and in Lemma 2 below) to
the statement Ύ relatively prime to the order L of the vector (λL; λR) with respect to
the lattice ((k + 3)A2; (k + 3)A2)" - indeed that is how (2.9) is expressed in [11].
Examples of (2.9) for k = 5 and k = 9 are given in [11]. Of course, it also holds for
all other algebras. Equation (2.9) (as well as Lemma 2 below) is used in [18] to
eliminate "redundant" coefficients Nλλ>, and hence moderate memory problems. Its
main value for our purpose lies in its trivial consequence:

Lemma 2. Let λ,λ'ePk. If some £ relatively prime to 3(fc + 3) satisfies
= — 1, then N^^ = 0 for any positive invariant N.

The analogue of Lemma 2 holds for all algebras. Lemma 2 constitutes an
extremely strong constraint on which λ, λ' e Pk may couple - i.e. have Nχ>λ> Φ 0 - in
some positive invariant N. It hints that the space Ω + spanned by the positive
invariants of level k may have much smaller dimension than the full commutant Ωk

and so may be a much more convenient space to work with. Indeed, although the
dimension of the commutant Ωk goes to infinity with /c, dimΏ + = 4 for many
k [18]. Our approach involves using Lemma 2 to keep our analysis restricted as
much as possible to the space Ω +, instead of Ωk.

A final tool that we will mention here also holds for any positive invariant of
any algebra and level, and exploits the fact that the product NN' of two invariants
is also an invariant (this can be read off from Eqs. (2.6)). It is proved using the
Perron-Frobenius theory of non-negative matrices [29, 10, 24, 35], can be thought
of as a generalization of Theorem 4 in [11]. It will be used in Sect. 5 to significantly
restrict the possibilities for the coefficient matrix N of physical invariants.

Any matrix M can be written as a direct sum @iM{ of indecomposable blocks
Mf. By a non-negative matrix we mean a square matrix M with non-negative real
entries. Any such matrix has a non-negative real eigenvalue r = r(M) with the
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property that r ^ | s \ for all other (possibly complex) eigenvalues s of M. The
number r(M) has many nice properties, for example:

min £ My ̂  r(M) ^ max £ My , (2.10a)
' j l j

and if M is indecomposable, either equality holds iff each row sum £. My is equal;
and

maxMiigr(M), (2.10b)
ί

and if M is indecomposable and symmetric, equality happens in (2.10b) iff M is
a 1 x 1 matrix M = (Mn). Also, there is an eigenvector v with eigenvalue r whose
components v{ are all non-negative reals.

Lemma 3. Let Z = ̂  ^λλΊλlλ1 be a positive invariant, for any algebra and any level.
Write N as a direct sum of indecomposable blocks

N =

/N0 0 - 0 \

0 N1 ... 0
(2.10c)

\ 0 0 ... NL

where NQ is the block "containing" Npp. Then r(N^) ^ r(NQ) for all £. If in addition
N is a symmetric matrix, and if for all £ with r(N^) = r(N0) we have (N^)2 = c^N^
for some constant c/, then for each m, either r(Nm) = r(N0) or Nm = (0).

Proof. Suppose r(Λ/V ) > r ( N Q ) for /0>
 and choose any r satisfying

i ΐ \n

r(N0) <r < r(Nf0). Consider the limits as n -> oo of each I - N; 1 . It is easy to

show (e.g. using Jordan blocks) that if all eigenvalues λ of a matrix M have norm
/ I \n

I λ\ < 1, then the limit of M" is the 0-matrix. In particular, the limit of I - N0 J will

be 0. What happens to ί -.

Let v be an eigenvector of Λ^o with eigenvalue τy0 = r(Nt0), whose components
/ I \n

are non-negative reals. Then I - Λ//0 I v = (τγo/r)ntλ By positivity, this implies that

1 \"
- NSO I will have some arbitrarily large components as n increases.

/ I \n

The matrix I - N J will correspond to a positive invariant, for each n, and will

/ i V
be the direct sum of the blocks ( - N; I . Taking n sufficiently large, Eq. (5.2) of

[11] can now be used to give us a contradiction.
Thus r(ΛΓ,) ̂  r(JV0).
If N2 = m^Nf, then by the above argument r(N^) = m/. The remainder of the

proof is as in Theorem 4 of [11]. QED
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The conditions in the last sentence of the lemma can be weakened somewhat,
but this is all that we will need in this paper. A commonly occurring example of
a matrix M with the property M2 = mM is the n x n matrix

t

Mn.<= : |. (nod)

Here, r(MΛy) = m = /n.
The strategy adopted in this paper is three-fold.

Sect. 3 Find all permutation invariants for each level k. We accomplish this by
repeatedly exploiting the facts that this permutation must be a symmetry of
both S($ and the fusion rules N$v.

Sect. 4 For each fe, use Lemma 2 to find all weights λ e Pk which can couple to p in
some positive invariant N. The argument is elementary but tedious and
involves investigating several cases. There are surprisingly few such λ\ the
results are compiled in Lemma 4. There will always be at least one such
weight, namely p itself. When this is the only one, then Lemma 1 tells us
that any physical invariant of that level must necessarily be a permutation
invariant, and so must be on the list found in Sect. 3.

Sect. 5 The remaining levels, which have nontrivial p-couplings, must now be
considered. To do them, we use [26], together with Lemma 3, to write
down the characters of all possible maximal extensions of A2 consistent
with Lemma 4; if there are any such extensions, we then find their
symmetries by mimicking the argument of Sect. 3.

In this paper we only make use of Lemma 2 for λ' = p. It is quite possible that
apply it to other weights will permit us to avoid using [26] in Sect. 5, and so could
yield a classification proof for those levels which assumes only (PI), (P2), (P3),
instead of exploiting in addition the existence and properties of the maximally
extended chiral algebras of the theory. A more interesting possibility is to exploit
more of the rich algebraic structure of Ωk.

3. The Permutation Invariants

By a permutation invariant (sometimes called an automorphism invariant) we mean
an invariant of the form

Z= Xλώ, (3.1a)

for some permutation σ of Pk. In this section we will find all A2 permutation
invariants, for each fc. In particular, we will prove the following theorem:

Theorem 2. The only level k permutation invariants for A2 are J/Λ, stf\ for k =
0 (mod 3), and j/k, j/£, @k, @c

k for k φ 0 (mod 3).
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Many permutation invariants, for each algebra, have been constructed (see e.g.
[2]), but their methods cannot claim to find them all. For example, the k = 4 G2

and k = 3 F4 exceptional permutation invariants found in a computer search in
[37] were missed by [2], and also cannot be obtained using simple currents [37].
Until now, only for A1 [6, 23, 15] recently [13] all those for g = A1 0 0 Al

have also been found.
Throughout this section let k' = k + 3, and assume Nσ is a permutation

invariant.
That the matrix Nσ in (3.1b) must commute with S(k) and Γ ( f c ) (see (2.6)) is

equivalent to
ft ( K ) C v ^ / /O O \

SM = sσλ,σλ' , (3.2a)
rτ-r(fc) rj-f(fc) /"5 -Λl-X

TM = Tσλ,σλ> , (3.2b)

for all λ, λ' ePk. Note that (2.5c) tells us that (3.2b) is equivalent to the condition
that

m 2 + mn + n2 = m'2 + m'ri + n'2 (mod 3k') (3.2c)

for all (m, n)ePk, where σ(m, n) = (m', nf).
It can be shown (Theorem 3 in [11]) that any permutation invariant must be

physical, so
σ(l, 1) = (1,1) (3.3a)

Also, we know (S(k))2 = C(k\ the charge conjugation matrix defined by
Cmn,m'n' = ^m,n'^n,m'^ so N° must commute with C(k}. This means

σ(m, n) = (m', n') iff σ(n, m) = (nf, m') . (3.3b)

Verlinde's formula [36, 27] gives us a relation between the fusion coefficients
N(kμ\ and the S(k) matrix:

c(fe)o(fc)o(fe)

N(Ά= Σ "'IS W' (3 4a)
^'ePk Op^'

Therefore (3.2a) tells us that

Equation (3.4b) is useful to us, because these fusion coefficients have been com-
puted for A 2 [5]. The formula will be given in the following paragraph.

Write λ = λίβ1 + λ2β2, μ = μiβi + μ2β2, v = vlβ1 + v2β2. Define

- [2(λ, + μ, + V l ) + λ2 + μ2 + v2] ,

- [A! + μx + V l + 2(λ2 + μ2 + V2)] ,

/cmin = maxl/l! + λ2, μλ + μ2, V i + v2, ^4

i,//!^!}, 5 - min{/l2, //2, v2}} ,

δ = j l if k«^^ > fc^in and A>
0 otherwise
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Then [5] says (changing their notation slightly and recalling that k = k + 3)

0 if k' ^ kmin or δ = 0

- kmin if fcmin ̂  k ^ fcmax and δ = 1 . (3.5)

ax - kmin if k ^ femax and δ = 1

The first step in the proof of Theorem 2 is to show that "point-wise" σ acts like
an outer automorphism:

Claim. σ(m, n)e {(m, n), (rc, m), (m, k — m — n\ (n, k — m — n), (k — m — n, m),
(k' — m — n, n)}.

