The Variance of the Error Function in the Shifted Circle Problem Is a Wild Function of the Shift

Pavel M. Bleher, Freeman J. Dyson

School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

Received: 8 March 1993

Abstract: We prove that the variance of the error function in the shifted circle problem, as a function of the shift, is a continuous function which has a sharp local maximum with infinite derivatives at every rational point on a plane.

1. Introduction

Let

$$N(R;\alpha) = \# \{ m \in \mathbb{Z}^2 : |m-\alpha| \leq R \}, \quad \alpha = (\alpha_1, \alpha_2) \in \mathbb{R}^2 ,$$

be the number of lattice points inside the circle of radius R with the center at α , and

$$F(R;\alpha) = \frac{N(R;\alpha) - \pi R^2}{R^{1/2}} \ . \label{eq:force}$$

As was shown in [B] and [BCDL], the limit,

$$D(\alpha) = \lim_{T \to \infty} \frac{1}{T} \int_{1}^{T} |F(R; \alpha)|^{2} dR$$

exists and is equal to

$$D(\alpha) = (2\pi^2)^{-1} \sum_{n=1}^{\infty} n^{-3/2} |r_{\alpha}(n)|^2 , \qquad (1.1)$$

where

$$r_{\alpha}(n) = \sum_{k^2 + L^2 = n} e(k\alpha_1 + l\alpha_2), \quad e(t) = \exp(2\pi i t).$$

For $\alpha = 0$ (1.1) reduces to a classical result of Cramér (see [C]). After averaging (1.1) in α we get a formula of Kendall (see [K]):

$$\int_{0}^{1} \int_{0}^{1} D(\alpha) d\alpha = (2\pi^{2})^{-1} \sum_{n=1}^{\infty} n^{-3/2} r_{0}(n) .$$

 $D(\alpha)$ is the mean value of $F^{2}(R; \alpha)$, and it is also equal to

$$D(\alpha) = \int_{-\infty}^{\infty} x^2 v_{\alpha}(dx) ,$$

where $v_{\alpha}(dx)$ is the limit distribution of $F(R; \alpha)$,

$$\lim_{T \to \infty} \frac{1}{T} \int_{\{R; a \le F(R; z) \le b; 1 \le R \le T\}} dR = \int_{a}^{b} v_{\alpha}(dx)$$

(see [B, BCDL]). In addition,

$$\lim_{T\to\infty}\frac{1}{T}\int_{1}^{T}F(R;\alpha)dR=\int_{-\infty}^{\infty}xv_{\sigma}(dx)=0,$$

hence $D(\alpha)$ is the variance of the limit distribution of $F(R; \alpha)$. The existence of a limit distribution of $F(R; \alpha)$ for $\alpha = 0$ was proved by Heath-Brown (see [H-B]).

Since the series in the RHS of (1.1) is uniformly convergent, $D(\alpha)$ is continuous in α . Here we prove

Theorem 1.1 For every rational $\beta \in \mathbb{Q}^2$,

$$\lim_{\alpha \to \beta} (|\log|\alpha - \beta|| \cdot |\alpha - \beta|)^{-1} (D(\alpha) - D(\beta)) = -C(\beta), \quad C(\beta) > 0. \quad (1.2)$$

Since $D(\alpha)$ has a sharp local maximum with infinite derivatives at every rational point, it is a wild function. By wild function we mean a continuous function which is nondifferentiable on a dense set. $C(\beta)$ is defined as follows. Let Q be the integer such that

$$2Q\beta_1 = n_1, \quad 2Q\beta_2 = n_2 \tag{1.3}$$

are integers and there is no common factor dividing all three of Q, n_1 , n_2 . Then

$$C(\beta) = C(16/\pi^2)(Qr(Q))^{-1}$$
, (1.4)

where

$$r(Q) = \prod_{p|Q} (1+p^{-1}), \qquad (1.5)$$

with the product taken over primes p dividing Q, and

$$C = 3 \ (Q \text{ even}), \quad C = 4 \ (Q \text{ odd}, (n_1 + n_2) \text{ even}),$$

$$C = 2 \ (Q \text{ odd}, (n_1 + n_2) \text{ odd}). \tag{1.6}$$

 $D(\alpha)$ achieves its global maximum at $\alpha = m$ and $\alpha = m + (1/2, 1/2), m \in \mathbb{Z}^2$. Indeed.

$$|r_{\sigma}(n)|^2 = \left|\sum_{k^2+l^2=n} e(k\alpha_1 + l\alpha_2)\right|^2 = \left|\sum_{k^2+l^2=n} \cos(2\pi k\alpha_1)\cos(2\pi l\alpha_2)\right|^2$$

is maximum when

$$|\cos(2\pi k\alpha_1)| = |\cos(2\pi l\alpha_2)| = 1$$

and sign $(\cos(2\pi k\alpha_1)\cos(2\pi l\alpha_2))$ is the same for all k, l with $k^2 + l^2 = n$. This holds for all $n \in \mathbb{N}$ iff $\alpha = m$ or $\alpha = m + (1/2, 1/2), m \in \mathbb{Z}^2$.

