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Abstract: The direct and the inverse scattering problem for affine Toda/mKdV
systems is addressed and is found to develop non-standard features within the
framework of the inverse scattering method. A solution scheme based on the tau
function formalism is described. The inverse problem is shown to be equivalent to a
set of decoupled, scalar Gelfand-Levitan-Marchenko-type equations. The Fredholm-
Grothendieck determinants of the latter are shown to define tau-functions in the sense
of the Kyoto School. In particular, a simple monodromy formula allows the derivation
of trace identities.

1. Introduction

For many integrable field theories the inverse scattering method (ISM) provides the
most complete and physically compelling insight into the structure of the classical
phase space. The basic discovery, dating back to Gardner, Greene, Kruskal and Miura
[9], is that a generic solution can be parametrized through the scattering data of
some auxiliary linear system (generalised Schrδdinger equation). Although initially
designed for the specific example of the KdV equation, the principle turned out
to be systematically applicable to a wide range of systems (see e.g. the book [21]
for an exposition). Moreover the scattering data were found to be related to action-
angle variables, turning these models into infinite dimensional completely integrable
Hamiltonian systems [8].

An independent development was initiated by the observation of Hirota that many
of these nonlinear equations could be bilinearized by a suitable change of variables,
so that a direct construction of solutions became possible [12]. In addition, these
variables ("r-functions") were discovered by the Kyoto School to describe the orbits
of affine Lie groups in a particular realization [4, 14]. This lead to a systematic
construction and classification scheme for integrable systems in terms of the data
associated with some affine Lie algebra. An overlapping, presumably yet broader
algebraic scheme was developed by Drinfeld and Sokolov [6] (see also [5,13]). We
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will collectively refer to these systems as being algebraically integrable. This means
that a certain algebraic scenario (linear system, infinite set of conserved charges,
bihamiltonian structure, etc.), which usually goes along with complete integrability
(suitably defined), can be constructed for these models.

There is, however, a mismatch between the large number of algebraically integrable
systems and the lack of further knowledge on the structure of their phase space. In
particular, given the preferred role of the scattering data in a Hamiltonian formulation,
it seems to be desirable to extend the parametrization of the phase space through

scattering data beyond the rank 1 systems [associated with the Lie algebra sl(2)]
typically considered in the literature on the ISM.l In this paper we provide such an
extension for a typical series of algebraically integrable models in the above sense.
We find that the principle aims of the ISM can still be achieved, although on the
methodological level considerable deviations from the standard scheme are necessary.
Before describing these deviations, it might be useful to recall the aims of the ISM.

Aims of the ISM: The ISM aims 1) to achieve a parametrization of the phase space
through the scattering data of an auxiliary linear problem. The classical phase space
is identified with the space of solutions to the field equations with specified boundary
conditions. On the scattering data the dynamics becomes trivial and the mapping
^: solution —> scattering data may be viewed as a nonlinear analogue of the Fourier
transform. The solution here is supposed to be given and one just seeks to identify
the parameter space relevant to the class of solutions aimed at (e.g. °̂° with rapidly
decreasing b.c.). In the second step one tries to invert .̂ ", i.e. 2) to construct the
classical solution from given scattering data. This is called the inverse problem and
can usually be shown to be equivalent (for generic data) to the solution of certain
matrix integral equations (of Wiener-Hopf type for the Riemann-Hilbert problem or
of Fredholm type for the matrix GLM equations). In a final step 3) one aims to derive
trace identities, i.e. to find explicit expressions for the infinite set of conserved charges
in terms of the scattering data. Symbolically, find /(n)( ) in

I(n}[solution] = I(n}'(scattering data).

For the Hamiltonian (n = 1, say), in particular, this gives the classical masses/energy
levels of the various excitations. Generally, the significance of trace identities lies
in the fact that within a Hamiltonian formulation the quantities 1^ (scattering data)
identify a (complete) set of action variables on the phase space.

In the following we will consider the program l)-3) for the case of affine Toda
theories. These are 2-dim. relativistic field theories generalizing the Sinh/Sine-Gordon
model, which are defined in terms of the data of some affine Lie aglebra. Because of
the relevance to perturbed conformal field theories and the extension of the bootstrap
approach, the aim of constructing the corresponding QFTs has received considerable
attention in the last years (see e.g. [19] for references). In lightcone dynamics, the
affine Toda theories appear as extensions of the (generalized) mKdV systems and to
some extent both types of systems can (and should) be studied in parallel. Here
we consider the affine Toda theories of the A series in the principal graduation
AT(r, 1). For the notation and a collection of basic results we refer to Appendix
A. The generalization to other Lie algebras should provide no prinicple problems.2

1 Results on higher rank systems of this type are surveyed in Chap III.3 of [21]. The analogue of
the matrix Ω below, however, is assumed to be real there, so that the complications we find are
absent
2 The r-functions of AT(g, s) will only partially be characterized by bilinear identities, namely
those of the mKdV systems, which then have to be supplemented by other relations/requirements
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Non-standard features. The attempt to realize the program l)-3) by application of
the standard scheme for the ISM meets certain obstructions. For the mKdV systems
of rank r > 1 the inverse problem is not equivalent to a standard Riemann Hubert
problem and also the derivation of Gelfand-Levitan-Marchenko (GLM) equations is
problematic.3 The reason is that the matrix lost solutions (and hence the monodromy
matrix) lack simple analyticity properties in the spectral parameter. The analyticity
properties of the Jost solutions in the parameter μ turn out to be governed by
the falloff properties of exponentials of the form e-

l^xΩ^ as x —> ±00, where
2πί

Ω = (\,ω, ..., ωr) and ω = e r+1. The crucial difference between the rank 1 systems
and their higher rank generalizations lies in the fact that only for r = 1 is the matrix Ω
real, so that suitable rows/columns of the Jost solutions admit an analytic extension to
either the upper or the lower half μ-plane. For r > 1 these simple analyticity properties
fail and most of the techniques based on them fail likewise. Imposing, however, a
certain technical restriction on the scattering data (condition B in Sect. 2.6), which
presumably renders them generic only for the affine Toda but not for the mKdV
theories, a system of GLM equations can be derived. For the AT(r, 1) models we
show in Sect. 3:

• The inverse problem is equivalent to a set of scalar, decoupled Gelfand-Levitan-
Marchenko-type equations.

Each of the equations constitutes a family of Fredholm equations indexed by
x G R on a non-compact interval. The kernels of the associated integral operators

FJ^, j = 0, . . . , r, x G R are specified in terms of the scattering data (whence of

"GLM-type"). The operators Pj ^ are not trace-class 4 but a version of Grothendieck's
generalized Fredholm theory on Banach spaces [11] can be applied and leads to the
result

• A ("generic") solution of the affine Toda equations can be constructed via

where D(

J

±\x) are the Fredholm-Grothendieck determinants of F^. Moreover the

determinants D^ define generalized r-functions in the sense of the Kyoto School,
in a parametrization through scattering data. The matching of the solutions "from the
right" (0α)(+) and "from the left" ((/>α)(-) is guaranteed by construction.

The last point refers to the consistency condition for the GLM approach to the
inverse problem. It is also the basis for interpreting the GLM equations as Zakharov-
Shabat dressing problem [30]. The relation to the r-functions further gives a new way
to derive trace identities [19, 20]

3 An approach could be via reduction of a non-local RH-problem [17] For special data a relation to
r-functions has already been observed in [22, 25]. The problem consists in formulating the inverse
problem for generic data
4 For this reason the solution of the decoupled GLM equations is not quite equivalent to a standard
Bruhat decomposition in the affine group. Recovering such a formulation would require to generalize
the notion of a dressing group to include determinants of nuclear operators on Banach spaces (cf
Sect. 4)
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• The derivation of trace identities is possible from the formulae

n

where I± are the conserved charges in lightcone dynamics and the right-hand sides
are independent of the flow variables x^ as well as j -independent.

To keep the paper of reasonable size we defer the derivation of trace identities
to a separate publication. In Sect. 3 we show that the inverse problem is equivalent
to the set of decoupled GLM-type equations described above. The solution of these
equations is given in Sect. 4 in terms of the Fredholm-Grothendieck determinants
D(^\ which are shown to define r-functions in a parametrization through scattering
data. To prepare the ground we have to extend the notion of scattering data to the
higher rank models in question.

2. The Scattering Data

We assume some familiarity with affine Toda theories and the content of references
[6, 23, 24]. Our conventions and a number of basic results have been summarized in
Appendix A. In particular, we recall from there that the equations of motion can be
obtained from the integrability condition of a linear system in the affine Lie algebra.
This can be reduced to a linear problem in the loop algebra/group. For g = Ar and
the principle graduation, the latter takes the form

-lf>εβφ H
e , (21)

A_ = -εβH -d_φ-

Here φa are a set of real scalar fields considered as the components of a cartan
subalgebra-valued field w.r.t. a basis Ha, a = 1, . . . , r and A is the matrix
(^α,b-ι)o<α,ί><r w^m me indices taken modulo r 4- 1. Further ε = 1, i for real and
imaginary coupling models, respectively. For convenience we have also extracted a
factor — i from the parameter of the loop group. The conventions are then s.t. the
operator defining the genuine eigenvalue problem is formally selfadjoint on a suitable
space of wave functions for ε = 1 (see Appendix A). This means that for real coupling
affine Toda theories μ is real.

2,1 Wave Functions

To address problem 1 of the introduction, suppose now a classical solution φ - H
to be given. The integrability condition [J^+,J^_] = 0 is then satisfied and it
suffices to consider the linear equation 3?_W — 0. To simplify the notation set

D = βH - d_φ = diag(c?0, . . . , dr), where dj = βh^ - d_φ and hj is the jth weight
2

of the defining representation of Ar. Rescaling finally x± —> x^ — the equation now
reads m

= 0, Sg\=Ή_=d_+εΌ + iμΛ =: d_ - A_ (2.2)
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It is convenient to diagonalize A via U~1ΛU = diag(l,α;, . . . , ωr) =: Ω, where

U = . (ωa )o<α,b<r> ω ~ er+l $et

Q?t/ . TT— 1 G?TT ί) I ,- TlU _\_ ή 11 ί~) C~) O\^> ,^= (j c-Zy U — U ~r ε-L/ r LμAύ ? {2,.j)

r 1

where Du = ^ DaΛ~a is a ω°-circulant with diagonal entries Dα = x
α=ι r + 1

~aidj. The associated wave function is VF^7 = ί/^VFC/. Now observe that

= 5§u(μ) enjoys the involution Λ^u(μ)Λ~l = S§u(ωμ). For a given potential
and fixed initial (or asymptotic) value the solution of S?UWU = 0 is unique so

that Wu has to obey the same involution

ΛWu(μ)Λ~l = Wu(ωμ) . (2.4)

The general solution of (2.4) is given by an cj-circulant in the arguments, i.e.

