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Abstract: Kahlerian twistor operators are introduced to get lower bounds for the
eigenvalues of the Dirac operator on compact spin Kahler manifolds. In odd complex
dimensions, manifolds with the smallest eigenvalues are characterized by an over
determined system of differential equations similar to the Riemannian case. In these
dimensions, we show the existence of a unique natural Kahlerian twistor operator. It
is also proved that, on a Kahler manifold with nonzero scalar curvature, the space of
Riemannian twistor-spinors is trivial.

0. Introduction

In 1980, T. Friedrich [Fr 1] proved with the help of the Lichnerowicz formula [Li 1]
that, on a compact Riemannian spin manifold ( M n , g), any eigenvalue λ of the Dirac
operator satisfies

λ 2 > Λ(

 U

 1Λ inf 5 , (*)
4(n — 1) M

where S is the scalar curvature of (Mn,g). In 1984, the author [Hi 1] improved (*)
by replacing the number inf S by a conformal invariant and showed that equality

M

in (*) implies that the manifold is non-Kahler (see [Hi 2, Li 2]). K.-D. Kirchberg
investigated then the Kahler case, and showed (see [Ki 1, Ki3]) that any eigenvalue
λ of the Dirac operator on a compact Kahler spin manifold (M2m,g) satisfies

λ2 > — inf S , if m is odd, (**,)
~ Am M

 ι

and m

λ2 > — inf S, if m is even. (**9)
~ 4(ra - 1) M

 ι

* This work has been partially supported by the EEC programme "GADGET" Contract Nr. SC1-
0105
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Kirchberg's proof relies essentially on the decomposition of the spin bundle under
the action of the Kahler form.

The aim of this paper is to show how, on a compact Kahler spin manifold,
the first eigenvalues of the Dirac operator are related to the eigenvalues of the
Kahler form. The main point is to show that, on Kahler manifolds with odd complex
dimension, there is only one natural twistor operator, denoted by P ( 1 \ on the space
of eigenspinors of the Dirac operator (see Lemma (2.6) and Lemma (2.16)). This
fact makes the proofs simple and direct. We then study all possible Kahlerian twistor
operators and give necessary conditions to the existence of twistor-spinors, i.e. zeroes
of Kahlerian twistor operators (Theorem (4.30)). This approach is a first step towards
the investigation of the spectral properties of the Dirac operator on compact spin
quaternionic-Kahler manifolds (see [HM]), and towards the classification of Kahlerian
compact manifolds of odd dimension with the smallest eigenvalues. These Kahler
manifolds are characterized by an over determined system of differential equations,
given by the existence of a zero of the restriction on the space of eigenspinors of the
twistor operator P^ι\ This situation is similar to that of the limiting-case in (*).

Main Results. On a Kahler spin manifold ( M 2 m , g, J), with a Kahler form Ω, denote
by V the Levi-Civita connection, D the Dirac operator and D a square root of D2

associated with the Kahler structure (see (1.4)). For any real numbers a and 6, define
the Kahlerian twistor operator Pa'b : Γ{T*M <g> ΣM) -> Γ(ΣM) by

% b J(X) Dφ .

A non trivial spinor field φ is called Kahlerian twistor-spinor if Pa'b φ = 0. For a = -
and 6 = 0, such a spinor field is called a Riemannian spinor-twistor (see [Li 2]). A
Killing spinor is a zero of the restriction of the Riemannian twistor operator, on the
space of eigenspinors of the Dirac operator. The limiting-case in (*) is characterized
by the existence of a Killing spinor. A simple proof of (**λ) is obtained from

Theorem A. For any eigenspinor field φ with Dφ = \φ, one has

4
M M

where p(a, b) = 1 + 2(ma - 1) a + 2(mb - 1) b + 4ab.

We then prove

Theorem B. On a compact Kahler spin manifold (M2rn,g, J) of complex dimension
m > 1, assume that there exists a non-trivial spinor field φ with Dφ = λφ, where

λ iBΐs.
Am M

Then, the manifold is Einstein and φ = φ+ + φ_ with Ω φ± = ± i φ±, where φ+

and φ_ are the half spinors associated with φ. In particular, the complex dimension
m is necessarily odd.