Proo/ Take λ = μ = v = mβί + n/?2 Then (3.5) becomes

minim, n} if /c' ^ m + n + minim, n}
- . (3.6a)

c — m — n otherwise

Define ̂  - {(m, n)eP f e |m = α or n - α}, <^£ = {(m, n)eP k |m + n - b}. Equa-
tions (3.4b) and (3.6a) now imply

σ(m, n)eyk

mv<?ku £f\,-m-n u y\..n u \..Λ u
 k

m+n . (3.6b)

Now let us ask the question: when can σ(m, n) — (m, n')Ί Equations (3.2a) and
(3.3a) would then imply S^n = Smn .n Equation (2.5f) reduces this to

2πn' .
.(3.7a)

^
Define /α(x) = sin(x) — sin(x + α). We are interested in finding all solutions
/α(x) =fa(y\ where x, 3;, α > 0 and x + α, y + α < 2π. Note that the derivative
/i(x) is positive for xe( — α/2, π — α/2), and negative for xe(π — α/2, 2π — α/2).
Also, /α is symmetric about its local maxima: /α(x + π — α/2) =/α( — x H- π — α/2).
What these facts mean is that, in the interval x, y e(0, 2π — α), /α(x) =fa(y) has the
two solutions x = y and j; = — x + 2π — α. Hence the only possible solutions to
(3.7a) are

ri = n and ri = kf — m — n . (3.7b)

The identical calculation and conclusion holds for σ(m, n) = (n', m). Thus

er(w, n)e^m => σ(m, n)e{(m, n), (m, k' — m — n\ (n, m), (k — m — n, m)} .

(3.7c)

The remaining five possibilities in (3.6b) reduce to identical arguments. QED to
claim

The claim, together with (3.2c), tells us that the only possibilities for σ(l, 2) are:

σ(l, 2) e {(1, 2), (2, 1)} if k = 0 (mod 3) , (3.8a)

σ(l, 2)e {(1, 2), (2, 1), (2, jfc), (/c, 2)} if k = 1 (mod 3) , (3.8b)

σ(l, 2) e {(1, 2), (2, 1), (/c, 1), (1, fe)} if k = 2 (mod 3) . (3.8c)

Note that the possibilities for k = 0 (mod 3) are realized by ^k and j/£, respec-
tively, and for /c Ξ +1 (mod 3) by stfk, sίc

k, Q)k and ^J, respectively. Since the
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(matrix) product of two permutation invariants is another permutation invariant,
to prove Theorem 2 for each k it suffices to show that the only permutation
invariant satisfying σ(l, 2) = (1, 2) is jtfk.

Suppose for contradiction that σ(l, 2) = (1, 2), but σ(l, a) = (α, 1) for some
2 ̂  α ̂  /c + 1. Then S(ΐi ίa = S$,«ι, i e.

ck(5α + 4) + cfc(α + 5) + ck(4a - 1) = ck(4α + 5) + ck(5α + 1) + cfc(α - 4) ,

(3.9a)

/ x \
where ck(x) = cos I 2π — 1. Making the substitution b = a + %, we would like to
show that \ 3/c /

p(b, fe) fef c/ 5b + + c/b + + cfc(4b - 3) - ck(4b + 3)

(3.9b)

does not vanish at b = f , J, . . . , k + f .
Using the obvious trigonometric identities, we can rewrite p(b, /c) as a poly-

nomial in ck(b) and s fc(b) = sinί 2π— J - in particular, p(b, /c) = p(5\ck(b))
\ /

+ s/c(b) p4C)(c fc(b)), where p(

5

fe) and p(

5

fc) are, respectively degress 5 and 4 poly-
nomials. Note from (3.9b) that p(— b, k) = — b, /c), so p(

5

fe) must be identically zero,
and

p(b,k) = sk(b) p(

4

k\ck(b)). (3.9c)

We are interested in the roots of this function, in the range be(0, f k'). Since sk(b)
does not vanish, and ck is one-to-one, for those fo, for fixed k there can be at most
4 zeros for p(

4

k) and hence p(fc, fc) in that range. But b = ,̂ f , /c + f , fe + J are
4 distinct zeros for p(b,k). Therefore they are the only zeros in the range b e(0, f fcr),
and so p(fc, /c) cannot vanish at b = f , J , . . . , fc + f . This means that we cannot
have both σ(l, 2) = (1, 2) and σ(l, α) = (α, 1), for any a = 2, 3, . . . , k + 1.

The other four possibilities σ(l, α) = (1, /c7 — 1 — α), (α, k' — 1 — α),
(fc r — 1 — α, 1), and (/c7 — 1 — α, 0) all succumb to similar reasoning. Thus we have
shown:

σ(l, 2) = (1, 2) => σ(l, α) = (1, a) V(l, α)eP f e . (3.10a)

Remember, to prove Theorem 2 it suffices to show σ(l, 2) = (1, 2) implies
σ(α, b) = (α, b) V(α, fc)eP*. Suppose instead σ(l, 2) = (1, 2) but σ(α, 6) = (b, a).
Take /I = (α, 6), μ = (b, 1), v = (1, α) and λ' = (b, a). Then N$v = ΛΓ$V, by (3.10a),
(3.3b) and (3.4b). But Eq. (3.5) tells us N(

λ

k

μ\ = 1, while M> = 0 unless a = b.
Similar calculations show σ(α, b) = (a, k' — a — b) only when b = k' — a — b,

and σ(α, b) = (kf — a — b, b) only when a = k' — a — b. The remaining two ano-
malous possibilities are slightly more difficult: σ(a, b) = (b, k' — a — b) only when
3b = k', b rg α; and σ(α, b) = (kf — a — b, a) only when 3α = k\ a ^ b.

Now, iί a> b = k'/3 and σ(a,b] = (b,k' — a — b\ then σ being a permutation
implies σ(b, /cr — α — b) φ (b, /c' — α — b), so from the above paragraph we must
have either 3(k' — a — b) = k' or b ̂  k' — a — b, i.e. either α = b = fc'/3 or α rg b -
a contradiction. Therefore the only way for either remaining anomalous possibility
to be realized as if a = b = k'/3.
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Thus, we have shown

σ(l, 2) - (1, 2) => σ(a, b) = (a, b) V(α, b)ePk , (3.1Gb)

i.e. that the only permutation invariant with σ(l, 2) = (1, 2) is the identity, which
concludes the proof of Theorem 2.

4. The /j- Coupling Lemma

Again write k' = k + 3. Let ^fc be the set of all λePk such that there exists
a positive invariant with Np λ Φ 0. For example, the known A2 physical invariants
(2.7) tell us that ̂ 5 =2 {(1, 1), (3, 3)}, ̂ 6 3 {(1, 1), (7, 1), (1, 7)} and ̂ 7 Ξ> {(1, 1)}. If
J>fe = [pj. then by Lemma 1 any level k physical invariant will be a permutation
invariant, and will be listed in Theorem 2.

Let λ = aβi + bβ2e&k. Then it must satisfy λ2 = p2 (mod 2k'), i.e.

It is easy to see from that equation that any λe&k must have order k' with
respect to k'A2, and hence the vector (p; λ) has order L = k' with respect to
(k'A2; k' A2\ Now, investigating the behavior of the Weyl group W on A2 allows
a simple formula for the parity ε(μ) (see (2.8a)) of an arbitrary vector
μ = Cβ1 + dβ2: for any real number x define by {x} the unique number congruent
to x (modfc') satisfying 0 ̂  {x} < k', then

0 if {c}, {d} or {c + d} = 0

+ 1 if {c} + {d} < k' and {c}, {d}, {c + d} >0 . (4.1b)

-1 if {c} + {d} > k' and {c}, {d}, {c + d} > 0

Then Lemma 2 implies that:

0 < {/} < k'/2, f relatively prime to k', => {/α} + {έb} < k',

k'/2 < {*?} < /c', / relatively prime to k'9 => {<?a} + {<?&} > /c' . (4.1c)

Lemma 4 (/?-coupling). The only solutions to Eqs. (4.la, c) are:

(i) for k = 2, 4, 7, 8, 10, 11 (mod 12):

(α, ft)e{(l, 1)} (4.2a)

(ii) /or fc ΞΞ 1, 5 (mod 12):

(4.2b)

(iii) for k = 0, 3, 6 (mod 12):

( α , f e ) 6 { ( l , l ) , ( l , f c + l ) , ( f c + l , l ) } ; (4.2c)

(iv) fork = 9 (mod 12), fe Φ 21, 57:

(4.2d)
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We will say k is in class (i) if k = 2, 4, 7, 8, 10, 1 1 (mod 12), in class (ii) if k = 1, 5
(mod 12), etc. The only fc's missing from this list are k = 21, 57, each of which have
12 possibilities for (a, b). For k = 21, these are precisely the 12 weights in (2.7g)
lying in the block containing χl\ - namely (1, 1), (5, 5), (7, 7), . . . , (7, 10). For
k = 57 these are given in (5.11). The reason k = 21 and k = 57 are singled out here
turns out to be the same (see Claim 1, and the proof of Claim 3) as the reason
k — 10 and k = 28 are singled out in the p-coupling Lemma for Av (see Sect. 6 and
the Appendix). Indeed, 21 + 3 = 2(10 + 2) and 57 + 3 = 2(28 + 2).