, (2.5)
α=0

where
wa(Ωμ) := diag(ιuα(μ), wa(ωμ), . . . , wa(ωrμ)) .

In particular, any wave function is parametrized by r + 1 independent functions
wa(x+,x~',μ), 0 < a < r. The original wave function is then given by W =

= 7TT Σ Σ ̂ α

"•"
α=0 j=0

and solves β~1W(μ)ί2 = W(ωμ). For a domain in the complex μ-plane, where the
wa(μ) are analytic an equivalent expression is

, (2.7)
α=0

where wa(Λμ) is defined through the power series expansion of wa(μ) with μ replaced
by Λμ.

A similar, but less stringent involution exists under complex conjugation. Writing
momentarily S?u(ε,μ) for the Lax operator (2.3) one verifies (<S?u(ε,μ))* —

, -μ*) J, where J = U2. This implies

ε,-μ)J, (2.8)

in the same notation. In terms of components this becomes

^α(ε,μ)*=^(ε*,-μ*). (2.9)

Because the ε-dependence of wa will not be known explicitly in general, the relation
(2.9) will be useful only for ε = 1.
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2.2. Existence of Jost Solutions

For any interval / c R let LV(I, Ar) denote the space of ^4r-valued functions (in the
defining representation), which are absolutely integrable on / w.r.t. some matrix-norm
I I I I , i.e.

dχ-\\F(x~}\\ < oo. (2.10)

In particular for the potentials D in (2.2) we will assume rapidly decreasing boundary
conditions, i.e. require D G Lj(R, Ar). To a given classical solution of this type one
can uniquely associate a pair of Jost solutions of 2?W = 0 with the asymptotics
(w.r.t. the I^-norm)

W(±\x+,χ-',μ)-+e-ιμΛx~ +o(l), (2.11)

for x~ —> d= oo, respectively.
To do this, introduce the transition matrix w.r.t. (x~~,y~) by the conditions

where to simplify the notation we have suppressed the dependence on x+,y+. A
straightforward extension of the reasoning in [8] (p. 30ff., p. 39ff.) yields the

Lemma 1. a) The limits

W(±\x~\μ)\= Jim T(x~,y~\ μ)e~iμy~Λ (2.13)
y~—>± oo

exist for μ G S := \J ωaR.
0<α<r

b) There exist kernels Γ(±)(x~, -) G LΛI^, Ar) s.t.

/ r — ^~\^~iz μΛ (2.14)

where I*_ = [x , — oo[, / _ = [oo,x [ In particular (2.11) holds.

Remark Similar formulae hold for the transformed quantities Au = U~1AU with

e-iχ-μΛ replace(i by e-iχ~μΩ9 In particuιar set ψ(ut±) := τj-ι w(±}U and Γ(UM :=

U~1Γ(±}U. In the Aλ case one has Ω = diag(l, -1) so that (2.14) can be used to
deduce that the columns of W(U^\μ) admit an analytic extension to either the upper
or the lower half μ-plane. For rank r > 1 the phase factors are complex and the
rows/columns of W^u^\μ) do not admit analytic extension off the star S in general.

We note some basic properties of the Jost solutions. A standard argument shows
detVF(±) = 1. From (2.5) it follows further that the Jost solutions W(±} are
parametrized by r + 1 functions w^\x+,x~',μ) subject to the asymptotics

~ίμx~ -4- o(ΊΪ
for χ-^±oo, μeS, (2.15)
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where the limits are taken w.r.t. the (scalar) Lj-norm. In particular,

1 r

W(±\x+,x~',μ) -> yV(*-Z)e-<μω * χ- -, ±oc, (2.16)

r+l^
consistent with (2.11).

As outlined in Appendix A the pair (x+,x~~) is only the lowest member of an
infinite sequence of higher order flow variables x^ associated with the equations of
the affine Toda/mKdV hierarchy. In particular 3% = S_ = =5̂ 1 is the lowest member
of the sequence of matrix differential operators defining the mKdV hierarchy. There

d
asymptotics is lim J^ί™ = _ — (—iμΛ)n. Correspondingly the lost solutions

x ~ —> ± oo C'Xn

for the hierarchy are defined through the condition

T/r/vi)//^"!" rr* . , Λ £>ζ(χ > iμΛ) i s\(Λ\ /γ v. -J_ rv~\ C*) λ'Ί\
VV \,L , Jj , μj — C ~Γ U\LJ , JU ^ Π_ LΛJ , \^ 1 I)

where £(x~,μ) = ^ ̂ μn and x^1 = (xf = x±,x^ . . . , x^, ...). To have the

functions £(x; μ) or ξ(x; Aμ) etc. analytic in all its variables, we will always assume
that the hierarchy variables satisfy the condition

lim sup|x^|1/n = 0. (2.18)
n

In particular (2.18) holds if all but a finite number of x^'s vanish.

2.3. The Monodromy Matrix

For a given potential D (and hence J^™, n G E) the lost solutions provide a pair of
fundamental solutions to a set of linear matrix differential equations. Hence they can
not be independent but must be linearly related via

W(-\x+,χ-\μ) = Ww(x+,χ-\μ)T(x+\μ), μtS. (2.19)

The matrix T(x+;μ) depends on the "time" variables only and is called reduced
monodromy matrix. Initially it is defined on S and then possibly through analytic
continuation. Clearly det T = 1 . Once more, a uniqueness argument implies that

ΛTu(x+ μ)Λ-1 = Tu(x+,ωμ), (2.20)

for Tu = U~1TU. This means that also Tu is parametrized by r + 1 independent
functions ta(x+\ μ), a = 0, . . . , r via

a=Q (Z.Zl)

:= diag(tα(x+;μ), ta(x+\ωμ), . . . , ta(x+\ωrμ)).

For T one has an expression analogous to (2.6). From (2.20) it follows that the
functions tα(μ), 0 < a < r are defined on the region S = |J u;αR.

0<α<r

Proposition 1. The "time" dependence ofta,Q<a<rίs given by

ta(x+;μ) = ία(Q;μ)exp ί ^(1 - ωan)(iμTnx+] . (2.22)
V

In particular ί0(x+; μ) = t0(0; μ) =: ί0(μ) is time independent.
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Proof. First note that (2.22) is equivalent to

d
\TU], (2.23)

WT '

using [Ωn,Λa] = (1 - ωan)ΩnAa. To show (2.23) express the transition matrix
T(x~, y~\ μ) in terms of the lost solutions

T(χ-,y~',μ) = W(+\χ-\μ)Wm(y-'9μΓl

= Ww(χ-'9μ)T(μ)W(-\y-',μΓl (2.24)

The first two equalities follow from the fact that the r.h.s. solves the differential
equation and has the correct normalization. The rest follows upon insertion of (2.19).
In particular,

lim
x — κx>,y~— >•— oo

lim eίμΛx~T(χ-,y-'9μ)e-iμΛy~ , (2.25)
x),y~ — >•— oo

W(±\x~; μ) = T(χ-,y- μ)W(±\y-; μ)

_
x~ — κx),y~ — >•— oo

= lim T(χ-,y-;ii)e-w , (2.26)
y-—>±oo

= lim ~
x~ —» ± oo

To proceed, derive the evolution equation for the transition matrix parallel to [8]
(Eqn. (1.3.21))

3T(x> y μ) = An(χ-^
oxn

r\

where S%+ — -^—^ — A^_ are the higher order Lax operators associated with x+,
oxn

n G E. Now diagonalize A and rewrite all equations in terms of the transformed
quantities Au = U~l AU. Using (2.25) on the l.h.s. of (2.27) and (2.26) on the r.h.s.
one arrives at (2.23), if lim U~1A^_U = (iμΩ)~n is taken into account D

x~—>oo

In particular Proposition 1 implies that the functions tα, α = 0, . . . , r, uniquely
associated to a solution of the field equations, can serve as a set of scattering data.

2.4 Scalar Formulation

In Sect. 2.2 a Lax formulation in terms of first order matrix differential operators was
used. It is well-known that the mKdV systems admit an equivalent formulation in
terms of scalar differential operators. For technical reasons it is often useful to exploit
the scalar formulation. In this section we relate the scalar and the matrix formulations.

First note that from each matrix solution of 2£W — 0 one can construct r + 1
vector solutions <S?Wa = 0 via

Wa = Wya , υa - (l,tΛ . . . , ωra)τ , (2.28)
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where ya, a = 0, . . . , r are the eigenvectors of Λ:Λya = ωaya. Set Wa =
(V0 α, . . . , V )τ. Applying (2.7) (within some domain of analyticity in μ) gives

jk(ω*μ). (2.29)

fc=0

Alternatively one can directly evaluate

r

V;>0(μ) = (Wt;^ = £ Wςfc(μ)ωβfc . (2.30)
fc=0

Inserting the explicit form of Wkl in (2.6) one obtains in both cases

In particular
-r r \ f t ? ' " ! " / ' / Λ \ /O T^\

*j,aW — ω Vj,θ(ω A4) ' (2.32)

so that only the j-index labels independent functions. Inverting (2.31) yields

i ^ „> — OL — b \ /o '̂ί \u; μ), (2.33)

where (2.32) can be used to check that the r.h.s. is ^-independent.
Consider now the scalar eigenvalue problem

j ~μ ' (2.34)
Lj = (io_ + iεdr+j}... (io_ + ίεdj),

(the indices taken modulo r + 1). For fixed j the functions VJ a, a = 0, . . . , r then

provide a fundamental system of solutions to (2.34). To see this, write out <SyWa = 0
to find

(id_ + ίεdj)Vj^a — μV3+l^a , 0 < j < r .

Acting successively with (id_ + zεc^), fc > j on the jth equation gives ^j^,α =

μr+1V7 α in the rth step. In particular, starting from the matrix lost solutions VF(±) in

(2.28) one obtains a system of lost solutions V^a for the operators Lr From (2.15),
(2.31) there asymptotics is given by

Vl α —>• ωaj e~lμω x + o(l), x~-^dιoc. (2.35)

Forming two fundamental systems of solutions of (2.34), the lost solutions V must
be linearly related. In fact

T

Vj(~a = Σ WΆ)^? > J = 0, . . . , r . (2.36)
6=0

To see this, rewrite (2.33) as

Oί). (2.37)



400 M.R Niedermaier

From (2.19) one finds

T

(W(U>-\a = Σ *&-α(Ά) (W(U'+\b , (2.38)
6=0

which results in (2.36).

