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Abstract: The direct and the inverse scattering problem for affine Toda/mKdV
systems is addressed and is found to develop non-standard features within the
framework of the inverse scattering method. A solution scheme based on the tau
function formalism is described. The inverse problem is shown to be equivalent to a
set of decoupled, scalar Gelfand-Levitan-Marchenko-type equations. The Fredholm-
Grothendieck determinants of the latter are shown to define tau-functions in the sense
of the Kyoto School. In particular, a simple monodromy formula allows the derivation
of trace identities.

1. Introduction

For many integrable field theories the inverse scattering method (ISM) provides the
most complete and physically compelling insight into the structure of the classical
phase space. The basic discovery, dating back to Gardner, Greene, Kruskal and Miura
[9], is that a generic solution can be parametrized through the scattering data of
some auxiliary linear system (generalised Schrodinger equation). Although initially
designed for the specific example of the KdV equation, the principle turned out
to be systematically applicable to a wide range of systems (see e.g. the book [21]
for an exposition). Moreover the scattering data were found to be related to action-
angle variables, turning these models into infinite dimensional completely integrable
Hamiltonian systems [8].

An independent development was initiated by the observation of Hirota that many
of these nonlinear equations could be bilinearized by a suitable change of variables,
so that a direct construction of solutions became possible [12]. In addition, these
variables (“7-functions”) were discovered by the Kyoto School to describe the orbits
of affine Lie groups in a particular realization [4, 14]. This lead to a systematic
construction and classification scheme for integrable systems in terms of the data
associated with some affine Lie algebra. An overlapping, presumably yet broader
algebraic scheme was developed by Drinfeld and Sokolov [6] (see also [5, 13]). We
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will collectively refer to these systems as being algebraically integrable. This means
that a certain algebraic scenario (linear system, infinite set of conserved charges,
bihamiltonian structure, etc.), which usually goes along with complete integrability
(suitably defined), can be constructed for these models.

There is, however, a mismatch between the large number of algebraically integrable
systems and the lack of further knowledge on the structure of their phase space. In
particular, given the preferred role of the scattering data in a Hamiltonian formulation,
it seems to be desirable to extend the parametrization of the phase space through

scattering data beyond the rank 1 systems [associated with the Lie algebra sAl(2)]
typically considered in the literature on the ISM.! In this paper we provide such an
extension for a typical series of algebraically integrable models in the above sense.
We find that the principle aims of the ISM can still be achieved, although on the
methodological level considerable deviations from the standard scheme are necessary.
Before describing these deviations, it might be useful to recall the aims of the ISM.

Aims of the ISM: The ISM aims 1) to achieve a parametrization of the phase space
through the scattering data of an auxiliary linear problem. The classical phase space
is identified with the space of solutions to the field equations with specified boundary
conditions. On the scattering data the dynamics becomes trivial and the mapping
F :solution — scattering data may be viewed as a nonlinear analogue of the Fourier
transform. The solution here is supposed to be given and one just seeks to identify
the parameter space relevant to the class of solutions aimed at (e.g. & with rapidly
decreasing b.c.). In the second step one tries to invert .%, i.e. 2) to construct the
classical solution from given scattering data. This is called the inverse problem and
can usually be shown to be equivalent (for generic data) to the solution of certain
matrix integral equations (of Wiener-Hopf type for the Riemann-Hilbert problem or
of Fredholm type for the matrix GLM equations). In a final step 3) one aims to derive
trace identities, i.e. to find explicit expressions for the infinite set of conserved charges
in terms of the scattering data. Symbolically, find 7™(-) in

I™(solution] = I (scattering data) .

For the Hamiltonian (n = 1, say), in particular, this gives the classical masses/energy
levels of the various excitations. Generally, the significance of trace identities lies
in the fact that within a Hamiltonian formulation the quantities 1™ (scattering data)
identify a (complete) set of action variables on the phase space.

