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Abstract: A notion of well-behaved Hopf algebra is introduced; reflexivity (for
strong duality) between Hopf algebras of Drinfeld-type and their duals, algebras of
coefficients of compact semi-simple groups, is proved. A hidden classical group
structure is clearly indicated for all generic models of quantum groups. Moyal-
product-like deformations are naturally found for all FRT-models on coefficients
and C00-functions. Strong rigidity (H^ = {0}) under deformations in the category
of bialgebras is proved and consequences are deduced.

Introduction

There presently exist at least four models of quantum groups, introduced respec-
tively by Drinfeld (D-model) [6], Jimbo (J-model) [16], Faddeev-Reshetikhin-
Takhtajan (FRT-model) [9] and Woronowicz (W-model) [23]. We apologize for
missing other models or authors. All these models are Hopf algebras that intend to
be "deformations," in the following sense: they depend on a parameter, say q (or
eu)9 and when q = 1 (or t = 0), one finds a very classical and well known Hopf
algebra, such as, e.g.: the enveloping algebra of a simple Lie algebra (D), the algebra
of coefficients on an algebraic reductive group (FRT), an algebra of continuous
functions on a compact group (W). It is often claimed that the classical limit of the
J-model is the enveloping algebra of the corresponding simple Lie algebra; however
this claim is not quite correct (see e.g. [5] or [3]): in fact, the classical limit of the
J-model is an extension of W(g) by r parities (r = rankg). As a matter of fact this
should have been obvious even a priori, since all deformations of the (multiplicative
structure of the) enveloping algebra of a simple algebra are trivial [8], while the
J-model is a non-trivial deformation of its classical limit (see the end of this
introduction). It is also often asserted that the D and FRT-models are mutually
dual. Although this claim seems quite reasonable because generators of D-models
can be found in the dual of FRT-models [9], a canonical duality * such that
D* = FRT and FRT* = D has not yet been constructed.

Here is a short summary of some puzzling problems concerning quantum
groups:
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a) A first problem is the meaning that one should give to the word "deforma-
tion." A very good discussion is given in [11]. If we take the usual notion of the
third author, then the D-model is a deformation of °U{g)\ Drinfeld has shown that
this deformation is trivial from the algebra viewpoint, so that the only thing which
is really deformed is the coproduct. We shall discuss later the J-model. For the FRT
model, [11] shows that defining relations of the type 0tTγT2 = T2Tx0l do not
necessarily define a deformation, even if 01 is Yang-Baxter; however, one shows
[11] that the FRT-model is a deformation if G = SU(n). The problem of showing
that the FRT-model is a deformation for other G, such as SO(n\ Sp(ή), has not been
solved up to now.

b) A second problem is related to duality. It is not only a problem concerning
quantum groups, but really a problem concerning Hopf algebras in general, when
not finite dimensional. For such a Hopf algebra A, the algebraic dual A' is not
a Hopf algebra, and A c + A".

Therefore if one starts with the naive, but suggestive, idea saying that if the
D-model is a deformation then the FRT-model, being its dual, should also be
a deformation, one gets stuck in trying to prove it rigorously. What is necessary, as
noted in [9] (Remark 23), is a theory of reflexive Hopf algebras which avoids the
technical difficulties coming from the lack of reflexivity of the usual algebraic
theory. Obviously, such a theory has to be a topological one!

c) A third problem is to give an interpretation of the Tannaka-Krein philos-
ophy in the case of quantum groups: it has often been noticed that, in the generic
case, finite dimensional representations of a quantum group are (essentially) repres-
entations of its classical limit. So the algebras involved should be the same, and this
is justified by the above-mentioned rigidity result of Drinfeld. Such a remark shows
that the initial classical group is still there, acting as some "hidden variables" of this
quantum group theory, and it is an interesting challenge to discover these hidden
variables.

d) Related to the third problem is the result of the third author and S.D. Schack
on preferred presentations [12]. Assuming that some duality does exist for which
the FRT-model is dual to the D-model, it will follow that the FRT-model is
a deformation of the algebra of coefficients of G. As the algebra structure of the
D-model remains the initial one, the coalgebra structure of the FRT-model remains
also the initial one, so one should be able to realize the FRT-model as a deforma-
tion of the algebra of coefficients of G, with unchanged coproduct (a preferred
deformation).

e) Finally (once more if a convenient duality does exist) the FRT-model should
extend to C00-functions and provide a deformation of the usual product with the
Poisson bracket as leading term. This picture looks very much like the Moyal
product of quantum mechanics, and is given heuristically in [6] as a justification
for the name quantum groups (see also [1]).

The goal of the present paper is to give an answer to the above questions. We
shall:

i) recover FRT-models from D-models by a suitable duality argument.
ii) show that there exists a preferred deformation (in the Gerstenhaber-Schack

sense) of the Hopf algebra of coefficient functions on G (G a compact connected Lie
group) satisfying the FRT-relation 0tTxT2 = T2Tί@, with 0t Yang-Baxter as in
[9], and that this deformation extends to a deformation of the algebra C™(G).
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iii) discuss properties of D-models, FRT-models and J-models in the frame-
work of deformation theory.

In order to get these results, we introduce several new concepts, such as those of
well-behaved Hopf algebras and deformation theory of topological algebras, which
are of interest by themselves; for instance, the (strong) dual of a well-behaved Hopf
algebra is a well behaved Hopf algebra, and the (topological) deformation theory of
a well-behaved Hopf algebra is equivalent to the (topological) deformation theory
of its (strong) dual. Let us give a brief survey of the principal results of the
paper.

First, we introduce a category of topological Hopf algebras for which duality
works as if the algebra was finite dimensional. For this reason, we call them
"well-behaved" Hopf algebras. If A is such an algebra, then its (strong) dual A* is
also a well-behaved Hopf algebra, with Hopf structure obtained by transposition of
the Hopf structure of A, and A** = A as Hopf algebras. We show that any
countable-dimension Hopf algebra can be given a natural topology for which it is
a well-behaved Hopf algebra. Moreover any H(G) = C^iG), G a compact con-
nected Lie group, is a well-behaved Hopf algebra, and so is its dual A(G\ the
convolution algebra of distributions on G. There are many other examples, essen-
tially all Hopf algebras of interest.

While FRT-models are usually constructed for complex reductive algebraic
groups, this context can be replaced by that of compact connected Lie groups. We
prefer to deal with the second case, since this brings us back to the usual harmonic
analysis on (compact) Lie groups, and also because we believe in the power and
simplicity of WeyΓs unitary trick. In Sect. 2, related to the Tanaka-Krein philo-
sophy, we give a complete description of the well-behaved Hopf algebra J^(G)
(G a compact connected Lie group) of coefficients of G, and of its dual stf(G)\ our
description is in fact an algebraic version of the Fourier transform on compact
groups.

In the third section, since the algebras to be deformed are topological, we have
to present a topological version of the Gerstenhaber theory of deformations. This
construction is parallel to the usual one (needed technical results are given in
Appendix 3). The main result is that to deform (in the topological sense) a well-
behaved Hopf algebra is tantamount to deforming its strong dual. Note, however,
that in the case of countable dimension Hopf algebras, the purely algebraic
deformation theory and topological deformation theory do coincide.

In the fourth section, we study deformations of the well-behaved algebras
Jf (G), H(G\ and their duals *s/(G), A(G), previously introduced. Just like Drinfeld's
result for Φ(gr), we show that A(G) and j/(G) are rigid in the associative category,
and the new coproduct is obtained from the initial one by a twist, so it is still
quasi-coassociative and quasi-cocommutative (see [2] for a rigidity interpretation
of this result, and a discussion of cohomology and deformations of quasi-
coassociative bialgebras). It should nevertheless be remarked at this point that one
of the basic results of the present paper (generalizing a similar result of strong
rigidity for the case of SU(2) [3] to the general case of a compact connected Lie
group) is as follows: while the J-model (as will be explained later) does not exhibit
any rigidity, and the D-model, as shown by Drinfeld is rigid under global deforma-
tions, what we show for A(G) and stf(G) is strong rigidity. That is, they are rigid
under both infinitesimal and a fortiori global deformations in the category of
bialgebras because the corresponding second cohomology space, as defined in [3],
vanishes identically.
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We thus have a kind of Whitehead lemma for our version of quantum groups.
By duality, any coassociative deformation of Jf (G), or H(G), has a preferred
presentation. For J^(G\ this corresponds to the Gerstenhaber-Schack result, while
for H(G) it is new. Moreover, we show that in such a deformation of ffl(G\ or H(G\
the product of central functions (e.g., characters) is unchanged, something which
was never noticed. Finally, we show that preferred deformations of H(G) do restrict
to Jίf(G).

In the fifth section, we introduce a notion of quotient deformation, by showing
that preferred deformations of J f (G), or H(G\ do produce preferred deformations
of ^(G/Γ), or H(G/Γ\ if Γ is a closed normal subgroup of G. This result is
interesting even if G is simple (it can be used e.g. for G = SI/(2) and G/Γ = S0(3)).
This extends naturally to cases where Γ is closed but not necessarily normal. There
one can still define Jf(G/Γ), respectively H(G/Γ), which now, however, are
comodule algebras over J^(G), respectively H(G). For a comodule algebra over
a bialgebra the notion of a preferred deformation (relative to a preferred deforma-
tion of the bialgebra) is still defined: we require that the bialgebra and the comodule
coalgebra structure over it simultaneously so deform that we continue to have
a comodule algebra over the bialgebra, with the comultiplications of both the
bialgebra and comodule algebra remaining unchanged. In this way it is meaningful
to speak, in particular, of preferred deformations of homogeneous spaces.

In Sect. 6, we achieve another important goal of this paper: we justify duality
between D-models and FRT-models. Here is a brief sketch: Denote by % the
D-model deformation of °U{g\ We make a "good choice" of a Drinfeld isomor-
phism φ:%~ ^(#)[[ί]] Using φ, we imbed % as a subalgebra of ^(G)[[ί]] or
^4(G)[[ί]] (G a compact connected semi-simple^Lie group with complexified Lie
algebra g). We then show that the coproduct A of % extends to <s/(G)[[ί]] (or
A(G)[[ί]]), and so does the antipode and counit. Therefore we get Hopf deforma-
tions of topological Hopf algebras <s/(G)[[ί]] and A{G)\_{t\\ and (using the main
result of Sect. 3) preferred Hopf deformations of 2tf (G) and H(G\ which satisfy the
FRT-relation 0tTxT2 = T2Tγ0l with 9t Yang-Baxter. Let us emphasize that this
works not only for G = SU(n), SO(ή) or Sp(n% as in [9], but also for G = Spin(n),
and for exceptional G. For instance, in the case of Spin(2p), it predicts the existence
of a preferred deformation of type StTγT2 = T2Tί3i, βft, Yang-Baxter, based on the
direct sum of the spinor-representations (see also Remark 23 in [9]); such a model
has never been explicitly described up to now. Note that our result of realization of
quantum groups as preferred deformations of ffl (G) and H(G) (instead of algebras
defined by generators and relations) gives a complete answer to a question of [11]
(solved for SU(ri) in [11]). On the other hand, the above-mentioned "good choice"
of the Drinfeld isomorphism φ is far from being explicit; on the contrary, it seems to
be an incredibly complicated problem to give an explicit φ. This can be said as
follows: hidden variables (actually the initial group G) do exist for quantum groups,
but it is a non-trivial problem to give an explicit realization!

In Sect. 7, we discuss the J model, in the case g = s/(2), G = SU(2). It is usually
thought that the J-model is a clever, but equivalent, notation for the D-model. We
show that, though clever, it is not at all equivalent. Denote by At the J-model and
At the same with t a formal parameter. It is an easy matter to specialize (or
"contract") At to t = 0. The Ao obtained is not %(g\ but an extension of %(g) by
^parity C (C2 =Jl). This constitutes a first difference. So Ao is not a domain. Since
At is a domain, At is a non-trivial deformation of Ao, a second difference with the
D-model. Moreover, we can consider At0+t as a deformation of At0, and we show
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that it is a non-trivial one, a third difference. We have shown in [3] that At9 for
generic ί, can be realized as a dense subalgebra of srf(G). Actually, j/(G) has several
nice properties: it is rigid as an algebra, the D-model can be recovered as a dense
subalgebra of deformation of the Hopf algebra sί(G\ duality provides the FRT
model (since stf(G)* = #C(G)\ finite dimensional representations of stf(G) and
G are the same, etc. So, in our opinion, j/(G) is exactly the model of hidden
variables of quantum groups, in that case.