Remark. From the viewpoint of the scalar eigenvalue problem Eq. (2.36) is nontrivial.
The definition of the Jost solutions for (2.34) implies only that

b=0

for some matrices 5 .̂ The relation (2.36) tells that Sj is j-independent and coincides

with the transpose of Tu .

2.5. Integral Representation for Scalar Jost Solutions

Recall from Lemma 1 the integral representations

\ μ) = e~ixμΩ + dzΓ(UM(x, z)e~ίzμΩ , μ G S , (2.39)

where for simplicity we set x :— x~, etc. From ΛΩΛ~l — ωΩ and (2.4) it follows that
the kernels Γ^\ being μ-independent, must satisfy the involution ΛΓ^\x, z)Λ~l —
Γ^\x^ z). This means that the matrix-kernels Γ^ are parametrized by only r + 1
independent scalar kernels K^(x, z), c = 0, . . . , r via

Γ

, Z) =

c=0

In components one has (W(U^\x; μ))ab = w(^\(x\ωaμ) and (Γ(C/'±}(x, z))ab =

K(^b(x, z), so that (2.39) becomes

ί dzK(

c

±\x, z)e~ίzωbμ . (2.41)

Operating with ̂  ωw+c> On these equations and making use of (2.31) one finds
c=0

ixω^μ + ί dzKW(Xί (2.42)

where

Kf \x, z) = Σ ^cK(

c

±}(x, z). (2.43)
c=0

From the integral representations (2.39), (2.42) one can also determine the analyticity
properties of the Jost solutions. The exponential factors e~*zω<lμ in (2.42) will decay
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as z — > ±00 if lm(ωaμ) ^ 0, respectively. This means that V^\μ), initially defined
on 5, admit an analytic continuation to the half-planes Im(ωaμ) ^ 0, respectively.
For fixed x~ this also implies that

as |μ| — > oo and Im(ω°μ) 5? 0, respectively. Similar statements hold for the columns
of the matrix Jost solutions. The αth column of U~λ (2.14) U reads

U^\χ; μ) = ea e-^V + ί dzΓ(u'+\x, z)e~izωaμ , (2.45)

/ί

where ea is the αth vector of the canonical basis of Er+1 in column notation. Thus, the
αth volumn of W(U^ admits an analytic continuation to the half-planes Im(ϋ;αμ) ^ 0,
respectively. For fixed x~ one has the fall-off properties

(2.46)

as \μ\ —> oo and Im(u;αμ) ^ 0, respectively.

2.6. Characterization of the Discrete Spectrum

Here we show that the discrete spectrum of the various scattering problems en-
countered above can be characterized in terms of the zeros of a function Δ+(μ)
constructed from the minors of the monodromy matrix. It is convenient to start
with the scalar eigenvalue problems L V — μr+lV. Recall the asymptotic form

(2.35) of the Jost solutions. Clearly, for given μ, V^~ (μ) decays as x —> — oo iff

α G N(μ), and V^(μ) decays as x —> oo iff α G N(μ) :— {0, . . . , r}\JV(μ), where
N(μ) = {0 < α < r | Im(α;αμ) > 0}. Eigenfunctions of the point spectrum of L

oo

should be normalizable w.r.t. (/,#) = / dx~ f*(x~)g(x~), i.e. proper eigenfunc-
— oo

tions. As the Jost solutions V j a ( μ ) from a fundamental system, any solution of (2.34)

can be expressed as a linear combination of either V^(μ) or Vj~\μ). In particular,
for a proper eigenfunction corresponding to μk G σp(Lj) in the point spectrum, the

linear combination has to decay as \x~\ —> cχo. Thus, μk G σp(Lj) if and only if

We next show that (2.47) holds iff μk is a zero of Δ(μ) := det(T^(μ))α beAΓ(μ) For

functions F0, . . . , Vr define the Wronskian W[V^ . . . , Vr] = ά&φ^V^^^. If

the functions Va are solutions of (2.34) the Wronskian is x~ -independent and vanishes
if and only if the solutions are linearly related. For the Jost solutions one has

(ωa - ω») ̂  0 . (2.48)
a<b
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Consider then W[V^ . . . , V^, V™, . . . , V^.,], where 7V(μ) := {α l5 . . . ,

αj, α^ < α^ , z < j and N(μ) = {61? . . . , 6r+1_/}, 6^ < fy, ^ < j are enumerations of

the index sets in (2.47). Inserting the relation V^~\μ) = ]Γ) Tba(μ)V^\ one obtains
6-0

Σ

1 (2 49), , , , r _ z J * <^ ̂

Because of (2.48) the r.h.s. is seen to be proportional to det(Γ^)α beN^ =: Δ(μ).
We have proved the

Proposition 2. The operators L , j — 0, . . . , r /zαve α common point spectrum, which
is given by

μ r + 1Gσp(^) iff Δ(μ) = 0. (2.50)

However, since the function Δ(μ) is defined through different minors of T(μ) for
different values of μ, the lemma can serve only to test independently given candidates
μk G C: For given μk e C determine N(μk), calculate ^(μfe) and check whether it
vanishes. In order to use Proposition 2 as a device to calculate the discrete spectrum
we have to lift the μ — » ωaμ ambiguities arising from the fact that the Jost solutions
are initially defined on S. From (2.47) one sees that this can be achieved by requiring
that 0 e N(μ) for all candidates μr+1 e crp(L ). W.r.t. this framing the discrete
spectrum will be characterized by a subset of the upper half plane. (Similarly the
choice α0 G N(μ) for some fixed 0 < α0 < r would characterize the discrete spectrum
as a subset of {μ e C | Im(α;αoμ) > 0}.)

Remark, i. The necessity for such a framing is not specific for the higher rank models.

Even for r = 1 one can use either W[V^\ Vff] = t0(μ) or W[V{

(~\ V$] = t0(-μ)
as a starting point, which corresponds to the functions Δ(μ) = tQ(μ) and Δ(μ) =
ί0(— μ), respectively. In the first case the discrete spectrum of L is characterized by
a subset of the upper half plane, in the second case by a subset of the lower half
plane.
ii. For ε = 1 the operators L are formally self adjoint on a suitable space of

functionals α[c?0> ? dr] (cf. Appendix A). This implies that μr+1 G R, i.e.
ιτrα

μ G U e r+1R. Usually one expects μk G 5 not to give rise to normalizable
0<α<r

eigenf unctions, in which case the discrete spectrum of L (w.r.t. the above framing
to the upper half plane) is given by

(J
^7Γ(2k+l)

e r+ι

This generalizes the well known result that for a Schrodinger operator with real,
rapidly decreasing potential all eigenvalues lie on the positive imaginary axis.

The reasoning leading to Proposition 2 can be repeated for the matrix differential
operator 21 defining the eigenvalue problem (A. 13) equivalent to ^W = 0.



GLM Equations, Tau Function and Scattering Data 403

Equation (2.47) gets replaced by: μk G σp(2§) iff

Σ ca,k£-\μk)= Σ c+fct/α(+Vfc). (2.52)

(One can show that the constants c^k in (2.47) and (2.52) coincide; cf. below.)
Equation (2.49) gets replaced by

W\TI(~^ Γ/(~} 77(+) Γ7(+) 1 — Δ(IJ} (2 53ΪW L^αj ? j yα/ 5 y^j ? ? H& r + 1_z J ~~ ^Hμ; 5 l^.J.3;

where |T/0, . . . , Ur] is the matrix with columns C/0, . . . , C7r. Again, since the solutions
U^ are defined on 5 we lift the degeneracy under μ —> ωaμ by requiring

0 G N(μ) for all μ G σp(SΪ). Let thus C+ := {μ G C | Im > 0} and set

Δ+(μ) = tQ(μ) Π t0(ωaμ), where 7V+(μ) C {1, . . . , r } is defined s.t. Δ+

coincides with Δ on £ Π C+.

Proposition 2' . The function A+(μ) admits an analytic continuation to the upper half

μ-plane. The point spectrum σp(5?) of 5§ is given by the zeros of Δ+ in the upper
μ-half plane.

As a corollary we note that the fall-off properties (2.44) imply that

A+(μ) -> 1 + o(l) , \μ\ -> oo, Im(μ) > 0 . (2.54)

Together with the analyticity it then follows that the zeros of Δ+(μ) are located in
a bounded region of the upper half plane and may only accumulate towards the real
line. If one assumes in addition that ta(μ), a > 1 are of Schwartz type on R, this
implies tQ(μ) —>!-{- 0(1), \μ\ — » CXD, Imμ > 0. Unless r = 1, t0(μ) will however in
general not admit an analytic continuation off the region S. For technical reasons it
is convenient (cf. [8] p. 49) to assume the following

Condition A. The zeros of Δ+(μ) are simple and there are no zeros of Δ+(μ) on
C _ I I , ,ατπ>O — (J UJ IK.

0<α<r

For r = 1 it is known that this condition is mild in that the scattering data satisfying
A describe a dense subspace of the phase space.

Remark. For ε = 1 also the matrix differential operator 3§ is formally selfadjoint
on a suitable space of matrix functionals. By construction (cf. Appendix A) every
normalizable matrix wave function gives rise to a normalizable scalar wave function,
but not necessarily vice versa. This implies that for ε = 1,

σp(Sί) C σ^Lj) . (2.55)

In the r = 1 case one can in addition conclude from detT(μ) = 1 that σp() is
empty, but this argument fails for r > 1.

So far we have considered only the spectral analysis of 2% = S§_ . The additional
dependence of the functions dj(x+,x~) on x+ was treated as purely parametric.

In particular, it is consistent for the eigenvalues of 2§ to depend on these external
parameters. If, however, one is interested in the spectral analysis of the (compatible)
pair J^_, 3?+ a "time" dependence of the simultaneous eigenvalues is no longer
permitted. One would expect that the space of simultaneous wavefunctions S?±W = 0
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becomes "smaller" and that suitably constrained scattering data are sufficient to
construct a dense subspace. We impose the following

Condition B. The functions tα(μ), a = 1, . . . , r are of Schwartz type on S and satisfy
ta(ωaμ) = 0 for all 0 ̂  a G N(μ)9 μ G S Π C+.

Explicitly, the condition reads (for α ̂  0)

ta(ωa+bR+) = 0 , 1 < α + b < [r/2] ,
(2.JO)

tα(cjα+6R-) = 0 , [(r + l)/2] + 1 < α + 6 < r .