It is to be noted that the wild behavior of $D(\alpha)$ is closely related to a bumpy shape of the exponential sum

$$S_{\alpha}(b) = \sum_{n=1}^{\infty} |r_{\alpha}(n)|^2 \exp(-n/b) ,$$

as a function of α , when $b \to \infty$ (see [BD]). $S_{\alpha}(b)$ is a key tool used to study the limit distribution of $F(R; \alpha)$ in [BCDL].

As a generalization of Theorem 1.1 consider the variance

$$D_I(\alpha) = \lim_{T \to \infty} \frac{1}{T} \int_{-1}^{T} |F_I(R; \alpha)|^2 dR , \qquad (1.7)$$

for a general lattice-point problem, with

$$F_I(R:\alpha) = \frac{N_I(R;\alpha) - AR^2}{R^{1/2}},$$

where

$$N_I(R; \alpha) = \#\{m \in \mathbb{Z}^2 : I(m - \alpha) \leq R^2\}, \quad \alpha \in \mathbb{R}^2; \quad A = \text{Area}\{x : I(x) \leq 1\},$$

and I(x) > 0 is an arbitrary C^{∞} positive convex homogeneous of order 2 function on $\mathbb{R}^2 \setminus \{0\}$. As was proved in [B] the limit (1.7) always exists and is equal to

$$D_I(\alpha) = (2\pi^2)^{-1} \sum_{n=1}^{\infty} |u_{\sigma}(n)|^2 , \qquad (1.8)$$

where

$$u_{\alpha}(n) = \sum_{k,l: J(k,l)=J_n} |k^2 + l^2|^{-3/4} \sqrt{\rho(k,l)} e(k\alpha_1 + l\alpha_2) ,$$

 $0 = J_0 < J_1 < J_2 < \cdots$ are all possible values of

$$J(k, l) = \max_{\substack{x_1, x_2 \in \mathbf{R}}} [2(kx_1 + lx_2) - I(x_1, x_2)], \quad k, l \in \mathbf{Z} ,$$

and $\rho(k, l)$ is the curvature of the curve $\Gamma = \{x: I(x) = 1\}$ at the point $x \in \Gamma$ where grad I(x) is collinear to the vector (k, l). The formula (1.8) is a generalization of (1.1).

By (1.8) $D_I(\alpha)$ is independent of α if for every $n=1,2,\ldots$, the set of (k,l) such that $J(k,l)=J_n$ consists of one point. This can be viewed as a "generic" case of I(x), so that "generically" $D_I(\alpha)$ is constant in α . On the other hand, if I(x) possesses some symmetry, say, I(-x)=I(x), then $D_I(\alpha)$ is, in general, nonsmooth, since the Fourier coefficients of $D_I(\alpha)$ in (1.8) decay slowly. For instance, if $I(x)=(x_1/a)^2+(x_2/b)^2$ and a^2/b^2 is irrational then $J(k,l)=(ak)^2+(bl)^2$ and $J(k_1,l_1)=J(k_2,l_2)$ iff $k_1=\pm k_2, l_1=\pm l_2$. In this case it is not difficult to prove that $D_I(\alpha)$ is nondifferentiable at half-integer points $\alpha \in (1/2)\mathbb{Z}^2$. More precisely,

$$D_I(\alpha) = -C \sqrt{\frac{\sin^2 2\pi \alpha_1}{a^2} + \frac{\sin^2 2\pi \alpha_2}{b^2}} + R_I(\alpha) ,$$

where C > 0 and $R_I(\alpha)$ is differentiable everywhere.

In addition, an "arithmetic" degeneracy of J(k, l) can worsen the smoothness of $D_I(\alpha)$. For instance, if $I(x) = (x_1/a)^2 + (x_2/b)^2$ and a^2/b^2 is rational, then $\#\{(k, l): J(k, l) = J_n\}$ is unbounded as $n \to \infty$. This "arithmetic" degeneracy of J(k, l) causes wild nonsmoothness of the variance $D_I(\alpha)$, namely, with the help of the

same method that we use in the proof of Theorem 1.1, we can prove that for every rational $\beta \in \mathbb{Q}^2$,

$$\lim_{\alpha \to \beta} (|\log|\alpha - \beta|| \cdot |\alpha - \beta|)^{-1} (D_I(\alpha) - D_I(\beta)) = -C_I(\beta), \quad C_I(\beta) > 0.$$

The set-up of the remainder of the paper is the following. In Sect. 2 we prove some preliminary results for Theorem 1.1. The proof of Theorem 1.1 is slightly different for $\beta=0$ and for $\beta\neq0$. In Sect. 3 we prove Theorem 1.1 for $\beta=0$, and in Sect. 4 we prove Theorem 1.1 for $\beta\neq0$.

Throughout the paper C, C_0 , C_1 , ... are considered to be fixed positive constants. However they often change value from one equation to the next.

