
Commun. Math. Phys. 160. 493-505 (1994) Communications ΪΠ
Mathematical

Physics
© Springer-Verlag 1994

The Variance of the Ejrror Function in the Shifted Circle
Problem Is a Wild Function of the Shift

Pavel M. Bleher, Freeman J. Dyson
School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

Received: 8 March 1993

Abstract: We prove that the variance of the error function in the shifted circle
problem, as a function of the shift, is a continuous function which has a sharp local
maximum with infinite derivatives at every rational point on a plane.

1. Introduction

Let
N(R:a) = #{meZ2: \m - α| ^ R}, α = (α 1 ,α 2 )eR 2 ,

be the number of lattice points inside the circle of radius R with the center at α, and

_.D . N(R;a)-πR2

F(R;a) = - ^ .

As was shown in [B] and [BCDL], the limit,

1 τ

D(α)= lim - f \F(R;oc)\2dR

exists and is equal to

( 2 π 2 ) - 1 f π - 3 / 2 | r α ( n ) | 2 , (1.1)
n 1

where
rΛ(n) = X e(ka1 + /α2), e(t) = exp(2πir) .

For α = 0 (1.1) reduces to a classical result of Cramer (see [C]). After averaging
(1.1) in α we get a formula of Kendall (see [K]):

0 0



494 P.M. Bleher, F.J. Dyson

D(a) is the mean value of F2(R; α), and it is also equal to

where vα(dx) is the limit distribution of F(R; α).

1
lim -

T "" x *
J dR = J vα(dx)

{/?: « ̂  F(Λ α) ^ b 1 ^ K % T) a

(see [B, BCDL]). In addition,

I T

lim - j = J xvy(dx) - 0 ,

hence D(α) is the variance of the limit distribution of F(R; α). The existence of
a limit distribution of F(R; α) for α = 0 was proved by Heath-Brown (see [H-B]).

Since the series in the RHS of (1.1) is uniformly convergent, D(a) is continuous in
α. Here we prove

Theorem 1.1 For every rational βeQ2,

= - C(β), C ( β ) > 0 . (1.2)

Since D(α) has a sharp local maximum with infinite derivatives at every rational
point, it is a wild function. By wild function we mean a continuous function which
is nondifferentiable on a dense set. C(β) is defined as follows. Let Q be the integer
such that

2Qβ{ = nu 2Qβ2 = n2 (1.3)

are integers and there is no common factor dividing all three of Q, /11? n2- Then

C(/?) = C( l6/π 2 ) (βr(β))-\ (1.4)
where

with the product taken over primes p dividing Q, and

C = 3 (β even), C = 4 (β odd, (w2 + n2)
 e v e n ) ,

C = 2 (Q odd, («! + π2) odd) . (1.6)

D(α) achieves its global maximum at α — m and α = m + (1/2, 1/2), m e Z 2 .
Indeed,

ry(n)\2 =
I k2

is maximum when

k 2 Λ I 2 ^ r

|cos(2π/cαi)| = |cos(2π/α2)| =

and sign (cos(2π/cα1)cos(2π/α2)) is the same for all /c, / with k2 + I2 = n. This holds
for all n e N iff α •= m or α = m + (1/2, 1/2), mεZ2.
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It is to be noted that the wild behavior of D(α) is closely related to a bumpy
shape of the exponential sum

GO

Sa(b)= Σ Mn)|2exp(-n/fc),
n= 1

as a function of α, when b -» oc (see [BD]). SΆ(b) is a key tool used to study the limit
distribution of F(R; oc) in [BCDL].