In the following we will consider the program 1)-3) for the case of affine Toda
theories. These are 2-dim. relativistic field theories generalizing the Sinh/Sine-Gordon
model, which are defined in terms of the data of some affine Lie aglebra. Because of
the relevance to perturbed conformal field theories and the extension of the bootstrap
approach, the aim of constructing the corresponding QFTs has received considerable
attention in the last years (see e.g. [19] for references). In lightcone dynamics, the
affine Toda theories appear as extensions of the (generalized) mKdV systems and to
some extent both types of systems can (and should) be studied in parallel. Here
we consider the affine Toda theories of the A series in the principal graduation
AT(r,1). For the notation and a collection of basic results we refer to Appendix
A. The generalization to other Lie algebras should provide no prinicple problems.?

! Results on higher rank systems of this type are surveyed in Chap IIL.3 of [21]. The analogue of
the matrix {2 below, however, is assumed to be real there, so that the complications we find are
absent

2 The 7-functions of AT(§,s) will only partially be characterized by bilinear identities, namely
those of the mKdV systems, which then have to be supplemented by other relations/requirements
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Non-standard features. The attempt to realize the program 1)-3) by application of
the standard scheme for the ISM meets certain obstructions. For the mKdV systems
of rank r > 1 the inverse problem is not equivalent to a standard Riemann Hilbert
problem and also the derivation of Gelfand-Levitan-Marchenko (GLM) equations is
problematic. The reason is that the matrix Jost solutions (and hence the monodromy
matrix) lack simple analyticity properties in the spectral parameter. The analyticity
properties of the Jost solutions in the parameter y turn out to be governed by
the falloff properties of exponentials of the form e~ **% as z — 400, where

27e

2 =,w,...,w")and w = e™+'. The crucial difference between the rank 1 systems
and their higher rank generalizations lies in the fact that only for » = 1 is the matrix {2
real, so that suitable rows/columns of the Jost solutions admit an analytic extension to
either the upper or the lower half p-plane. For 7 > 1 these simple analyticity properties
fail and most of the techniques based on them fail likewise. Imposing, however, a
certain technical restriction on the scattering data (condition B in Sect. 2.6), which
presumably renders them generic only for the affine Toda but not for the mKdV
theories, a system of GLM equations can be derived. For the AT'(r, 1) models we
show in Sect. 3:

e The inverse problem is equivalent to a set of scalar, decoupled Gelfand-Levitan-
Marchenko-type equations.

Each of the equations constitutes a family of Fredholm equations indexed by
z € R on a non-compact interval. The kernels of the associated integral operators

F;i), j=0,...,r, x € R are specified in terms of the scattering data (whence of
“GLM-type™). The operators £’ ;j;) are not trace-class # but a version of Grothendieck’s

generalized Fredholm theory on Banach spaces [11] can be applied and leads to the
result

e A (“generic”) solution of the affine Toda equations can be constructed via

1 T
a __ a (+)
¢ ___Eﬁ anjlnDj ,

where D;i)(a:) are the Fredholm-Grothendieck determinants of F'J(j;)
determinants D;i) define generalized 7-functions in the sense of the Kyoto School,
in a parametrization through scattering data. The matching of the solutions “from the
right” (¢*)™) and “from the left” (¢2)™) is guaranteed by construction.

. Moreover the

The last point refers to the consistency condition for the GLM approach to the
inverse problem. It is also the basis for interpreting the GLM equations as Zakharov-
Shabat dressing problem [30]. The relation to the 7-functions further gives a new way
to derive trace identities [19, 20]

3 An approach could be via reduction of a non-local RH-problem [17] For special data a relation to
7-functions has already been observed in [22, 25]. The problem consists in formulating the inverse
problem for generic data

4 For this reason the solution of the decoupled GLM equations is not quite equivalent to a standard
Bruhat decomposition in the affine group. Recovering such a formulation would require to generalize
the notion of a dressing group to include determinants of nuclear operators on Banach spaces (cf
Sect. 4)



394 M. R. Niedermaier

o The derivation of trace identities is possible from the formulae
1 o0
W=7 f—:—— €88 + InT, o

rT=—00

where [ ;f ) are the conserved charges in lightcone dynamics and the right-hand sides
are independent of the flow variables z as well as j-independent.