2. Preliminaries

This section consists of identities valid for all α . The sum (1.1) may be written

$$D(\alpha) = (2\pi^{2})^{-1} \sum_{n=1}^{\infty} n^{-3/2} \left| \sum_{m \in \mathbb{Z}^{2} : |m|^{2} = n} e(\alpha \cdot m) \right|^{2}$$
$$= (2\pi^{2})^{-1} \sum_{mm'} |m|^{-3} e(\alpha \cdot (m - m')), \qquad (2.1)$$

summed over integer vectors m, m' with $m^2 = m'^2$. The sum (2.1) may be converted into an unrestricted sum (see Appendix B in [BCDL]),

$$D(\alpha) = 2\pi^{-2} \sum_{ihkl} e(h(l\alpha_1 - k\alpha_2))((j^2 + h^2)(k^2 + l^2))^{-3/2}, \qquad (2.2)$$

summed over all $(j, h, k, l) \in \mathbb{Z}^4$ satisfying

$$j^2 + h^2 \neq 0, \quad k^2 + l^2 \neq 0,$$
 (2.3)

either
$$j \equiv h \equiv 0$$
, or $j \equiv h \equiv k \equiv l \equiv 1 \pmod{2}$, (2.4)

and

$$k, l$$
 are relatively prime, (2.5)

which means that either |k| + |l| = 1, or gcd(|k|, |l|) = 1.

According to two possibilities allowed by (2.4), we divide $D(\alpha)$ into two parts,

$$D(\alpha) = D_{c}(\alpha) + D_{c}(\alpha) , \qquad (2.6)$$

where the terms with j and h even are

$$D_{e}(\alpha) = \sum_{k,l} U(w)(k^2 + l^2)^{-3/2} , \qquad (2.7)$$

summed over integers (k, l) satisfying (2.5), and the terms with j and h odd are

$$D_{o}(\alpha) = \sum_{\text{odd } kl} V(w)(k^2 + l^2)^{-3/2} , \qquad (2.8)$$

summed over odd integers k and l satisfying (2.5). The functions (U, V) are defined by

$$U(w) = (2\pi)^{-2} \sum_{j^2 + h^2 \neq 0} e(hw)(j^2 + h^2)^{-3/2}$$

= $(2\pi)^{-2} \sum_{j^2 + h^2 \neq 0} \cos(2\pi hw)(j^2 + h^2)^{-3/2}$,

$$V(w) = (2\pi)^{-2} \sum_{\text{half-odd-integer } jh} e(hw)(j^2 + h^2)^{-3/2}$$

$$= (2\pi)^{-2} \sum_{\text{half-odd-integer } jh} \cos(2\pi hw)(j^2 + h^2)^{-3/2}. \tag{2.9}$$

In (2.7)–(2.9) we have used the abbreviation

$$w = 2(l\alpha_1 - k\alpha_2). (2.10)$$

According to (2.9),

$$U(w+1) = U(w), \quad V(w+1) = -V(w),$$

$$U(-w) = U(w), \quad V(-w) = V(w).$$
(2.11)

Lemma 2.1. U(w) and V(w) are infinitely differentiable on [0, 1], and

$$U'(+0) = V'(+0) = -1. (2.12)$$

Remark. (2.11), (2.12) imply that

$$U'(+0) - U'(-0) = V'(+0) - V'(-0) = -2$$
.

We shall use Lemma 2.1 with (2.11) to note that U(w) and V(w) are bounded absolutely; and also that $U(t) = -|t| + O(|t|^2)$ for sufficiently small t.

Proof of Lemma 2.1 is given in Appendix to the paper. We are now ready to prove Theorem 1.1. The proof is slightly different for $\beta = 0$ and $\beta \neq 0$. First we consider $\beta = 0$.

3. Proof of Theorem 1.1 for $\beta = 0$

Let $\zeta_i = |\alpha|^{-1}\alpha_i$, i = 1, 2, $|\alpha| = (\alpha_1^2 + \alpha_2^2)^{1/2}$, and $\zeta = (\zeta_1, \zeta_2)$, so that $\alpha = |\alpha|\zeta$, $|\zeta| = 1$. Then from (2.7),

$$\begin{aligned} |\alpha|^{-1}(D_{e}(\alpha) - D_{e}(0)) &= |\alpha|^{-1} \sum_{kl} (U(2(l\alpha_{1} - k\alpha_{2})) - U(0))(k^{2} + l^{2})^{-3/2} \\ &= \sum_{kl} (U(2(l|\alpha|\zeta_{1} - k|\alpha|\zeta_{2})) - U(0))((k|\alpha|)^{2} + (l|\alpha|)^{2})^{-3/2} |\alpha|^{2} \\ &= \sum_{kl} \Phi(|\alpha|k, |\alpha|l)|\alpha|^{2} \equiv I(|\alpha|), \end{aligned}$$
(3.1)

which is an approximating sum for the integral

$$I = (6/\pi^2) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(x_1, x_2) dx_1 dx_2$$
 (3.2)

with

$$\Phi(x_1, x_2) = (U(2(x_2\zeta_1 - x_1\zeta_2)) - U(0))(x_1^2 + x_2^2)^{-3/2}.$$
(3.3)

The summation in (3.1) goes over relatively prime k, l, and the factor $(6/\pi^2)$ in (3.2) is the density of pairs (k, l) with relatively prime k, l.