It should be pointed out that, under the conditions of Theorem B, Kirchberg [Ki 1]
proved that the manifold is Einstein with m odd. The point here is to emphasize
how the eigenvalues of the Kahler form interfere in the problem of estimating the
eigenvalues of the Dirac operator. The link between the eigenvalues of the Dirac
operator and the eigenvalues of the Kahler form is given by
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Theorem C. Let ( M 2 m , g , J) be a compact Kahler spin manifold of complex di-
mension m > 1, and λ an eigenvalue of the Dirac operator. Then, there exists a
μr — m — 2r, 0 < μr < m, where μr is the imaginary part of a generic eigenvalue
of the Kahler form, such that

4(ra + 1 - μr

(**r)

We point out that Inequality (**r) is formally the same as Inequality (70) in [Ki3].
The main difference is that the first inequality is given for any eigenvalue while the
second is valid for an eigenvalue of type r. Notice that the r.h.s. of (**r) is an
increasing function of μr, so the inequalities (**j) and (**2) could be obtained from
(**r) for μr = 1 and μr = 2. The following two theorems aim to compute all possible
values of the real numbers a and b under the condition that there exists a Kahlerian
twistor-spinor.

Theorem D. On a Kahler spin manifold ( M 2 m , g, J), with non-zero scalar curvature,
the space of Riemannian twistor-spinors is reduced to zero.

A rather indirect proof of Theorem D is given in [Ki4]. In case the manifold is
compact, this result is due to Lichnerowicz [Li 4]. We also point out that Theorem D
is a strong version of Proposition 6.3 in [Hi 1].

Theorem E. Let (M2m,g, J) be a Kahler spin manifold with non-zero scalar curva-
ture. Assume that, for a non-trivial spinor field ψf Pa'bφ = 0. Then, there exists an
integer r with 0 < r < m — 2, μr — m — 2r being the imaginary part of a generic
eigenvalue of the Kahler form, such that

and Dzψ = — — ^ — S ψ .
4(ra + 1 μ) Ψ

a = b= — , and Dψ = — — ^ —
2(m + 2- μr) 4(ra + 1 - μr)

Moreover, for 2r φ m, φ = φr -f ψΎn_r, with (D + iD)φr = (D — %D)ιφπι_r = 0,
where ψr is an eigenspinor associated with the eigenvalue ί μr of the Kahler form.

The paper is organised as follows:

Paragraph 1 is devoted to fixing up the notations and to collecting all formulas proved
in [Hit, LM, Mi, Kil, Ki3] which we need in this paper. In Sect. 2, we consider
Kahlerian twistor operators, to give a simple proof of (**j) (Theorem A) and its
limiting-case (Theorem B). The key point in this section is given by Lemma (2.5).
This lemma leads to (**j) without using the eigenvalues of the Kahler form.

In Sect. 3, we show how the eigenvalues of the Kahler form appear in this context
and we prove (**2) and Theorem C. Lemma (3.1) and Lemma (3.3) contain the key
idea of this paragraph. In the last section, we prove Theorems D and E. This paper
corresponds to Chap. 3 in [Hi 3].

1. Notations and Preliminaries

Let (Mn,g, J) be a Kahler spin manifold of dimension n = 2m, with a Riemannian
metric g and a parallel complex structure J . The Levi-Civita connection on the tangent
bundle TM is denoted by V. The same symbol is used to denote its natural extension
on the bundle of exterior forms, on the bundle of endomorphisms of the tangent
bundle, and on the bundle ΣM of complex spinors. For any tangent vector fields X
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and y , the Kahler form Ω, defined by the complex structure J, satisfies the following
relations

Ω(X, Y) = g(X, J(Y)) = -g(X, J(X)), (1.1)

0, (1.2)

ω = — ΩΛ...ΛΩ, (1.3)
m ! v v '

m times

where CJ is the volume element defining the orientation of ( M 2 m , #, J). The Dirac
operator D acting on sections of the spin bundle is locally defined by (see [ABS],
[LM])

with {e l5 ...,en} a local orthonormal basis of the tangent bundle TM. At any point
x in M, we choose normal coordinates at this point so that (Ve^)(x) = 0, for all
i e { l , . . . ,n} . All the computations in this paper will be made in such charts.
Associated with J, there is an elliptic self-adjoint operator D (see [Hit, Mi, Ki 1])
defined locally by

D = y^J(eι)' ^e = ~y2ei' ^J(e ) (1-4)
i=\ ι=\

Denote by (,) the natural Hermitian scalar product on the spin bundle. For the action
of vector fields X and the Kahler form by Clifford multiplication, one can easily
check the following relations:

Λ n 1 n

O — _ \ Tip \ . p — \ p . J(p \ (Λ ZΛ

(Ω - ψ, φ) = — ("0, i? y?), i.e. i7* = — Ω, (1 6)

D2 = D 2 , (1.7)

(1.8)

(1.9)

[D,β] = 2JD, (1.10)

[5,ί2] = - 2 D . (1.11)

Moreover, the spin bundle of a Kahler spin manifold carries an anti-linear map j
satisfying the relations [ABS]:

Vj = 0, (1.12)

J2 = (-1)^/,M, (1.13)

[XJ] = 0, (1.14)

(1.15)
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From the above identities one derives the following relations

[D,j] = 0, (1.16)

[D,j]=0, (1.17)

[Ω,j]=0. (1.18)

We recall that [Ki 1] the spinor bundle ΣM of a Kahler spin manifold (M2m, g, J)
splits under the action of the Kahler form Ω into the direct sum

r=0

where ΣrM is the eigenbundle associated with the eigenvalue iμr = i(m — 2r) of Ω
whose rank is equal to C^. According to this decomposition, any spinor field ψ can
then be written as

r=0

with jψr = (jΨ)m-r

2. Eigenvalue Estimate

For any real numbers a and 6, define the Kahlerian twistor operator

pa,b . r(T*M <g> ΣM) -+ Γ(ΣM) by

P%bψ = Vxψ + aX'Dψ + b J(X) Dψ. (2.1)

A non-trivial spinor field ^ is called Kahlerian twistor-spinor if P α ? b φ = 0.
We start with some technical lemmas which are crucial for what follows.

Lemma (2.2). For any spinor field ψ, one has

(2.3)

M M

i.e., a(ψ) is a real number.

Proof. Using i?* = -Ω, D* = D , and 5 * = 5 , it is sufficient to show that

D Ω-D + D Ω- D = 0 . (2.4)

By (1.10) and (1.11), we get

D Ω - D + D Ω • D = ( β £> + 25) 5 + (Ω 5 - ID) D .

This yields (2.4) by using (1.7) and (1.8). D

Lemma (2.5). For a spinor field ψ with Dip = \ψ, one has

= J\Dφ\2.
M
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Proof. Since D is self-adjoint, 4?* = — Ω for the action by Clifford multiplication,
and Dψ = Xψ one gets after using (1.11),

ί(Ω 5^,Ity) = fφΩ.<ψ,Dψ) + 2λ2 /"
M M M

M M

M M

which, when combined with Lemma (2.2), gives Lemma (2.5). D

Lemma (2.6). Assume that Pa'bψ = 0 (M not necessarily compact), then

(1 -a-b)D2ψ = - Sψ. (2.7)

Moreover, if ψ is such that Dψ = λψ, with λ ^ 0, then a — b— —~j~η-

Proof. For any i e {1, ...,n}, we have

0 = P^b ψ = Veιψ + aeτ Dψ + b J(e ) Dψ . (2.8)

The covariant derivative with respect to e of the above identity gives after summing
over ί:

n

0 Ξ ^ Ve% Ve%ψ + a D2ψ + b D2ψ ,

which with the help of the Lichnerowicz formula and Eq. (1.7) gives (2.7).
Taking Clifford multiplication of (2.8) with ei and summing over i, one gets

(1 - na) Dψ = 2bΩ-Dψ. (2.9)

Hence, by (1.8), (1.10), (2.9) and (1.7) it follows

(1 -na)\2ψ = 2bΩ -DDψ,

= -2bΩ - DDψ,

= -(1 -na + 4b)λ2ψ,

which yields
l-na-2b = 0. (2.10)

Similarly, taking Clifford mutiplication of (2.8) with J{ei) and summing over i give

(1 -nb)Dψ = -2aΩ-Dψ. (2.11)

The same computation as above yields

l-nb-2a = 0. (2.12)

Equations (2.10) and (2.12) give Lemma (2.6). D
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Theorem (2.13). For any eigenspinor field φ with Dφ = λφ, one has

J\Pa>bφ\2 = J(p(a,b) λ2 - 1 S)\φ\\ (2.14)
M M

where p(α, b) — 1 + (na — 2) a + (nδ - 2) b

/. Since for any X e TM, φ and ψ G ΣM, one has (X φ,φ) = -(Φ, X </?),
one gets using (1.4) and (1.5),

/' \Pa>bφ\2 = f \Vψ\2+(na-2)a f \Dφ\2+(nb-2)b f \Dψ\2+4ab a(φ). (2.15)

MM M M

Equation (2.14) is then obtained with the help of (2.15), (1.7), Lemma (2.2), Lemma
(2.5), and the Lichnerowicz formula. D

It is straightforward to notice the following.