The paper contains four appendices, which introduce needed technical material
and present the terminology and notations we use. In particular, Appendix 2 is
devoted to the natural i f ^-nuclear topology on countable dimension spaces,
a very simple, but fundamental notion, since it provides any countable dimension
Hopf algebra with a well-behaved Hopf structure.

Many ideas of the present paper originate in [3], where the case G = SI/(2) is
explicitly treated.

Finally, any reader will notice that this paper is a discussion of the generic case
of quantum groups. We do not discuss the "roots of unity" case, because we are
dealing with deformation theory. Some explicit deformation formulas, e.g., the
Moyal product remain well-defined when ft is a root of unity, but the latter seems
never to have been discussed. Nevertheless we believe that the really interesting
applications of quantum groups should come from the root of unity case, a case
that should be compared with representation theory on finite fields rather than
with real (or complex) Lie group theory.

1. Weil-Behaved Topological Bialgebras

We refer to Appendix 4 for notions of topological algebras, bialgebras, etc..

(7.7) The Framework. Let us assume that A is a topological bialgebra, and more-
over, that as a complete topological vector space (c.t.v.s.) A is nuclear, and Frechet
or dual of Frechet. Then A is Montel [21], so, by (A.I.3), A is reflexive. Using
(A. 1.5), transposition of the product and coproduct of A defines a coproduct and
a product on A*, so A* becomes a topological bialgebra. Now A*, as a t.v.s.,
satisfies exactly the same conditions as A, so we can repeat the transposition
operation, and since A is reflexive, we recover the initial bialgebra structure of A.

If we assume that A is associative (with unit), then A* will be coassociative (with
counit), and if we assume that A is a topological Hopf algebra, then the counit of
A will define the unit of A*; the counit of A* is the evaluation on the unit of A, and
the antipode of A* is the transpose of the antipode of A, so A* is also a topological
Hopf algebra. Therefore, we introduce the following definition:

(1.2) Definition. A topological algebra (resp: bialgebra, Hopf algebra) is well-

behaved if (as a c.t.v.s.) it is nuclear and Frechet, or nuclear and dual of Frechet.

Now, we summarize the results of this section:

(1.3) Proposition. When A is a well-behaved topological bialgebra (resp: Hopf

algebra) then the transposition defines on A* a well-behaved topological bialgebra
(resp: Hopf algebra) structure, and the initial structure of A = A** is recovered by
transposition of the structure of A*.
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(1.4) Remarks. The classical algebraic theory of Hopf algebras suffers from an
obvious lack of reflexivity, as soon as the algebra is not finite dimensional, and (1.3)
shows that the category of well-behaved algebras is really of interest, because
reflexivity now holds and everything works almost as in the finite dimensional case.
While the condition of being well-behaved may seem unnatural, in the rest of this
section, we show that almost all bialgebras or Hopf algebras of interest are in fact
well-behaved.

(7.5) Natural Topology. First, we note that bialgebras or Hopf algebras used
in algebraic theories always have countable dimension. In this case, Appendix
2 provides a natural topology on A, and the following result shows that it is the
good one:

(1.5.1) Proposition. // A is a countable dimension bialgebra (resp: Hopf algebra),
and if A is given its natural topology (see A2), then A is a well-behaved topological
bialgebra (resp: Hopf algebra).

Proof. By (A.2.4), the natural topology is nuclear and complete, and A is
reflexive. By (A.2.5), A* is Frechet, so we have only to prove that A is a topolo-
gical bialgebra (resp: Hopf algebra), but it is an obvious consequence of (A.2.8)
and (A.2.2). Q.E.D.

(1.6) Example. Let (C[ί] be the space of polynomials, with its natural topology,
and (C[[ί]] its dual (see A.2.10)). We define a well-behaved topological

Hopf algebra structure on <C[ί] by: tnxtp = \ P)tn+P, coproduct δ(tn) =

\ P J
Σ?=o ί l ® χn ι> counit ε(tn) = δn0, antipode S(tn) = (—l)ntn. Using (1.3), we get
a well-behaved topological Hopf algebra structure on <C[[ί]].

It is easily seen that the product is the usual product of C[[ί]], and the
coproduct is given by:

/(ί)eC[[ί]], Δ(f) =f(t + ί')eC[[ί, *']] ^ C[[ί]] (§) C[[ί]] .

(1.7) The algebras H and A. Let G be a compact connected Lie group, and
H(G) = C™(G). Here the topology of H is the usual Frechet topology, which is
nuclear [13]. Now, the product on H is the point wise abelian product of functions,
the coproduct is defined by δ(f)(x, y) =f(xy), using the standard isomorphism
H(G) (g) H(G) ~ H(G x G), the counit is the Dirac distribution at the unity of G, and
the antipode is S(f)(x) =f(x~1), so we get a well-behaved topological Hopf
algebra. Using (1.3), H(G)* = A(G) is also a well-behaved topological Hopf algebra,
but H(G)* is the space of distributions on G, and it is easy to check that the product
so obtained is the usual convolution product of distributions; identifying G and
Dirac distributions, one gets from the compactness of G a topological inclusion
G cz A(G). Since G 1 = {0}, Vect(G) = A(G), where Vect(G) is the linear span of G.
Then, denoting by Δ the transpose of the product of H(G), one has
Δ(x) = x(g)x, xeG. Finally, lAiG) = 1G, and the counit of A(G) is the trivial
representation of G. Summarizing:

(1.7.1) Proposition. H(G) and A(G) are well-behaved topological Hopf algebras. The
product on A(G) is the convolution product of distributions, the coproduct is
Δ (x) = x (x) x, x e G, and the counit is the trivial representation of G.
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2. The Hopf Algebra of Coefficients of G, and its Dual

Let G be a compact connected Lie group and g be the complexification of the Lie
algebra of G. We have already introduced in (1.7) the well-behaved topological
Hopf algebras H = H(G) = ^(G), and its dual A = A(G\ the well-behaved Hopf
algebra of distributions. We shall now present another model of well-behaved
topological Hopf algebra naturally associated to G: the algebra of coefficients Jf,
and its dual J / , which can be treated as an algebra of formal distributions on G.

We denote by G a fixed set of irreducible inequivalent unitary finite dimensional
representations of G, such that G contains one and only one element of each
equivalence class.

Let p be any finite dimensional representation of G, acting on Vp.

(2.1) Definition. Given MeS£{Vp\ the coefficient of p associated with M is the
function Cp

MeCco(G) defined by: xeG, Cp

M(x) = Tr(Mp(x)). We denote by <βp the
space of coefficients of p.

We note that the algebra structure of the bicommutant of p induces an
associative algebra structure on %>p with unit element ξp = Cfd, i.e. the character
of p.

From the Burnside-Schur theorem, ^p ~ S£(Vp) if and only if p is irreducible.

(2.2) Proposition. Let p and p' be finite dimensional representations of G, then
p ~ p' if and only if ^p = # p / (as algebras), which occurs if and only if ξp = ξp>.

Proof Assume p ~ p' by f:Vp-+Vp>9 then Cp

M = Cp-ίMf, so %p = <gp,, and
ξp = ξp'. On the other hand, if %>p = ^P' as algebras, then their units do coincide, so
ξp = ξp' which is equivalent to p ^ p' by e.g. the Peter-Weyl theorem. Q.E.D.

By (2.2) and the Peter-Weyl theorem, the subspace of C^iG) generated by
coefficients functions of finite dimensional representations of G is exactly
J^ = 3tf{G) = 0 π e G # π ; note that ^ π ^ J^(Fπ) as algebras, when π e G. Now Mf has
another algebra structure, coming from the usual (commutative) multiplication
" x " i n C°°(G):

(2.3) Proposition. Jίf is a subalgebra of C™(G). One has:

MeJ?(Vp), M'e<£{Vp\ Cp

MxCp

M> = CP

M%P

M>

Proof We use the usual identification &{VP)® &{VP>) ~ &{VP® Vp>)\ then the
formula in (2.3) is an obvious application of the properties of the trace. Q.E.D.

{2.4) The Algebra tf.
(2.4.1) In the foregoing, J f = J^(G) with its commutative algebra structure in-
herited from CCO(G) will be called the algebra of coefficients of G. Since G is
a compact connected Lie group, J f is of countable dimension (actually, it is known
that J f is a finitely generated algebra [4]), and has an obvious well-behaved
topological Hopf algebra structure: topology is the natural one (see Appendix 2)
and:

(1) Let δ be the coproduct of CCO(G) (see Sect. 1). Set Cfj=Cπ

Eij9 where
Eij = ef (x) ej9 {et} basis of Vπ. Then δ(C?j) = ΣkC?k <g> C&e Jf ® Jf, so the restric-
tion of δ to J f defines a coproduct on f̂.
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(2) Let S be the antipode of C°°(G) (see Sect. 1), then S(C£ ) = C J e Jf.
(3) The counit of C™(G) is a counit for jf.

From the definition of the topology of f̂, the results of Appendix 2 do apply:
3tf is nuclear, and therefore reflexive (which answers a question of [9]), ffl is
well-behaved, and the dual 2tf * is also a well-behaved topological Hopf algebra.
We shall next give a complete description of J f *. For the time being, let us give
another realization of 2tf\ consider the (right or left) regular representation of G in
JS?2(G); then, from the Peter-Weyl theorem^ Jf7 is exactly the space of G-finite
vectors of the regular representation. # π 5 π e G, is an isotypical component (of type
π for the left regular, of type π for the right regular). So J f is closely related to
harmonic analysis on G, and the construction of J f *, that we shall describe in (2.5),
is nothing but the Fourier transform on G (up to normalization coefficients).

(2.4.2). We note that any coefficient is an analytic function on G, so any element of
Jf7 is an analytic function on G, and therefore #C is a domain.

(2.4.3). Since G is compact, there exist finite^ dimensional irreducible representa-
tions π l 5 . . . , π k, such that any element π of G can be obtained as a subrepresenta-
tion of tensor products of π 1 ? . . . , πk. From (2.3) and the proof of (2.2), it follows
that the coefficients of π are polynomials in the coefficients of π 1 ? . . . , πk. So J f is
a finitely generated algebra. We shall give more details about the choice of
πi, . . . ,πk in Sect. 7.

(2.5) The Algebra rf. Given π e G, we identify i f (Kπ) and &(Vn)* by the following
duality:

M, M'eJSf(KJ, <M|M'> = Tr(MM') . (2.5.1)

We introduce s/ = J / ( G ) = ΠπeG^π' where <s/π = JS?(Kπ), with product topology
and associative structure of algebra defined by:

α = (απ), b = (bπ\ c = (cπ) = a*b, with cπ = aπobπ, VπeG . (2.5.2)

We get a topological algebra. As a vector space, we have stf(G) = «o/ = Jf *, if we
define the duality by:

π o e G , Mej£?(Fπo), <α|C£?> = <απ o |M> . (2.5.3)

We define a map i: G -> «β/ by Ϊ(X) = (π(x)) ejtf,xeG.

(2.5.4) Lemma. 77ιe mapping i is one to one, bicontinuous from G onto f(G), and

Vect(i(G)) = J * .

/ Obviously i is continuous, and bicontinuous since G is compact. It is one to
one because G is a complete set of representations of G (Peter-Weyl). Since
i(G)λ = {0}, one has Vect(i(G)) = J * . Q.E.D.

Henceforth, we identify G and i(G), so we consider that G c j / .

(2.5.5) Lemma.