Notice that (for ε = 1) this is compatible with tα(μ)* = ίa(— μ*), which follows from
the involution (2.8). The condition (2.56) guarantees that the minors defining Δ(μ)
in the different half-lines of 5 have trigonal form, so that

(ωaμ), (2.57)
(μ)

which, in particular, is independent of x^. We shall refer to data satisfying condition
B as AT-reflective. If all the tα(μ), a > 1 vanish identically the spectrum can be seen
to be purely discrete and in extension to the r = 1 case we shall refer to such data
as reflectionless. In the AT-reflective case a continuous spectrum is present and the

t (iϋa lϊ}
quantities ra(μ) := — - , α > 1 turn out to play the role of generalized reflection

coefficients. Functions tα(μ), α > 1 violating (2.56) may still serve as scattering data
for the mKdV systems, although the reasoning of Sect. 3 will not go through. For
the AT systems we expect the data satisfying condition B to be generic in the sense
that they cover a subset of the phase space which is dense w.r.t. a suitable topology;
although we have no proof (or counter-example) to offer.

3. Decoupled GLM-Equations

In this section we show that for the class of models considered, the inverse problem
for AT-reflective data is equivalent to a set of decoupled, scalar GLM-type equations,
which are solved in terms of r-functions. To do this, a number of preparatory results
are needed. Assume AT-reflective data and let μfc, k G K C N be an enumeration
of the zeros of Δ(μ)+ defined from (2.57). Clearly, K can be partitioned into (by
condition A non-intersecting) subsets Ka for which t0(α;αμfc) vanishes. For these
values of the spectral parameter the (components of the) Jost solutions have linear
dependencies in addition to (2.47), (2.52).

3.1. Linear Dependencies at Zeros of Δ+(μ)

Lemma 2. For μ = μk, k G Ka the functions V^\ωaμk),

Vr(ωaμk) are linearly related via

6=1

for complex constants cb^k and k G Ka.
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Proof Recall the definition of the Wronskian in Sect. 2.6 and consider W[K Q ,

Vfi\ . . . , V$], where the argument is (x~\ωaμ) in all entries. Then use (2.36) to

express V^(ωaμ} in terms of Vy~£ (ωaμ), 1 < b < r. Rearranging the columns given

Remark. A similar calculation shows

W , (3.3)

with arguments (x~\μ) in all entries. For AT-reflective data the r.h.s. vanishes for
a e N(ωaμ)\{0}, i.e. for a ̂  0 and Imμ > 0. Thus,

valid for all μ e C+. In particular, for μ = μk G C+, k G Ka the subset N(μk)\{0}

of α's also satisfies Im(ωaμk) > 0 and can be used to eliminate Vj ~ (μk) from the
l.h.s. of the general relation (2.47); which reproduces (3.1).

For later use we note also that (3.1) can be reformulated in terms of the columns

of W(UM. Let eb = (<$o6)0<α<r,
 b = °» > r be the standard basis vectors of Rr+1

in column notation. Set

\μ)eb = (w(±\(x, α;αμ))0<α<r (3.5)

for the 6th column of the matrix-lost solutions W(Uι±\ Inserting (2.31) into (3.1)
gives

b(ωa+cμk) , k G Ka , (3.6)
6=1

which is equivalent to

r

U<-\χ 9 ω
aμk) = Σ cb,kUέ+\x; ωaμk) . (3.7)

6=1

A relation of this form can of course also directly be obtained from the matrix formula-

tion, where one finds from (2.38) and det W(UM = 1 that det[t70

(~}, U^\ . . . , t/r

(+)] =
tQ(ωaμ) [again with arguments (x\ωaμ) on the r.h.s.]. The above derivation shows in
addition that the constants cbk in (3.1) and (3.7) coincide. The same argument has

been used to show that the constants c^k in (2.47) and (2.52) coincide.

3 2. Matrix GLM Equations

Recall the integral representation (2.39) for the columns of W(U>+\ Further consider
the first column of the defining relation (2.38) for Tu ,

r

U^\χ μ) = Σ tb(ωbμ)U^\x; μ) (3.8)
6=0
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(again suppressing the "time" variables). For real μ rewrite this as

1
0

μ)
(3.9)

where for μ e C, α = α(μ) is supposed to obey lm(ωaμ) > 0. In particular, on
the real line this means explicitly that 0 < α(μ) = α(+) < [(r + l)/2] for μ G R+

and 0 < α(μ) = α(-) < [(r + l)/2] for μ G R~. To simplify the notation we will
suppress the dependence of α on μ in the following. Take now the Fourier transform

oo

/ dμeιyω(lμ of (3.9). For x < y the l.h.s. can be evaluated by complex contour
— oo

deformation. The fall-off properties (2.46) imply

and t0(ωaμ) — » 1 as |μ| — > CXD, Im<x;αμ > 0, so that the integrand vanishes in this
limit. Thus, for x < y the contour can be closed in the upper half μ-plane and the
integral receives contributions only from the simple poles of l/t0(ωaμ),

l.h.s. = res — - lti~\x\ ωa μ) eiyω » . (3.10)

^μ=μk[to(ωaμ)-0 J

Using (3.7) and the integral representation for U^+\x\ μ) this becomes

l.h.s.= y y ^!^eeέί W""^

d
where t0 = — t0(μ). For the r.h.s. one finds upon insertion of the integral

dμ
representation (2.45),

r.h.s. = Γ(+\x,y)eQ + J^ eb I dμe
L_1 J

00

+ /dzΓ ( + \x, (3.12)

Equating both sides results in

Γ(+\x,y)e0

f

"" z,y)\ =0, x<y, (3.13)
6=0
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where

keκa

oo

+ ί dμeίωaιj-(y~ωbχ)rb(ωaμ), (3.14)

introducing the notation Cb(μk) := . b'k and rb(μ) := — -

Remark. We have suppressed the α-dependence in (3.13) and (3.14) because it just
labels the decomposition of the discrete spectrum into the subsets Ka relative to the
real integration variable μ of the continuous spectrum contributions; the only subtlety
being the μ-dependence of α.

It is convenient to rewrite the result (3.13) in matrix form. To do this, multiply
(3.13) by Λ~c from the left and sum up the resulting equations for c = 0, . . . , r.
Using Λ~ceb = eb+c the first term in (3.13) just generates Γ(+\x,y). The column

Σ F^}eb = (0, F!(+), . . . , F^)τ generates F(+) := £ F^Λ~C. Together
6=1 c=l

00

ί dzΓ(+\x, z)F(+\z, y) = 0, x < y. (3.15)

This is the matrix-GLM equation from the right. It generalizes the corresponding
equations for various rank 1 systems such as the (m)KdV system [21], the SG model
in lightcone dynamics [8, Sects. II.5, 7] and (essentially) the NLS model [8, Sect. II.4].

By a similar chain of arguments one arrives at the matrix-GLM equation from the
left

X

Γ(~\x,y) + F(-\x,y)+ ί dzΓ(-\x,z)F<-\z,y) = 0, x>y, (3.16)

where F(~) =
6=1

oo

/ dμe~iω aμ(y~ω "x)rb(ωaμf =F(+\x,yf . (3.17)

We just give some comments on the derivation. The starting point is the complex
X

conjugate of Eq. (3.9). The condition x > y arises because now f dzΓ^~\x,z) x
— oo

δ(y — z)eQ should result in Γ^~\x, y)e0. Since x > y one has to use the complex con-
oo

jugate of the integral representation (2.45) and the Fourier transform / dμe~ιyω°'μ'
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to obtain the required fall-off properties of the integrand on the l.h.s. This leads to

x>y. (3.18)

When rewritten in matrix form one can apply the involution Γ(~\x,y)* =
JΓ(~\x,y) J(*). For ε = 1 the relation (*) is a consequence of (2.8) and the in-
tegral representation (2.14). For ε = i one can compensate the change of sign in
ε — > ε* by changing the sign of β. The latter is not an automorphism of the equations
of motion forφ H but it is one for the bilinear identities (A.9). In Sect. 4 it will
turn out that Γ^~\x, y) is expressible in terms of the r-functions, so that (*) holds
for both ε = 1 and ε = i. From JAJ = A~l one finally obtains (3.16).

3.3. Scalar GLM Equations

With these preparations we can formulate

Theorem 1. For the affine Toda systems the inverse problem for XT-reflective scatter-
ing data is equivalent to a set of scalar, decoupled GLM-type equations

Kf\x, y) + Fj±}(x, y) + J dzKf\x, z)Ff\x, z) = Q , x^y, (3.19)

/ί

for j = 0, . . . , r.

6=1

Cb(ω μk)e k ' k ^^

The flow variables x^, n E E enter via

+μ-n + χ-(-μr), (3.21)

where in (3.19) (x, y) :— (xl ^yl ) etc., the other variables being suppressed.

Proof. Consider the 6th row of the vector equation (3.13) for the "+" case, say

r «?

K(

b

+\x, y) + F(

b

+\x, y) + Σ dzK(b-c(χ> Z^FC+\^ y) = 0, x<y, (3.22)
r=n J
^=0 x
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r

Operate with ]Γ ω^b on this equation to find

00

K^(Ύ u} -\- F^(r ΊJ} -\- I dz K^(r z\F^(τ ?;̂  — 0 r < 11 Π 23")j ^ ' *^ j ' " / j ^ ' ' j v k j £// — ^5 ^ ^ y ι yj.^j)
X

with the notation (2.43) and FJ+) = £ ωjbF^\ The dependence on the flow variables
6=1

follows from (2.22) and Apendix A. Similarly one obtains the equations from the
left. D

Equations (3.19) are the main result of this section. They constitute a set of scalar,

decoupled GLM-type equations, where the kernels FJ±\x,y) are specified in terms
of the scattering data through (3.20).

Remark. Notice that Eqs. (3.19) do not coincide with the equations for the resolvent
kernels of the Volterra integral operators FJ±\x, y) (where the role of F and K
would be interchanged). Note further that also at the level of Eqs. (3.19) the r = 1

case is special in that the restriction (2.26) is empty and the kernel F^j is symmetric

F[ \x,y) = FI \y,x). Only in this case are the GLM equations equivalent to a
local RH-problem [17].

An alternative derivation of Eqs. (3.19) starts directly from the scalar linear

problem (2.34). For the scalar lost solutions V^ one has the relation (2.36). Rewrite
the α = 0 equation as

(3.24)

00

and take the Fourier transform / dμeιyω μ. From the falloff properties (2.44) the
— 00

l.h.s. can again be evaluated by complex contour deformation. Using (3.1) and (2.42)
one finds for x < y

00 , 0 0 x
r I r \

dzKf\x,z)i I dμeiωa^-ωbz)rb(ωaμ)\ . (3.25)
Vj /k€Ka 6=1

On the r.h.s. insertion of the integral representation (2.42) gives for x < y,

r.h.s. = K\x

(3.26)
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Equating both sides one recovers (3.19). Similarly a scalar derivation for the equations
from the left is possible.