As a generalization of Theorem 1.1 consider the variance

1 τ

DM = lim - j \Fj(R; z)\2dR , (1.7)
Γ->oo 1 i

for a general lattice-point problem, with

Nj(R;(ή-AR2

Fi(R' «) = ψΓi >

where

NI(R;<ή = # { m e Z 2 : /(m - α) ^ K2}, αeR 2 ; A = Area{x: I(x) ^ 1} ,

and J(x) > 0 is an arbitrary C°° positive convex homogeneous of order 2 function
on R2\{0}. As was proved in [B] the limit (1.7) always exists and is equal to

DM = (2π2y1 Σ l«»l 2 , (1.8)
n = 1

where

uM = Σ i fe2 +
fe,/: J(k,l) = Jn

Q=^J0<J1<J2<''' are all possible values of

J(k,l)= max [2(/cxt + / x 2 ) ~ 7(x1,x2)], fc,/eZ,

and p(/c, /) is the curvature of the curve Γ = (x: 7(x) = 1} at the point x e Γ where
grad/(x) is collinear to the vector (fc, /). The formula (1.8) is a generalization of (1.1).

By (1.8) DI(a) is independent of α if for every n = 1, 2, . . . , the set of (fc, /) such
that J(k, I) = Jn consists of one point. This can be viewed as a "generic" case of/(x),
so that "generically" D/(α) is constant in α. On the other hand, if I(x) possesses
some symmetry, say, /( — x) = J(x), then Dj(a) is, in general, nonsmooth, since the
Fourier coefficients of Dz(α) in (1.8) decay slowly. For instance, if I(x) = (x1/
a)2 + (x2/b)2 and a2/b2 is irrational then J(k, I) = (αfc)2 + (bl)2 and
J(/cl5 It) = J(k2, /2) iff fci = ± fc2? Ί = ± ί2- I n t m s c a s e it is not difficult to prove
that D/(α) is nondifferentiable at half-integer points αe(l/2)Z2. More precisely,

/sin22παi sin22πα2DM = -C / ^ ^ + p - ^ + Rf(α) ,

where C > 0 and R/(α) is differentiable everywhere.
In addition, an ''arithmetic" degeneracy of J(fc, /) can worsen the smoothness of

D/(α). For instance, if J(χ) = (xί/a)2 + (x2/b)2 and α2/^2 is rational, then
# {(fc, I): J(fc, /) = JΠ} is unbounded as n -> oo . This "arithmetic" degeneracy of
J(fc, /) causes wild nonsmoothness of the variance Dj(α), namely, with the help of the
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same method that we use in the proof of Theorem 1.1, we can prove that for every
rational β e Q 2 ,

lim(\\og\oί- β \ \ . \ x - β\yι(DI(a)-DI(β))= - C Z ( A CI(β)>0.

The set-up of the remainder of the paper is the following. In Sect. 2 we prove
some preliminary results for Theorem 1.1. The proof of Theorem 1.1 is slightly
different for β = 0 and for β φ 0. In Sect. 3 we prove Theorem 1.1 for β = 0, and in
Sect. 4 we prove Theorem 1.1 for β Φ 0.

Throughout the paper C, Co, C1, . . . are considered to be fixed positive con-
stants. However they often change value from one equation to the next.

2. Preliminaries

This section consists of identities valid for all α. The sum (1.1) may be written
2

V e(a m)
n= 1 m e Z 2 : I m | 2 = n

= {2π2rι X | m Γ 3 φ (m-m')), (2.1)
mm'

summed over integer vectors m, m' with m2 = m'2. The sum (2.1) may be converted
into an unrestricted sum (see Appendix B in [BCDL]),

D(α) = 2π~2 £ e ( M ^ i ~ koc2))((j2 + h2)(k2 + I2))' 3 / 2 , (2.2)
jhkl

summed over all (7, h, k, / ) e Z 4 satisfying

] 2 + / i 2 Φ 0 , Zc2 + / 2 Φ O , (2.3)

either j = h = 0, or = h = k = / = 1 (mod 2) , (2.4)
and

/c, / are relatively prime , (2.5)

which means that either |fc| + |/| = 1, or gcd(|/c|, |/|) = 1.
According to two possibilities allowed by (2.4), we divide D(ot) into two parts,

D(α) - De(α) + D0(α) , (2-6)

where the terms with j and ft even are

De(a) = £l/(w)(/c2 + / T 3 ' 2 , (2.7)

summed over integers (fe, /) satisfying (2.5), and the terms with 7 and ft odd are