We will prove Lemma 4 later in the section. For now let us consider what would
happen if it were true. For example, for k = 2, 4, 7, 8, 10, 11 (mod 12), or k = 1,

mk = { p } ; and for k = 1, 5 (mod 12), @k c j p,—γ^ p [. Then for half of the

possible levels, we will have reduced the completeness proof to the classification of
the permutation invariants, and considerable information about the remaining
levels will have been deduced. Lemma 4 turns out to the sufficient to complete the
proof of Theorem 1 for all k (this is done in Sect. 5).

Incidently, taking/ = — 1 in (2.9) shows that, e.g., N1Λ.ltk+1 = N l j l ; f c + 1 > 1, for
any invariant N and level k. We will need this and many other consequences of (2.9)
in Sect. 5.

Lemma 4 can be thought of as related to the A{ completeness proofs in
[6,23, 15] and [30], and the A2k' prime proof in [33], though it was obtained
independently. However it captures the big advantage the approach developed in
this paper has over those older approaches: through it we impose positivity from
the start; because of it we avoid explicit construction of the commutant.

Before trying to understand the somewhat lengthy proof of Lemma 4 given
below, it may be wise for the reader to consult the related, but considerably simpler,
proof given at the end of Sect. 5 of [11] for p -coupling for level 1 of Cn,oάdn, or the
proof for p -coupling of Aί9 all levels, given in the appendix of this paper. We will
find a strong relationship between the A1 proof, and that of A2. In particular we
will need the following result, proven in the appendix:

Claim 1. Let K > a be positive integers, and a be odd. Suppose that for 0 < / < K,
{ relatively prime to 2K, we have {/α}2κ < K, where {x}y is the unique number
congruent (mody) to x satisfying 0 ̂  {x}y < y. Then

(a) for K odd, a = 1;
(b) for K even and K Φ 6, 10, 12, 30, a = 1 or K - 1;
(c) forK = 6,a= 1, 3, 5; for K = 10, α - 1, 3, 7, 9; for K = 12, α = 1, 5, 7, 11; and
for X = 30, a= 1,11,19,29.

Claim 2. For any k and any (α, b)eP f c, (α, b) satisfies the parity condition (4.1c) iff
ω(a,b) does. Moreover, if (a, b) satisfies the condition

a2 + ab + b2 = l(modk'), (4.3)

then so will ω(a,b\ and if 3 divides k', then (a,b) will satisfy the norm condition (4. la)
iff ω(a,b) will.

ω is the outer automorphism defined in (2.2b). The proof of Claim 2 is
a straightforward calculation. For example, if {fa} + {/£>} < k', then
{fk' -fa- /b} + {/α} = k' - {to} - {έb} + {fa} = k' - { f b } < k'.
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Because of Claim 2, we will restrict our attention of the remainder of this section
to any weight (a,b)ePk satisfying the parity condition (4.1c) and the norm
condition (4.3) (and if k' = 0 (mod 3) the stronger norm condition (4.la)). By claim
2 this set of possible (α, b) is invariant under the 6 outer automorphisms. At the
conclusion of our arguments we will have a finite set of solutions (α, b) to (4.1c) and
(4.3); it suffices then to find those weights among them which satisfy (4.la).

Proof of Lemma 4 when 4 divides k'. We learn from the norm condition (4.3) that
two of a, b and k' — a — b will be odd and one will be even; from Claim 2 we may
assume for now that a and b are odd. Let 0 < / < fc'/2, f relatively prime to k'.
Then f = { + k'/2 will also be relatively prime to k' but will lie in the range fc'/2 to
k'. Then (4.1c) tells us

{/α} + {/b} < V < {fa} + {fb} . (4.4)

But a is odd, so {fa} = (k'/2 + ίa} equals k'/2 + {/«} if {/«} < /c'/2, or -k'/
2 + {£0} if {£0} > k'/2. A similar comment applies to b. From (4.4) we now
immediately get that both {/α}, {/£>} < fc'/2. Thus, putting K = fc'/2 we read off
from Claim 1 that the only possibilities for a and b are 1 and (k + l)/2, unless
k' = 12, 20, 24, 60. From these we can also compute the possibilities for k' — a — b.
Equation (4.la) now suffices to reduce this list of possibilities to those given in
Lemma 4. QED to classes (ii) and (iv)

Thus it suffices now to consider k = 0, 2, 3 (mod 4). As before let (α, fe)ePfe be
any weight satisfying (4.1c) and (4.3) (and (4.la) if 3 divides k'). First we will prove
two useful results.

Claim 3. For k = 0, 2, 3 (mod 4), if a = b then a = b = 1.

Proof. Clearly a < k'/2. First consider fe' odd. Let M > 0 be the smallest integer for
which 2M <kf/2<2M+ί. Similarly, let N ^ 0 be the smallest integer for which
2Na < k'/2 < 2N +1 a. Assume for contradiction that a > 1. Then 0 ̂  N < M. Take
£ = 2N + 1 < k'/2. Then we get {/α} + { / a } = 2{2N+1a} > k', contradicting (4.1 c).

For k' even, (4.3) says α must be odd. We can now directly apply Claim l(a) with
K = /c'/2, to again get α = 1. QED to Claim 3

Claim 4. The greatest common divisors of a and k', of b and k, and of k' — a — b
and k\ equal either 1 or 2.

Proof. Suppose a prime p φ 2 divides both a and k'. Then (4.la) implies p φ 3, and
(4.3) that b2 = 3 (modp) — i.e. 3 is a quadratic residue of p, so p ^ 11.

Let ^m = 1 + m/c'/p, m = 0, l , . . . , p — 1 . Except possibly for one value of m,
call it m0, each tm will be relatively prime to k'. Assume k' φ p; if k' = p the ranges
given below for m will be slightly different but otherwise the same argument holds.

Therefore, for m = 0, . . . ,—-— (except possibly for m = m0), (4.1c) says

{b + mbkf/p} < k' — α, and for m = —-—, . . . , p — 1 (except possibly m = m0),

{b + mbkf/p} > k' — a. Because p ^ 11, it can be shown that these two inequalities
can only be satisfied if bk'/p = ±k'/p (mod /c'), i.e. b = ± 1 (modp), in which case
b2 = 1 ̂ 3(modp).

Therefore, p = 2 is the only prime that can divide both a and k'. Since
(4.3) shows 4 cannot divide both, the only possibilities for the gcd are 1 or 2.
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The same calculation applies to gcd(b, k') and, using Claim 2, to
gcd(/c' - a - fc, k'\

QED to Claim 4

Proof of Lemma 4 for k' odd. From Claim 2 we may assume 1 ̂  α, b ̂  /c'/2. It
suffices to show a = b = 1.

First take <f = (fe ; — l)/2; it is relatively prime to /c' and less than fc'/2. lϊ a is
even, {/«} - fc'α/2, and if α is odd, {/α} = /c'/2 - α/2. Hence {/«} + {/fo} =
ik' + (k' -a- b)/29 where i = 1/2,1, 3/2 depending on whether 0,1 or both of α, b
are even. But i ̂  1 contradicts (4.1c). Therefore both a and b must be odd.

Equation (4.3) tells us {a2} + {ab} + {b2} = 3 + m/c', for some integer m.
Since by definition 0 ^ { . . . } < k', we have m = 0,1, or 2. But m = 2 would imply
{a2} + {ab} = 3 + 2k' - {b2} > k', which contradicts (4.1c) with ( = a < /c'/2, by
Claim 4.

Next suppose m = 1, i.e.

{a2} + {ab} + {b2} = k' + 3 . (4.5)

Choose f = (k' + α)/2, £' = (k' + b)/2 - again Claim 4 tells us these are relatively
prime to k'. Then /α = fc'/2 + α2/2 (mod/c'), so {/α} - (α2}/2 + k'/2 if {α2} is
odd, and {α2}/2 if {a2} is even. Similarly, {έb} = {Γa} = {ab}/2 + k'/2 or
{ab}/2, depending on whether {ab} is odd or even, resp., and {t'b} = {b2}/
2 + k'/2 if {b2} is odd, and {b2}/2 if {b2} is even. But (4.5) tells us that
{a2} + {ab} + {b2} is even, so either all three are even, or 2 are odd and 1 is even.
If {a2} or {ab} are even, then using / in (4.1c) gives k' < {a2} + {ab}, contradic-
ting a < fc'/2; otherwise using f contradicts b < k'/2.

Thus m Φ 1, so m = 0 is forced. This gives us a2 = ab = b2 = 1 (mod k'); Claim
4 then implies a = b (mod/c'), which Claim 3 tells us forces a = b = 1. QED to
Lemma 4 for k' odd.