3.4. Interpretation as ZS-Dressing Problem

The GLM-type equations (3.19) can be interpreted as defining a dressing problem in
the sense of Zakharov-Shabat [30] for the linear problem (2.34). Rewrite (2.42) as

V£\μ) = ωja[K + £<±>]e-*™V , (3.27)

for upper/lower Volterra integral operators K(^\ Since the lost solutions V^ form
a fundamental system, both of these operators solve the dressing equation

Lά(l + Kf }) = (1 + Kf }) (id_γ+l . (3.28)

Supposing that 11 + K^ have an inverse (cf. the remark following Theorem 2) the
operators

1 + p^ = (I + K^Γ1 (1 + K(~}) ,
(3 29)

n + F<-> = (11 + #<->)-' (!

commute with (id_)r+l if and only if (3.28) holds. This means that FJ±) solves a

linear equation and the mapping L^ — > F can be interpreted a direct ("scattering")
transformation linearising the dynamics. The GLM-type equations (3.19) in addition
yield a parametrization of FJ through scattering data. Conversely, for given F the

inverse problem amounts to a factorization of FJ±) into upper/lower Volterra integral

operators. Rewriting (1 + K(^) (E + Pf^) = (I + &(^) in terms of the kernels one
recovers the GLM-type equations (3.19).

4. Fredholm Determinant and Tau Function

4.1. Solution of the GLM Equations

Each of Eqs. (3.19) constitutes a family of Fredholm equations indexed by x £ E
on a non-compact interval. These equations are no longer amenable to the classical
fredholm theory. Moreover, even for continuous kernels the operators

F^:f(x)^ ί dzF(

j

±\x,z)f(z)

are not trace-class. However these operators act as nuclear operators on a suitable
Banach space of continuous functions on Iχ9 so that Grothendieck's generalized
Fredholm theory can be applied. Some of the basic results and the application to
the case at hand have been summarized in Appendix B. If the reflection coefficients
rb(μ) are of Schwartz type one readily verifies that the kernels Ff are of type

II) and the results of Theorems B.I and B.2 apply. For x e R define the family of
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resolvent kernels by (/ + F^Γ1 f ( x ) = f ( x ) + / κf\x,y)f(y). Theorem B.2.b)
then gives iχ

Df \F I x, y)

where D(

J

±\F\x,y) and D(^\F x), x G R are the family of Fredholm-Grothen-
dieck minors and -determinants, respectively. The expansion coefficients in

Df\zF \x,y) = Σ D$(F | x, y)zn and £>f >(zF | x) = Σ £>$(F 1 α)*" are
n>0 n>0

given by (B.4). To calculate the determinant explicitly we make use of the following

Lemma 3. Let d^\x) denote the nth expansion coefficient of the determinant D^+\x)
with kernel

F(x, y) = dμ(p, q) e^~^^ , (4.2)

where dμ(p, q) is some measure on C2 having support only for Rep < Re q and which
is otherwise s.t. F G ^(/2) Let ψ(p) be a free Fermi field on semi-infinite wedge

space ([15], p. 315) satisfying (01 ^(p)^*(g) |0) = ——. Then:
p-q

(4.3)

where the powers of A are understood to be normal ordered.

Proof. Write x(«s) for s, #2> > #n> •) an(^ recall fr°m (B 4)

(4.4)

Explicitly,

1=1

= / dμ(pl,ql)...dμ(pn,qn)

C2n

- ( 4 . 5 )

The integrand is invariant under permutations of the p's and g's separately, so that
the integration variables can be ordered according to Re^ < . . . < Repn < Regn <
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. . . < Regj at the expense of an overall factor 1/n!)2. In particular Repz < Regm,
1 < /, m < n. The ^-integration in (4.4) can now be done, the basic integral being

00

/ p-q
X

The ordering can now be lifted again so that

(4

n(x)= I dμ(pl,ql)...dμ(pn,qn)

C2n

= / dμ(pl,ql)...dμ(pn,qn)

C2n

x det ( — - — ̂  fί etet'rt-tto'rt . (4.7)
\ γ\ _ n I •*- -*•
\Pi <lj

The integrand has an almost factorized by w.r.t. the dμ(p, ^-integrations. A complete
factorization can be achieved by inserting

- det -— . Π (4.8)
Pi ~

We can now prove

Theorem 2. a) The determinants D^ \F\x) can be written as matrix elements in the

wedge space realization of (a version of) the affine group SLr+l and define generalized
r -functions in the sense of the Kyoto School,

Df\F I x) = (Λj\e£ί(x)g(Aw)e-&^ \Λ^ = τ^.(Λ(±) x) . (4.9)

In particular, they solve the bilinear equations (A. 8). All of the quantities in (4.9) refer

to the wedge space realization. The elements g(A^) of SLr+l are defined in terms of

Lie algebra elements A^\ which in turn are functions of the scattering data (given by
Eqs. (4.17), (4.18) below). \Λj) is the h.w.v. of the ^fundamental representation of

slr+\. The evolution operators e±£(α^ are defined in terms of the principle Heisenberg

subalgebra [En, Em] = mδm+nβK ofslr+l via E(x) = £ [x+E_n + (-)nχ-£n].
n£E

b) In terms of the r -functions the solution of the affine Toda equations is given by

(4.10)

where the "+" and "—" parts of the solution match whenever the A^ initial data
are consistent.
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Remark The formulation in a) explicitly refers to the wedge space realization and
avoids the notion of the dressing group (see [2] for a discussion) for the fol-

lowing reason. The expectation values in SXr+1, i.e. the τ-functions are defined
here in terms of the Fredholm-Grothendieck determinant. The latter are not de-
terminants of trace-class operators, so that the resulting r-functions are "general-

ized" r-functions. The normal ordered exponentials eA , although by construction
well-defined in the wedge space realization, need not correspond to a (realization-

independent) element g(A^) = g~lg+ of the standard dressing group. The Bruhat
decomposition for (centrally extended) loop groups, which usually guarantees this
gives τ-functions which are determinants of trace-class operators. To ensure the ex-
istence of a dressing group the determinant bundles of the Grassmannian formulation
[28] would have to be generalized to nuclear operators on Banach spaces (cf. Ap-
pendix B).

Proof, a) We wish to apply Lemma 3 to the kernels F^ in (3.20). Clearly, choosing
for the measure dμ(p, q) a suitable sum of <5-f unction contributions, one can produce

the kernels F ̂ , which have already been seen to be of type ^CΦ Consider first
the "+" case. In the analogue of Eq. (4.5) there will appear two types of exponentials

of the form e

ξ(ShPl}~ξ(Shq--l^\ with the substitutions,

Pl = iωa(μkι}μkl , ql = iωa(μkι}+bl μk[ , for the discrete part,

pt — iωa(μι}μl , ql = ίωa(μι}+bl μl , for the continuous part.

To perform the s -integrations we have to show that Repz < ReqL for all L For the
continuous part this is guaranteed by condition B on the reflection coefficients. If
μ E M+ one needs

- ω ) ] = μ(sin(0α+ + θb) - s in# α + ) < 0

[where θa — 2πa/(r -f 1)] at least for those b e {1, . . . , r} for which tb(ωb) is non-
vanishing. By condition B the latter is the case only if sin(^α^+^ + θb) < 0, for given

α(+) e {0, . . . , [(r + l)/2]}. But then also sin#α(+) is non-negative and Rep < Reg
holds. Similarly one checks

) < 0 ,

for μ e M~ . This means that for the continuous spectrum contributions the boundary
terms at x~ = ±00 vanish. For the discrete spectrum contributions the analogous
condition is Re[ίμkω

a(μk\l ~ ωb)] < 0. By construction μkω
a(μ^ is of the

form pke
l0ίk, where pk > 0 and 0 < ak < π. The condition then becomes

p(sin(ak + θbk) — sinα^) < 0. In principle this gives a constraint on the possible

fe-sectors which contribute to t0(μωa). In practice also μk will depend on the type b
so that the discussion is specific for each class of excitations in the discrete spectrum.
We defer the details to a later publication but anticipate that usually no restriction
arises. Thus, the boundary terms vanish also for the discrete spectrum contributions
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and the result of the s-integration is

/ J
(4.11)
v '

CO

I A A \ <I f i l l f i l l \ f I —7i aμl . . . aμn u b i i
J L

. α(μfc )
Pl=w

. rbn(-ipn)

so that

where

(4.13)

and

dμ (4.14)

Recall now that the fundamental representations ^, 0 < j < r of ^ admit a
fermionic realization on semi-infinite wedge space ΛC°° [14, 15]. In particular, recall
that finite or infinite (if well-defined) superpositions of bilinears ψ(p)ψ*(q) realize

elements of slr+l iff p/q = ωb for b 6 {0, . . . , r}. The latter is the case for all
the terms in (4.14), so that (for rb(μ) of Schwartz-type) (4.14) defines an element of

slr+l. Further let En, n G Z be the generators of the principle Heisenberg subalgebra

in this realization and set E(x) = ]Γ (x+E_n + (-)nx~En). Then

If finally \Λj) denotes the h.w.v. in the wedge space realization one has

= ω
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for all the terms in (4.14). Combining (4.11)-(4.15) one ends up with

£>«(£) - (Λ,| e*x\AM)ne-&(x) \ Λ ά ) , (4.16)

where Am = ]Γ A(^ and (notice that the sign of b flips)

/
(4.17)

Finally summing up the Fredholm series yields the claim. The result for the "-"
sector is obtained similarly. The conditions for the vanishing of the boundary terms
coincide with that of the "+" case (since Re z = Re z*) and the s integrations can be

performed. The element A^ = ̂  A^ takes the form

ω~a^k\

I
dμ

b) From Eq. (4.9) it is clear that the dynamics of D^ (x) is the same for both,
the "+" and the "—" sectors. But this means that the matching of the "+" and
the "—" parts of the solution is automatically guaranteed whenever the initial data
are consistent, i.e. whenever the branches of the logarithms can be choosen s.t.