To keep the paper of reasonable size we defer the derivation of trace identities
to a separate publication. In Sect. 3 we show that the inverse problem is equivalent
to the set of decoupled GLM-type equations described above. The solution of these
equations is given in Sect.4 in terms of the Fredholm-Grothendieck determinants
D;-i) , which are shown to define 7-functions in a parametrization through scattering
data. To prepare the ground we have to extend the notion of scattering data to the
higher rank models in question.

2. The Scattering Data

We assume some familiarity with affine Toda theories and the content of references
[6, 23, 24]. Our conventions and a number of basic results have been summarized in
Appendix A. In particular, we recall from there that the equations of motion can be
obtained from the integrability condition of a linear system in the affine Lie algebra.
This can be reduced to a linear problem in the loop algebra/group. For g = A, and
the principle graduation, the latter takes the form

Z:‘:W=0, gi=3i—Ai,

AL =— % e P H(_jupy~lehP? H

A =—5ﬁH-6_¢—%iuA.

2.1

Here ¢* are a set of real scalar fields considered as the components of a cartan
subalgebra-valued field w.r.t. a basis H*, a = 1,...,r and A is the matrix
(64 p—1)0<a,b<, With the indices taken modulo r + 1. Further € = 1, ¢ for real and
imaginary coupling models, respectively. For convenience we have also extracted a
factor —¢ from the parameter of the loop group. The conventions are then s.t. the
operator defining the genuine eigenvalue problem is formally selfadjoint on a suitable
space of wave functions for € = 1 (see Appendix A). This means that for real coupling
affine Toda theories  is real.

2.1 Wave Functions

To address problem 1 of the introduction, suppose now a classical solution ¢ - H
to be given. The integrability condition [£,,2_] = 0 is then satisfied and it
suffices to consider the linear equation £ W = 0. To simplify the notation set

D = §H - 0_¢ = diag(dyy, - . ., d,), where d; = ﬁﬁ] -0_¢ and ﬁj is the j® weight

. . . 2 .
of the defining representation of A,. Rescaling finally ¥ — 2% = the equation now
m

reads
W =0, XL =% =0_+eD+ipud=:0_—A_ 2.2)
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It is convenient to diagonalize A via U~'AU = diag(l,w, ..., w") =: §2, where
1 2mi
U= wab , w=er+, Set
m ( )Oga,b_<_r
FYV =UZU =0_+eDY +iun2, (2.3)

L 1

where DV = D, A7 is a w'-circulant with diagonal entries D, = 1 X
a=1 r

T A -

> w™*d,. The associated wave function is WY = U~'WU. Now observe that
7=0
FY = ZY(u) enjoys the involution ALY (u) A~! = #Y(wp). For a given potential
DV and fixed initial (or asymptotic) value the solution of £VWVU = 0 is unique so
that WU has to obey the same involution

AWY () A~ = WY (wp). (2.4)
The general solution of (2.4) is given by an w-circulant in the arguments, i.e.
WY ()= w,(2m A, 2.5)
a=0

where
w,(2p) = diag(w, (1), wy(wp), ..., w(W"w)).

In particular, any wave function is parametrized by r 4+ 1 independent functions
wa(ac+,x‘;,u), 0 < a < r. The original wave function is then given by W =

Wido<k,i<r

1 T T o '
W) = 1 Z Zwak+J(k Dy (), (2.6)
a=0 j=0

and solves £27'W(u) 2 = W (wu). For a domain in the complex p-plane, where the
w, () are analytic an equivalent expression is

W) =) w,(Aw2°, @.7)
a=0

where w, (Ap) is defined through the power series expansion of w,(u) with p replaced
by Ap.