By Lemma 2.1, for small |t|, $U(t) - U(0) \sim -|t|$. This implies that the integral (3.2) diverges logarithmically at the origin. The approximating sum (3.1) is taken over points $(|\alpha|k, |\alpha|l) \neq 0$ which belong to the lattice with the space $|\alpha|$, so we may expect that $I(|\alpha|)$ behaves like $C|\log|\alpha|$.

We can estimate easily the part of the sum in (3.1) with $k^2 + l^2 \ge |\alpha|^{-2}$. Lemma 2.1 implies that U(t) is bounded, so this part is

$$\left| \sum_{k^{2}+l^{2} \geq |\alpha|^{-2}} \Phi(|\alpha|k, |\alpha|l) |\alpha|^{2} \right| \leq \sum_{k^{2}+l^{2} \geq |\alpha|^{-2}} |\Phi(|\alpha|k, |\alpha|l) |\alpha|^{2}$$

$$\leq C \sum_{k^{2}+l^{2} \geq |\alpha|^{-2}} ((|\alpha|k)^{2} + (|\alpha|l)^{2})^{-3/2} |\alpha|^{2}$$

$$= C|\alpha|^{-1} \sum_{k^{2}+l^{2} \geq |\alpha|^{-2}} (k^{2} + l^{2})^{-3/2} \leq C_{0}. \quad (3.4)$$

Let us fix large numbers M, N, which will be chosen later, and consider a sequence of squares

$$S_i = \{|x_1|, |x_2| \le M_i = M((N+1)/N)^i\}, \quad i \ge 0.$$
 (3.5)

We shall consider S_i with $i = 0, 1, \dots, p$, where p is chosen in such a way, that

$$M_{n-1} \le |\alpha|^{-1} < M_n \,, \tag{3.6}$$

or in other words,

$$p = \lceil (\log(1 + N^{-1}))^{-1} | |\log|\alpha| | - \log M| \rceil + 1.$$
 (3.7)

The choice of S_i ensures the following property of commensurability of S_i and S_{i+1} : We can partition S_i into $4N^2$ squares of side $N^{-1}M_i$, and S_{i+1} into $4(N+1)^2$ squares of the same side. This implies that the square annulus $S_{i+1} \setminus S_i$ is partitioned into 4(2N+1) squares S_{ij} of side $N^{-1}M_i$. Let m_{ij} be the center of S_{ij} .

Consider the sum

$$I_{ij}(|\alpha|) = \sum_{S_{1i}} \Phi(|\alpha|m)|\alpha|^2 ,$$

where the summation goes over relatively prime k, l with $m = (k, l) \in S_{ij}$. $I_{ij}(|\alpha|)$ is the S_{ij} -part of the sum $I(|\alpha|)$ in (3.1). We want to compare $I_{ij}(|\alpha|)$ first with

$$J_{ij}(|\alpha|) = \Phi(|\alpha|m_{ij})|\alpha|^2 \sum_{S_{i,i}} 1 ,$$

and then with

$$I_{ij} = (6/\pi^2) \int_{X_{ij}} \Phi(x) dx$$
,

where

$$X_{ij} = |\alpha|S_{ij} = \{x = |\alpha|y, y \in S_{ij}\}.$$

Denote by $x_{ij} = |\alpha| m_{ij}$ the center of the square X_{ij} . The side of X_{ij} is equal to $|\alpha| N^{-1} M_i$, hence for every $x \in X_{ij}$,

$$|x - x_{ii}| \leq |\alpha| N^{-1} M_i.$$

Let

$$U_0(x) = U(2(x_2\zeta_1 - x_1\zeta_2)) - U(0), \qquad (3.8)$$

so that

$$\Phi(x) = U_0(x)|x|^{-3} . (3.9)$$

By Lemma 2.1, U(w) is a periodic Lipshitz function, hence

$$|U_0(x) - U_0(x_{ij})| \le C|x - x_{ij}| \le C|\alpha| N^{-1} M_i, \qquad (3.10)$$

$$|U_0(x)| \le C|x| . \tag{3.11}$$

Also,

$$||x|^{-3} - |x_{ij}|^{-3}| \le C|x - x_{ij}||x_{ij}|^{-4} \le C_0|\alpha|N^{-1}M_i(|\alpha|M_i)^{-4}$$
$$= C_0|\alpha|^{-3}N^{-1}(M_i)^{-3}.$$

When $x \in X_{ii}$,

$$\begin{aligned} |\Phi(x) - \Phi(x_{ij})| &\leq |U_0(x) - U_0(x_{ij})| |x|^{-3} + |U_0(x_{ij})| ||x|^{-3} - |x_{ij}|^{-3}| \\ &\leq C(|\alpha|N^{-1}M_i(|\alpha|M_i)^{-3} + |\alpha|M_i|\alpha|^{-3}N^{-1}(M_i)^{-3}) \\ &= 2CN^{-1}(|\alpha|M_i)^{-2}. \end{aligned}$$