D 0(α)= X V(w)(k2 + l2y3/2 , (2.8)
odd/c/

summed over odd integers fc and / satisfying (2.5). The functions (U, V) are
defined by

U(w) = (2π)-2 X β(ftw)(72 + ft2Γ3/2

j2 + h2 φ 0

X cos(2πftw)(72+ ft2)"3/2 ,
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V(w) = (2π)"2 X e(hw)(j2 + h2)'312

half-odd-integer jh

= (2π)~2 £ cos(2π/jw)0'2 + h2)'3'2 . (2.9)
half-odd-integer jh

In (2.7)-(2.9) we have used the abbreviation

w = 2(hx - feα2) . (2.10)

According to (2.9),

U(w + 1) = U(w)9 V(w + 1) = - V(w),

U(-w)= U(w), V(-w)= V(w) . (2.11)

Lemma 2.1. 17 (w) and F(w) are infinitely differ entiable on [0, 1], and

[/'( + 0) = V'{ + 0) = - 1 . (2.12)

Remark. (2.11), (2.12) imply that

U'( + 0) - £/'( - 0) = V'{ + 0) - V\ - 0) = - 2 .

We shall use Lemma 2.1 with (2.11) to note that 17(w) and V(w) are bounded
absolutely; and also that U(t) = - \t\ + O(|ί | 2 ) for sufficiently small t.

Proof of Lemma 2.1 is given in Appendix to the paper. We are now ready to
prove Theorem 1.1. The proof is slightly different for β = 0 and β Φ 0. First we
consider β = 0.

3. Proof of Theorem 1.1 for β = 0

Let C i = | α | - 1 α i , i = 1, 2, |α| = (α? + αi) 1 / 2 , and ζ = (ζ 1 ,ζ 2 ), so that α = |α|C,
|ζ | = 1. Then from (2.7),

HDM ~ DM) = |αΓiX(C/(2(/α1 - ka2)) - U(0))(k2 + / 2 )~ 3 / 2

kl

) 2 + (/ |α | ) 2 )- 3 / 2 |α | 2

(3.1)
kl

which is an approximating sum for the integral

J = (6/π2) ί ϊ Φ(xux2)dXldx2 (3.2)
— oo — oo

with
Φ(x!,x 2) = (l/(2(x2Ci - xiζ2)) - U(0))(xl + x i ) - 3 / 2 . (3.3)

The summation in (3.1) goes over relatively prime /c, /, and the factor (6/π2) in (3.2)
is the density of pairs (fc, ΐ) with relatively prime k, I.

By Lemma 2.1, for small \t|, t/(ί) - (7(0) |ί |. This implies that the integral
(3.2) diverges logarithmically at the origin. The approximating sum (3.1) is taken
over points (|α|fc,|α|/)4=0 which belong to the lattice with the space | α |, so we may
expect that /(|α|) behaves like C|log|α| |.
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We can estimate easily the part of the sum in (3.1) with k2 + I2 ^ |α| ~2. Lemma
2.1 implies that U(t) is bounded, so this part is

Y |Φ( |α |/c, |α |/) | |α | 2

= C|a|"1 Σ (fc2 + / T 3 / 2 ^ C 0 . (3.4)
k2 + I 2 ^ | α | - 2

Let us fix large numbers M, N, which will be chosen later, and consider
a sequence of squares

i ^ O . (3.5)

We shall consider St with i = 0,1, . . . , p, where p is chosen in such a way, that

Λ^-^lαΓ^M,, (3.6)

or in other words,

p = [(log(l + ΛΓOΓ'll loglαll -logAf |] + 1 . (3.7)

The choice of St ensures the following property of commensurability of Sf and Si+ί:
We can partition Si into 4AΓ2 squares of side N~xMt, and Si+ί into 4(N + I) 2

squares of the same side. This implies that the square annulus Si+ί\Si is par-
titioned into 4(2JV + 1) squares Stj of side N~1Mi. Let m 0 be the center of S^ .