Proof. We can restrict to h = CM, πeG, Me^(Vπ). Then

(x*x'\Cπ

My = Ίr(π(x)π(xf)M) = Ύτ(Mπ(xx')) = C^(xx') . Q.E.D.
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Lemmas (2.5.4) and (2.5.5) prove that our product * on si is exactly the transpose
τδ of δ. So we achieve the definition of a topological Hopf structure on si using
(1.3). Let us check the coproduct, counit and antipode:

(1) Let Ao =τ x, where x is the product on Jf. Then:

xeG, (A0(x)\h®h'} = <x|ftft'> = <x|ft><x|ft'> = <x® x|ft(g)ft'> ,

so A0(x) = x ® x, xeG.
(2) ίjp is exactly the trivial representation ε of G (or si).
(3) The antipode S of si is defined as the mapping S\stn-> st^neG, given by:

So one has: a = (aπ)esi, S(a) = ((S(a))π) and S(a)π = τak. When xeG, one finds

The topological Hopf structure of si = Jf* is exactly the transpose of the
Hopf structure of f̂, as defined in (1.3). Jf and si being well-behaved, by
applying transposition to the Hopf structure of si, one recovers the Hopf structure
of JT (see (1.3)).

(2.6) Further Properties of si. So far we have an explicit form for Ao when
restricted to G. It is of interest to know how A0(a) can be computed for any aesi.
For this purpose, we consider si ® si = \\n π ' 6 G ^ π ® ^π' ((A l 6)) and identify
K®^π' = &(K)®&(K') =&(Vπ®Vn). Then ^ ® ^ = Ππ ) J t ' eG<π ' ' w i t h

siπtΊt, = &(Vπ® Vπ), and product: a = (απ,π0, b = (*>„,*')esi® si, then
a*b = (cπt1t>), with cπ>π' = flπ,π'°frπ,π' in &(Vπ® Vπ).

As usual, given π, π'eG, the tensor product representation pπ > π ' = π ® π '
is the representation of G in Vn®Vπ> defined by: pπ,π'(x) = π®π'(A0(x)),
xeG, where π®π':si ® si'-^ sin^ = &(Vπ® Vπ>) is the canonical projection:
π ® π'(a ® fc) = π(α) ® π'(fc), a, be si.

Now pπ > π ' extends to a representation of si on Fπ ® Fπ', say pπ>7C', defined
exactly by the same formula. So we have:

aesi, A0(a)KtK> = (π ® π')(A0(a)) = ρπ,π'(
a)

This gives the component of A0(a) on siUtn>. Precisely, since G is compact, we have
= ΣPet(π,π>)Wp> w i t h Φ , π') a finite subset of G, and p π π V P ^ ^ p p,
Therefore there exists ocp:Wp-+ Vp®. . . 0 Vp = np Vp such that

= cc~1onppoαp; defining Cπ>π' = Σ p e ί ( π , π ) α p , and the representation

) P p» find t h a t Pπ,π ^ ^
o Cπ>π', and zlo(α)π,π' is explicitly computed.

(2.6.1) Lemma. Let i:%(g)-^ si be the linear map defined by i(u) = (π(u)), ue%r(g).

Then i is one to one, and i(%(g) = si.

As a consequence, we can consider that °U(g) c si as Hopf algebras (by (2.6)).
Another expression of (2.6.1) is the following: G is a complete set of (irreducible)
finite dimensional representations oϊ°ll(g) (this is not completely obvious a priori,
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since G is generally not identical with the set of all finite dimensional irreducible
representations of ^ί(g)).

Proof. Assume that ue°U(g\ and π(w) = 0,VπeG. Let p be the (left) regular
representation space of G on CCO(G), which is a C 0 0 representation of G; then ρ(u) is
a differential operator on G, and it is well-known that ρ:<%(g)^> Diff(G) is one to
one ([15]). The space of G-finite vectors of p is 34?, and the restriction of p to
34? reduces as p | ^ = ]Γπe(ς(dimπ) π (Peter-Weyl); so ρ(u)\^ = 0, and since
34? = C™(G\ we deduce that ρ(u) = 0, and then that u = 0. For the density, we
consider V = ΣπeόVπ> endowed with the representation @πe6K this is a semi-
simple ^(#)-module, with irreducible isotypical components Vπ. Its bicommutant
is si, so, by Jacobson's density theorem, given vί9. . . , vne V, aesi, we can find
we^r such that 0πeGπ(α)(tfi) = ®BeG*Φ)(ι>j), which proves the result. Q.E.D.

(2.6.2) Remark.
(1) One has 34? c C°°(G), this injection is continuous and Jί? = C™(G). By trans-
position, we get that A a si, and A = si (another proof of (2.5.4)). All these
inclusions are compatible with the Hopf structures. So &/ is a completion of the
Hopf algebra A of distributions on G; this is the reason why we call si the algebra
of formal distributions on G.

(2) The map ί of (2.6.1) is valued in A, so %{g) c A, as Hopf algebras. However,

(2.7) Ideals and Representations of si.
(2.7.1) Proposition.

(1) Lei I be a left (resp: ngrftf) closed ideal of si, then there exists a left (resp:
right) closed ideal J such that si = I © J (topological direct sum).

(2) Let I be a left (resp: right) closed ideal of si, then I = ΠπeG^ Π ***)-

(3) Let I be a two sided closed ideal of si, then there exists a subset Gj a G such
that:

1= UK-
πeGi

(4) Let p be a finite dimensional si-module, then there exists Gpa G such that
p ^ X π e G wπ π, with rcπeN; as a consequence p is a continuous si-module.

Proof. (1) Using (A.2.9), / has a topological supplement V in si. So, if we set
ρ(x)(a) = xa,xeG,aes/, β(x){ά) = xα, άesi/I, the obtained representation p of
G is an extension of p in the sense of [18]. Since the canonical map si -• si 11 has
a continuous section, such an extension is related to a cohomology, namely to
Hι(G,&c(A/IJ)) (see [18]). But G being compact, H1 vanishes ([14]), so the
extension splits, i.e., / has a p-stable topological supplementary, which is the
wanted ideal J.

(2) First, since / is closed, if iπel, VπeG, then (i'π)e/, so Π π e G ^ n ^J c ^
Then, using (1), we write si = 7 0 J, where J is a closed left ideal, and deduce that
1 = l 7 + iy9 tfiel, then i= M 7 .

Let i = (zπ), 1/ = (l I π), one has i = (iπ l J π), but iπ l J π = l π iel, so the result is
proved.

(3) Using (2), I = ΠπecC^ n ^π)> a n d since siπ = <&(Vπ) is a simple algebra, one
has I nsiπ= {0} or j / π .
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(4) Using (2.5.4), the result is trivial if p is assumed continuous. To carry out
a proof without this assumption, we have to introduce the center Z(si). It is clear
that Z(si) = ΠπeG^π Now G is countable, so we can choose a bisection between
G and Z; let us denote by nπ the integer which corresponds to π e G, and introduce
Q = (nπlπ)eZ(si).

Now, let λu. . . , λk be the eigenvalues of p(β), and V(λχ)9. . . , V(λk) the
corresponding generalized eigenspaces; then Vp = φ j = 1 V(λι\ and each V(λt) is
a sub-j^-module, so we can restrict to the case Vp = V(λ), λe<E. Setting α = dim Vp9

one has (β - λf eKerp; if Λ=Mπ,VπeG, then (β - A)α has an inverse
in si, so si = kerp; if λ = n^, π o eG, then (β — nπofsi = Ππ + πo^π c kerp, so
p is actually a representation of the simple algebra sim = ^/ΠπΦπo^π' a n < i t R i s

completes the proof of (4). Q.E.D.

(2.7.2) Remarks. Let us come back to the center Z{si\ and explain some proper-
ties of the very special element Q introduced in the proof of (2.7.1) (4). (Actually,
Q can be seen as some kind of generalized Casimir, with very nice properties):

(1) First, from the definition of β, a finite dimensional irreducible representa-
tion p is characterized, up to equivalence, by the number ρ(Q).

(2) Q generates Z(sί) in the following sense: given C = {λπlπ)e si, λπe(C, there
exists an entire function f(x) = ΣPfpz

p, z e <C, such that f(nπ) = λπ. Now, the series
f(Q) = ΣpfPQ

P converges in si, and C =/(β). So, if we denote by δ the algebra of
complex entire functions, by J the closed ideal generated by sinJπz, one has
Z{si) ^ δ/I.

3. Deformation Theory of Topological Algebras

Let us first extend the notion of topological algebras, bialgebras, etc. to the <C[[ί]]
case.

(3.1) Definition. A topological <E[Xf]~\-algebra A is a topologically free <C[[£]]-

module A ^ >4 [[£]], where A is a c.t.v.s., with a (C[[ί]]-ίn/ineαr continuous product μ.

Obviously, μ induces a product μ on A, endowing A with a topological algebra
structure, as defined in (A.4.1). We call A the classical algebra associated to A.

(3.2) Definition. Given a topological algebra A, a deformation of A is a topologically

free <£[Xt~Y]-algebra A (see (A3.2)), such that A/tA ~ A.

The simplest example is the trivial deformation: let μ be the product of A, then
μeX{A® A, A) c X(A <§> A9 Λ)[[ί]] ^ JSff(4[[i]] <§> tA\_\t]\ A[[ί]]) (A.3.1) and
(A.3.2)), so μ extends to a continuous C[[ί]]-bilinear product on

(3.3) Equivalence. As usual, deformations are equivalent if they are isomorphic as
topological C[[ί]]-algebras, the isomorphism reducing to the identity modulo ί,
and ajleformation is trivial if it is equivalent to the trivial deformation. A deforma-
tion A with product μ of an algebra A with product μ is completely specified when
one knows:

def _

a, be A, μ(a,b) = axtb = axb + tC^b) + t2C2(a,b) +

with deSe{A ®A,A). (3.3.1)
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This looks exactly like the usual algebraic theory [10], except that the cochains
Ci involved have to be continuous. Note that if A is an algebra of countable
dimension, then by (A.2.9), the topological deformation theory of the topological
algebra A (see (1.5.1)), and the usual algebraic theory are the same.

(3.4) Topological Deformations and Cohomology. If A is a (general) associative
topological algebra, one can restrict to associative deformations, and the usual
cohomological machinery can be used, noticing that cohomology in that case is
continuous cohomology. So, from (3.2.1), the leading term C^eZl(A,A), obstruc-
tions are in Zz

c (A, A), etc.. Then, by standard arguments [10] one has:

(3.4.1) Lemma.
(1) // He (A, A) = {0}, any deformation of A is trivial (A is rigid).
(2) If He (A, A) = {0}, any cocycle in Z2

C(A, A) is the leading term of at least one
deformation.

(3.5) Unit. Let us assume that A is a deformation with associative product of
a topological associative algebra A. We recall that in our terminology, associative
means: associative product and^existence of unit. Exactly as in the algebraic case
(see [10]), it can be shown that A has a unit, so A is an associative deformation, and
passing, if necessary, to an equivalent deformation, one may even assume that

(3.6) Formal Series. We need to extend our topological notions of bialgebras,
Hopf algebras, etc. to <C[[ί]]-algebras (3.1). This is straightforward, so we give less
details: actually in the axioms of (A.4.1), in order to define topological (C [[£]]-
bialgebras, Hopf algebras, etc., one has to assume:

(1) that A is a topologically free <C[[ί]]-module, ^4^^4[[ ί ] ] , where A is
a c.t.v.s.

(2) that the mappings involved such as product, coproduct, counit, antipode,
are <C[[ί]] -linear and continuous.

(3) and to replace (§) by (§), (see (A.3.5.1)).

Given a topologically free <C[[ί]]-bialgebra A, then A = A/tA is a topological
bialgebra: actually we can assume that 4̂ = ^4[[ί]]> a s CC[[ί]]-module, so
A ®t A = (A φ A)[[ί]] then &t(A, A ® t A) ~ <£(A, A (§) A)[[ί]], therefore the
coproductjd is completely specified by:

aeA, Δ(a) = Δ(a) + tDx(a) + t2D2(a) + . . . , where D^eg(A, A® A) and A is
the coproduct for A.