Therefore,

$$|I_{ij}(|\alpha|) - J_{ij}(|\alpha|)| = \left| \sum_{S_{ij}} (\Phi(|\alpha|m) - \Phi(|\alpha|m_{ij}))|\alpha|^2 \right|$$

$$\leq \sum_{S_{ij}} CN^{-1}(|\alpha|M_i)^{-2}|\alpha|^2$$

$$= CN^{-1}(M_i)^{-2} \sum_{S_{ij}} 1 \leq CN^{-1}(M_i)^{-2}(N^{-1}M_i)^2$$

$$= CN^{-3} . \tag{3.12}$$

Similarly, since Area $X_{ij} = (|\alpha| N^{-1} M_i)^2$, and by (3.9), (3.11),

$$|\Phi(x)| \le C|x|^{-2} \le C(|\alpha|M_i)^{-2}$$
, (3.13)

we obtain

$$|I_{ij} - J_{ij}(|\alpha|)| = \left| (6/\pi^2) \int_{X_{ij}} (\Phi(x) - \Phi(x_{ij})) dx + \Phi(x_{ij}) \left((6/\pi^2) (|\alpha| N^{-1} M_i)^2 - |\alpha|^2 \sum_{S_{ij}} 1 \right) \right|$$

$$\leq C(N^{-1} (|\alpha| M_i)^{-2} (N^{-1} |M_i| |\alpha|)^2 + (|\alpha| M_i)^{-2} |\alpha|^2 (N^{-1} M_i)^2 \varepsilon_{MN})$$

$$= 2C(N^{-3} + N^{-2} \varepsilon_{MN}), \qquad (3.14)$$

where

$$\varepsilon_{MN} = \sup_{ij} \left| (6/\pi^2) - (N^{-1}M_i)^{-2} \sum_{S_{ij}} 1 \right|. \tag{3.15}$$

Since $M_{i+1} \ge M_0 = M$,

$$\lim_{M \to \infty} \varepsilon_{MN} = 0 . \tag{3.16}$$

To prove (3.16) let us assume that S is an arbitrary square of side a > 0 on the plane such that the origin is outside of S and $\max_{x \in S} |x| \le La$, where L > 0 is a fixed number. Then by the Möbius inversion formula,

$$\sum_{(k,l)\in S: \gcd(k,l)=1} 1 = \sum_{d=1}^{\infty} \mu(d) \sum_{(dk,dl)\in S} 1 = \sum_{d=1}^{La} \mu(d) \left[\frac{a^2}{d^2} + O\left(\frac{a}{d}\right) \right]$$
$$= \sum_{d=1}^{\infty} \frac{\mu(d)}{d^2} a^2 + O(a\log a) = \frac{6}{\pi^2} a^2 + O(a\log a), \quad a \to \infty ,$$

where $\mu(d)$ is the Möbius function. This proves (3.16).

From (3.12), (3.14) we obtain

$$|I_{ii}(|\alpha|) - I_{ii}| \le C(N^{-3} + N^{-2}\varepsilon_{MN})$$
 (3.17)

Due to (3.7),

$$p \le CN|\log|\alpha||, \tag{3.18}$$

hence (3.17) implies

$$\left| \sum_{i=0}^{p} \sum_{j=1}^{4(2N+1)} I_{ij}(|\alpha|) - \sum_{i=0}^{p} \sum_{j=1}^{4(2N+1)} I_{ij} \right| \le Cp(N^{-2} + N^{-1}\varepsilon_{MN})$$

$$\le C_0(N^{-1} + \varepsilon_{MN})|\log|\alpha||, \qquad (3.19)$$

or

$$\left| \sum_{S_p \setminus S_0} \Phi(|\alpha|m) |\alpha|^2 - (6/\pi^2) \int_{X_p \setminus X_0} \Phi(x) dx \right| \le C(N^{-1} + \varepsilon_{MN}) |\log|\alpha| \,, \quad (3.20)$$

where

$$X_i = \{|x_1|, |x_2| \le |\alpha| M_i\} = |\alpha| S_i. \tag{3.21}$$

Notice that by (3.6),

$$|\alpha|M_n \geq 1$$
,

hence, when $m = (k, l) \in \mathbb{Z}^2 \setminus S_p$, either $|k| \ge M_p \ge |\alpha|^{-1}$, or $|l| \ge |\alpha|^{-1}$, hence by (3.4),

$$\left| \sum_{\mathbb{Z}^2 \setminus S_n} \Phi(|\alpha|m) |\alpha|^2 \right| \le \sum_{|m| \ge |\alpha|^{-1}} |\Phi(|\alpha|, m)| |\alpha|^2 \le C. \tag{3.22}$$

Similarly.

$$\left| \int_{\mathbb{R}^2 \setminus X_p} \Phi(x) dx \right| \le C \int_{\{|x| \ge 1\}} |x|^{-3} dx \le C_0.$$
 (3.23)