Consider the sum

where the summation goes over relatively prime k, I with m — (fc, fyeSy. /y(|α|) is
the Sij-paτt of the sum /(|α|) in (3.1). We want to compare /i<7 (|α|) first with

J y ( | α | ) = Φ ( | α | m y ) | α | 2 Σ l ,

and then with
/ y = (6/π2) J Φ(x)dx ,

u X'J

where

Denote by x y = |α |m y the center of the square Xy. The side of Xtj is equal to
\α\N~1Mi, hence for every xsXi},

Let
U0(x) = U{2{x2ζ, - Xίζ2)) - 1/(0), (3.8)

so that
Φ ( x ) = l / 0 ( x ) | x Γ 3 . (3.9)

By Lemma 2.1, ί/(w) is a periodic Lipshitz function, hence

|t/0(x) - U0(xtj)\ S C\x - xy| ύ C\Λ\N-ιMt, (3.10)

\U0(x)\^C\x\. (3.11)
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Also,

IM~ 3 - l*yΓ3l ^ C\x - xy| |xyΓ 4 £ Co\<t\N~ίMι(\a.\Miγ

499

When

\Φ(x) - Φ(xu)\ £ \U0(x)- l70(xy)||xΓ3 + |l/0(xy)|| |xr3 - | x v Γ 3 |

£ C(|α|ΛT ̂ f l α W 3 + lαlMJαΓ'Λr

= 2CAr1(|α|M,)~2.
Therefore,

= CiV"1 (Aίi)"2 Σ 1 ^

Similarly, since Area Xι} = ( l α l i V ' ^ O 2 , and by (3.9),(3.11),

we obtain

(6/π2) f (Φ(x) -

Φ(xy) (δ/π
V

,)2 - |α|
s,,

( |α |M i )- 2 |α | 2 ( iV- 1 M / )
2 ε M N )

where

εMN = sup
ij

Since M , + 1 ^ M o = M,
lim εMJV = 0 .

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

To prove (3.16) let us assume that S is an arbitrary square of side a > 0 on the plane
such that the origin is outside of S and max x e S |x | ^ Lα, where L > 0 is a fixed
number. Then by the Mδbius inversion formula,

Σ
(M)eS:gcd(M)=l

Σ 1 = Σ
(dk,dl)<=S d=ί

\ά) = —^a2 + 0(a log a), a -> oo ,
π

where μ(d) is the Mόbius function. This proves (3.16).
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F r o m (3.12), (3.14) we obtain

Due to (3.7),

hence (3.17) implies

p 4(2JV+1) p 4(22V+1)

;Σ .Σ Ml«l)-Σo .Σ

P.M. Bleher, F.J. Dyson

(3.17)

(3.18)

or

Σ Φ(|α|m)|oc|2-(6/π2) J Φ{x)dx
SP\SQ Xp\Xo

where

Notice that by (3.6),

I , (3.19)

α | | , (3.20)

(3.21)

hence, when m = (k, l)eZ2\Sp, either \k\^ Mp^\a\~\ or |/| ^ | α | ~ \ hence
by (3.4),

| Φ ( | a | , m ) | | a | 2 ^ C . (3.22)

\xΓ3dxSC0. (3.23)

, (3.24)

j \x\-2dx^C0logM. (3.25)

Similarly

By (3.13),

So

Σ
Z2\S

Φ(
P

α | m ) | α | 2

j Φ(x)dx

α|m) | α | 2

and similarly,

j Φ(x)dx
{Xo\{\x\^\x\}}

Equations (3.20), (3.22)-(3.25) imply

ΣΦ(|α|m)|α|2-(6/π2) J Φ(x)dx
m | x | ^ | α |

hence by (3.1),

a\-\DM - DM) ~ (6/π2) J Φ(x)dx

(3.26)

(3.27)
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For every δ > 0 we can choose N such that CN ~1 < δ, and then M > N such that
CεMN < δ, so that the RHS of (3.27) is less than 2<5|log|α| | + ClogM. Now we can
choose ε = 1/MN so that ClogM < δ|log|α| |, when |α| < ε. Hence by (3.27),

f Φ(x)dx < 3 < 5 | l o g | α | | ,

when |α| < ε. This proves that

\ 2 J |), | α | - > 0 . (3.28)

By (3.3),

j Φ(x)dx = j (t/(2(x2Ci - X1C2)) - I/(0))|x|"3ix

= j (U(2yi)-U(0))\yΓ3dy,

where y = (>Ί, y2) with

X1C1

For small Ij J ,

U(2y±) - 1/(0) = - 2 | y i | + O(yf) .