Lemma (2.16). The polynomial p has its minimum —r-^ at the point

For α = b= — W we denote Pa'b by P ( 1 ) .

As a consequence of Theorem (2.13) and Lemma (2.16), we derive the following
result of Kirchberg.

Corollary (2.17) [Ki 1], On a compact Kahler spin manifold (M2rn,g, J) of complex
dimension m > 1, any eigenvalue λ of the Dirac operator satisfies

m + 2 ( 2 1 8 )

4ra M

77,-1-2 77,

Notice that for the real dimension n, one has ^ > ——j with equality only for
n = 2 (compare with [Hi 1]). Hence (2.18) has an interest only for m>2.
In order to study the limiting-case of (2.18), we need a special case of the following
proposition.

Proposition (2.19). If P{l)φ ΞΞ 0, then

D2ψ ϋ i ± !
Am

φ . (2.20)

Moreover, if P^φ = 0 for a non-trivial spinor field φ such that Dφ — fφ, where f
is a non-trivial real-valued function, then the function f is constant, the manifold is
Einstein, and one has

Moreover, the complex dimension m is odd.

Proof The first assertion is a consequence of Lemma (2.6). For Dφ = fφ, one gets

D2φ = f2φ + df -ψ, where d is the exterior differential. Since D2φ = r r ^ ^ 1 5 φ,

the scalar product of the above equation with φ implies that / is constant and

/2 = lϋ+JL 5 := λ2 .
Am
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For the other assertions, we proceed in two steps.

First Step. We show that m is necessarily odd. Equations (2.9) and (2.11) with

a = b= l

n + 4

Dφ = Ω Dφ, (2.21)

Dφ = -Ω Dφ. (2.22)

Since Dφ = ±Xφ, the above equations give

ΩΏ-φ = -φ. (2.23)

By (1.19), Eq. (2.23) yields

which implies that

r=0

Ψ = φm-\ + Φm+\
2 2

hence m is necessarily odd and ψ is the sum of two half spinors which are eigenspinors
for D2 and for Ω with eigenvalues ±i.

Second Step. We prove that the manifold is Einstein. By assumption, for any vector
field X one has

Vxφ = — (X Dφ + J(X) Dφ). (2.24)
n + 2

A straightforward computation using (2.24) gives, for the spin curvature R, the identity

n .

Ve, RyJ = [(n - 2)VxDφ - X D2φ + 2Ω V x D φ
2 = 1

- J{X) DDφ - 2S7J(X)Dφ].

On the other hand, since

2 = 1

where Ric is the Ricci curvature, one gets :

R i c ( X ) -ψ = (n-2) VxDφ - X D2ψ + 2Ω- VxDφ
2

- J(X) DDφ - 2 VJ{X)Dφ . (2.25)

Since Dφ — λψ, Eq. (2.25) can be written as

Jl±λ Ric(X) φ = (n - 2) λ V x ^ - λ2X φ + λJ(X) 5 ^

+ 2Vx{Ω Dφ)-2VJ{X)Dφ.

By (2.24) and (2.21), it follows after simplification

77-4-2 ~

-—— Ric(X) ^ = X2X -0 + λV x ^ + VJ(X)Dφ . (2.26)
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Equation (2.24), applied to X and to J(X), gives after using (1.9), (2.22) and (2.23)

λV xφ + VJ(X)Dφ

= λ (Vxφ - Ω VJ(X)φ),

1 λ [ X Dφ + J(X) -Dφ-Ω- (J(X) - Dφ - X - Dφ) ] ,
n + 2

1
n + 2

λ 2 [ X - φ - J(X) Ώ-φ-Ω J(X) .ψ-Ω XΏ-ψ],

n + 2

= 0.

Hence for any vector field X, Eq. (2.26) yields the relation

Ric(X) φ = S X ψ,
4 An

which implies that the manifold is Einstein. D

As a corollary of Proposition (2.19), one gets (comp. [Ki 1])

Theorem (2.27). On a compact Kahler spin manifold ( M 2 m , g, J) of complex dimen-
sion m > 1, assume that there exists a non-trivial spinor field φ with Dφ = Xφ,
where

4m M

Then, the manifold is Einstein and φ = φ+ + φ_ with Ω • φ± = ± i φ±, where φ+

and φ_ are the half spinors associated with φ. In particular, the complex dimension
m is necessarily odd.