Similar arguments show that when A is a topological <C[[ί]]-Hopf algebra,

then A = A/tA is a Hopf algebra. Now the notion of deformation is clear:

(3.7) Definition. Given a topological bialgebra (resp: Hopf algebra) A, a deformation

of A is a topological <E,[XfY]-bialgebra (resp: Hopf algebra) A, such that A/tA ~ A.

Equivalence is defined as in (3.2), and has to relate respective coproducts,
antipode, etc., as usual. The unit and counit of the deformed bialgebra are identical
with those of the original. However, while any deformation of a Hopf algebra
continues to be Hopf, i.e., will continue to have an antipode, it will generally not be
the same as the original.
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(3.8) Proposition. Let Abe a bίalgebra (resp: Hopf) deformation of a well-behaved
topological bialgebra (resp: Hopf) algebra A. Then the (C[[ί]]-dwα/ Af^(see
(A.3.3.2)) is a deformation of the topological Hopf algebra A*. Deformations A and
A' of A are equivalent if and only if A* and A'* are equivalent deformations of A*.

Proof We prove (3.8) in the Hopf case.
The Hopf structure of A* was defined in (1.3). We can assume that A = ^4[[ί]],

and A* stands for ^ [ [ ί ] ] f ^ 4 * [ [ ί ] ] , as C[[ί]]-modules (A.3.3.3). Let μ, I , ε and
S be the respective product, coproduct, counit and antipode on A[[ ί ] ] , which
deform the corresponding objects μ, A9 ε and S; we can assume that \χ = 1A (see
(3.5)). Using C[[ί]]-transposition, as defined in (A.3.4), and (A®tA)f =
((A (§) Λ)[[t]])? * (A (§) 4)*[[ί]] = (A* ® .4*)[[ί]] = A? ®tAf (cf. Appendices
Al and A3), we obtain a <C[[ί]]-Hopf structure on Af, with respective product,
coproduct, counit and antipode defined by: TA, Γμ, T1A, and TS; the unit of Af is τs.

Now, the Hopf^structure of A* is defined exactly in the same way, using usual
transposition; so Af deforms A*.

The same transposition argument and ^4** = A proves the last claim. Q.E.D.

(3.9) Example. Let A be a countable dimensional Hopf algebra. Then, as shown in
(1.5.1) A is a well-behaved topological algebra for its natural topology. So (3.8)
applies to this case. As noticed in (3.3.1), algebraic deformation theory [10] of A, or
(topological) deformation theory are the same. Using (3.8), deformation theory of
A is the same as (topological) deformation of A*; unless dim^4< oo, this is
generally not identical to algebraic deformation theory of A*. This is a rather
striking example of how continuity can be hidden in an, a priori, purely algebraic
problem!

(3.10) Remark. Let A be a Hopf algebra; it is proved in [12] that any associative
and coassociative bialgebra algebraic deformation of A is actually a Hopf algebra.
The same results holds in the topological case, and the proof is essentially the same.

4. Deformations of the Topological Hopf Algebras of a Compact Lie Group

In this section, we study the properties of deformations, as defined in Sect. 3, of the
Hopf algebras Mf = ^T(G), or H = H(G) = C™(G\ or, equivalently, (see (3.8)), of
their respective dual algebras j f * = srf(G) = s/9 or H* = A(G) = A. From (3.9),
deformation theory of ^f is equivalent to algebraic deformation theory. Our notion
of (topological) deformations makes it possible to study deformations of H or A; we
have not heard that any algebraic theory was tried in that case.

(4.1) Deformations of Representations. We shall need some results about deforma-
tions of representations of G, that we now introduce (see [17] for more details):

Given a t.v.s. V, J^ί(F[[ί]]) is an algebra, so the isomorphism of (A.3.3.1)
defines an algebra structure on ^ ( ^ ) [ [ ί ] ] More precisely, one has:

= Σ ί n ( Σ ΆouH
n \ί = 0

Now, it is obvious that Σ π ί n 7 ; has an inverse if and only if To has an inverse in
S£(V).
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(4.1.1) Definition [17]. Given a continuous representation π of G in V9 a deformation
(or formal representation) π of π is a morphism π : G-» <^(F)[[ί]] such that

(2) (g, v) -> πn(g)(v) is continuous from G x V into F, Vn.
Deformations π and π' of π are equivalent if there exists φ = Id +

Σ«> l tnΦne ^ f (^)[ W ] su°h that π' = φoiίo φ~ι. A deformation π of πis trivial if it
is equivalent to π.

Assume that dim V < oo. We extend the trace map J r : 5£(V) -> <C to a <C[[ί]]-
linear trace map Tr: X(F)[[ί]] -• <C[[f]], defined by f r = I d c [ [ ί ] ] ® Tr. Formula
Ίτ(λoB) = Tr(BoA) is still valid for A9 BeJ2?(K)[[ί]].

Given a continuous representation π of G in V, and a deformation π of π, we can
still define coefficients of π by:

MeJS?(F)[[ί]], C^(x) = Tr(Moπ(χ))eC[[ ί ] ] . (4.1.2)

The formal character of π is:

ξ*=C*A. (4.1.3)

Now G is compact, so representations are rigid:

(4.1.4) Lemma. If πis a deformation of a continuous representation π of G in a t.v.s.
V, then π is a trivial deformation.

Proof (see [17]). We define φeJS?(F)[[ί]] by φ = \Gπ(x)π(χ-γ)dx\ one has
φ 0 = Idκ? and due to the invariance of the Haar measure π o φ = φ o π. Q.E.D.

Assuming once more that d i m F < oo, and setting π = φoπoφ~ι,
(/>eif(F)[[ί]], which is, from (4.1.4), the general case of deformations of π, one
has: given M e i ? ( F ) [ [ ί ] ] , C ^ = C^- loJ^o</); let N = φ'1 oMoφ = ̂ tnNn, one
has C ^ = £ i " C £ n , so (see Sect. 2):

C%eJfl[tί]9 and (4.1.5)

< r = £ π . (4.1.6)

(4.2) Deformations of the Hopf Algebras si and A

(4.2.1) Proposition. Any associative deformation of the algebras si or A is trivial.

Proof By (3.4.1) the result is contained in the following lemma:

(4.2.2) Lemma. Hn

c(si, si) = Hn

c(A, A) = {0}, Vn ^ 1.

Proof for si. Let / = \\Jk e Zn

c(si, st)9 then each fk e Zn

c(si, si); for fixed fc, we set
si = si' ® sik91^ = Γ + l^ k, a = d + 0k, for α e j / and we get:

(α 1 ? . . . , an) =f(a'l9a2,. . . , α») + / ( α u , α'2, α 3 , . . . , an)

2k,a'2>,aAr,. . . , an) + . .

First /fc| ®Mj^ f c = d(φfc), with φke<£n~x(s4k, sik)9 since Hn(s/k, s#k) = {0}. Then,
on sik ® ® J^fc ® j?/i ® si ® - - ' ® si, we introduce ψk(xίk,. . . , xs_ lk9 x'S9

Xs+i, . . . , Xn-ί) = (—
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X"= ί Φl + Ψk9

 a n d using cocycle relation, we see that fk = d(θk); then, if ξ = Y[kθk,
one has / = dξ. Moreover, from the definition of ξ, and the continuity of /, ξ is
continuous. Q.E.D.

(4.2.3) Remarks.
(1) By the same proof, Hn(si9 si) = {0}, n ̂  1, so, as a consequence, si is also

rigid in the algebraic [10] sense.
(2) By arguments similar to the proof of (4.2.2), one has:

Hι(sJ, si®si) = H\(si, A ® si) = {0} .

It results from [2], that for the cohomology of bialgebras Hbi defined in [2], one has
Hli(srf, si) = H\iiC(si9 si) = {0}, so si is rigid in the category of bialgebras, in the
sense defined in [2].

Proof for A. First, we note that 5£(®nA, A) ~ (®nA)* ®A = A(Gn)* ® A ~
C°°(G") (§M = C*(Gn

9 A), so given ceJS?(®nA, A\ the restriction c\GneCco(Gn

9 A\
and conversely, given ceC™{Gn, A), then c is the restriction of an element of

Now, if ξeZn

c(A, A), we set θ(xl9. . . , xn) = ξ(xl9. . . , xn) xn

 x x± S and
get θeZ^iG, A) (see [14]), where G acts on A by the representation:
Tx(a) = xax~1,xeG,aeA. Since G is compact, one has H^iG, A)= {0} [14], so
there exists LeCco(Gn~1, A) such that θ = dG(L); but Le^(®n-γA, A), so

). Q.E.D.

(4.2.4) Proposition. Let (^/[[ί]], ̂ ) (resp: (A[[ί]], J)) be an associative deforma-
tion of the bialgebra si (resp: A); using (4.2.1), we assume that the product is
unchanged. Then there exists P e si (§) si [ [t] ] (resp: A (§) ̂ 4 [ [ί] ]) swcft ft
Δ=PA0P~1.

Proof I e J S f t ( ^ [ [ t ] ] , ^ [ [ ί ] ] ® t ^ [ [ t ] ] ) ^ J ? ( j / , ^ ® ^ ) [ [ ί ] ] (see (A.3.3.1)

and (A.3.5.1)); write J = ̂ 0 + Σ π ^ i ^ " * a n d introduce φ ) = X / 4 ( x ) e

(Λ/® j/)[[ ί ] ] , xeG, and P = \GΔ(x)Δ0(x)~1 dxe(si ® ja/)[[ί]]; due to the in-

variance of the Haar measure, one has: PΔ0(y) = Δ(y)P, VyeG, and since

Vect(G) = J/, one gets A = PΔQP'1 (note that P " 1 exists since Po = 1 ® 1).

The proof is the same in the case of A. Q.E.D.

Remark. The explicit integral formula for the twist P = §GΔ(x)Δ0(x)~ίdx is of
interest.JNΓote that for any He (si® <*/)[[£]], or (A ®j4)[[ί]], with Ho = 1 ® 1,
g = ̂ ^ ( x J H ^ o W " 1 ^ a l s o defines a twist between zl and zl0.

(4.2.5) Corollary. Any associative deformation of the bialgebra si (resp: A) is
quasί-cocommutative and quasi-coassociative.

Proof. In the terminology of [7], Δ is obtained from Δo from twisting by P, so,
using [7] and the fact that Δo is cocommutative and coassociative, A is quasi-
cocommutative and quasi-coassociative. Q.E.D.

(4.2.6) Proposition. Let (^/[[ί]], A) (resp: (^4[[£]], A)) be an associative and co-
associative deformation of the algebra si (resp: A), with unchanged product. Then the
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counit ε ofjrf (resp: A) is still a counit of <s/[[ί]] (resp: >4[[ί]]), and there exists an
antipode S, so J^[[ί]] (resp: A[[ί]]) is a (C[[ί]]-Hop/ algebra. Let So be the
antipode of srf (resp: A), then there exists άes/[[t~J] such that S = άSoά'1.

Proof As noted in (3.5), the corresponding deformation ^f [[£]] of Jίf (see (3.8))
has a unit ε, which satisfies δ(ε) = ε (g) ε; So ε(xy) = ε(x)ε(y), Vx, yeG, and this
proves that ε|G is a deformation of the trivial representation ε|G. By (4.1.4),
ΆG = 8\G, so ε = ε.

It was noted in (3.10) that *s/[[ί]] has an antipode S, which deforms So. For
any representation πeG, π = τ π o S ' i s a deformation of π; using (4.1.4), there exists
άπ<E$£(y*) [[ί]] such that ^ = aππά~\ so Γ π = πo§ = (τaπ)~ι{πoS)τάn\ let
α = (τaπy

ιesrf [[ί]], then S = α S o ^ 1 .