Proof for Lemma 4 for k' = 2 (mod 4). This is the final, and messiest, possibility; its
proof uses tools resembling those in the Appendix. From (4.3) we get that both
a and b cannot be even, so by Claim 2 we may assume α, b are both odd. Define
M by 2M < k'/2 < 2M+1, so k'/2M < 4. Let us begin with a useful fact.

Claim 5. a = 1 implies b = 1.

Proof. The norm condition (4.3) becomes

b2 + 6 = 2 (mod/c') . (4.6)

Take first f = b in (4.1c); from (4.6) we get either b = 1 or b > k'/2. Suppose
b > k'/29 and write b = k'/2 + b', so b' is even and 0 < b' < k'/2. Define N so that
k'/2 < 2Nbf < k'. Then 0 < N ^ M. Taking f = k'/2 + 2*, we get k' < {k'/2 + 2N}
+ {(k'/2 + 2N)b} = k'/2 + 2N + 2Nbf - k'/2 = 2N + 2Nb'.

Now take ( = (k/2 + 2N)b. We get fer > {(k'/2 + 2*)6} + {(k'/2 4- 2]V)62}
= 2 N fr ' - k'/2 + {k'/2 + 2N + 1 - 2Nb'}, using (4.6). This forces /c'/2 +

2N+1 — 2Nb' > 0. Hence k' <2N + 2Nb' < k'/2 4- 2N + 2 jv+1,i.e. /cr < 3 2Λr + 1, so
b' < k'/2N < 6, which tells us either b' = 2 or b' = 4.

It is easy to verify that b = k'/2 + 2 cannot satisfy (4.6), and b = k'/2 + 4 can
only if 20 = 2(mod/c'), i.e. A/ = 18 or 6. These values can be individually
checked. QED to Claim 5
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Thus by Claims 3 and 5 it suffices to show there can be no solutions (α, b)ePk

to (4.1c) and (4.3) for α, b odd, 1 < a < b. Write out the binary expansions α/
k' = Σί^i ai2~l, b/k' = Yι^=1bί2~\ where each ah ^e{0, 1}.

Consider ({ = fc'/2 + 2', i = 1, . . . , M. Then

k' < (Λf l) + f Λ 6 } = I ίL + 2'α 1 + ί ̂  + 2'6

fc' if α ί + 1 = bί + 1 = 0

0 if α £ + 1 + f c ί + ι = 1 . (4.7a)

-fc' if fli+1=fei+1 = l

But { . . . } < fc', so (4.7a) forbids αί + 1 = bί + 1 = 1, for all i = 1, 2, . . . , M (the
relation a + b < k' forbids it for i = 0).

Define / by k'/2* <b< k'β1"1, i.e. bt = 0 for i < I and bj = 1. Consider first
the case / > 1. Then (4.7a) tells us fc' < {2/'1α} + {2 /~1b} = 2 / ~ 1 α + 2 /" 1fe,
i.e. k'βl~l < a + b. This strong inequality now forces αf + bf = 1 for
/ ^ i < M + 1, i.e.

fc'
/ > 1 => a + b = -j—ϊ + ε, where 0 < ε < 2 . (4.7b)

The case / = 1 is similar. Define /' > 1 to be the smallest index (other than
/ = 1) with ar = 1 or br = 1. Then the identical argument gives

fc' fc'
I = I => a + b = — + -Γ^l + ε, where 0 < ε < 2 . (4.7c)

In both (4.7b, c), ε is fixed by the constraint that a + b must be even. Thus
we have essentially removed one degree of freedom. First we will eliminate 7,
/' = 2, 3.

Claim 6. Either I > 3, or I = 1 and Γ > 3.

Proof. Suppose first that 1 = 2. Then a + b = fc'/2 + 1, so {ab} = k'/2 - 2,

{α2} = α + 2, {b2} = b + 2. Therefore either -±——-=1 (modfc') (if α =

- 1 (mod4)), or -̂-—- + ^fc' = 1 (modfc') (if α = - h i (mod4)). Then α =
a — 1 fc'

+ 1 (mod 4) would violate (4.1c) with { = —— h —, so a = — 1 (mod 4). Sim-

fc'
ilarly, we must have b = — 1 (mod 4), so — 4- 1 = 2 (mod 4), i.e. fc' = 2 (mod 8).

fc' + 2 f -fc' α) f -fc' fo] 3fc'
Now take f = —-— we get < —-—h - > + < —-—h -

4 ( 2 2 ( 4 2
contradicting (4.1c).

Now suppose / = 3, i.e.

fc' ^,_fc ' 7_ fc' t f i if fc'= -2(mod8)
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Taking £ = k'/2 — a — b eliminates a = b = 3 (mod 4). Perhaps the easiest way to
handle / = 3 is to address the 4 possibilities for k' (mod 16) individually. For
k' = 2, 6 (mod 16) it turns out {a2} + {ab} > k', violating (4.1c) with < = a. For

k' = 10 (mod 16), a φ b (mod 4) so take / = - + -.

k' 1
The harder possibility is k' = 14 (mod 16). Then a + b = — + - = = 0 (mod 4), so

ίk'\2 1 k' 11
a φ b (mod 4). Here we have ( — 1 = - k1 (mod/c'), so for k' > 14 {ab} = — — —

and {b2} equals either - k' + - + — or - k' + - + — . Taking ( = - k' - 4b gives
O JL T1 O 2* f̂ Δ,

the contradiction 11 + k' — 2b — 11 > k'. For the remaining case, k' = 14, choos-
ing t = a gives a contradiction.

Now suppose / = 1. Then by (4.7c), Γ = 2 would violate α + b < k'. Γ = 3 can
be handled similarly to / = 3. QED to Claim 6

Write k' = 2 3L /c", where k" = ±1 (mod 6). Consider first the case L = 0.
k' k'

Define J by ~ < b < J _ 1 if / > 1, and if / = 1 define J to be the smallest
J * 2* j * ^

/c' &' /c' /c'
number such that either . < a < J _ 1 or . < b' < j,^ Note that

J = I — 1 or / — 2, and J = /' — 1 or Γ — 2, in the 2 cases. By Claim 6 we
know J > 1. Putting ^Ί = k 72 — 3 - 2 * into (4.1c) presents us with a familiar
calculation:

(4.8a)

/ = 1 -> α + 6 = - + rϊ + e' (4.8b)

where 0 < ε' < 2. Equating Eqs. (4.7b) with (4.8a) gives us fc'/(3 27~ ̂  = εf - ε if
J = I - 1, and fc'/(3 -27"1) = ε - ε' if J = / - 2. In either case we get α < k'/
21 < 3, i.e. a — 1. The 7 = 1 calculation is identical.

Now consider L > 1. We get from (4.3) that a = b (mod 3). α = — 1 (mod 3) is
dealt with using f = k'/β — 2, so α must be = + 1 (mod 3). We will do / > 1 (the
proof for / = 1 is similar).

An easy calculation from α > 1 shows 2 /~1 < fc'/3. Therefore both /' = k'/
6 + 2/ - 2 and t" = k'/6 + 27"1 are less than k'/2, and f" = k'/6 - 2/-3 is posi-
tive. Γ gives α + b < 2fc //(3-2 /-2), while *f" implies 2 / ~ 1 b + fc'/6 > fex. Now / / r /

yields fcr > k'/6 - 2*~3a + Tfe'/ό - 2 /~ 3fo, contradicting the Γ inequality.
Finally consider L = 1. As before we will only give the proof for I > 1 - it is

similar for I = 1. As before, we can force a = b= +1 (mod 3).
Define J by k'/2 J < 3b < k'/2 J~ * . Then J = / - 1 or / - 2, so J > 1 by Claim

6. Assume for now that J > 2; then Γ = /c'/6 4- 3 2 J~2 and /" = k'/6 + 3 2 J~1

give us a + b < 2fc'/(9 2 J " 2 ) and b > 5k' /(1 8 2 J " x ). The former tells us J = I - 2,
while the latter demands J — I — 1.

The remaining possibility, namely J = 2 and / = 4, is eliminated by taking
/ = /" = fc'/6 + 6. QED to Lemma 4 for k' = 2 (mod 4)
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5. The Remaining Levels

In Sect. 4 we concluded the proof that Eqs. (2.7) exhaust all physical invariants, for
half the levels. In this section we will conclude that A2 classification problem for the
remaining levels.

Until now the only properties of the partition functions we have exploited are
(PI), (P2) and (P3): the invariants are physical invariants. However there are other
conditions known to be satisfied by the partition functions of all (unitary, CPT-
invariant) conformal field theories. We will make these extra properties explicit in
the following two paragraphs; any physical invariant satisfying them will be called
a strongly physical invariant.