It should be pointed out that, under the conditions of Theorem (2.27), Kirchberg
[Ki 1] proved that the manifold is Einstein with m odd. The point here is to emphasize
how the eigenvalues of the Kahler form interfere in the problem of estimating the
eigenvalues of the Dirac operator.

3. Eigenvalues Estimate for Compact Kahler Manifolds
of Even Complex Dimension

It follows from Theorem (2.27) that, in the case of a compact Kahler manifold of
even complex dimension, one should get a sharper estimate than (2.18). Hence, the
polynomial p in Theorem (2.13) should be replaced by a polynomial q with 1 < q < p.
The only hope in this direction is to apply (2.15) to a spinor field φ such that

a(φ) := / (Ω Dφ, Dφ) < ί \Dφ\2 .

M M

It is easy to check that (2.15) is the sum of the following two identities

| P α ' 6 φ±\2 = ί \Vφ±\2 + [(na - 2)a + (nb - 2)6] ί \Dφ±\2

M M M
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where φ = φ+ + φ_ is the decomposition of a spinor field as the sum of half spinors.
In the limiting-case of (2.18), these half spinors are necessarily eigenvalues for the
Kahler form. With these two observations in mind, the choice of the spinor field φ
becomes natural. We prove that, for m even, one can choose a spinor field φr such
that D2φr = λ2 φr, Ω φr = i μr ψr and a(ψr) < 0.

We start with the following two key lemmas of this section.

Lemma (3.1). For a non-zero constant c, define Dcby Dc — D + c D . Then, D2

C = 0
if and only ifc = ±i. Moreover,

Ω - Dcφr = ί μs Dcφr, if c = ±i and μs = μr ± 2 .

IfkeτD = 0,then

Ω Dcφr = i μs Dc φr, 4=> c = ± i and μs = μr ± 2 .

Proof The first assertion is an immediate consequence of (1.7) and (1.8). Equations
(1.10) and (1.11) imply

Dψr),

2c (Dφr - 1 Dφr) .

The last equation gives the second assertion. Assume that, for a non-trivial spinor
field φ, Dcφ = 0. Then, by (1.7) and (1.8), it follows

DDC φ = D2φ + c DDφ = 0,

DDC φ = c D2ψ - DDφ = 0 .

Hence, c = ±i since D2φ φ 0. This observation combined with the above expression
of Ω Dc φr gives Lemma (3.1) after a straightforward algebraic computation. D

Denote by D± = \ (D ± iD). With the help of (1.16), (1.17) and Lemma (3.1),
we deduce that these two operators satisfy

jD± = DτJ, D2

± = 0, and Ω D± φr = i (μr ± 2) D± φr . (3.2)

Lemma (3.3). For any nonzero eigenvalue λ of the Dirac operator, there exists a
spinor field φr G ΣrM such that D2φr = λ2 φr , μr > 0, and

(3.3)

M

m

Proof By (1.10), (1.11) and (1.8), it follows that D2 Ω = Ω D2, hence if φ = Σφr

with D2φ — λ2 φ, then each ^ r satisfies D2 φr = λ2 φr. The antilinear isomorphism
j sends ΣrM to Σm_rM. This allows the choice of μ r > 0. Take the maximum
μr for which there exists a φr ψ 0. Such a μ r should be positive, if not D+ φrn
and D_ φrn should be zero which is impossible. Hence μr > 0. Since μr > 0 is
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a maximum we necessarily have D+ψr = 0, if not D+ψr would be an eigenspinor

field for μ r + 2 > μ r . Therefore, Dφr = i Dψr. For a(φr), one then gets

<*(Ψr) = fφΩ.ψr, Dψr) + 2 ί \Dφr\\
M M

= i μr j\bφr ,
M M

= (2-μr)J\Dψr\
2. D

M

As a consequence, one gets

Corollary (3.5) [Ki 3]. On a compact Kahler spin manifold of even complex dimen-
sion, any eigenvalue of the Dirac operator satisfies

λ 2 > λ/

 m

 i λ inf S. (3.6)
~~ 4(771 - 1) M

Proof Choose ψr as in Lemma (3.3). Equation (2.15) applied to ψr yields

| P α ' 6 φrI
2 - 4ab a(ψr) = J (q{a, b) λ2 - | ) \φr\

2 , (3.7)