Similarly, by (3.10), ^l[[ ί]] has an antipode S which deforms So-
Let α = jG5(x)iS0(x~1)dx6^1[[ί]]; using the (right) in variance of the Haar

measure, and the antihomomorphism property of antipodes, one deduces that
aS0(y) = S(y)a, \/y e G; moreover α(0) = 1, so a has an inverse in A [ [ ί ] ] , and using
the density of G in A, we get:

S{a) = άS0(a)ά~\ VaeA . Q.E.D.

(4.3) Dualization to tf. The results of (4.2) translate by (C[[ί]]-duality (3.8) as
follows:

(4.3.1) Proposition. Let p ί * [ [ ί ] ] , x9δ) (resp: ( # [ [ * ] ] , x , ^ ) ) be a coassociative
deformation of the bialgebra J f (resp: if); then, up to equivalence, it can be assumed
that δ = δ. The product is quasi-commutative, and quasi-associative, the counit
unchanged. If the product is associative, then ^[_[tγ\ (resp: H [ [ ί ] ] ) is a C [ [ ί ] ] -
Hopf algebra, with the same unit and counit than J f (resp: H).

(4.3.1.1) Definition. A deformation of the bialgebra ffl (resp: H) with unchanged
coproduct will be called a preferred deformation of 3tf (resp. H).

Let us now develop consequences of (4.2.4). We need some notations. Given
π and π' e G, we denote by pn^> their tensor product pπ,π(x) = πjg) π'(Δ0{x)), xeG,
and by pπn> their new tensor product given by pπ π(x) = π ® π'(Δ(x)). Using (4.2.4),
one has:

We write si <§) si = f ] π π , 6 e < ® stf%>, with projections π%τi\sί ®si -+ sίn®

j / ^ a n d Λ/[[ί]]® t Λ/[[ί]]=(Λ/® j?0[[ί]] = Π ^ 6 < j « ( 8 K ' ) [ W l with the
same projections.

Likewise, for elements Pejtf®s/ (resp: Pe^[[ί]](g) ί e ^[[ί]]) we write

P = (PπA with Pπ^ = π ® π / ( P ) 6 ^ π ® ^ (resp. {? = PπA with Pππ,=

With these notations, we have:

pnn(χ) = A0{x)πn., pnn'{x) = 2(x)ππ> = Pππ> A0(x)ππ>P ~J .
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Then, given Me J?(Vπ), and M' e 5£{Vπ \ we compute, using the trace (as defined in
(4.1.1)):

= f r(M ® M' o βππix)> = C & W W .

So we have proved that (2.3) is valid for preferred deformations, namely:

(4.3.2) Proposition. Let (#?\_\_t\\ x) be a preferred deformation of J^, then if
π,π'eG,Me g(Vπ\ M' e <e{Vπ\ Cπ

M x Cfr = CπJ%π

M>, where π ® π' = p π π ' stands
for the new tensor product of the representations π and π' of G.

(4.3.3) Corollary. Under the same assumptions, let J^c be the subalgebra of central
functions; then the product on 2tfc is unchanged.

Proof J^c is linearly generated by the characters ξπ of the elements of G, so we
compute:

/̂ »π(§) π' /^π® π,' £π(§> it' pπ<g> π'
— ^lάVπ ®\άVπ' ~ ^Id(Fπ (g) Vπ') ~ ζ ~ Q

= ξπx ξπ>. Q.E.D.

X ς — ^UVn X

This raises a natural question: do (4.3.2) and (4.3.3) hold if J f is replaced by HΊ
Actually, the answer is yes, and this will be a consequence of the following
proposition:

(4.3.4) Proposition. // (iί, x) is a preferred deformation of H, then it defines, by
restriction, a preferred deformation of J^, i.e.:

VΛ, Λ'eJf, ftxfc'ejf[[ί]].

Proof The inclusion Jf7 c: H is a (continuous) injective morphism, with dense
range; moreover, the coproduct of J f is the restriction of the coproduct of H.
Therefore, using transposition we obtain a continuous injective morphism
A = H* i—• si = J f *, with dense range. So we can consider that A is a subalgebra
of «s/; moreover, since the product of 2tf is the restriction of the product of H, the
coproduct of A is the restriction of the coproduct Δo of si. Using (3.8), the given
preferred deformation of H induces a corresponding deformation of A, with
unchanged product, and ^coproduct Δ = PΔQP~ι,Pe(A® A)l\_tJ], by (4.2.4).
Since Pe{si ® .«/)[[*]], Δ is actually a coproduct on si.

Now, given h, h'eJtf, we write Δ =Yut
nΔn, and:

deA, (h x Λ'|d> = <h ® fc'MW) = Σ tn<h ® Λ'Mi W ) = Σ fCniK h')(d).

Actually, Cn(ft, h
f) is an element of H, completely determined by its restriction to

G cz A. On the other hand, the formula Dn(h, h')(a) = (h® h'\Δn(a)} defines an
element of Jf, also completely determined by its restriction to G. Since Cn(h, h!) and
Dn(h, ft') coincide on G, one has Cn(h, h') = Dn(h, hf)eJ^, so:

Q.E.D.
n

(4.3.5) Corollary. (4.3.2) and (4.3.3) ftoW wiίft H replacing Jif.



142 P Bonneau, M. Flato, M. Gerstenhaber, G. Pinczon

Proof. Let Hc be the subalgebra (in H) of central functions, then tfc = Hc, so using
(4.3.4), (4.3.3) and the continuity of Cn in the development of the product

Kh'l Kh'eH,

we get (4.3.3) for H. Q.E.D.

(4.3.6) Proposition. Let x be a preferred associative deformation of H. By (4.3.1), it
is a Hopf deformation, with antipode S. Then S restricts to Jtf*, i.e.:

so the restriction of a Hopf deformation of H defines a Hopf deformation of Jff.

Proof Using (4.3.4), the restriction defines a preferred associative deformation of
the bialgebra Jίf. From (4.3.1), the unit and counit of H are unchanged, so do
restrict to J f. Again by (4.3.1), the obtained deformation of f̂, being associative, is
a Hopf deformation, so it has an antipode. The problem is to show that this
antipode is the restriction of the antipode of H, and this will be done (using unicity
of antipode) by showing that S restricts to jf. We use <C[[ί]]-duality (3.8): we have
A = H*cz£/ = j / * , and our preferred deformation leads to deformations of A and
j / , with unchanged product, counit and same coproduct (see (4.3.4)). Both have
antipode, say s and &, and we want to show that &\A = s. By (4.2.6), s = άSoa~1,
with α6i4[[ ί ] ] , so s extends to an antipode on JS/[[£]], defined by the
same formula, and the unicity of the antipode proves that this extension is
exactly SΪ. Q.E.D.

5. Quotient Deformations

Given a compact connected Lie group G, we continue to denote by J f (G) the
algebra of coefficients of G, by H(G) = C^iG) the algebra of C 0 0 functions on G,
and by s/(G) and A(G) their respective duals. We recall that Jί?(GxG)~
#e(G)®$e(G\ and H(Gx G) - H(G) <g> H(G); by (A. 1.5), s/(G x G) ~ s/(G) ®
j/(G), and A(GxG)- A(G)® A(G\

Let Γ be a normal subgroup of G; we introduce H(G)Γ = {feH(G)/f(xγ) =
f(x\ VxeG, yeΓ}, and J^(G)Γ = Jf(G)nH(G)Γ, which are subalgebras respect-
ively of H(G) and tf (G), stable by the antipode since Γ is normal.

Now, there is an obvious isomorphism φ: H(G)Γ ~ H(G/Γ), which induces on
H(G)Γ the coproduct of H(G/Γ); one has H(G)Γ ® H(G)Γ ^ H{G/Γ x G/Γ) -
H(G x G/Γ x Γ), and since Γ is normal, this shows that the restriction of the
coproduct of H(G) to H(G)Γ is exactly the coproduct of H(G)Γ, so that
H(G/Γ) ~ H(G)Γ is a Hopf subalgebra of H(G).

Let us show that the same result holds when H is replaced by J f. First we note
that any element π of G/Γ is actually an element of G satisfying π\Γ = IdFπ.

So GJT = {πeG/π\Γ = Id F } cz G. We introduce the notations %(G/Γ)π, and
)π as in (2.1).

(5.1) Lemma. The restriction of φ to J^(G)Γ is an isomorphism onto
One has:

JT(Gf= Σ
πeGΪΓ
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Proof. Consider φ = φ~γ\^{G\τy It is clear that φ(^(G/Γ)π) a #(G)π, if πeG/T,
and the Peter-Weyl theorem gives dim <V(G/Γ)π = dim <g(G)π = (dim π)2, if π e G/f,
so ψ(<tf(G/Γ)) = Σ«eG/r*(G)π Now M\Gf is a sub G-module of j f for the left
regular representation L, so it reduces on isotypical components:

Given feJ^(G)Γ,γeΓ, one has Ly(f)=f since Γ is normal, so
Lγ\#>(G)Γn<$(G)π = Id. But L acts on ^(G)π as a sum of dim π representations isomor-
phic to π, so there are two cases: $?(G)Γ n ^(G)π Φ {0}, and then
π e G/Γ, or j f (G) n <€(G)% = {0}. When π e G/Γ, any element of V(G)K is in j f (G)Γ

(Γ is normal), so we conclude that

^iβf = ΣπeG7r^(^)π = Ψ(*(G/Γ)). Q.E.D.

Now, the coproduct of Jf (G/Γ) induces a coproduct on J^(G)Γ, and it is easy to
check on coefficients (see (2.4.1)) that it is exactly the restriction of the coproduct of
je(G). So J^(G/Γ) ~ J^(G)Γ is a Hopf subalgebra of Jf (G).

(5.2) Proposition. Let x be a preferred deformation of the product of J f (G) (resp.:
H(G)), ί/*έw x can be restricted to J^(G)Γ (resp: H{G)Γ\ i.e.:

VΛ, h'eJf(Gf (resp: #(G)Γ), λ x Λ'e Jf (G)Γ[[ί]] (resp: H(G) Γ [[ ί ] ]) ,

αnrf defines a preferred deformation of J^(G)Γ (resp.: H(G)Γ).

Proof We begin by Jf(G)Γ. We can restrict to h = Cπ

M,h' = Cπ

M>,π,π'e(}Jr,

By (4.3.2):
M x ^ M ' — ^ M < g > M '

But π (§) π' = Pπ ® π ' P " 1 , with Peif(Fπ(g) KπO[[ί]] (4.2.4).
So CJ, x C ^ = Cp®?M®M>p. Using (4.1.2), we compute:

xeG,yeΓ,Cπ

Mx Cπ

M\xy) = f ^ P " 1 M (x) M'-P-π® π\xy))

" 1 M (x) M'-P-π® π'{x)) since π®π'eG/Γ

which proves that C^ x C ^ e Jf (G)Γ[[ί]], as wanted.
Now, we use Jf(G/Γ) = H(G/Γ) to deduce ^f(G)Γ = ίί(G)Γ.
We write, for h,h'eH(G):

By (4.3.4), Cn(h,hf)eJf(G) if h9h'eJP(G), by the beginning of the proof,
CB(Λ, Λ') G ̂ ( G ) Γ if ft, ftr e ^f(G)Γ.

Given ft, ft' eH(G)Γ, we choose sequences (ftp), (ft̂ ) 6 J^(G)Γ such that limpftp = ft
and limpftp = ft'. From the continuity of CM, the sequence Cn(hp, h'p) converges in
H(G) to Cn(h9h')9 but since Cn(hp, hp)e^{G)Γ a H(G)Γ, Vp, and since if(G) r is
closed in H(G\ it results that Cn(h,h')eH{G)Γ, Vrc, and, therefore, that
ftxft'e#(G)Γ[|r|].