By (3.13),

$$\left| \sum_{S_0} \Phi(|\alpha|m) |\alpha|^2 \right| \le C \sum_{S_0} |m|^{-2} \le C \sum_{0 < |m| \le 2M} |m|^{-2} \le C_0 \log M , \quad (3.24)$$

and similarly,

$$\left| \int_{\{X_0 \setminus \{|x| \le |\alpha|\}\}} \Phi(x) dx \right| \le C \int_{\{|\alpha| \le |x| \le 2M |\alpha|\}} |x|^{-2} dx \le C_0 \log M.$$
 (3.25)

Equations (3.20), (3.22)–(3.25) imply

$$\left| \sum_{m} \Phi(|\alpha|m) |\alpha|^{2} - (6/\pi^{2}) \int_{|x| \ge |\alpha|} \Phi(x) dx \right| \le C((N^{-1} + \varepsilon_{MN}) |\log |\alpha| + \log M),$$
(3.26)

hence by (3.1),

$$\left| |\alpha|^{-1} (D_e(\alpha) - D_e(0)) - (6/\pi^2) \int_{|x| \ge |\alpha|} \Phi(x) dx \right| \le C((N^{-1} + \varepsilon_{MN}) |\log |\alpha| + \log M).$$
(3.27)

For every $\delta > 0$ we can choose N such that $CN^{-1} < \delta$, and then M > N such that $C\varepsilon_{MN} < \delta$, so that the RHS of (3.27) is less than $2\delta |\log |\alpha|| + C\log M$. Now we can choose $\varepsilon = 1/M^N$ so that $C\log M < \delta |\log |\alpha||$, when $|\alpha| < \varepsilon$. Hence by (3.27),

$$\left| |\alpha|^{-1} (D_e(\alpha) - D_e(0)) - (6/\pi^2) \int_{|x| \ge |\alpha|} \Phi(x) dx \right| < 3\delta |\log |\alpha| \, |\alpha| \, ,$$

when $|\alpha| < \varepsilon$. This proves that

$$|\alpha|^{-1}(D_e(\alpha) - D_e(0)) - (6/\pi^2) \int_{|x| \ge |\alpha|} \Phi(x) dx = o(|\log|\alpha||), \quad |\alpha| \to 0.$$
 (3.28)

By (3.3),

$$\int_{|x| \ge |\alpha|} \Phi(x) dx = \int_{|x| \ge |\alpha|} (U(2(x_2\zeta_1 - x_1\zeta_2)) - U(0))|x|^{-3} dx$$

$$= \int_{|y| \ge |\alpha|} (U(2y_1) - U(0))|y|^{-3} dy,$$

where $y = (y_1, y_2)$ with

$$y_1 = x_2 \zeta_1 - x_1 \zeta_2 ,$$

$$y_2 = x_2 \zeta_2 + x_1 \zeta_1 .$$

For small $|y_1|$,

$$U(2y_1) - U(0) = -2|y_1| + O(y_1^2)$$
.

A straightforward evaluation gives

 $\int_{\substack{1 \ge |y| \ge |\alpha|}} |y_1| |y|^{-3} dy = \int_{0}^{2\pi} d\varphi \int_{|\alpha|}^{1} r dr r |\cos \varphi| r^{-3} = 4 |\log |\alpha| |,$

hence

$$\int_{|y| \ge |\alpha|} (U(2y_1) - U(0))|y|^{-3} dy = -8|\log|\alpha|| + O(1),$$

hence using the fact that $U(\cdot)$ is bounded,

$$\int_{|x| \ge |\alpha|} \Phi(x) dx = -8|\log|\alpha| + O(1). \tag{3.29}$$

Therefore from (3.28),

$$|\alpha|^{-1}(D_{e}(\alpha) - D_{e}(0)) = -(48/\pi^{2})|\log|\alpha|| + o(|\log|\alpha||)$$
,

or in other words,

$$\lim_{\alpha \to 0} (|\log |\alpha| | \cdot |\alpha|)^{-1} (D_{e}(\alpha) - D_{e}(0)) = -48/\pi^{2}.$$
 (3.30)

The same considerations give

$$\lim_{\alpha \to 0} (|\log |\alpha| |\cdot |\alpha|)^{-1} (D_{o}(\alpha) - D_{o}(0)) = -16/\pi^{2}.$$
 (3.31)

The result for the odd part is three times less because the density of relatively prime odd pairs k, l is $2/\pi^2$, and not $6/\pi^2$. From (3.30), (3.31),

$$\lim_{\alpha \to 0} (|\log |\alpha| | \cdot |\alpha|)^{-1} (D(\alpha) - D(0)) = -64/\pi^2.$$

For $\beta = 0$ Theorem 1.1 is proved.