£ &j ]nTj(Aw 10) = £ &j lnτ j(A(-) | 0) and ζ(Aw \ 0) = ζ(A(~^ \ 0). D
j=Q j=0

Remark. Ί. Since A(~"> = G4(+))* the r-functions rj(^4(±) \x) will just be complex
conjugates of each other. The branches of the logarithms can therefore always be
adjusted to achieve Φ(AW \ 0) — Φ(A(-) 10) for the initial data. Theorem 2 in
particular then guarantees that both parts of the solution match consistently under the
evolution of all the x^ flows and the "±" parts of the solution will be construction
always admit an extension to the vicinity of x~ —»• =FOO. Thus, it suffices to consider
only one part of the solution. In particular, we may simplify the notation and work
with the "+" sector alone, dropping the "+" superscripts in all quantities,
ii. Theorem 2 holds with minor changes also for the mKdV hierarchies. From the
discussion in Appendix A it follows that the mKdV lows can be identified with
the dχ- -flows of the AT hierarchy. Thus, dropping x+ variables in (4.10) yields
r-functions for the mKdV system. The mKdV variables are recovered from

(
(it) \ ,|

-4r ) = - — (Kf \x, x) - K£\ (x, x ) ) , (4.19)
Tj_J εp
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using KJ \x,x) — dx InD^ \x) for the second equality. As remarked before the
AT-reflective data are however presumably not generic for the mKdV systems.

The preceding remark applies whenever the initial value problem is well-defined.
Here we consider affine Toda theories in <9+-lightcone dynamics. As in the SG model
[16, 8] this implies that the initial data Φ(Q,x~) are subject to an infinite number of
constraints. One can argue that these constraints are satisfied if ta(μ)9 a > 0 vanish
together with all its derivatives at μ = 0. For the first few constraint equations and in
the linearized limit this can be checked explicitly. In particular, in the linearized limit
it is a well-known property of lightcone dynamics to enforce the Fourier transform
of the initial data to vanish at the origin together with all its derivatives. It is then
convenient to reverse the viewpoint ([8] p. 451) and define the constraints (for the
class of solutions considered) by the condition on ta(μ)9 a > 0. Thus, for a discussion
of the initial value problem in lightcone dynamics, we impose finally

(
7 \ n

— ) t (μ) = 0, n > 0, α = 1, . . . , r.
.<W μ=o

The identification of the r-functions with Fredholm determinants also gives the

Corollary 1. a) For XT-reflective data (in particular ra(μ), a > 0 of Schwartz type

on S) and lim sup bzH1/71 = 0 the r-functions (4.9) are °̂° in all its arguments.
n—> oo

b) Scaling the Lie algebra element by z £ C*, the functions Tj(zA^) \ x) are entire
analytic functions of z. They admit a product representation of the form B.l.b) with
x±-dependent spectral values \k(x+, x~).

Proof, a) The condition on the reflection coefficients guarantees that the kernels are
of type ^Cφ (cf. Appendix B). The condition on the flow variables ensures that
ξ(x μ) is analytic in its arguments. The proof then rests on a standard argument
based on Hadamards inequality, which is also used to prove the convergence of the
Fredholm expansions (B.I), (B.2). We omit the details. Part b) is a consequence of
Theorem B.I. D

Remark The corollary does not imply that the solutions Φ of the field equations are
°̂° because the evolutions in x^ may cross the branch cuts of the logarithms. This

can be detected from the product representation B.l.b). At the zeros of this product the
operators / -f Kj have a nontrivial kernel and the solution Φ crosses a branch cut.

In principle, the product representation for rJ-
±) would allow also to deduce restriction

on the eigenvalues Xk(x+, x~) and to discuss their dependence on the scattering data,
but this is beyond the scope of the present paper.

As a further application of Theorem 2 we can also express the Jost solutions in
terms of the r-functions.

Corollary 2. The Jost solutions V j a of the scalar linear problem (2.34) are given by

y(±) __ T3^X '

and V a (μ) = ω^aVjQ(ωaμ). The Jost solutions W^ of the matrix linear problem
(2.2) are given by (2.6) with

(±) 1 V^ - 'a Tj(X+' ~5-X~ ~ ε((~F^M)~1)) £(x+ ±x~.

r + ^Q TJ(X , x )
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Proof. We recall from [29] that there exists a Hirota-Hierarchy of the form,

H£\D,, . . . , Dn]τjVj = G^ίD,, . . . , £>n]T,-+1«i-i

#<->[£,, . . . , Dn]τj+lVj = Gt'tA, - . Dn]rjVj+l , n > 1 ,

where ίf^, G^ are Hirota polynomials of degree n in the Hirota operators

Dn = D± for x±. Further ^.(x+,χ-;μ) = r j(x+,x~ - ε((-iμ)~l)e*(x'~'~i^ and

ε(μ) = (μ, μ2/2μ2, . . . , μn/n, μn, . . . )• The lowest non-trivial equations are

V (X X ' Lί) 1 r

Set W3(x+,x~\μ) = 3 |—'-— and recall φa = ^Γα^lnr^ w.r.t. the

2 _ 2
basis Ha of h. After a rescaling d, -* —ίμ — 9,, <9_ —» —(iμ)"1 — 9_, Eqs. (4.22)

become m ™
0_ W} = - ε/Jftj cLςW^ — iμ — W +l ,

-ιm (4-23)

+ j — v μ) 2 .7 — 1 '

which is the explicit form of (2.1). In particular (WQ, . . . , Wr)
τ forms a vector

solution of S_ W = 0. In general the asymptotic behaviour of the r-functions would
not be controllable. For AT-reflective data the expression (4.9), (4.11) in terms of the
Fredholm determinant ensures that

W . f)ζ(χ~;-iμ) τ- _^ p^
VV T t< j Us * UVJ .

Comparing this with (2.35) one deduces VJQ = Wj (from the uniqueness of the lost
solution with given asymptotics) so that we have gained an expression for the lost
solution VJQ in terms of the r-functions. Since 2§_ is invariant under the simultaneous

sign change x~ —> — x~ and μ —> — μ, also the other lost solution can be obtained,
which results in (4.20). The expression for the functions w0, ..., wr parametrizing
the matrix lost solutions is then obtained form (2.33). D

Given the fact that the lost solutions are expressible in terms of the r-functions one
expects that also the monodromy matrix can be reconstructed from the r-functions.
This is of particular interest because the solution of the GLM equations in terms
of the affine group orbits shifts emphasis from the construction of solutions to the
reconstruction of their (preferred) parameters. In fact, recall that Δ+(μ) defined in
Sect. 2.6 admits an analytic continuation to the upper half μ-plane and has at most a
finite number of zeros contained in some bounded region |μ| < R, Imμ > 0 of the
upper half plane.

Proposition 3. For XT-reflective data

Δ+(μ) = ̂ Hrn^ JJ Tj X ' * £_^ μ , Imμ > 0, |μ| > Λ , (4.24)

where the r.h.s. is independent of the flow variables x^ as well as j-independent.
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Equation (4.24) is the basis of the approach [19, 20] to use the r-function formalism
for the derivation of trace identities. It allows one to recover the relevant part of the
scattering data from a given set of r-functions. The evaluation for the r-functions (4.9)
is deferred to a separate publication. The proof of Proposition 3 and the contributions
to the trace identities from the solitons and breathers can be found in [20].

5. Conclusion

We have given a survey of the results already in the introduction. Perhaps here is
the place to list some of the problems that were not addressed. Most importantly,
we ignored questions of completeness, i.e. whether or not the solutions constructed
from scattering data subject to conditions A, B, C cover some dense subspace of the
phase space. For the AT theories (but not for the mKdV) systems we believe this to
be the case. Further, the construction has been on the level of the r-functions and
we did not discuss the conditions under which the dynamics of In τ3 is confined to
a given branch of the logarithm (cf. the remark after Corollary 1). A mathematical
desideratum is to generalize the Grassmannian formulation of Segal and Wilson [28]
and the notion of a dressing group from (the determinants of) trace-class operators to
(the determinants of) nuclear operators. In particular, this should yield a classification
of linear integral equations whose solutions are described in terms of affine group
orbits. From a physical viewpoint it should be interesting to repeat the analysis in
finite volume and seek contact to the quasi-classical limit of the form factor equations
[27].

Appendix

A. The Models

Here we summarize some basic definitions and results for affine Toda theories. In
lightcone dynamics these models are closely related to the mKdV systems. Each of
the models is specified by the following

Data.
• An affine Lie algebra <?, where the finite dimensional Lie algebra g is simply laced
of rank r.

• A graduation s = (s0, . . . , sr) G NQ+I by means of which g can be realized as
centrally extended loop algebra

§^(9®C[μ,μ-l])®C(K + d8),

where K is the central extension and ds is the scaling element.

• A field Φ:R l j l —» h on 2-dim. Minkowski space, which takes values in the Cartan
subalgebra h of g,

where φ - H — Σ ΦaHa and Ha, a = 1, . . . , r is a basis of the cartan subalgebra h
α=l

of g, normalized s.t. (Ha, Hb) = 2δab. The coefficient field η:Rl>1 -» C of the scaling
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element will be set identically to zero later, while ζiR 1 ' 1 — > becomes a functional of
φ H through the equations of motion.

Lagrangian. The conformally extended affine Toda theory CAT(#, s) [3] associated
with these data is defined by the Lagrangian

Here β G R is the modulus of the coupling constant, m is the mass scale and ε = 1 ,
i for real and imaginary coupling models, respectively. Further α1 ? . . . , αr are the

r

simple roots of g and α0 = — θ is minus the highest root. N — Y^aίsi and ai = ai

are the labels of the (dual) Dynkin diagram. *=°

Equations of motion. The equations of motion are

« + ™L- Y e ε / 3 ^ *+*β>*) =0,

- 0~ υ '

= 0 .

r as
Introducing ρ(s) = Σ c%\> c% ~ ^^τ^ 0 < z < r, the second equation becomes

i=l ai-^

m2

dμd (ζ — ρ(s) φ) = -- -, so that one is left with the first equation. The equations

of motion of the affine Toda theories AT(g, s) are obtained by setting η to zero. These
admit the following reformulation. Let hτ(s) = α^ + cτK, 0 < ί < r denote the

Chevelley generators of h in the graduation s, where ai = ^ ai H are the simple

coroots (aτ aτ = 2). Let Λτ(s) G ft* denote the basis of fundamental weights dual
to them (Ai (s),hj(s)) = 6^. Explicitly

Λj(s^ = Xj ~ άj^ + άj^Q j j = 0, . . . , r , (A.3)

where λ1 ? . . . , λr are the fundamental weights of g, λ0 = 0 and λ0 is dual to K9 i.e.
(K, λ0) = 1. Define r-variables T3 : iR 1 ' 1 -̂  C by (η = 0),

ΊΓΠ i

= Xj φ-άjρ(s) φ + a (ζ+—— , (A.4)J J J \ oεp /

where one is still free to choose the branch of the logarithm. In particular,

(A.5)
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Conversely,

φ=~Jβ X]^(5)ln(r.(5)e^^mV)

1 r

= - —Q Σ &j In r3 (8) + CW #. (A.6)
£P j=o

The equations of motion for AT(g, 5) are then equivalent to

/ r \

nr3(s) - πι2aj \{rk(sΓa^ - 1 = 0 ,
\k=l

m2

dμdμ(ζ(s) - ρ(s) .</>) = - —

(A.7)

The normalizations are choosen s.t. the vacuum solution (c ; φ = 0 for ε = 1;

m2

2a - φ = 2πn/β, n G Z for ε = ϊ) Φvac = -- - x2K corresponds to τ (s) = 1,J oεp J

j = 0, . . . , r. In particular, for g = Ar the equation for the r-variables is

rfrd.Tj - d+Tjd.Tj = (r^r^ - r]} . (A.8)

Linear system. The equations of motion (A.3) can be recovered from the compatibility

condition [J2ί+, J2t_] = 0 of the following linear system:

7T7

-JE, (A9)

r r

where E = Σe^ P = Σ&ifi are tne standard regular elements of g, and
ι=0 i=0

S A S
[ d s , eά] = -^ βj and [dβ, /,.] = --+ fj has been used.