So any preferred deformation of H(G) (resp: Jf7(G)) restricts to H(G)Γ (resp:
^f (G)Γ); the obtained deformation of H(G)Γ (resp: JtT(G)Γ) is a preferred deforma-
tion because the coproduct of H(G)Γ (resp: J f (G)Γ) is the restriction of the
coproduct of H(G) (resp: 3tf{G)\ as mentioned above. Q.E.D.
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(5.3) Remark. Using the isomorphism of Hopf algebras Jίf(G)Γ ~ J4?(G/Γ) (resp:
H(G)Γ ~ H(G/Γ)) and (5.2), we see that any preferred deformation of J^(G) (resp:
H(G)) provides a preferred deformation of Jf(G/Γ) (resp: H(G/Γ)); this is the
justification for the term quotient deformation. This result is useful, even if G is
simple (in which case Γ is a finite subgroup of the center of G), because if one starts
with a simple simply connected compact G (this is exactly the general case of
universal covering of a simple compact group), from deformations at the level of G,
using (5.2), we get deformations at the level of any group covered by G (e.g.:
deformations for SU(2) will provide deformations for SO(3)). One can even remove
the condition that Γ be normal by considering comodule algebras. However, if Γ is
not normal, there will be conditions on the deformed product of Jf9 or H, if one
wants to get directly "a quantized homogeneous space" G/Γ. This will be treated
elsewhere.

6. Quantum Groups and Deformation Theory

(6.1) Generators. It was mentioned in (2.4.2), (2.4.3) that ^ = Jf (G) is a domain,
and a finitely generated algebra. We need some facts about generators of 3>f, when
G is simple. They are classical, but since we don't know where they are completely
explained, we give some details. We follow [4], Chap. VI.

(6.1.1) Definition. A subset {π±. . .πr} of G is said complete if the coefficients of

π 1 ? . . . , πr provide a generator system of ffl.

Using the Stone-Weierstrass and Peter-Weyl theorems, it is easy to check that
{π1. . . π r} is complete if:

(1) Vί = 1,. . . 9r9πte{πu. . . , π r}.
(2) π = ® ί = l πi is a faithful representation of G.

Faithful finite dimensional representations do exist for any compact connected
Lie group, so complete sets do exist, and this proves that ffl is finitely generated.

(6.1.2) Proposition. (1) // G = SU(n\ or SO(n\ or Sp(ή), and πs is the standard
natural representation, then {πs} is a complete set.

(2) If G = Spin(n), there are two cases:
(i) n = 2p + 1, the irreducible spin representation [4] is a complete set.
(ii) n = 2p, π± the two irreducible spin representations [4], then {π+,π_} is

a complete set.

(3) We denote by G2,F4r,Eβ,EΊ, E$ the compact simply connected Lie groups
with respective Lie algebra g2,f4., e6, eΊ and e8, then:

(i) If G = G2,F4 or E8, any irreducible f.d. representation is a complete set.
(ii) If G = EΊ, there exists an irreducible f.d. representation which is a complete

set.
(iii) If G = E6, there exist two irreducible f.d. representations such that {n1,π2}

is a complete set.

Proof. In case (1), if G = SO(n) or Sp(n), πs is faithful and self contragredient, so we
apply the above criteria. If G = SU(n), πs = Ext^-xίπJ, so (1) is true.
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In case (2) (i), the irreducible spin representation is faithful and self contragredi-
ent; in case (2) (ii), {π +, π_ } satisfies the conditions of the criteria.

For exceptional G 2, F 4 or E8, the center Z(G) is trivial [15], and any irreducible
f.d. representation is self contragredient [20], therefore (3) (i) is true.

For Eη, the center Z(G) is Z 2 [15], any f.d. irreducible is self contragredient
[20], so any irreducible subrepresentation of Indz(G)ε, ε the alternate character of
Z 2 , will provide a complete set.

For E6 the center is Z 3 [15] and we can find faithful irreducible representa-
tions by reduction of Indz(G)<ί;, where ξ is a faithful character of Z(G); given such
a π, then {π, π} is a complete set; in that case, π φ π if π is faithful, because
Z(G) = Z3. Q.E.D.

Generator systems will provide a description of deformations of J^ which is
quite similar to the FRT-model of quantum groups:

(6.1.3) Proposition. Assume that G is one of the groups listed in (6.1.2). Let π 0 be the
direct sum of the irreducible f.d. representations of G appearing in a complete set as
described in (6.1.2) and {Q,-} the coefficients of π 0 in a fixed basis. If x is a preferred
Hopf deformation of J f, then {Cί7 } is a (topological) generator system of the
<£[_[tj]-algebra (Jf [[*]], x ); if T is the matrix [ C o ], 71 = Γ ® Id, T2 = Id ® T,
then there exists an invertίble 01 in &(Vπo ® F π o )[[ ί ] ] such that:

(here, by topological generator system we mean that the closure of the
algebra generated by {Cy} is

Proof First, we note that formula (4.3.2) can easily be generalized to any formal
representations π and π' of G, which are deformations of f.d. representations π and
π' (see (4.1.1)):
(6.1.4) C%xC*M> = Ci%*M,,iϊMe&(VπlM' e 2iy%\ (see (4.1.2) for the definition
of generalized coefficients). From the associativity of x, the new tensor product of
representations of G is associative, so we deduce:

C π i x . . . x C%n = CS?β %%n9 if π, deforms f.d. πh and M,e X(VK), i = 1. . . n .

Now we take πf = π 0 , Vΐ and set π 0 ® * ® π 0 = ®Π π 0 , M e = e* ® ejβ9 {et}
being a basis of Fπ o, and obtain:

Chh ><•••>< Cίnin = ^I n π ° ? with M = (el ® ® O ® (eh ® ® ^ J .

Since ® Π π 0 is a deformation of ® M π 0 , it results from (4.1.4) that we can find
( n F π o )[[ ί ] ] such that ® Π π 0 = P O ^ o P " 1 . Then, by (2.3) and (4.1.2):

π o)

L X X C C ^

But ^
2α i anβι ^

Therefore any polynomial in the {Cί<7 } for the initial product can be written
as a polynomial of {Cί<7 } for the new product. Note that the degree does not
increase, and that, in the new product case, we are dealing with non-commutative
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polynomials with coefficients in <C[[ί]] Now any h in ^ f [ [ ί ] ] can be written
h = Σnt

nhn, hnej^9 and any hn is a non-commutative (C[[ί]]-polynomial in {Ci7 }
for the new product, so {Cl7} is a topological generator system of (Jf [ [ ί ] ] , x).

As to relation 0t 7\ x Γ2 = T1xT2'@t, it is an equivalent (but illuminating)
way to express the quasicommutativity (4.3.1) of x, combined with formula (4.3.2),
as we now show^

Le^ Δ' = σ Δ and denote by p the new tensor product of π 0 by itself obtained
from Δ, and by p ' the new tensor^product of π 0 by itself obtainedjrom A'. Then, by
the quasicocommutativity of Δ (4.2.5), one has Δ' = βk Δ •^~1, so if we set
Λ = πo(8)πo(Λ), we get that p' = ^tpffl'1. Using now (6.1.4), the notation
Etj = e* <g> ej9 and τΔ'(h,h') = h' x ft, we deduce:

so that from these two relations, one has:

T2 x Γx = ^(Γ i x Γ 2 )Λ" x . Q.E.D.

{6.1.5) Remark. {CfJ } being a generator system of (Jf, x), 3tf has a natural filtra-
tion coming from the one of the polynomial algebra (C[C0 ]. Now, let us define
a topological filtration in a topological C[[ί]]-algebra to be an increasing se-
quence of C[[ί]]-submodules An such that An*Ap c ^4Π+P, Vn, p and (JM^4M = A.
Then ( ^ [ [ ί ] ] , x) has a topological filtration inherited from C[C i 7 ], as said above,
and, from the proof of (6.1.3), this filtration also works for p f [[ί]]> x )• Moreover,
from ^tTxT2= T2Tχ(M, any monomial in {Ci7-} for the new product can be re-
ordered, so that elements of degree at most n are actually <C[[t]] -linear combina-
tions of ordered monomials of degree at most n in the new product (roughly
speaking, the graded associated algebra is still (C[C(j]).

(6.2) The Drίnfeld Models. We give a brief description of the D-models of quantum
groups, following [6, 8]: Given a simple complex f.d. Lie algebra g, with % its
enveloping algebra, there exists a Hopf deformation % of ^ί which is a topologi-
cally free complete <C[[ί]]-module (i.e. %~qi[_\t\~\ as €[[£]]-modules), with
coproduct Δ : % -• % ®t%\ therefore % is a deformation of % in the sense of (3.7),
when % is given its natural topology. It is shown in [8] J hat % is (deformation)
rigid, therefore %~βU\χt\\ as an algebra, and that Δ is obtained from the
standard coproduct Δo by a twist, i.e. there exists P e % ®t % = {% ® %) [[ί]] such
that Δ = PΔ0P~1. Let us note the analogy between these results and (4.2.1), (4.2.4).
Now, let G be the compact simply connected Lie group with Lie algebra g0 such
that go ® R <C = 0. We introduce # = H(G) = C^iG), A = A(G) = H(G)*,
J f = ^f(G) and jtf = j^(G) as in Sect. 2; using (2.6.2), °U a A cz si, so

(6.2.1) Proposition. The Hopf deformation % can be extended to a Hopf deforma-
tion of A (resp: st) with unchanged product, unit and counit.

Using (C[[ί]]-duality (3.8), we deduce:

(6.2.2) Corollary. The Hopf deformation % produces (by <L[χtγ\-duality) a prefer-
red Hopf deformation of i f and H.
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(6.23) Remark. So our results, and especially (4.3.2), (4.3.3) and (6.1.3) can be
applied. Note that the ^-matrix of (6.1.3) can be specified to be a solution of the
Yang-Baxter equation, because in the D-model, the twist between A and σ A can
be chosen with this property [6]. It is interesting that the D model will produce on
ffl a preferred deformation for any G listed in (6.1.2), and not only for SU(n\ SO(n)
and Sp(ή) as the FRT-model does (see also Remark 23 in [9]). In the case of
Spin(2p) and £ 6 , the coefficients of two (and not only one) irreducible f.d. repres-
entations will be needed to describe the product as in (6.1.3). We also note that
nobody has ever found a preferred deformation on H, which is however, in our
opinion, a very good candidate for deformation of Poisson brackets!

Proof of (6.2.1). Since A = PA0P~\ with Pe(% <g) * ) [ [ ί ] ] , A extends to a co-
product on A[[ ί ] ] , and ^/[[ ί ] ] . With this new coproduct and the standard
product, A[ [ ί ] ] and ^/[[ί]] are <C[[ί]]-bialgebras. Using (3.10) there exists an
antipode and a counit. From (4.2.6), this counit is the standard counit of A, or s/;
since it restricts to % = Φ[[ ί j ] , by unicity of the counit, the restriction has to be
the counit of %. Now let S be the antipode of %, then given any irreducible
representation π of g9 we define a deformation β =τπoS oϊπ. Since g is simple, π is
rigid, so p = o^oyroa"1, with a π e i f ( F * ) [ [ ί ] ] . But π =τπoS0, with So the stan-
dard antipode of s/9 so π(S(u)) = aπoπ(S0(u))oa~1, VueW, with
aπ = τ α " 1 eJ?(Vπ) [[ί]]; so we can extend S to <s/[[ί]] by the following formula:

bes/9 S(b)π = aπS0(b)πa~' = aπ

τbka~' .

This defines a second antipode for the above mentioned Hopf structure of
^ [ W]j by unicity of the antipode, it must be the same.

By (3.10), A[[ ί ] ] , with its coproduct A, has an antipode §', and by (4.2.6), one
has S' = άSoά'1, with αe>4[[ί]]. But this last formula defines an antipode on
j / [ [ ί ] ] with its coproduct J , so by unicity of the antipode, S' = S. So we have
proved that the coproduct, counit and antipode of % = ^ [ [ ί ] ] extend to ^4[[ί]]
and jtf [[*]]. Q.E.D.

(6.3) Drinfeld Isomorphisms. We continue with the notations of (6.2) and discuss
the following problem: in (6.2.1) an isomorphism φ;%~ %[[tj] (called Drinfeld
isomorphism in the following) is fixed. Now, such a Drinfeld isomorphism is
certainly not unique; what happens if it is changed?