[26] tells us that to any level k strongly physical invariant Z there are
associated two maximally extended chiral algebras, jtf and jtf, which jnay or may
not be isomorphic. These algebras are extensions of the_affine algebra A2\ they both
equal A 2 iff Z is a permutation invariant. Let cht and chj be their characters. These
can be written as finite linear combinations

cht= £ miλχ
k, chj= £ mjλχ

k (5. la)
λePk λePk

of characters χ\ of A2, where the coefficients m^, m^ are non-negative integers. Let
ch0 and ch0 be the unique ones with m0/9? m0p Φ 0. jtf and s$ must have an equal
number nc of characters. Then

for some permutation π of the indices {0, . . . , nc — 1}. In other words, every
strongly physical invariant is a sort of permutation invariant when the chiral
algebras are maximally extended. _

Consider the matrices Sy and Sfj which describe the behaviour of the extended
characters cht and chi9 respectively, under _the transformation τ -> — 1/τ, as in
(2.5d). Then we know from [26] that Se and Se are both unitary and symmetric, and

Se

oj ^ Se

00 > 0 , Se

OJ ^ Se

00 > 0 . (5.2)

Now consider any level k strongly physical invariant Z, given by (5.1b). One
immediate consequence of the above comments is that the function

Z' = "l \chi\2 (5.3a)
i = 0

also is a physical invariant. We will call an invariant of this form (i.e. diagonal in the
extension) a block-diagonal In a sense to be made clear later, this observation will
allow us to simplify our argument by permitting us to consider the existence (or
non-existence) solely of physical invariants of the form (5.3a). Note that the
coefficient matrix N' of Z' in (5.3a) is symmetric and must satisfy

(N'u>)2 ^ N'λλN'λ,λ> , VA, λ'ePk . (5.3b)

Consider any AeP f c , and compute the sum

s(λ^)d^ X moA'Stfί = V miλS
e

0i . (5.4)
λ'ePk t = 0
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The second equality here follows because Se is symmetric. But πia ^ 0 and by (5.2)
Soi > 0, so the RHS of (5.4) is non-negative and will be zero only if all ra^ = 0. This
gives us a simple but powerful test for the character ch0. In particular, we can read
off from Lemma 4 the possibilities for c/ι0; most of these will have s(λ) < 0 or s(λ)
non-real for some λePk and so can be dismissed.

Hence our argument will depend crucially on Lemma 4, so will be broken down
into 4 cases: class (ii); class (iii); class (iv); and the exceptional value k = 57.

5.1. Class (ii). Consider first class (ii), i.e. all k = 1, 5 (mod 12). We may consider
k > 1, because by Lemmas 4 and 1, any physical invariant at k = 1 is a permutation
invariant and thus is enumerated in Theorem 2. Suppose there exists a level
k strongly physical invariant which is not a permutation invariant. We would like

ί k + 1 k + 1
to show that, except for k = 5, this cannot happen. Write p' =

Lemma 4 tells us that Np^ = Nχff) = 0 except for Nptβ = 1, and N f t t p ' 9 Np>ιp. Write
ch0 = XP + a%kp'> cho = χk

p + bχk

p>9 for non-negative integers a = Np>,p9 b = Nβtp>.
At least one of α, b must be non-zero (otherwise by Lemma 1 N would be
a permutation invariant) - without loss of generality say a > 0. Then the corres-
ponding block-diagonal (5.3a) will also be a physical non-permutation invariant of
level k. Let us then assume our invariant is in block-diagonal form. If we can show
there is no block-diagonal invariant corresponding to these chi9 we will have
succeeded in showing no strongly physical invariant can exist at these levels unless
it is a permutation invariant, and we will have completed the proof of Theorem 1 (b)
for these levels.

From (5.3b) we get Np>tp> ^ α2, where the inequality will hold iff mϊp, Φ 0 for
k + 1

some i > 0. However, taking λL = λR = p and t = —-— in Eq. (2.9) tells us

1 = Nptp = Λ/p 'p ' , so a = 1 and mip = 0 for all ί > 0.
Taking λ = (1, 2), note that Eq. (2.5f) gives us

s(λ) = S<β + S$t = -̂ = {sin[2π//c'] - sin[6π//c']} .
'

s(λ) equals 0 for k = 5, but is negative for all larger k = 1 (mod 4). By the discussion
after (5.4), this means no strongly physical invariant (except possibly for fe = 5) can
have ch0 = χk

p> + χk

p9 which concludes the proof of Theorem l(b) for class (ii).

5.2. Class (iii). Class (iii), i.e. fe = 0, 3, 6 (mod 12), is more difficult. As in class (ii), it
suffices to consider block-diagonal invariants. From Lemma 4 we read off
ch0 = χk + aχk> + bχk-, where now we take p' = (k + 1, 1) and p" = (1, k + 1),
and where at least one of α, b is positive. Taking / = — 1 and (λ; λ') = (p; p ' ) in
(2.9) tells us a = b ̂  1. We would first like to show a = 1.

ω(p) = p' and ω2(p) = p", where ω is defined in (2.2). Put λ' = (m, rc); then for
any λ we get from (2.5f)

SωUU' = exp[2πi(m - n)/3]S($, S$uu' = exp[2πΐ(- m + n)/3]S\y . (5.5a)

Substituting in λ' = (1, 2), we find that

Sp,(l,2) + 0Sp',(l,2) + ^p",(l,2) = (1 — β)^p,(l,2) j (5.5b)

where S^li^) > 0- F°r a > 1 s(/l) will be negative, so we must have 0 = 1.
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Similar calculations show that m ί > ( m > w ) will be zero for all i = 0,1, . . . , nc — 1 iff
m φ n (mod 3), and that m ί > p ' = m ί j p" = 0 for all i = 1, . . . , nc — 1.

We can partition the indices {0, . . . , nc — 1} into disjoint sets //, where i, j lie in
the same set lf iff there exists a λePk such that mίλ, m^ > 0. For example we have
just shown that one set, call it /0, equals {0}. Rewrite (5.3a) as

Z = Σ Σ \cht 1
2 . (5.6a)

This is equivalent to writing AT as a direct sum of indecomposable matrices JV/ as in
(2.10c), where

/ I 1 M

N0= 1 1 1 1* M3>1 (5.6b)

\1 1 1 /

is the block "containing" χ*, χk> and χ * / / . What are the possibilities for the other
JVj? The following result is the heart of the class (iii) proof.

Claim. N can be written as a direct sum of matrices, Λ//, where either

Nj = (0) = M1 > 0, Nf = (3) = M l j 3 or N<? = M3 > 1 . (5.6c)

In other words, each chi either equals χ\ for some λ (in which case there also are i',
i" Φ i for which cht> = cht» = chi), or chi = Iλ^ + 1\2 + %1 for some distinct weights
^ι?^2?^3 Moreover, chi = χχ can only happen for λ = (k'β, k'β), and
chi = χ E j + Xkλ2 + X*3

 can only happen for λ2 = ω(λ±] and λ^ = ω2(λι), up to
a possible reordering of the λi.

Proof. From (5.6b) and (2.10a) we find r(N0) = 3. It is an easy combinatorial
exercise to find all possibilities for N^ with r(N;) = 3: N^ equals'either

The main things to keep in mind when showing (5.6d) is complete are Eqs. (2.10),
and the fact that Λ// is the coefficient matrix for £.e/ \cht\

2. For example, if any
entry of Λ// is at least 3, then by (5.3b) a diagonal entry of Λ// is at least 3, so by
(2.10b) Nj must equal (3) = M1 > 3.

We wish to show that no N^ can equal either M' or M". Since M? s 3 = 3M1>3

and M3 > ^ = 3M3j 1? Lemma 3 would then conclude the proof of the first statement
of the claim.

First let us make some general remarks. Because of (5.6d), we know all of the
possible extended characters ch look like ch = Σj=ι %\ f°r ^ = 1? 2 or 3, where
each λj = (nij, nj)ePk is distinct. Then we know

Σ S^;m^ = 0 (5.7a)

must hold for each (m', ri)ePk with m' φ n' (mod 3). In fact, because the triality
m' — n' (mod 3) is preserved both by Weyl reflections and adding vectors in k'A2,
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we may drop the assumption in (5.7a) that (m',ri)ePk and demand only that
m' φ ri (mod 3) (for (m'9 n'} φ Pk define S™m n by (2.5f)).

Writing (m', ri) = (f + Γ, (\ x, = exp[-2πtf/fc'] and y,> =
3/c'], (5.7a) becomes

- yΐ.m'-2H>χΐm>-n> - y2^j+njx?j - ysmj+njxn/} , (5.7b)

where the extra irrelevant factor in front is added for future convenience (to make
the exponents all positive). This must hold for all /, /'eZ, with /' = 0 (mod 3).
Consider the polynomial p(x, y) obtained by replacing x^ and yf with the variables
x and y, respectively, in the RHS of (5.7b). Divide xk/ — 1 into (yk' — l)p(x, y); the
remainder is

h

V1 ( y3k'-mj + njχk' -mj _ y 2 f e / ~mJ +nj γ f c / ~mJ _L y 3 f e ' ~mj~ 2nJ γ f e / ""->

7=1

_ ,,2fc' — W j — 2tij γk' — Πj _ ..3k' — nij — 2nj y.k' — mj — nj _ι_ ..2k' —mj — 2rij ~k' — irij—nj

_ι_ y3k' + 2mj + njχmj + nj _ ^2k' + 2m j + HJ χmj + nj _ ..3k' + 2nij + njχmj

-f y2k' + 2mj + njχmj _ y3k' -nij + njχ"j _j_ y2k' -m3 +"jχnj I ^ (5.7c)

Then (5.7b) is equivalent to the statement that y3k> — 1 must divide (5.7c).
Let us look at one of these terms, say y2k' + 2mJ+nJX

mJ\ Because y3k' - 1 must
divide the polynomial in (5.7c), there are only two possibilities: either that one of
the 6 h terms in (5.7c) with a coefficient of - 1 will cancel y^' + 2mj+njχmj^ or that

one of the other 6 h — 1 terms in (5.7c) with a coefficient of + 1 will equal
y2mj+nj-k'χmj^ j^et us first show that the second possibility cannot be realized.