To a given solution Φ of the field equations one can associate a wave function
solving

and vice versa, where W takes values in the affine group. Because of the rapidly
decreasing boundary conditions (cf. Sect. 2.2) one has

Λ 7τι - m2 ,A_ -> — ί; + — x+/ί,

as oo. Let E(x+,x ) denote the asymptotic wave function solving

lim Jg
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Using [E, F] = K one checks

m — /s m + A rn + A rn — Λ— rr F — — rr^F — — x+F — x E2 2

Because of the simple ^-dependence, the problem of solving 2§±W — 0 can be
reduced to an equivalent linear problem ^±W = 0 in the loop group. Set

777

A_ = -εβd_φ H + — E(s) ,

m <A H>
A+ = _™e-*βΦ Hp(s)eeβΦ H ;

where E(s), F(s) are the projections of E, F into the loop algebra. Set =5ί± = d± —A±
and consider J^± W = 0.

Lemma 2. [2] AATV solution W of^±W = 0 CΛΛ be ///ted to a solution W 0/(A.10).

From now on we specialize to g = Ar = slr+l and the principle graduation

s = (1, . . . , 1) and set AT(r, 1) := AT(s/r+1, 1).

Spectral problem. For a given solution of the field equations the integrability condition
[J^_,J^+] = 0 is satisfied and it suffices to consider the linear equation 2%_W — 0.
This can be rewritten as a genuine eigenvalue problem, which for the AT(r, 1) models
takes the form

% := iΛrd_ + iεDΛr , W := ΛW , (A. 12)

where the parameter of the loop group was redefined by a factor of — i, so that

with the indices taken modulo r + 1. Introduce the matrix Uab =
V r

satisfying U2 = J, Jab = 6ar+l_b, U4 = J2 = I. On the space of matrix- valued
functionals A — A[dQ, . . . , dr] introduce an inner product by [7],

oo

(A, B)= ί dx~ Ύr(A^JB) . (A.13)

-co

The conventions in (A. 10), (A. 11) are then chosen s.t. for the real coupling models

(ε = 1) the operator S% is formally selfadjoint w.r.t. to the inner product (A. 12)
on a suitable subspace of functionals A. To see this introduce the automorphism

Q, . . . , dr] = A[κdQ> . . . , κdr], where nάi = —dr+2_i, i — 0, . . . , r. It satisfies
, KB) = (A, B). From the analysis of the scalar linear problem it follows that one

can restrict attention to the subspace of /^-invariant functionals A (cf. the remark
below and [18] for a discussion of this fact in the context of W-algebras). From
JAJ-1 = Λ~\ JΛDJA = ~κD one checks that J^t = J(^) J, for ε = 1. This
implies

(A, &B) = (&κA, KB) , (A. 14)

so that Si is formally selfadjoint for ε = I on the space of ^-invariant functionals
A. In particular this means that for the real coupling models the spectral values μ are
real.
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Remark. For the scalar operators L^ the restriction to /^-invariant wave functions
is possible because also the operators κ,Lj have the key property of lying in the
commutant of r screening operators [18]. Alternatively one could work directly with

the symmetrized scalar differential operators Ljm = \(Lj + i^L ). We preferred

here the first viewpoint (restriction to invariant wave functions) because there is no

simple matrix analogue of Ljm (in particular i (3§_ -f κ^_) would not do). Notice

also that by means of the relation (2.37) the inner product (A. 12) induces an inner
product on the space of scalar wave functions in terms of the standard inner product
(α, 6) = / dx~a*b. W.r.t. the latter the operators L are formally selfadjoint on K-
invariant scalar functions α. By construction every normalizable matrix wave function
gives rise to a normalizable scalar wave function, but not necessarily vice versa. This
implies that for ε — 1

Affine Toda vs. mKdV hierarchy. A partial differential equation arising from the
integrability condition of a linear system J^+, Ĵ _ can be systematically extended
to an infinite hierarchy of partial differential equations by studying the kernels of

Proposition A. Any element <9/Ker(adJ^±) can be written in the form G±S±G±

l,
where

and g±^n are diagonal matrices. Further, S_ = J^ s_ (iμΛ)n and S+ =
n<m_

5+ n(~^A^)n> wnere s±,n

 are constant diagonal matrices and ra± G Z.

Proof (Sketch). For the "— " component this is Proposition 1.2, Lemma 1.3 of [6] (see
also [23, 24]). For the "+" case observe that

H

which is form-identical to S_ upon replacing d+ with d_ and μΛ with (μΛ)~l and
changing the sign of β. Thus

V_ G Ker(ad^L) iff V+ := eεfjφ HV_eHτr -εβώ H D

Each element of Ker(adcXj_) can now serve to define an evolution equation
consistent with the original one. The coefficients of the positive/negative powers
of iμ in 5± do not enter the construction (cf. below) so that if suffices to consider

V± := G±(±iμΛ)^1 G±l, (A.16)

5 Depending on the context such kernels are also known as the kernel of the Adler map or the
kernel of the Poisson pencil
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and powers thereof. Observe that the matrices V± define a resolution of the identity,

VJ"1"1 = (dbz'μ)™"1!. For any Laurent series V in iμ use the notation (V)<k and (V)>t

for the parts containing powers < k and > / respectively. Similarly let (V}k denote tfϊe
coefficient of (iμ)k. In this notation the defining property V± G Ker(ad Jf±) implies
that

are //-independent and

Γ/T/ΠN c^ I _ [rt/"n\ f>~εβΦ H Λ — l —εβφ HΊ _ |ΎT/n^ O^ l
ι\v+ )<oι~&+ \ — Lv"+ )oie /J e J — ~u^_;>θ) ̂ +J ?

are of order (iμ)~l. This means that for V± G Ker(ad=2tj_) one has a consistent set
of evolution equations

where A™ := (V™)>o» A% := (V^)<0. In particular one shows 6

so that one can identify xf with x± and the n = 1 equations become trivial.
So far the "+" and the "— " sectors have been treated as independent. But because

of [J^L,J^+] = 0 the kernels adJ^+ and ad^_ intersect. To see this, note that

[c^L,^+] - 0 implies [d_ - A^,G_^+Gll] = 0, so that G_&+Gll is of the

form G_^+GI1 =d+ + C, where C takes values in Ker(adΛ). Thus,

[^+,V^] = 0, n > l . (A. 19)

Similarly it follows [=^_, F^1] = 0, n > 1. Correspondingly there is a consistent set
of "crossed" evolution equations

= = ^±> 2 (A.20)

For n = 1 one recovers [J^^J^L.] = 0, i.e. the original affine Toda equation.

Remark, i. Notice that the elements of Ker(ad J^±) are uniquely determined by their
constant part. In particular V± = (±iμΛ)^n -f . . ., which also implies for rapidly
decreasing boundary conditions

lim An± = (±ίμΛ)*n . (A.21)
IX-HOO

ii. Since S§_ = d_ + εD — iμΛ coincides with the differential operator defining
the mKdV hierarchy in the DS scheme, the "— " flow equations (A. 17) coincide
with that of the mKdV hierarchy in the variables d0, . . . , dr. In particular, the flow
variables x2_ and xl_ correspond to the usual time and space coordinate in the mKdV
equation. Since S§+ can be made form-identical to 3§_ by a gauge transformation

(and μΛ — >• (μΛ)~l, β — > — β) the "+" flow equations in (A. 17) essentially also
define a mKdV-hierarchy in disguised form. The higher order generalization of the
affine Toda equations arise from the crossed flow equations (A.20).

6 This holds only in the principle graduation
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Abelization Maps. As a corollary of the previous construction one obtains the Lax
representation and the zero curvature condition for the hierarchies. To simplify the
notation set tn = x~, t_n = x+, n G E and similarly An = A1^, A~n = A^_, n E E
and Vn = V?9 V~n = V?,n£ E. Then

jj-Vn-[An,Vn] = 0, (A.22)
vt m

r\ r\

•An - —Am - [An, Am] = 0. (A.23)
dtm 9tn

The second equation is just the integrability condition for the Eqs. (A. 17) and (A.20).
d

The first equation can be obtained by differentiating \3%±, Vn] = 0 w.r.t. ——, which
results in ^™

" d

The left entry of the commutator is again an element of Ker(ad=^±). Since elements
of Ker(ad J^±) are uniquely determined by there constant parts (in tn) and the latter
vanishes for the quantity in question one arrives at the Lax representation (A.22).

Inserting now V± = G±l(±ίμΛ)^lG± into the Lax representation one finds that

-j- ~ AG^ , (A.24)
771

for some Ker(ad A)-valued AG'm. Since Ker(adΛ) is abelian this means that AdG±

(considered as a function of all the flow variables) serves as an abelization map for
Γ\

all of the higher order linear operators J^n = — A171. The case πi — 1 leads back

to the proof of Proposition A. Since the transformed connections AG>m are abelian
the zero curvature conditions (A.23) imply

'm(μ) = 0 , (A.25)

so that AG'n(μ) are generating functions for the conserved charges. In particular for
(m,n) = (2, 1) one obtains the conservation equation for the lowest KdV flow while
(m,n) = (—1, 1) gives the conservation equation d+AG>1 = d_AG>~1 for the lowest
affine Toda flow. In particular, we note explicitly the

Corollary A. The functional AG'l(μ) = AG^[dQ, . . . , dr] (μ) is the generating func-
tional for the homogeneous, polynomial conserved currents of both, the d - -KdV flow

and the dx+ -affine Toda flow in light cone dynamics

Here, homogeneous and polynomial means that the expansion coefficients in
powers of iμΛ are differential polynomials in d0, . . . , dr and are homogeneous of
degree n + 1 w.r.t. the grading degd^ = deg<9_ = 1.