(6.3.1) Proposition. Let φ and φ two Drinfeld isomorphisms, then the corresponding
preferred deformations of J^(G) are equivalent.

Before proving (6.3.1), let us note that a good choice of the Drinfeld isomor-
phism has still some importance, because it will simplify defining relations of the
corresponding deformation of J f (G). We shall come back to this problem in next
subsections.

Proof of (6.3.1). Drinfeld isomorphisms are constructed as follows: take any
section of the canonical morphism %-+% (such sections do exist by rigidityoi %,
see [8]), and extend it to % [ [ί] ] by <C [ [ί] ]-linearity. Therefore, given φ and φ9 and
defining θ = φ o φj1, θ is a C [ [ ί ] ] -linear automorphism of ^ [ [ ί ] ] , and θ0 = Id^.
It results that π o 0, % e G, is a deformation of the representation π of g, and since g is
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simple, π °0 = α π o π o α " 1 , with α π e i f ( F π ) [ [ ί ] ] . Now let a =
Π ( ) W ] ; we extend ^ t o (a continuous automorphism of) ̂ / [ [ ί ] ] by:

The coproduct A of % induces coproducts Aφ and Aφ of ^ [ [ ί ] ] by formula:

Aφ = φ ® φoAoφ'1 (resp:^ = φ ® φo Aoφ'1) .

Now, one has Aφ = θ®θoAφoθ~1. It was shown in (6.2.1) that Aφ and Aψ extend
to (continuous) coproducts on efi/[[ί]]. Since θ extends to <β/[[ί]], and since

(2.6.1), the formula Aφ = θ® θoAφoθ'1 is valid for the exten-

sions of Aφ and ̂  to J?/[[ί]]. So ( fl/[[ί]], ^ ) and (ja/[[ί]], Δφ) are equivalent
deformations of (sί9 Ao\ and (3.8) finishes the proof of (6.3.1). Q.E.D.

(6.4) FRT-Models. We now show how FRT-models are recovered by a good
choice of the Drinfeld isomorphism. First, we need the following lemma:

(6.4.1) Lemma. Let p be a representation of %, and π = p 0 , π e G. Then there exists
a Drinfeld isomorphism φ such that p = π o φ.

Proof Fix any Drinfeld isomorphism φ'. Now fioφ1'1 is a deformation of the
representation π of g, hence a trivial deformation. So there exists απ6JSf(Kπ)[[ί]],
such that poφ'~ι = ά π oπoά~ 1 . We write oίπ = Σnt

nβn, βneJ£(Vπ), and use the
Jacobson density theorem: there exists une°U such that βn = π(un), and therefore
there exists ύ = X Π ί "w«e^[[ ί ] ] such that άπ = π(ύ). Now we obtain that

βoφ'-ί(b) = πiύbύ'1), Vί6«[[ί]], so:

p(c) = π(ύφ'(c)ύ~ι\ Ίceΰlίt .

We define a Drinfeld isomorphism φ by φ(c) = ύφ'(c)ύ~1,Vce%9 and then
ρ = πoφ. Q.E.D.

(6.4.2). Let us apply (6.4.1) to the case G = SU(n). We follow closely ([6], Sect. 7),
except that we replace h by ί, and we denote by p the representation of % denoted
by p in that paper. Then p(0) = πS9 the standard natural representation of g = sl(ή)9

which is also the standard natural representation of G. We choose a Drinfeld
isomorphism φ such that p = πsoφ (6.4.1). We denote by C f j the coefficients of π s;
they are a generator system of Jίf. The deformation % (and the choice of φ)
produces a deformation of 2tf (and if), and we want to compute the new relations
of the generator system {Cfj } (see (6.1.3)). But this computation is explicitly done in
([6], Sect. 7): let pu be the coefficients of p, they are elementsjrf (%)*; by the choice
of φ, one has fφ(Cij) = pij; the Hopf algebras (%9Δ) and (*[[*]], i * =
φ ® φ o A oφ ~ι) are isomorphic by φ, so (%)f ̂  (Φ [[ί]] )f* = ̂ r* [[ί]] by Γ φ . So in
formulas (16), (17), (18), (19) given in ([6], Sect. 7) for the products of pij9 one has
only to replace ptj by CfJ- to get the relations between the generators {C^ } of 30* (or
H), for the deformed product x provided by (6.2.2). A glance at [9] is enough to be
convinced that we recover (a formal version of) the FRT-quantization of SL(n).
Note that (J f, x) has an antipode (6.2.2), and so does the FRT-quantization; by
unicity, they have to be the same. Actually, this proves that the FRT-quantization
of SL(n) can be seen as a preferred Hopf deformation of Jtf*(SU(ή)); this result has
been obtained in [11], [12], by different techniques. Moreover, applying (6.2.2), this
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deformation extends to a preferred Hopf deformation of H(G) = C°°(G), a result
which is completely new.

(6.4.3) FRT-quantizations (or rather formal versions) can be similarly recovered
from D-models in cases G = SO(n), or G = Sp(ή), and this proves that there exists
a preferred Hopf deformation of J^(SO(n)) or Jίf(Sp(n)) which satisfies the rela-
tions of FRT-quantizations as given in [9]. We insist that this result is a justifica-
tion of the terminology "deformation," often employed, but never justified in these
cases (see e.g. [11], where it is shown that relations of type $TγT2 = T2Tγ0ί need
not define a deformation, even if 0t is Yang-Baxter). Now, the proof looks very
much like the case oϊSU(ri), but cannot be so explicit, the main task being to choose
the representation β used above. This can be done using the reconstruction
theorem 12 of [9], and the fundamental corepresentation τ defined in ([9], Def. 20).
Applying the method developed in Sect. (6.4), the D-model will produce by (6.2.2)
a preferred Hopf deformation of J f (G) satisfying FRT-relations. Note that this
deformation extends to a deformation of H(G) = C^iG).

(6.4.4). D-models and (6.2.2) predict the existence of a preferred Hopf deformation
of 3tf(G) (or H(Gj) for any G listed in (6.1.2), with generators T= (C y) satisfying
Γ 1 x ί 2 = 0tT2 x T^~\ (6.1.3), and 01 Yang-Baxter (6.2.3). It would be of interest
to describe such an FRT-model when e.g. G = Spin(n) and especially Spin(2p),
where two irreducible representations have to be used (6.1.2). Such a model will
induce a preferred Hopf deformation of ^(GjF\ for any Γ in the center of G (5.3).
The case of exceptional G is also of interest, since very little seems to be known.

Finally, we mention that the Reshetikhin model (see [19], and also [22]), being
obtained by twisting the standard coproduct, is also in our deformation frame-
work: it will also produce deformations of J f (G) (or H(G)) of the above type.

7. J Models

For complex tφ2πQ, we set q = eι\ and define the J-model At(g\ g = s/(2), as the
algebra generated by {F, G, K, K'1} with relations:

K2 — K~2

q q

K K
[F, G ] = — , FK = q~1KF, GK = qKG . (7.1)

q q

Direct interpretation in deformation theory is not possible, because (7.1) is not
defined at t = 0. Nevertheless, as shown in [5] or [3], it is not difficult to swallow
this singularity, and actually define At(g) for any ίe(C, by introducing

iζ K^ K + K~^
S = —r>C = ^ > s o t n a t At(g) is the algebra generated by

q-q 2

{F, G, S, C} with relations:

[F, G] = 2SC, FS = (S cost - C)F, FC = (Ccost + Ssin2t)F ,

GS = (Scost + C)G, GC = (Ccost - Ssin2ί)G,

C2 + S2 sin2ί = 1, [S, C] = 0 , (7.2)
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Though (7.2) is a rather lengthy definition, it does define At(g) for any ί e C .
Moreover, if t is now a formal parameter, we can define Λt(g) (the formal J-model)
as the <C[[ί]]-algebra generated by {£, C, K, K'1} with relations (7.2).

Now for t = 0, (7.2) becomes:

[F,G] =

[S, F] = CF, [S, G] = - CG, C2 = 1 .

Setting Ϋ= SC,F = FC, G = GC, one finds the commutation rules of g = 5/(2). So
4O(0) ^ *(#) <8> P, with P ~ <C[x]/x2 - 1, and this proves that the classical limit of
the J-model is not <W(g), as often asserted, but an extension oΐύlί{g) by a parity C.
Let us note that a similar result holds for general simple g9 by similar arguments:
the classical limit of the J-model will be an extension of 9ί(g) by r parities
(r = rank g). Now we come back to g = sl(2). From the Poincare-Birkhoff-Witt
theorem, we deduce that At(g) is a deformation oϊA0(g). It is well-known that At(g)
is a domain, and it is obvious that A0(g) is not, so the <C[[ί]]-algebras At(g) and

cannot be isomorphic, which proves:

(7.3) Proposition. At(g) is a non-trivial deformation of A0(g) ~ %(g) (x) <C[x]/x2 — 1.

The same argument shows that the algebras At(g) and A0(g) cannot be isomor-
phic when tφlπQ. It was shown in [3] that At(g) ~ Ar(g) if and only if
t' = ± t + 2/cπ, keZ, and this has an intuitive interpretation as non-rigidity of
At(g) (and not only of A0(g) as shown in (7.3)). Let us now give a complete
justification of this interpretation:

We fix toe<£, and define Bt(g) as the C[[ί]]-algebra generated by {F, G, S, C)
with relations:

[F, G] = 2SC, FS = (Scos(t0 + ί) - C)F, FC = (Ccos(t0 + ί) + Ssin2(ί0 + t)F ,

GS = (Scos(t0 + t) + C)G, GC = (Ccos(ί0 + t) - Ssin2 t)G,

C2 + S2 sin2(ί0 + ί) = 1, [S, C] = 0 . (7.4)

The classical limit t = 0 is Λo(#)> a n d using once more the Poincare-Birkhoίϊ-Witt
theorem, Bt(g) is a deformation of At0(g).

We denote by Dn the irreducible representation of g of dimension
(2n + 1), ne^N, and also by Dn its extension to AtQ(g\ toφ 2πQ, as defined in [3].

(7.5) Lemma. Let (π, W) be a finite dimensional representation of At0(g), toφ2πQ;
then

(7.5.1) Corollary. When toφ2πQ, the finite dimensional representations of AtQ{g)
are rigid.

Proof Given ξeZ1(Ato(g\ 5£{W)\ we define a new representation p of At0(g) on

\. But p is semi-simple, and since it is an extension of π by

0 πj
itself [18], the extension cocycle ξ is a coboundary. Now H1(At0(g), ££{W)) = {0}
is the standard sufficient condition for rigidity of π [17]. Q.E.D.

(7.5.2) Proposition. When toφ 2πQ, Bt(g) is a non-trivial deformation of At0(g).
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(7.5.3) Corollary.

Proof. Let us assume that the (C[[ί]]-algebras v4 ί0(#)[[ί]] and Bt(g) are isomor-
phic by φ. Let ττ£ be the (2/ + l)(C[[ί]]-dimensional representation of Bt(g) as
defined in [3] (ρ.JJ9). Then the value of the Casimir element Qt = GF + SC +
S2 cos(ί0 + ή of Bt(g) is sini(ί0 + ί)sin(z + l)(ί 0 + ί)/sin2(ί0 + O

At t = 0, Bt(g) has classical limit At0(g), and π£ has classical limit π i 5 the
irreducible (2ι + l)-dimensional representation π, of Λo(#) Then setting π, = π, o φ9

we get a deformation of the representation πf of Ao(#)> which has to be trivial by
(7.5.1), so the value of the Casimir^β0 of At0(g) in πf is sinίίosin(ϊ + l)ίo/sin2 ί0 .

Now, the respective centers of Bt(g) and Λo(0)[MJ are Z(Bt(g)) = <C[[ί]][βί],
and Z(Λo(0)[M]) = C[[ ί ] ] [βo] . One has Z(Bfo(^)) = φ{Z{At0{g)\XfΏ))
= C[[ ί ] ] [φ(Q 0 )] , therefore φ(β 0 ) = α β t + / with α,j5eC[[t]], and π^Qo)
= απj(βt) + β (7.6.1). Taking i = 0, we get β = 0, then / = 1,2 lead to cosί 0 =
+ cos(ί0 + t\ & contradiction. Q.E.D.