A straightforward evaluation gives
2π 1

ί b i l l y Γ 3 ^ ^ J dφ j rrfrr|cosφ|r"3 = 4|log|α|| ,
l ^ | y | ^ | α | 0 | α |

hence
J (1/(23/!) - £/(0))|yΓ3^ = ~ 8|log|α| | + 0(1),

hence using the fact that U( ) is bounded,

= -8 | log |α | | + O(l). (3.29)

Therefore from (3.28),

|«Γ'(^.(a) - D.(0)) = - (48/π2)|log|α| | + o(|logjα| | ) ,

or in other words,

| . | α | ) - 1 φ . ( α ) - D . ( 0 ) ) = - 48/π2 . (3.30)

The same considerations give

|.|α|)-1(£>o(α)-βo(0))= - 16/π2 . (3.31)

The result for the odd part is three times less because the density of relatively prime
odd pairs fc, / is 2/π2, and not 6/π2. From (3.30), (3.31),

lim (|log|α| | |α |Γ xΦ(α) - D(0)) = - 64/π2 .

For β = 0 Theorem 1.1 is proved.
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4. Proof of Theorem 1.1 for β Φ 0

Let us partition all relatively prime pairs /c, / into subsets

Sr = {/c, / are relatively prime and ln1 — kn2 = r mod2Q}, r = 0,1, . . . , 2Q — 1.

We can rewrite (2.17) as

DM = ΣDeΛ*) (4.1)
r

with
Σt/(w)(/c2 + /2Γ3 / 2 (4.2)
Sr

Our aim is to estimate

Deri*) ~ Der(β) = Σ (U(W) ~ U(v))(k2 + I2)-*'2 ,
Sr

w = 2(/αx - koc2), υ = 2(lβί - kβ2) = Q'1^ - kn2) = Q-^modl . (4.3)
Denote

δ = oc-β, ζ=\δ\-1δ = (ζuζ2), η = {-ζ2Λi\ m = (kJ)eZ2.

Then (4.3) reduces to

\δ\~\Der{a) - Der(β)) = Σ(u(Q~lr + 2\δ\m^η) - U{Q-'r))\m\δ\ | " 3 |<5 | 2

Σ ? (4.4)
Sr

where
Φr(x) = (UiQ-'r + 2x-fj) - UiQ-'mxΓ\ x i, = x ^ ! +

As in the proof of (3.28) we obtain now

\δ\-\Der{a) - Der(β)) = dr J Φr(x)dx + o(|log|δ| | ) , (4.5)

where dr is the density of Sr.
By Lemma 2.1 l/(w)eCc o([0, 1]), so when r Φ 0, ρ,

3 + O( |xΓ 1 ) , | x | - 0 . (4.6)
Since

J x ^|xΓ3dx = 0,

(4.5) implies
l ^ l ^ φ ^ α ) - Der(β)) = o(|log|5| |), r + 0 , β . (4.7)

In the case when r = 0, Q, Φr(x) = Φ(x) and so by (3.29),

J Φr(x)Λc = J Φ(x)dx = - 8 | log|ί | I + 0(1),

hence (4.5) implies

\δ\-1(Der(oc)-Der(β))= - 8 ^ | l o g | 5 | | + o(|log|5| |), r = 0, Q . (4.8)

From (4.7), (4.8),

l a Γ ^ e ί α ) - Dt(β)) = ~ 8J | log |δ | I + o(|log|(5| |) , (4.9)
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where A = d0 + dQ is the density of k, I such that

gcd(/c, /) = 1 (4.10)
and

/«! -kn2 Ξ O m o d β . (4.11)

Similar considerations applying to D0(a) ~ Do(β) leads us to

\δ\-tφM - Do(β)) = - i(Δ± - Λ2)|log|<S| | + o(\log\δ\ | ) , (4.12)

where Δlt2

 a r e the densities of odd relatively prime pairs k, I such that

Irii - kn2 = 0, β mod 2β , (4.13)

respectively.