4. Proof of Theorem 1.1 for $\beta \neq 0$

Let us partition all relatively prime pairs k, l into subsets

 $S_r = \{k, l \text{ are relatively prime and } ln_1 - kn_2 \equiv r \mod 2Q\}, \quad r = 0, 1, \dots, 2Q - 1.$ We can rewrite (2.17) as

$$D_{e}(\alpha) = \sum_{r} D_{er}(\alpha) \tag{4.1}$$

with

$$D_{er}(\alpha) = \sum_{S.} U(w)(k^2 + l^2)^{-3/2} . \tag{4.2}$$

Our aim is to estimate

$$D_{er}(\alpha) - D_{er}(\beta) = \sum_{S_r} (U(w) - U(v))(k^2 + l^2)^{-3/2}$$
,

 $w = 2(l\alpha_1 - k\alpha_2), \quad v = 2(l\beta_1 - k\beta_2) = Q^{-1}(ln_1 - kn_2) \equiv Q^{-1}r \mod 2$. (4.3) Denote

$$\delta = \alpha - \beta$$
, $\zeta = |\delta|^{-1}\delta = (\zeta_1, \zeta_2)$, $\eta = (-\zeta_2, \zeta_1)$, $m = (k, l) \in \mathbb{Z}^2$.

Then (4.3) reduces to

$$|\delta|^{-1}(D_{er}(\alpha) - D_{er}(\beta)) = \sum_{S_r} (U(Q^{-1}r + 2|\delta|m \cdot \eta) - U(Q^{-1}r))|m|\delta||^{-3}|\delta|^2$$

$$= \sum_{S_r} \Phi_r(|\delta|m)|\delta|^2 , \qquad (4.4)$$

where

$$\Phi_r(x) = (U(Q^{-1}r + 2x \cdot \eta) - U(Q^{-1}r))|x|^{-3}, \quad x \cdot \eta = x_1\eta_1 + x_2\eta_2.$$

As in the proof of (3.28) we obtain now

$$|\delta|^{-1}(D_{er}(\alpha) - D_{er}(\beta)) = d_r \int_{|x| \ge |\delta|} \Phi_r(x) dx + o(|\log|\delta||), \qquad (4.5)$$

where d_r is the density of S_r .

By Lemma 2.1 $U(w) \in C^{\infty}([0, 1])$, so when $r \neq 0, Q$,

$$\Phi_r(x) = Cx \cdot \eta |x|^{-3} + O(|x|^{-1}), \quad |x| \to 0.$$
 (4.6)

Since

$$\int_{1\geq |x|\geq |\delta|} x \cdot \eta |x|^{-3} dx = 0,$$

(4.5) implies

$$|\delta|^{-1}(D_{er}(\alpha) - D_{er}(\beta)) = o(|\log|\delta||), \quad r \neq 0, Q.$$
 (4.7)

In the case when r = 0, Q, $\Phi_r(x) = \Phi(x)$ and so by (3.29),

$$\int_{|x| \ge |\delta|} \Phi_r(x) dx = \int_{|x| \ge |\delta|} \Phi(x) dx = -8|\log|\delta| + O(1),$$

hence (4.5) implies

$$|\delta|^{-1}(D_{er}(\alpha) - D_{er}(\beta)) = -8d_r|\log|\delta| + o(|\log|\delta|), \quad r = 0, Q.$$
 (4.8)

From (4.7), (4.8),

$$|\delta|^{-1}(D_{e}(\alpha) - D_{e}(\beta)) = -8\Delta |\log |\delta|| + o(|\log |\delta||), \qquad (4.9)$$

where $\Delta = d_0 + d_0$ is the density of k, l such that

$$\gcd(k, l) = 1 \tag{4.10}$$

and

$$ln_1 - kn_2 \equiv 0 \operatorname{mod} Q . {(4.11)}$$

Similar considerations applying to $D_o(\alpha) - D_o(\beta)$ leads us to

$$|\delta|^{-1}(D_{o}(\alpha) - D_{o}(\beta)) = -8(\Delta_{1} - \Delta_{2})|\log|\delta|| + o(|\log|\delta||), \qquad (4.12)$$

where $\Delta_{1,2}$ are the densities of odd relatively prime pairs k, l such that

$$ln_1 - kn_2 \equiv 0, Q \bmod 2Q, \tag{4.13}$$

respectively.

From (4.9), (4.12) (remember $\delta = \alpha - \beta$),

$$|\alpha - \beta|^{-1}(D(\alpha) - D(\beta)) = -8(\Delta + \Delta_1 - \Delta_2)|\log|\alpha - \beta|| + o(|\log|\alpha - \beta||).$$
(4.14)

which implies

$$\lim_{\alpha \to \beta} (|\alpha - \beta| |\log |\alpha - \beta| |)^{-1} (D(\alpha) - D(\beta)) = -8(\Delta + \Delta_1 - \Delta_2).$$
 (4.15)

It remains to calculate Δ and the other densities in (4.15). Δ is the density of pairs (k, l) satisfying (4.10) and (4.11). Since the highest common factor of n_1 and n_2 is prime to Q, the pairs (k, l) satisfying (4.11) form an integer lattice of density Q^{-1} . Within this lattice, the condition (4.10) eliminates a fraction f(p) of pairs, independently for every prime p. Therefore

$$\Delta = (Q^{-1}) \prod_{p} (1 - f(p)), \qquad (4.16)$$

with

$$f(p) = p^{-1}$$
 if p divides Q, $f(p) = p^{-2}$ otherwise. (4.17)