Appendix 1. Topological Vector Spaces

We refer to [21] or [13] for topological tensor products, nuclear spaces, etc. We
only fix our notations, and mention some results we need.

(A.1.1). A t.v.s. is a complex vector space Fwith a locally convex Hausdorf vector
space topology; a c.t.v.s. is a complete t.v.s.. Given t.v.s. Vί and V2,Vi^ V2 means
topological isomorphism, Vx ® V2 is the c.t.v.s. projective tensor product of Vγ and
F 2 ; given t.v.s. Vi9 iel, we endow Πie/^ί w ^ * e t v s. product topology.

(A.1.2). We denote by L(VU V2) (resp: J£?(Fl5 F2)) the space of linear maps (resp:
continuous linear maps) from Vx into F 2 . There are several topologies for which
^(Pi> Vi) is a t.v.s.: if nothing is mentioned, ^ ( F l 5 V2) has the topology of
uniform convergence on bounded sets. When Vx is Montel (e.g.: Vγ quasi-complete
nuclear and barreled) then ^(Vu F2) = ^SYi* V2\ where subscript c means
topology of uniform convergence on compact sets. When Vγ = V2= F, we use
notations L(V) and J2?(F) for L(F, F) and J2P(K, F).

(A.1.3). We denote by F * the t.v.s. i f (F, (C). When Fis Montel, Fis reflexive, i.e.
the canonical mapping from Finto F * * is an isomorphism.

(A.1.4). Assume that Vγ and F 2 are c.t.v.s., that V1 is barreled, F * nuclear and
complete, then &(Vl9V2)is complete, and &(Vl9V2)z< V*®V2. These assump-
tions on Vί are satisfied e.g. if Fx is nuclear and Frechet, or if Vγ is the dual of
a nuclear and Frechet space.

(A.1.5). Let Fx and F 2 be two Frechet (or dual of Frechet) spaces; assume Vx is
nuclear, then (Vt ® F 2)* - Kf ® V\.
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(A.1.6). Let Vi9 iel, and PFbe t.v.s., then:

ίel / iel

Appendix 2. Natural Topology of Countable Dimensional Vector Spaces

We assume in Appendix 2 that V is a countable dimensional vector space.

(A.2.1) Definition. An increasing sequence (F n ) π e N , of finite-dimensional subspaces
of V is a sequence of definition if {Jne^ Vn = V.

Given a sequence of definition, we endow V with the c.t.v.s. strict inductive limit
topology defined by (Fπ) [21].

(A.2.2) Lemma [21]. Any linear mapping from V into a t.v.s. is continuous.

As a consequence of (A.2.2), the topology defined from (Vn) does not depend on
the choice of the sequence of definition, so we set:

(A.2.3) Definition. The strict inductive limit topology defined on V from any se-
quence of definition is called the natural topology of V.

(A.2.4) Proposition [21]. The natural topology of V is complete, nuclear, and
Montel. V is reflexive.

Given a sequence of definition (Vn), we write Vn= Vn-γ®Vn, and get
an isomorphism F * ~ ΓLe^C^")*' ^ duality is defined by: φne(Vn)*,vneV,

<ΓLeN<P«> Σfinite^) = Σfinite <<Pn\Όn>>

This proves:

(A.2.5) Proposition. F * ~ Y[ne^(Vn)* is a Frέchet space.

(A.2.6) Lemma. Let (Vn) and (V'n) be sequences of f.d. spaces, and X any c.t.v.s.,
them

Proof (A.2.5) is a consequence of (A.I.6), noticing that, when Wis a f.d. space, then
W® X = <£(W*, X) = L(W*, X) = W® X. Q.E.D.

(A.2.7) Proposition. Let V and V be two countable dimensional vector spaces,
endowed with the natural topology, then:

(i) ( F ® V'Y - V*®V*.
(ii) V®V'=V®V, with natural topology.

Proof
(i) Results from (A.2.4) and (A. 1.5).

(ii) From (A. 1.5) and (i), V® V ~ (V* ® V'*)*, but V* = Y\neN(VH)*,

Y'* = Yheκ(K)*, so, from (A.2.5), F* ® V* ~ HtP(Vn)* ® (V'ψ, so F® V'

- Σn,P

v" ® v>v ( a s t v s )' ί e v® v> = ^ ® v' w i t Γ l natural topology. Q.E.D.
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(A.2.8) Corollary. Any bilinear mapping from VxV into a t.v.s. is continuous.

(A.2.9). Using (A.2.2), any subspace of V is closed, and has a topological supple-
mentary. By standard orthogonality arguments, any closed subspace of F* has
a topological supplementary (namely: the orthogonal of any supplementary sub-
space in V of the orthogonal of the given subspace of F*).

(A.2.10) We develop a very simple, but fundamental example.:
Let V = <C[ί]; Vn = <C[ί]n (the subspace of polynomials of degree at most ή) is

a sequence of definition for the natural topology of F. Defining duality between
polynomials and formal series as usual (cf. e.g. [21]), we get F* = C[[ί]]. Fand
F* are nuclear, Montel, reflexive, and F* is Frechet.

Appendix 3. Deformations of t.v.s.

Given a vector space F, and a commutative algebra A9V=A®V has a natural
^4-module structure. In deformation theory [10], where A = <C [[£]], one is rather
interested in F[[ί]] = {£„ tnvn, vn e F}, which contains F, but is generally different
(unless F is f.d.). Usually, one introduces a closure with respect to ί-adic topology;
unfortunately, if F is a t.v.s., a ί-adic closure will no longer be a t.v.s., so one has
to introduce a coarser topology on F[[ί]]. Since F[[ί]] = L(C[ί], V) =
J2?(C[ί], V) (A.2.2), we define:

(A.3.1) Definition. Given a t.v.s. F, the associated formal space is the t.v.s.

The topology on F[[ί]] is exactly the product topology Y[n ί"F, with tnV ~ V.
It results that \\xΆn^^tnvn = 0, for any sequence (vn) of elements of F[[ί]]. If Fis
complete, then F[[ί]] ~ C[[ί]] ® F (A. 1.4); generally if F is the completion of
F, F[[ί]] is a dense subspace of F[[ί]] = C[[ί]] ® F = C[[ί]] ® F((A.1.4) and
(C ® F = F).

Given /eC[[ί]], and ί?e F[[ί]] = ί?((C[ί], F), we define f-v by (/ ίJ)(P) =
/(P)ί (P), PeC[t], using C[ί] = C[[ί]] (A.2.9).

Therefore F[[ί]] is a <C[[ί]]-module; i f /= Σπ/Mί", t; = Σnt
nvn, one has:

f v = Σtn Σ fiVj, so the map (/, v)->f v is continuous .
n i+j=n

(A.3.2) Definition. A topologically free (t.f.) <C[[ί]]-modu/e is a formal space
F [ [ ί ] ] associated with a t.v.s. F, vWί/z its natural (C[[ί]]-modwZe structure.

We mention that we do not need to define general topological <C[[ί]] -modules,
but only free ones, since we are only interested in the topological version of
deformation theory. Nevertheless it might be of interest to work in full generality,
even for deformation theory. For the time being, t.f. <C[[ί]]-modules are enough
for our purpose.

(A3.3). Given t.f. <C[[ί]]-modules F[[ί]] and PF[[ί]], we consider the space
&t(y\_\t\\ W[\fX\) of continuous <C[[ί]]-linear maps from F[[ί]] into W\_\t]~\.

(A.3.3.1) Lemma. J^ f(F[[ί]], JF[[ ί ] ] )- if(F, FF)[[ί]], as t v.s. and <C[[ί]]-
modules.
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Proof. -S?t(K[[ί]], »T[ί]]) has the t.v.s. structure induced by JS?(K[[ί]], »T[ί]]).
Given Fe JS?r(K[[ί]], ^[[t]]), let F(υ) = £„ fFn{v\ ve V; then FneJ?(V, W\ so
F = F\ve£P{V, W)[[_tJ]. F can be reconstructed from F by:

So i7 -* F will give the wanted isomorphism; it is not difficult to check that it is
a topological one. Moreover, J5ff(F[[ί]], W[[ί]]) has a natural <C[[ί]]-module
structure defined by (/• F) (v) = f {F(v)\ and /• F = f- F. Q.E.D.

(A.3.3.2) Definition. The C[[ί]]-AιαZ of K[[ί]] is F[[ί]]* = &t{V\_[t]\ C[[ί]]),

Using (A.3.3.1):

(A.3.3.3) Proposition. F[[ί]]* - F*[[ί]].

We denote by <,>, the C[[ί]]-bilinear duality between F[[ί]] and

?
Given 0eJS? f(K[[ί]],»Γ[[ί]])^JS?(K,^)[[ί]], we write φ = Σn^nΦn,

φne&(V,W) and define the transpose τ(^ = ^ ί ^ e J ^ P F * , K*)[[ί]] ^
]?). One has:

>f if »6 K[[ί]], W*E

We now define the notion of (topological) CD [[ί]]-tensor product:

(A.3.5.1) Definition. The (topological) <E[[tJ\-tensor product of Γ[[ί]] and W\_[t]~\
is

F[[ί]] ®t W[_ltJ] = (V® W)l[fJ] .

The characteristic property of the topological tensor product of t.v.s. is the
factorization property of continuous bilinear mappings. Here, the same will hold, if
one replaces bilinear by (C[[ί]]-bilinear.

We need some notations. First we define a canonical continuous C[[£]]-
bilinear mapping Γ: F[[ί]] x W\_\t]~\ into F[[ί]] <§>t JΓ[[ί]] by:

n / n i+j=n

Now, it is quite natural to use the notation:

(A.3.5.2) Proposition. Given a continuous <C[[ί]]-fo7meαr map F: F[[ί]] x
^•X[[ί]], where X is a c.t.v.s., there exists a continuous <C[£t]]-linear map
G: F[[ί]] ®t W\_[tJ\ -» X[[ί]] such that:

F(v, w) = G(v®tw) .
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Proof. Given υe V, we W, F(v, w) = Σ n ί " . F > , w), FneJ?2(V, W; X), so Fn(υ, w) =
Gn(v (g) w) with Gne£e{V® W, X). Now

t"vn,Σt"wn) = Σtn Σ Fk(υt,wj)
n / n i+j+k=n

= Σtn Σ G*(»t®w,) = ( Σ t " G 1 , ) ( Σ t " Σ
\ n / \ n i+j=n

= G(v®tw),

if one defines

G = ΣtnGnenv® w9x)\χ_q\ = <et{iy® w)\_\t\\x\_\t\-\)

Appendix 4. Vocabulary

There are several, more or less restrictive, notions of algebras, bialgebras, Hopf
algebras, etc. in the literature, so we give precise definitions of the notions we use in
this paper, including corresponding topological definitions.

(A.4.1). A vector space A (resp: c.t.v.s.) is an algebra (resp: a topological algebra) if
one has fixed a linear (resp: continuous linear) map μ: A (x) A (resp: A ® A) -* A. As
usual, we note μ(a (x) a') = aa\ α, a' eA.

(A.4.2). An associative (resp: topological associative) algebra is an algebra (resp:
topological algebra) with an associative product and a unit element.

(A.4.3). When A is an algebra (resp: a topological algebra) then A®A
(resp: A® A) is also an algebra (resp: a topological algebra), the product being
defined by:

{a ® b) (a' (g) b') = (aaf) (x) {bb'\ α, a\ b,b'eA .

(A.4.4). A bialgebra (resp: a topological bialgebra) is an algebra (resp.: a topo-
logical algebra) with a morphism (resp: continuous morphism) A:A^> A® A
(resp: A ® A).

(A.4.5). Hopf algebras are defined as in [6]. Topological Hopf algebras are defined
by adding the continuity condition of the antipode and counit.
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