M M

where q{a, b) = 1 + (na - 2)a + (nb - 2)6. Equation (3.4) implies that a(ψr) < 0
since for even m, μr = m — 2r > 2 . It is straightforward to see that the polynomial

q has a minimum at a = b = - . The positivity of the l.h.s. of (3.7) gives (3.6). D

Theorem (3.8). Let (M2rn,g,J) be a compact Kahler spin manifold of complex
dimension m > 1, and λ an eigenvalue of the Dirac operator. Then, there exists a
μr = rn — 2r, 0 < μr < m, where μr is the imaginary part of a generic eigenvalue
of the Kahler form, such that

λ2 > ΛΓ
 + 2~μ\ inf 5 . (3.9)

~~ 4(ra + 1 - μ r ) M

Notice that, since the fraction — , _ P r is strictly increasing in μ , Inequality
Tίi ~\~ 1 μr

(3.9) is sharper than (3.6) (obtained from (3.9) for μr = 2) and sharper than (2.18)
(obtained from (3.9) for μr = 1). We point out that Inequality (3.9) is formally the
same as Inequality (70) in [Ki3].
Proof Equation (3.7) can be written as

J \Pa'b ψr\
2 = J (qr(a, b) λ2 - I ) IWI2, (3.10)

M M

where gr(α, b) = 1-f (nα-2)α-f (nfr-2)6+4(2-μ r) ab. For a given r, the polynomial

qr admits a minimum equal to — • o __ a t m e P o m t a = b = τγ(—j-~ r. D
TΪΪ ~\~ Δ μ A\τn \ £ \b)
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4. Kahlerian Twistor-Spinors

In this section we compute all possible values of the real numbers a and b under the
condition that there exists a Kahlerian twistor-spinor. For this, we show that on a
Kahler spin manifold with non-zero scalar curvature there are no Riemannian twistor-
spinors (Theorem (4.7)). This result has been proved by Kirchberg [Ki4] using a
different method. In case the manifold is compact, this result is due to Lichnerowicz
[Li 4]. We then give, on a compact Kahler spin manifold with positive scalar curvature,
necessary conditions to the existence of a Kahlerian twistor-spinor (Theorem (4.19)).
We start with a computational lemma.

Lemma (4.1). The following identities hold:

[D,Ω-Ω] = 4DΩ + 4D = 4Ω'D-4D, (4.2)

[D,Ω Ω] = -4D Ω + 4D = -4 Ω D-ΛD, (4.3)

[X, Ω - Ω] = 4 J(X) β + 4 I , (4.4)

[ J(X), Ω-Ω] = -4X ΏΛ-4 J(X). (4.5)

Proof. Equations (1.10) and (1.11) imply

= Ω-Ω-D + 4D Ω + 4D ,

= Ω - Ω D + 4 Ω - D - 4 D .

Hence (4.2). The proofs of (4.3), (4.4) and (4.5) follow similarly with the help of
(1.9), (1.10) and (1.11). D

We recall that, on a Riemannian spin manifold, a spinor field ip is called a
Riemannian twistor-spinor if [Li 2]

VX e TM , Vx Ψ + - X - Dψ = 0. (4.6)
n

Moreover, Killing spinors can be characterized as twistor-spinors which are also

eigenspinors for the Dirac operator. In the case where the scalar curvature is a non-

zero constant, a twistor-spinor is a Killing spinor. In fact, if ψ is a Riemannian twistor-

spinor, then by Lemma (2.6), with a = — and 6 = 0, one has D2ψ = ΛίJi_ n S ψ.

If S is a non-zero constant, the limiting case in Inequality (*) is achieved, hence ψ is
a Killing spinor (see [Fr 1]). On a Kahler spin manifold there are no Killing spinors
[Hi 1]. We now give a simple proof of the following result (comp. [Ki4]).

Theorem (4.7). On a Kahler spin manifold (M2m,g, J), with non-zero scalar curva-
ture, the space of Riemannian twistor-spinors is reduced to zero.

Proof We proceed in four steps.

First Step. For m Φ 2, we show that, for any Riemannian twistor-spinor ψ,
φ = φr+ ψm_{, D_ψ{=0 and D+ φm_{ = 0 .
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Equation (4.6) applied to ei gives, after taking its Clifford multiplication with J(eτ)
and summing over i

Ω Dφ = -mDφ. (4.8)

Equation (1.10) then implies

D Ω - φ = -{m -2) Dφ. (4.9)

By (4.8) and (2.4) one gets

D Ω Ω-Dψ = -mD Ω Dψ ,

= mD Ω Dφ ,

= -m2D2φ. (4.10)

On the other hand, Eq. (4.2) gives

DΩΏ Dφ = (Ω Ω D + 4D Ω + 4D) Dφ ,

- Ω Ω D2 φ + 4D Ω - Dφ + 4D2φ . (4.11)

The last two equations yield

Ω Ω D2 φ = - ( m - 2 ) 2 D2φ.