Suppose e.g. that y2k'-m*-2niχk'-mi-»i = y2mj+nj-k'χmj^ for some i^i^fa

That means Ik' — mt — 2n, = 2m7 + HJ — k' and k — mt — nt = mj9 i.e.
2k — HI = nij + Πj. But this contradicts nt < k' and m7 + HJ < k. The other possi-
bilities all fail for similar reasons.

Thus the first possibility must be realized. Suppose e.g. that
y2k'-mi + nlχk'-mί = y2k' + 2m, + n,χmJ-? {Q 2k - Wl j + Ht = 2k -f 2m j + Πj and

k — nil = Wj This gives us — k + nt = m7 + n^ , which is likewise impossible.
Indeed, the only positive terms in (5.7c) which can cancel y2k' + 2mj+njχ

mj are

y3k'-mi+niχni fQT any ^ w{1jc]1 gjve us the equations nf = m^ and mf = k' — m7 — n^.

In other words, for each 7 there must be an i such that ω(mJ9 Π7 ) = (m ί9 nf).
Suppose ft = 1, i.e. eft = χj^ n. Then ω(m, n) = (m, n), which can only happen for

(m, n) = (fc'/3, fc73).
Suppose ft = 2. Then either ω(m l 5 n^ = (m1 ? nj and ω(m2, n2) = (m2, n2), or

ω(m l 5 W t ) = (m2, «2) and ω(w2, n2) = (m l 9 W x ) . In either case, the only way this
can happen is if (m1? n^) = (m2, n2) = (fc'/3, /c73), contradicting A! φ A 2. Therefore
ft cannot equal 2. Hence N^ = M' and N/ = M" are both impossible, because both
require an extended character with ft = 2.

Finally, suppose ft = 3. It is easy to verify that the only possibility here is
ω(m 1,n 1) = (m2, n2) and ω(m2, n2) = (m3, n3), relabelling the indices if neces-
sary. QED to claim
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From the claim, and the earlier observation that mM m 5 W ) φ 0 for some i iff m =
n (mod 3), we know already what our block-diagonal invariant must look like: it is
2k. Note that this extended algebra, which we will call A2tk, has far fewer
characters than A2,k does,_so there are no "hybrid" invariants with e.g. the chiral
algebras d = A2>k and «$/ = A2ίk: the only possibilities for a strongly physical
invariant are «$/ = j/ = A2,k

 and ̂  = ̂  = A\tk. The first possibility corresponds
to permutation invariants. Our task here is to enumerate all physical invariants
corresponding to the second possibility, in other words to find all permutations
π of the extended characters which obey T^πj = Te

tj and

Sii,«j = S i j . (5.8a)

Also, Ne

πhtπi,πj = Ne

hίj, where

nc— 1 ce oe oe

0 = 0

Write chm>n for χk

m>n + χk

ω(m,n) + %«2 ( m > n ) and ch(ί), i - 1, 2, 3, for the extended
characters equal to χl'iwis To avoid redundancy, we may restrict (m, n) here to
lie in the set Pe — {(m, n)eP f e |m < k' — m — n and n ^kf — m — n}.

Using (5.5a) we can easily find most of the entries of Sf/:

Smn,m'n' = 3θm r,,m'n'5 (5.9a)

Smn ( i ) = $ mn;k'/3,k'/3 ? * = l j 2, 3, (5.9b)

using obvious notation. The 9 remaining entries, Sf ί ) ( < / ) = Se

UHi) for i, j = 1, 2, 3,
satisfy several relations: e.g.

l%(1)|
2 + |Sf i ) ( 2 ) |

2 + |S(

e

0(3)|
2 - + - , (5.9c)

where α = 5^/

)

3)/c73;fc735fc'/3 = ,_ sin(2π/c'/9). Equation (5.9c) follows from (5.9b)

and the unitarity of Se and S(k\
It will not be necessary for us to explicitly compute the Sfoo')- ̂  suffices to note

from (5.9c) that for each z, there is a j for which \Se

(i)U)\ ^ >/2/3. On the other hand,
by (5.9a, b) the other entries of Se are proportional to 1/fc', and so will usually be
much smaller.

Suppose π takes some ch(i} to some chmt]t. A quick calculation shows \Smntm'n'\
^ -v/2/3 can only happen for k ̂  19, i.e. k = 18, 15, 12, . . . , 3. An explicit com-

puter calculation shows |5(18)| < ^/2/9, which eliminates k = 18. Similarly \Se

mnΛj)\
^ Λ/2/3 can only happen for k ̂  3. Therefore, by (5.8a) for k ̂  18 we must have

π taking each chm,n to some chm^n>. Let us restrict ourselves to these k. How
π permutes the ch(ί) is irrelevant to us, since those 3 characters are equal.

To find all such π for k' > 18 reduces to arguments familiar from earlier parts of
this paper, so we will only give a 3-step sketch of the proof.

Let ^l = {(m, n)ePe\m = a or n — α}. Suppose we know π(α, b)e<9*e

au ίf%.
Then using (5.9a) the argument surrounding Eqs. (3.7) applies here and tells us that
π(a, b) = (α, b) or (b, a).
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Because of (5.9a, b) and (5.5a) we can see that

2

™ mn, = / , ™ ωi(m,n),m'n',m"n" >

, n]

2k' .c k' m

k'
— + m — n

0

(S.lOa)

k'

]f' If'
•r Λ ^ ^l f τ = n < τ
otherwise

k'
y H

0

2fc' . k' n

\-n-m if — ̂  m <

otherwise

fcr

: y 4

fe;

y
- n (5.1Gb)

7. First prove that π(l, α) = (1, α) or (α, 1) for all (1, a)ePe.
It suffices to show π(l, ί^e^f. This follows immediately from (5.10b), except for
a = k'β when k'β = 1 (mod 3). If π(l, k'β) φ Se\, then π(l, α) = (2, m) or (m, 2) for
some m. Now, we can show π(3, 3) = (3, 3) (otherwise by (5.10b) it must equal
(2, k'β + 1) or (k'β + 1, 2), which violates Se

11>33 = Sιι,π(33)). Then
S!3;l,*73 = ^33;2m implies ΪH = k'β - 2, which Violates S!1:1,Λ73 = Sίl;π(l,*'/3)

2. Next show that π(l, 4) = (1, 4) implies π(l, α) = (1, α) for all (1, a)ePe.
The proof is similar to that used in proving (3.10a). In particular, (3.9a) becomes

cfe(6 + 9α) 3α) + ck(3 - 6α) = cfc(9 + 6α) + cfc(6 - 3α) cfc(3 + 9α),

(5.10c)

which has the solutions α = 0, 1, k' — ? in the range 0 ̂  α < k'.

Step 3. Finally, show that π(l, 4) = (1, 4) implies π(α, b) = (α, b) for all (α, b)eP e.
This argument resembles the one surrounding (5.7c). Step 2 can be used to show
that xk' — 1 must divide the polynomial

- ek(3a' + 3b')]x«' + 2&'36) -

(- 3α) - e,(-3α -

Λ-b + [^(Sα') - efc(-3i>')]*"'~&' , (S.lOd)

where (αr, b') = π(α, ft). This can only happen for (α', b') = (α, 6).
The conclusion is that there are only two possible permutations π, except

possibly for k ̂  15. These give rise to the physical invariants @k and @tc

k. (The only
level this argument breaks down at are fe = 3, 6, 9, 12, 15.)

5J. Class (iv). From Lemma 4, and using the previous arguments, the only
possibilities for ch0 are
and

χk

p

+ β χ + ι , ι + +

+ aχltk + 1', χp

2,2 +
+

where
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a ^ 1. The first corresponds to a permutation invariant, and is classified in
Theorem. 2: the permutation invariants are sίk and j/£. The second is classified
(for k Φ 9) by the class (iii) argument given above: the physical invariants are <3)k

and Q)c

k (it turns out that the exceptional <f (9
2) and $(

9

2)c also correspond to this
ch0). The third possibility is dealt with using the argument of class (ii) given earlier,
and is realized by no physical invariants.