From (4.9), (4.12) (remember δ = α - β),

|α - j8|-x(D(oi) - D(β)) = - 8(zl + J x - J 2 ) | log |α - j8| | + o(|log|α - ]8| |) .

(4.14)

which implies

lim (|α - β\ |log|α - jϊ| D ^ ^ W - £>(«) = - 8(J + J x - Δ2) . (4.15)

It remains to calculate A and the other densities in (4.15). A is the density of
pairs (fc, /) satisfying (4.10) and (4.11). Since the highest common factor of nγ and n2

is prime to Q, the pairs (fe, /) satisfying (4.11) form an integer lattice of density Q" 1 .
Within this lattice, the condition (4.10) eliminates a fraction/(p) of pairs, indepen-
dently for every prime p. Therefore

( 4 1 6 )
P

with
/(p) = p""1 if p divides g, /(p) = p~2 otherwise . (4.17)

Since
Y\^-V~2) = ($ln2), (4.18)

p

Eq. (4.16) with (1.5) gives

A=(Qr(Q)y1(6/π2). (4.19)

If we ignore the condition (4.13), the density of pairs of odd(fc, I) satisfying (4.11)
and (4.10) is (4.16) with the factor (1 — /(2)) arising from the prime p = 2 replaced
by (1/4). Therefore

Δx + Δ2 = (1/3)J, (β odd); zli + Zl2 = (1/2) J , (β even) . (4.20)

On the other hand, if β is odd, both k and I being odd, the condition (4.13) reduces
to

(wi + n2) = (0,l)(mod2), (4.21)

which implies

Δί = (1/3) J, J 2 = 0 ({nί + n2) even);

n2)odd). (4.22)
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Finally, if Q is even, at least one of n1 and n2 must be odd, and the two cases (4.13)
will be satisfied equally often, so that

A1 = A2 = (1/4)A, (Q even) . (4.23)

Putting together (4.20), (4.22) and (4.23), we obtain

A + A1-A2 = (C/3)A , (4.24)

with C given by (1.6). Putting together (4.24) with (4.15) and (4.19), we obtain (1.2)
with (1.4). Theorem 1.1 is proved.

Appendix. Proof of Lemma 2.1

We have

uM = 2^72 ϊ α-5 / 2(Fα(w)Fα(0) - ί)da ,

1 CO

= 2^572 ί a-5'2Ga(w)Ga(0)da ,

with
X exp( - x2/a)e(xw) = F » or G » , (A.I)

X

where the sum is over integer x for Fa and over half-odd-integer x for Gα. By the
Poisson summation formula, (A.I) gives

Fβ(w) = (πα)1 '2 X exp( - π2a(p + w)2),

Σ π 2 α(p + w) 2). (A.2)
p— — oo

Divide integrals into a < 1 and a > 1. Integrals a < 1 are analytic in w by (A.I).
Integrals β > 1 are analytic in w by (A.2) when w is real and not integer. So £/ and
V are analytic on (0,1). If w is close to 0, we have by (A.2),

Fβ(w)Fβ(0), G » G Ω ( 0 ) = παexp( - π2αw2) + Ra(w),

where j J° α~ 5/2Ra(w)da is even and analytic in w. Only the first term contributes to
ί/'(w), F'(vv) as w-> 0, and gives

I7'(w), F(w) π 1 / 2w J α~ 1 / 2exp( - π2aw2)da

which is analytic at w = + 0 with U'( + 0) = F ( + 0) = - 1.
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