Since Ω D2 = D2 Ω, it follows that

Ω - Ω - φ = - ( m - 2)2 φ . (4.12)

Hence, for m ^ 2, φ = φx + fφπι_λ, and we deduce from (4.9) that

D_φι-D+φrn_ι=0. (4.13)

For m Φ 4, the spinor fields D_ ^j and D+ Φm-ι are eigenspinors for different
eigenvalues of the Kahler form, we necessarily have

D_φ{=0 and D^φm_ι=0. (4.14)

For m — 4, one has

where D_ φ{ and D + φ3 belong to the same space Σ2 M. By (1.8), it can be easily
seen that

D2 D± = D±D2 . (4.15)

On the other hand, by Lemma (2.6) a twistor-spinor φ satisfies

and D2 Ω = Ω D2, by the above relations it follows that

= D_(D2φι) = D_ [ljSψx ) . (4.16)

Hence D_ (S^x) = 0, and similarly D + ( 5 ^ ) = 0. It is easy to check that

= (dS-iJ(dS))-ψι +SD_ φλ = 0 . (4.17)

φ3 = 0 . (4.18)
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Combining Eqs. (4.13), (4.17) and (4.18) yields

(dS - i J(dS)) φ{=(dS + i J(dS)) φ3 . (4.19)

Clifford multiplication by dS reduces (4.19) to

\dS\2 (φγ -φ3) + idS- J(dS) (φx + φ3) = 0 . (4.20)

Equation (1.9) applied twice gives

VX, [i?,X J ( X ) ] = 0 . (4.21)

Clifford multiplication of (4. 20) by Ω implies then

\dS\2(φι + φ3) + idS- J(dS) (φ{ -<ψ3) = 0. (4.22)

Combining (4.20) and (4.22) gives

(\dS\2 + idS- J(dS)) φx = 0 . (4.23)

Clifford multiplication by dS reduces (4.17) to

-(\dS\2 + idS- J(dS)) .ψι+SdS'D_ψι=0. (4.24)

Comparing Eqs. (4.23) and (4.24) implies

S dS D_ φx = 0 .

The scalar curvature being not identically zero, we deduce that D_ φx = 0 or S
is constant. The scalar curvature can not be constant since φ would be a Killing
spinor. This is impossible since the manifold is Kahler [Hi 2]. Finally, D_ φλ = 0
and D+φ3 = 0.

Second Step. We prove that φx and ^m_j are twistor-spinors themselves. The Kahler
form Ω being parallel, Clifford multiplication of (4.6) by Ω Ω gives

V x ( β Ω {φx + Vm-i)) + ^ β β X D{φx + φm^) = 0.

Since Dφx e Σ0M and Dψm_ι G ΣmM, it follows by (4.4)

-(m - 2)2 V x ^ + - (X β β - 4J(X) β - 4X) (Dφx + ̂ ^ m _ ! ) = 0,
ΊΓl

- ( m - 2)2 V x ^ ^ - X Dφ - — - J(X) (Dφx - Dφ^) = 0,

which by (4.6) reduces to the identity

VX eTM , V x ^ - - J(X) (D^i - DΨm-0 = ° • ( 4 2 5 )

Hence, Eqs. (4.6) and (4.25) imply

VX eTM , (X + z J(X)) JD-0! + (X - i J(X)) ^ ^ m _ ! = 0. (4.26)

Clifford multiplication of (4.26) by β, with the help of (1.9), Dφ{ e Σ0M and

Dφm-ι £ ^ m ^ ? Yields

VX eTM , i (ra+2) [(X+i J{X))-D^-{X-i J(X)yDψm_ι] = 0 . (4.27)
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Equations (4.26) and (4.27) give

VX eTM , (X+i J(X)) Dψι = 0 and (X-i J(X))'Dφrn_ι =0. (4.28)

We now prove that ψx and VVι-i a r e necessarily Riemannian twistor-spinors. For
this, we take Clifford multiplication of (4.6) by Ω and use (1.9) with (4.28) to get,
for any vector field X:

-Ω-X-(Dψι+Dφm_1) = 0 ,
#6

-(X-Ω- 2J(X)) • (DVΊ + Dφm^) = 0,

7 777 2
+ — X (Dψ* - Dψrn_]) J(X) (Z>0i + DψmΛ = Q,

n n
i(m-2)Vx(ψι-ψrn_ι)

+ ! ^ X . ( £ t y _ Z t y m , ) - — X . ( £ t y , - D ώ Λ = 0 ,
n n

which gives, since m Φ 2, the relation

VX 6 T M , V x ( ^ - ψ m - i ) + - * (DΨi - DΨm-ι) = 0 (4.29)

Equations (4.29) and (4.6) necessarily imply that /φι and ψm_ι are twistor-spinors.

Third Step. For m ^ 2, we show that ψ = 0. The spinor field ^ being a twistor-
spinor, it follows

β V^^i + - β X Dip* = 0,
n

i m V v ψ , + - Ω X - Dψ, = 0 ,
n

im( - - X D^ ) + - Ω-X Dψ* =0,
\ n ) n

which shows that
VX G Γ M , X L ^ <E Γ Q M

Since the rank of the space Σ0M is equal to one, while Clifford multiplication with a
non-zero vector field is an isomorphism of the spin bundle, this is impossible unless
Dψι = 0. Therefore, the spinor field Dφλ = 0 , and ψ{ = 0 by the Lichnerowicz
Theorem. The same argument holds for / 0 m _ 1 .

Fourth Step. For m = 2, we prove that the above result is also true. By (4.9), we
have β ψ — 0. The argument in the third step shows that, for all vector fields X,

β X Dφ = 0,

hence the rank of Σx is at least equal to 2m, which contradicts the fact that this rank
is equal to m. D
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We now use Theorem (4.7) to prove the following.

Theorem (4.30). Let (M 2 m ,g , J) be a Kάhler spin manifold with non-zero scalar
curvature. Assume that, for a non-trivial spinor field φ, Pa>bφ = 0. Then, there exists
an integer r with 0 < r < m — 2, μr = m — 2r being the imaginary part of a generic
eigenvalue of the Kάhler form, such that

α = 6 = — — i - , and D2φ = m + 2 ~ μ* S φ . (4.31)

2(m + 2 - μr) 4(ra + 1 - μr)

Moreover, for 2r ψ m, φ = ^ r + ^ m _ r , w/Y/z

D + ^ = £ _ ^ m _ r = 0 . (4.32)
Proof First we prove that a = b. Assume that 1 — n(a + b) = 0. Then by (2.7), the
spinor field ^ is a Riemannian twistor-spinor (see [Li 2] or (3.7)), which is impossible
by Theorem (4.7). If a = ^ , Eq. (2.9) implies 6 = 0. Moreover, by (2.11), if b = i ,
then α = 0. In both cases 1 — n(a + 6) = 0, hence α& 7̂  0. Equations (2.9) and (2.11)
give

(1 - no) D2ψ = 26 D Ω • Dψ, (4.33)

(1 - rcδ) 5 V = -2aDΩ-Dφ. (4.34)

From (4.33), (4.34) and (2.4), since D2 = D2, it follows that

(a - b) (1 - rc(α + b)) = 0 .

Hence a = b.
We then prove that, for 2r 7^ m, Ψ = ψr + ^m-r with 0 < r < m — 2. By Eqs.

(2.9) and (2.11) one has

which with the help of (4.2) and (2.9) yields

/ - 1 λ 2

V 2α

The scalar curvature being non-zero, by (2.7) D2φ -φ 0, hence there exists an integer
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r with 0 < r < m, such that, for 2r ψ m, φ = ψr + φm_r, and μr = ^ h 2

L e ' α =

By (1.11), Eq. (2.9) gives

5 β ^ = - μr Dφ ,

i μ r ( 5 ^ r - 5 ^ m _ r ) = - μr (Dφr

If μ r ^ 0, the above equation is equivalent to

D+ ψr + D_ ψm_r = 0 . (4.35)

The same computation using (1.10) and (2.11) gives

D+ φr - D_ φm_r = 0 . (4.36)
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Equations (4.35) and (4.36) show that

D+ φr = D_ φm_r = 0 . (4.37)

If r = m, then D_ ψr = 0, which contradicts (4.37). If r = m — 1, then ψ is a
twistor-spinor, which is impossible by Theorem (4.7). Hence, 0 < r < m — 2. D
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