The fourth and final possibility can be dealt with using the Eq. (5.4) argument.
In particular, the vector λ = (1, 3) in (5.4) implies 0 = 1 . Then the choice λ = (1, 4)
gives a contradiction, except for level k = 9 (where there is an exceptional, $$\
which realizes this ch0 possibility).

5.4. Level 57. Lemma 4 for k = 57 is: if Npλ φ 0 for a positive invariant of level 57,
then

Ae{(l, 1), (1, 58), (2, 29), (11, 11), (11, 38), (19, 19), (19, 22), (29, 29),

(22, 19), (29, 2), (38, 11), (58,1)}. (5.11)

From here we can read off the possibilities for ch0: there are 16 of them, half of
which involve a parameter a ̂  1. Of these, four were considered in the class (iv)
argument given above. The remaining 12 all succumb to similar arguments: the
weight (1, 3) used in (5.4) forces α = 1 in the 6 remaining possibilities involving the
parameter a; the weight (2, 5) eliminates the 6 not involving 0, and eliminates 0 = 1
in the other 6. The conclusion is that the only k = 57 strongly physical invariants
are the permutation invariants ^57, ̂ 57, ^57 and @C

5Ί.

6. Extensions to Other Algebras

The main motivation for pursuing a classification proof for A2 is the hope that the
methods developed there would also be of use for other algebras. And indeed that
should be the case. The main issues are the simplicity of the form the p-coupling
lemma for those algebras takes, and also how well we can manage finding all
permutation invariants. For some examples we will now write down the p-
couplings for Al9 and a little later on that of A1 © A1 for relatively prime levels
k± + 2, k2 + 2, as well as conjectures for G2 and C2 which we have verified on
a computer for the first hundred levels (the p-shifted weights are identified with
their Dynkin labels):

/^-coupling for A\. (a) For k = 1, 2, 3 (mod4), k φ 10, the only possible weight
λ which can couple to p = 1 in a positive invariant is λ = 1;

(b) for k ΞΞ 0 (mod 4), k Φ 28, the only possibilities are λ = 1 and k + 1;
(c) for k = 10, λ = 1, 7; and for k = 28, λ = 1, 11, 19, 29.

/^-coupling for G2. (a*) For k φ 3,4, the only possible weight λ which can couple to
p = (1,1) in a positive invariant is λ = (1,1);

(b) for k = 3, the only possibilities are λ = (1,1), (2, 2); and for k = 4, λ = (1,1),
(4, 1).

/^-coupling for C2. (a*) For k odd, k Φ 3, 7, the only possible weight λ which can
couple to p = (1,1) in a positive invariant is λ = (1,1);

(b*) for k even, k Φ 12, the only possibilities are A = (1, 1), (1, k + 1);
(c) for k = 3, λ = (1,1), (3, 2); for k = 1, λ = (1,1), (3, 3), (1, 6), (7, 2); and for

k = U,λ = (1,1), (3, 4), (7, 1), (5, 5), (9, 2), (3, 8), (9, 4), (7, 7), (1, 13).
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The results for Al are proven in the appendix. As yet unproven results are
marked with an '*' (but because they hold for k < 100, they likely hold for all k).
This shows that in many ways A2 is the least tractible of the rank 2 algebras.
According to these findings, for G2 all physical invariants (except at levels 3 and 4)
must be permutation invariants, and similarly for C2 at odd levels (except 3 and 7).
Note that for each of these algebras, at any level with irregular p-coupling
behaviour (e.g. k = 10 and 28 for AI) exceptional invariants can always be found.
The only known exception to this rule is A2 at k = 57.

The p-coupling possibilities for Av © A± are more complicated, because there
are now two independent levels /q and k2. But it is easy to find these when e.g.
k1 + 2 and k2 + 2 are relatively prime, using an argument very similar to those
used in the Appendix (see [13] for a proof). The result is:

/9-coupling for A\® A\. When kι + 2 and k2-\-2 are relatively prime, the only
λ = (m, n) which can couple to p = (1,1) in some positive invariant are:

(i) for ki9 k2 odd, /q ΞΞ k2 (mod4), then λ = (1,1);
(ii) for ki9 k2 odd, kλ φ k2 (mod4), then λ = (1,1), (/q + 1, k2 + 1);

(iii) for fci ΞΞ 0 (mod4), /q Φ 28, then λ = (1,1), (/q + 1, 1);
(iv) for k2 = 2 (mod 4), /q Φ 10, then λ = (1,1);
(v) far k, = 10, λ = (1,1), (7,1); and for k, = 2%,λ = (1,1), (11, 1), (19,1), (29,1).

Since we also found in [13] all permutation invariants for Al 0 A±, for all levels
kΐ,k2, it is now an easy task, using the techniques of Sect. 5, to complete the
A i 0 A i classification when kι + 2, k2 + 2 are relatively prime. These observations
have also been generalized in [13] to all ̂  0 φ Al9 when kl + 2, . . . , kL + 2
are all relatively prime.

These findings suggest that Lemma 2 continues to be useful for algebras other
than just A2. Our proof in Sect. 3 to find all permutation invariants of A2 made use
of explicit formulas for the A2 fusion rules [5], and those do not exist at present for
the other algebras (except for Al [16] and hence all sums of Al and A2). Our hope
is that this will not constitute a serious stumbling block for future applications of
these ideas. The only fusion rules which our proof crucially needed were Nλλλ,
which may be simple enough to calculate explicitly. Moreover, since all the
information obtainable from fusion rules is also encoded in the modular S-matrix
[36, 27], though in not so accessible a form, it is possible that alternate proofs of
Theorem 2 can be found which do not require explicit knowledge of any fusion
rules of A2.

Perhaps a more serious problem facing generalizations of these techniques to
higher ranks is the dependence of many steps on explicit knowledge of the modular
5-matrix. The Weyl group of the algebra increases fantastically as the rank; so will
the complexity of the explicit formula for the modular S-matrix.

It was proven in [38] that there is an exact rank-level duality between Cn level
k and Ck level n; in particular there is a one-to-one correspondence between the
physical invariants of one and those of the other. Thus finding all the physical
invariants of C2 would mean we have also found all the level 2 invariants of Cn.
There also is an approximate rank-level duality between An level k and Ak- ί level
n+l [39, 1]. This suggests that the situation for levels 2 and 3 of An should be
approximately as accessible as that for arbitrary levels of AI and A2. This will be
another direction for our future research.
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7. Comments

In this paper we first find all permutation invariants of A2, for each level k. We then
prove that for k = 2, 4, 7, 8, 10, 11 (mod 12), the only level k physical invariants of
A2 are permutation invariants. Together, these two statements allow us to write
down all physical invariants for A2 of those levels: j/fc, j/£, ̂ fc and Q)c

k (see Eqs.
(2.7a, b, h)).

To handle the remaining levels, we make use of additional results known to be
satisfied by the partition functions [26]. These allow us to find all strongly physical
invariants for k = 0, 1, 3, 5, 6, 9 (mod 12), except for 7 levels which have been
completely treated by the computer program of [18]. Thus the classification
problem for A2 modular invariant partition functions has now been completed.

Two questions suggest themselves: (i) At present our only proof for levels k = 0,
1, 3, 5, 6, 9 (mod 12) requires results from [26]; although these must hold for the
partition function of any physically reasonable conformal field theory, they do not
necessarily hold for invariants satisfying only the three conditions (PI), (P2) and
(P3). It would be desirable to reduce as much as possible the required assumptions,
even though all assumptions used are physically well-motivated. Can our classifica-
tion of strongly physical invariants for those levels be extended somehow into
a classification of physical invariants (the terms "physical" and "strongly physical"
are defined in Sect. 1)? (ii) Can the methods developed here give classification
proofs for the other affine algebras?

A natural way to try to answer question (i) in the affirmative is to apply Lemma
2 to weights other than just p, in other words to generalize the proof of Lemma 4 to
λ' Φ p. There is a good chance this approach would work, but it could result in
a much lengthier argument.

The main thrust of our future research (see e.g. [13]) will be directed towards
(ii), i.e. applying these arguments to other algebras, starting with the remaining
rank 2 algebras and Aγ © 0 Al9 and levels 2 and 3 of An. Section 6 discusses
our initial findings.

Appendix: /^-Coupling for A\

An important step in the A2 classification proof given in this paper is the p-
coupling Lemma proven in Sect. 4. Its proof (see Claim 1 there) assumes knowledge
of the p-coupling lemma for Al9 given in Sect. 6. Because of this, and because the
p-coupling proofs for A1 is more transparent but similar in spirit to that of A2, we
have included here the Al proof. After giving it, a few brief comments on how to
finish off a classification proof for Al are provided. Claim 1 in Sect. 4 is the A±
p-coupling Lemma, if we were to ignore the Al norm condition; its proof will be
completed at the end of this appendix.

The proof given below for A± p-coupling is certainly not intended to be the
shortest such; because our primary interest is in proving Claim 1, we will exploit the
AI norm condition (A.la) as rarely as possible.