Since

$$\prod_{p} (1 - p^{-2}) = (6/\pi^2) , \qquad (4.18)$$

Eq. (4.16) with (1.5) gives

$$\Delta = (Qr(Q))^{-1}(6/\pi^2) . (4.19)$$

If we ignore the condition (4.13), the density of pairs of odd (k, l) satisfying (4.11) and (4.10) is (4.16) with the factor (1 - f(2)) arising from the prime p = 2 replaced by (1/4). Therefore

$$\Delta_1 + \Delta_2 = (1/3)\Delta$$
, (Q odd); $\Delta_1 + \Delta_2 = (1/2)\Delta$, (Q even). (4.20)

On the other hand, if Q is odd, both k and l being odd, the condition (4.13) reduces to

$$(n_1 + n_2) \equiv (0, 1) \pmod{2}, \tag{4.21}$$

which implies

$$\Delta_1 = (1/3)\Delta, \quad \Delta_2 = 0 \quad ((n_1 + n_2) \text{ even});$$

$$\Delta_1 = 0, \quad \Delta_2 = (1/3)\Delta \quad ((n_1 + n_2) \text{ odd}).$$
(4.22)

Finally, if Q is even, at least one of n_1 and n_2 must be odd, and the two cases (4.13) will be satisfied equally often, so that

$$\Delta_1 = \Delta_2 = (1/4)\Delta, \quad (Q \text{ even}).$$
 (4.23)

Putting together (4.20), (4.22) and (4.23), we obtain

$$\Delta + \Delta_1 - \Delta_2 = (C/3)\Delta , \qquad (4.24)$$

with C given by (1.6). Putting together (4.24) with (4.15) and (4.19), we obtain (1.2) with (1.4). Theorem 1.1 is proved.

Appendix. Proof of Lemma 2.1

We have

$$U(w) = \frac{1}{2\pi^{5/2}} \int_{0}^{\infty} a^{-5/2} (F_a(w) F_a(0) - 1) da ,$$

$$V(w) = \frac{1}{2\pi^{5/2}} \int_{0}^{\infty} a^{-5/2} G_a(w) G_a(0) da ,$$

$$\sum \exp(-x^2/a) e(xw) = F_a(w) \text{ or } G_a(w) , \qquad (A.1)$$

with

where the sum is over integer x for F_a and over half-odd-integer x for G_a . By the Poisson summation formula, (A.1) gives

$$F_a(w) = (\pi a)^{1/2} \sum_{p=-\infty}^{\infty} \exp(-\pi^2 a(p+w)^2) ,$$

$$G_a(w) = (\pi a)^{1/2} \sum_{p=-\infty}^{\infty} (-1)^p \exp(-\pi^2 a(p+w)^2) . \tag{A.2}$$

Divide integrals into a < 1 and a > 1. Integrals a < 1 are analytic in w by (A.1). Integrals a > 1 are analytic in w by (A.2) when w is real and not integer. So U and V are analytic on (0, 1). If w is close to 0, we have by (A.2),

$$F_a(w)F_a(0), G_a(w)G_a(0) = \pi a \exp(-\pi^2 a w^2) + R_a(w),$$

where $\int_1^\infty a^{-5/2} R_a(w) da$ is even and analytic in w. Only the first term contributes to U'(w), V'(w) as $w \to 0$, and gives

$$U'(w), V'(w) \sim -\pi^{1/2} w \int_{1}^{\infty} a^{-1/2} \exp(-\pi^{2} a w^{2}) da$$
$$= -2\pi^{-1/2} \frac{w}{|w|} \int_{\pi w}^{\infty} \exp(-b^{2}) db ,$$

which is analytic at w = +0 with U'(+0) = V'(+0) = -1.

Acknowledgement. The authors thank E. Bombieri and J. Lebowitz for useful discussions of the paper. This work was partly supported by a grant from The Ambrose Monell Foundation.

References

- [B] Bleher, P.M.: On the distribution of the number of lattice points inside a family of convex ovals. Duke Math. J. 67, 461–481 (1992)
- [BCDL] Bleher, P.M., Cheng, Zh., Dyson, F.J., Lebowitz, J.L.: Distribution of the error term for the number of lattice points inside a shifted circle. Commun. Math. Phys. **154**, 433–469 (1993)
 - [BD] Bleher, P.M., Dyson, F.J.: Mean square value of exponential sums related to representation of integers as sum of two squares. Preprint IASSNS-HEP-92/84, Institute for Advanced Study, Princeton, 1992
 - [C] Cramér, H.: Über zwei Sätze von Herrn G.H. Hardy. Math. Zeit. 15, 201-210 (1922)
 - [H-B] Heath-Brown, D.R.: The distribution and moments of the error term in the Dirichlet divisor problem. Acta Arithmetica 60, 389-415 (1992)
 - [K] Kendall, D.G.: On the number of lattice points inside a random oval. Quart. J. Math. (Oxford) 19, 1–26 (1948)

Communicated by T. Spencer