Equations (A.25) can also be used to relate the abelization maps Ad G± to wave

functions W± solving ^nW± = 0, n E ±E, where ̂ n = - -- An. To find the
relation, rewrite this as n

W±l2?nW± = - , (A.26)
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which means that AάW± can be viewed as an abelization map for which the
transformed connection vanishes identically.7 Given AdG± satisfying (A.24) and
Eqs. (A.25) for the transformed connections an abelization map Ad W± implementing
(A. 26) can be obtained as follows. Define

ω(μ) := AG>ndtn , (A.27)

which by (A.25) is a closed 1-form on some contractable region of the phase space
(where tn, n € E are good local coordinates). Hence it is exact and has a potential
7 = 7(ίn,n e ±E\μ) satisfying <9tn7 = AG>n. Explicitly,

(A.28)

where st = (st±l, sί±2, ..) and the integration constant 70 is chosen s.t. lim 7 = 0.
Identifying χ-^oo

W± = G±e\ (A.29)

one checks

j-*=(G e^ — (G βV1

Γ± ± 9tn

 ±

Asymptotics. The asymptotics of the function 7 is related to that of the r-functions.
Consider the "-" part of the relation (A.29) and return to the notation U~1W^U =:
p0ϊ/,±) for the lost solutions of 2§. Since the matrices U~lg_ U are differential

polynomials in cZ0, . . . , dr, they vanish for \x~\ —>• oo. Thus,

lim 6~^x '^ ^/1'^)]/|/Γ(^r'~t~)
cc~" —»• — oo

— lim £> — £(χ >x ',iμΩ)+Ί(x ,X iμΩ) / A or\\
— 11111 C. . \f\.J\JJ

x~ —> — oo

Observe from (A.21) that as x~ -^ -co, 7 contains a field independent part
^ = ξ(#; φj?) -f- 7, which cancels against the factor ξ on the r.h.s. of (A.30). In
terms of components (A.30) reads

Inserting the expression (4.20) for the lost solutions this becomes

lim e^+"-* )= lim V'+.'--^Γ1)) . (A.32)
x —> — oo x —-> — oo T (X , X )

1 The advantage of using an abelization map of the form (A 24) with nontrivial image in Ker(ad A)
is that the recursion relations encountered in the proof of proposition A can be solved locally, i.e.
no integrations are necessary
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T + 1
From here one can deduce the relations /+ = =p (ε/5)~(n+1)9 ± Inr,

n χn J

for the conserved charges quoted in the introduction. See also [20].

B. Fredholm Theory on Banach Spaces

The decoupled GLM equations (3.19) constitute a family of Fredholm equations
indexed by x G R on a non-compact interval. These equations are not directly
amenable to the classical Fredholm theory. In particular, Eqs. (3.19) do not coincide
with the equations for the resolvent kernel of the Volterra integral operators FJ .
Nevertheless, up to some technical modifications the major results of the classical
Fredholm theory carry over. One way to show this would be to go back to the
original discretization procedure and to check whether for suitable continuous kernels
F the required bounds can be established. For several reasons it is however more
convenient to embed the set-up into the broader context of Grothendieck's generalized
Fredholm theory on Banach spaces [11]. For orientation we remark that the classical
Fredholm theory is recovered for the Banach space W(T) of continuous functions
on some compact interval / = [α, b] C R with the usual norm ||/|| = sup |/(x)|. A

continuous kernel A G ̂ (/ x /) then defines a nuclear operator and its trace coincides
b

with the "naive" trace f dxA(x,x).
a

Fredholm theory on Banach spaces. Let E be a Banach space satisfying the (Banach)
approximation property. We refrain from giving the definition because all the standard
Banach spaces (continuous functions, Hubert spaces, Lp-spaces, Sobolev spaces)
satisfy the approximation property. Let E' be the dual of E and use (v,w), v G E',
w G E to denote the duality pairing. The relevant class of operators (replacing the
trace-class operators on Hubert spaces) are the nuclear operators in E. A nuclear
operator A in E is one which can (non-uniquely) be represented as a series A = Σ αn,

n

where each αn is of rank 1 and Σ \\a

n\\ *s finite (so tnat the series A converges in
n

operator norm). Explicitly one may write αn = λn \υn) (v'n\, for vc G E, v'n G E' s.t.
||ι;n|| = \\v'n\\ = 1 and λn G C. The nuclear norm \\a\\\ is the infimum of the set of
numbers Σ \\an\\ = Σ |λn for all decompositions A = Σ,an. The space Ll(E) of

n n n

nuclear operators then is a Banach space for the nuclear norm. The crucial properties
of nuclear operators are

Nl. Let E be a Banach space satisfying the approximation property. There exists a
linear form Tr on Ll(E) s.t. |Tr(A)| < \\A\\i and taking \υ) (w\(c G E,w G E1) to
(v,w).

N2. For any A G Ll(E) and ε > 0 there exists a Hubert space H and bounded
operators a:H — > E, af:E — > H s.t. A = aa1 and a' a is a Hubert Schmidt
operator in H with Hα'αf^ < ||^4||ι + ε (where || ||2 is the Hubert Schmidt norm on

The modified determinant of A G Ll(E) can then be defined by det2(H + A) :—
det2(H + α'α), where the r.h.s. is the determinant for Hubert Schmidt operators (see
e.g. [26, 10]). Finally, define the ("Grothendieck") determinant of A G Ll(E) by

det(H + A) := eΎτ(A} det2(H + A) . (B.I)
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Using the analogous properties for the determinant on L2(H) one deduces

Theorem Bl. For A G Ll(E), a) | det(Π+A)| < expdl-Alh). The map z -> det(H+^A)
is an entire analytic function.
b) det(H + zA) = e*Tr(A) Π (1 - λn*)eλ»*, where \\A\\! = Σ |λn -

n>l n

c) det(Π -f A) det(Π + B) = det(Π + A + 5 + AB).
d) If—X~l is an eigenvalue of A then det(I + zA) /zfls α zero of order n at z = — λ"1,
where n is the algebraic multiplicity of —X~l.
e) det(/ + zA) = Σ zUdn(A), where for a decomposition A — Σ IΌ (^n

n>0 n

dn(A) = Σdet«^)), €/, wifλ / - {(*!, . . . , in) G Nn * ! < . . . < ^n}.
1 / I \

f) det(Π + ̂ ) = exp ^ - Tr(An)(-^)n }Jor z \ < l / \ \ A \ \ l .
\ n > l n /

In particular, it follows that for A G L1^) the resolvent set is given by
ρ(A) = {—z~l G C I det(H + zA) ̂  0}. To describe the resolvent, define the modified
first Fredholm minor by D2

Z(A) := D2

z(θLrά), where the r.h.s. denotes the Fredholm
minor for Hubert Schmidt operators, i.e. D^(A) := det2(I + zA) (Π + zA)~lA. Then
define

Dz(A) =ezΊτ(A}D2

z(A) (B.2)

to be the Fredholm minor for A G Ll(E). Using the analogous properties for the
Fredholm minor on L2(H) (e.g. [26, 10]) one deduces

Theorem B2. z) \\D z(A)\\λ < C^^z-f^A^) for constants Cl9

b) For —z~l£ ρ(A) the resolvent is given by

-' - D'(A>v ' ' detd + sA)

c) DZ(A) = ^ ̂ nDn(A), where Dn(A) is given by a Plemelj-Smithies formula (in
n>0

terms of the nuclear trace).

Fredholm theory for GLM equations Set Ix — [x, oof and consider the Banach space
of continuous functions &(IX) = { f : I x -^ C continuous ||/|| := ||/||x ^ < 00} with

norm ||/||x v = sup |/(s)| (s — x+\Y, \ < v < 1. Similarly define ^(Ix) with norm

l = sup \A(s, t)\ (s-x+\Y(t-x+ \y. Then, if A e g%φ is a continuous
(S,t)e/i

kernel, the function Af defined by Af = f dyA(x,y)f(y) belongs to %?(IX) if /
Iχ , 1

does. The linear operator A is bounded with norm \\A\\ < — \\A\\. Since A G £^Cφ

is also square integrable A can also be considered as the restriction A = ^Hslr(/x)

of a Hubert Schmidt operator acting on L2(IX). One can prove the

Lemma. The operator A acts on %?(IX) as a nuclear operator. The Hilbert Schmidt
operator AHS approximates A in the sense ofN2. Moreover, the trace of A as a nuclear
operator coincides with the "naive" trace ΎrA=f dsA(s, s).

Iχ
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Remark. We emphasize that A does not act on L2(IX) as a trace-class operator and
the sum ̂  λn does not converge, generally speaking. A criterion for A to be trace-

n

class is that the kernel is hermitian positive, i.e. satisfies f dsdtA(s, t)f(s)f(t)* > 0

1
for all / e W(lx} (e.g. [10], p. 114). For the class of kernels relevant to Eqs. (3.19),
however, this fails. For the same reason the Grassmannian formulation of Segal and
Wilson [28] (where only determinants of trace-class operators are considered) does
not apply here.

From (B.I), (B.2) it follows that

det(l + zA) = exp f z / ds A(s, s) ] det2(I -f zAHS),

{ (B.3)

ι = exp ίz I
\ J
\ Iχ

DZ(A) = exp I z / dsA(s, s) Dl

z(A).

In particular one obtains from (B.3) expressions for the expansion coefficients dn(A)
and Dn(A). These turn out to be of the same type as in the classical Fredholm

theory, because the ezΎτ(A) factor essentially re-inserts the diagonal terms into
A(5-,5 J)1< i j<n, which are absent in d2

n(A). Thus, dQ(A\x) = 1, DQ(A\x,y) =
A(x,y) arid'

• = dsl.. .dsnA
J L

= ίdSl...dsnA\" -.'""["I, n > l ,
J |_ 5ι ΰn

n > 1,

(B.4)

where

ri ' τ n

Note added in proof. In wish to thank H. Flaschka for pointing out the relevance of [31]; and also
L. Dickey, P. Santini and P. van Moerbeke for enjoyable dicussions.
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