Write k' = k + 2 = 2Lk\ where k" is odd. Define the integer M by k'/
2 rg 2M < k'. Identify a weight λ = mβl of Al by its Dynkin label m. Suppose
NI > α > 0 for some Aί positive invariant N of level k. The norm condition reads

α2 = 1 (mod 4k ') . (A.la)
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Hence α must be odd. The parity ε(m) of some weight m is simply

Γ +1 if 0<{m}2k,<k'

ε ( m ) = J -1 if k' < [m}2k. < 2k' , (A.lb)

I 0 if {m}2k' = 0 or k'

where throughout this Appendix we use the notation {x}y for the unique number
satisfying both {x}y = x (mody) and 0 ̂  {x}y < y. Using this, Lemma 2 becomes

0 < { < k', { relatively prime to 2k', => {ta}2k> < k'

k' < { < 2k', ( relatively prime to 2k', => {/α}2 k< > k' (A.lc)

We want to find all integers 1 ̂  a < k' satisfying both (A.la, c). Equations (A.I) are
the analogues of Eqs. (4.1).

Assume first that k' is odd (i.e. that L = 0), and define N ^ 0 so that
a2N <k' < a2N + ί < 2k'. If a > 1, then N < M. Put ί = k' - 2N + 1; it will lie
between 0 and fc', and will be relatively prime to 2k'. Then (A.lc) implies
k' > [ak1 - α2N+1}2r = 3/c' - α2N+1 > k', a contradiction. Therefore, fc' odd im-
plies a must equal 1.

Thus it suffices to consider k' with L > 0. Let a2 = {α}2L+1 There are two
different cases: either a2 ^ 2L (to be called case 1), or a2 > 2L (to be called case 2). If
k' = 2L, there will only be case 1.

Consider case 1 first. Define /t = k" + 2\ for i = 1, . . . , M — 1. Then these ̂  will
necessarily be relatively prime to 2/c', and they all will lie in the range 0 < /; < k'.
Let h = a Ik' and c = 1 - a2/2L. Then (A.lc) tells us that no 1 ̂  i < M can have

l rg- |+{2 l b} 2 5Ξ2. Write out the binary expansion b = YJ™=1bi2~i oϊb (so each

fei - 0 or 1). Then we have, for each i = 1,. . . , M - 1, that {2lb}2 > 1 + c if
&ί= 1, and { 2 ί f r } 2 < c i f 6i = 0.

Assume inductively that b^ = - - - = bn = 0 for some 1 ̂  π < M — 1, but
bn + 1 = L Then 2nb = {2nb}2 < c, but 2n + 1b = {2n+1b}2 > 1 + c. Hence,
1 + c < 2n + lb < 2c, i.e. 1 < c, which is false.

A similar calculation holds if bl = = bn = 1 but bn + 1 =0. Thus there are
exactly two possibilities: either bι = 0 for all i = 1, . . . , M — 1, or b{ = 1 for
ί = 1, . . . , M - 1 - i.e. either a < /c72M~1 or α > fc' - k'/2M~l But k'/2M'1 ^ 4,
so α odd implies either α = 1 or 3, α = k' — 1 or /c' — 3. Equation (A.la) now forces
α = 1 or (if L = 1) α = fc + 1.

Case 2 is harder, and we will begin by proving it for L = 1. As before, take
f{ = 2l + k'/2 for i = 1, . . . , M — 1. Equation (A.lc) however now reads
3 < {2 fb}2 < I, since α2 = 3 here.

Consider first b± = 0. Then i ^ 2fc implies fo2 = 1, and 4b < f implies fo3 = 0. In
fact, hi continues alternating between 0 and 1, for i = 1, . . . , M. The same con-
clusion holds iίb1 = 1. Therefore, for M even, a = k'/3 + ε or a = Ik'β — ε, where
-fc'/(3 2M) ̂  ε < k'/(3 •2M~1), and for M odd, a = k'β + ε' or α = 2fc'/3 - ε7,

where —k'/(3 2M~1) ̂  εr < fc'/(3 2M). ε and ε' are fixed by the requirement that
a be odd. There are 3 possibilities: if k' = 0 (mod 3), we have α = fc'/3 + 1 or
α = 2fc;/3 - 1; if k' = ± 1, we have a = k'β + 1/3. Equation (A.la) tells us that for
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k' = 0 (mod 3), these a can only work for k' = 30 (mod 36); for k' = ± 1 (mod 3)
they cannot satisfy (A.lc).

So consider k' = 30 (mod 36). Then / = 6 + k'/6 will be relatively prime to 2k'.
We find that t(k'β + 1) = 6 - k'/6 (mod2/c') This then contradict (A.lc), unless
6 — k'/6 > 0, i.e. k' < 36, i.e. k! = 30. This concludes the proof of case 2, for L = 1.

All that remains for us to prove is case 2 for L > 1. Choosing t{ = 2* + k" gives
us c' < {2lb}2 < 1 + c' for i = 1, . . . , M - 1, where c' = 2 - a2/2L. Choosing
t\ = /c" - 2' gives us 1 - c' < {Tb}2 <2-cf for i = 1, . . . , M - L. Adding
these, we get \ < {2lb}2 < I for i = 1, . . . , M — L. Therefore by the case 2L = 1
argument we get that bt alternates between 0 and 1 for i = 1, . . . , M — L + 1.
From this and the /ί? t\ inequalities we see that, unless M — L = 1, the binary
expansion of c' either looks like c' = 0.10 . . . or c' = 0.01 . . . (in which case by the
t{ inequalities we cannot have bj = bj+ί = bj+2 for any j < M), and if M — L > 2
we have c' = 0.101 . . . or c' = 0.010 . . . (in which case we cannot have bj = bj+ί

for any j < M).
Now take £'[ = 2i — k" for i = M — L + 1, . . . , M. This means either

{2lb}2 + c' < 1 or {2ib}2 + c' ^ 2 for these i. Then by the case 1 argument, we
must have ί>M-L+ι = ' ' ' =bM

Thus, either M - L = 1, or both M - L = 2 and L = 2. If M - L = 2 and
L = 2, then k' = 4 5 or /c' = 4 7. Otherwise M - L = 1, i.e. k' = 3 2L. From the
above calculations we can read off that a = k'/2 ± 1 here. Equation (A.la) reduces
to 2L~2 3 = + 1 (mod4). The only possible solution is L = 2 (i.e. k' = 12) and
a = k'/2 +1-7.

This completes the classification of the case 2 p-couplings α, and hence the
proof of the p-coupling lemma for A1, except for 4 levels where the argument broke
down: k = 10, 18, 26, 28. These can be explicitly worked out on a computer.

Little work now remains to obtain a new classification proof for A±. The Al

permutation invariants can be easily enumerated using the expression S^ = ^/2/
k' sin(πmn/k'). Apart from the exceptional level k = 10, this classifies all physical
invariants of level k = 1, 2, 3 (mod 4). To find the strongly physical invariants of
level k = 0 (mod 4), the methods of Sect. 5 suffice, and indeed reduce ultimately to
an example in [26].

Proof of Claim I in Sect. 4 If we replace the K in Claim 1 with kf = k + 2 here, we
see that it is simply the AI situation, ignoring the norm condition. The only places
we used (A.la) were in the case 1 proof when we eliminated a = 3 etc.; the case
2 proof for L = 1, when we eliminated all but k' = 30 (mod 36); and the case 2 proof
for L > 1, when we threw out k' = 2L 3 for L > 2.

Note that a will satisfy (A.lc) iff k' — a will, so it suffices to consider a rg k'/2.
Consider first the case 1 proof, and a = 3. Because 3 = α2 < 2L, we must have

L > 1. If k' = - 1 (mod 3) use ί = (k' + l)/3, while if k' = + I(mod3) use
{ = (k' + 2)/3 + k". If k' = 0, 3 (mod 9) take f = k'β + 1, while if k' = - 3
(mod 9) use / = k'/3 + 3 (this fails for k' < 9, but there are no such k' divisible by
4 and 3).

Now consider the case 2 proof for L = 1. Taking £ = 3 eliminates k' =
- 1 (mod 3), and for k' > 12 taking { = k'/2 + 6 eliminates k' = + 1 (mod 3). The

only k' ^ 12 with k' = + 1 (mod 3) and L = 1 is k = 8. For k' = 6 (mod 36) use
5 = 4 + kf/6 (this fails for fc = 4), and for k' = 18 (mod 36) use { = 2 + fe'/6.

Finally, consider the case 2 proof for L > 1, where k' = 2L 3. For k' > 14, take
£ = Ί (this fails for k = 10).
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The only k = K — 2 which escaped our arguments are k = 4, 8, 10, 18, 26, 28.
These can be explicitly worked out. This concludes the proof of Claim 1.
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Note added in proof. After this paper was completed we recieved two related papers [32, 34]. Reference
[32] also finds all permutation invariants of A2, but without using the fusion rule calculations in [5].
This is valuable because similar arguments may work on e.g. An. Reference [34] also identifies the
important relation (2.9), which we found in [11]. Using it they find all A2 physical invariants for k = 2,
4 (mod 6), and all strongly physical invariants when k + 3 is a power of 2 or a power of 3.
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