A similar, but less stringent involution exists under complex conjugation. Writing
momentarily %V (e, ) for the Lax operator (2.3) one verifies (£ (e, pn))* =
JFEY (¥, —u*)J, where J = U?. This implies

WY w* = IWY(E*, - J, 2.8)
in the same notation. In terms of components this becomes
wo(e, w)* = w,(e®, —p™). 2.9)

Because the e-dependence of w, will not be known explicitly in general, the relation
(2.9) will be useful only for € = 1.
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2.2. Existence of Jost Solutions

For any interval I C R let L,(I, A,) denote the space of A, -valued functions (in the
defining representation), which are absolutely integrable on I w.r.t. some matrix-norm
I, ie.

/dx_llF(iU_)ll < 00. (2.10)
I
In particular for the potentials D in (2.2) we will assume rapidly decreasing boundary
conditions, i.e. require D € L (R, A,.). To a given classical solution of this type one

can uniquely associate a pair of Jost solutions of W = 0 with the asymptotics
(w.r.t. the L,-norm)

WSt 27 p) — e A% L o), 2.11)

for 7 — £ o0, respectively.
To do this, introduce the transition matrix w.r.t. (x—,y~) by the conditions

LT,y ;u)=0, T,z 5pu)=1I, (2.12)

where to simplify the notation we have suppressed the dependence on zt,y*. A
straightforward extension of the reasoning in [8] (p. 30ff., p. 39ff.) yields the

Lemma 1. a) The limits

W@ )= lim T,y ;e 4 (2.13)

Yy~ —+ oo

existforp € S:= |J wR.
0<a<lr

b) There exist kernels T'®(z~,-) € LI(I;E,AT) s.t.

WH@ s p) = e #y / dzT' (@™, 27)e ™ w4, (2.14)

Il
where I'_ =[x, —oo[, I'_ = [co,z™ [ In particular (2.11) holds.

Remark Similar formulae hold for the transformed quantities AY = U~'AU with
e~ 14 replaced by e =% #% In particular set WU®) := U~IWHBU and VD) .=
U~'I'®U. In the A, case one has 2 = diag(l, —1) so that (2.14) can be used to
deduce that the columns of W%)(1;) admit an analytic extension to either the upper
or the lower half p-plane. For rank 7 > 1 the phase factors are complex and the
rows/columns of W)(1) do not admit analytic extension off the star S in general.
We note some basic properties of the Jost solutions. A standard argument shows
detW® = 1. From (2.5) it follows further that the Jost solutions W& are
parametrized by r + 1 functions wfli)(a:’r, 7 ; 1) subject to the asymptotics

w§ — e~ 4 o(1)

for = — +o0, peS, (2.15)
wfli)—>0, a=1,...,r H
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where the limits are taken w.r.t. the (scalar) L,-norm. In particular,
1 « j
WiPa e i = g Wt e T e koo, (216)
=0

consistent with (2.11).
As outlined in Appendix A the pair (x*,z7) is only the lowest member of an
infinite sequence of higher order flow variables z associated with the equations of

the affine Toda/mKdV hierarchy. In particular % = % = %! is the lowest member
of the sequence of matrix differential operators defining the mKdV hierarchy. There

0
asymptotics is  lim £" = — — (—ipA)". Correspondingly the Jost solutions

z‘—»:hoo 31:;
for the hierarchy are defined through the condition
WE (@, z7ip) =t 7D 4 o1), 27— oo, (2.17)
where &(z ™, ) = > z, pu™ and zt = (a:f': = mi,mf, vy xf, ...). To have the
nekE

functions &(z; ) or £(x; Ap) etc. analytic in all its variables, we will always assume
that the hierarchy variables satisfy the condition

lim sup|zE|/™ =0. (2.18)
n—oQ

In particular (2.18) holds if all but a finite number of :c,il’s vanish.

2.3. The Monodromy Matrix

For a given potential D (and hence £, n € F) the Jost solutions provide a pair of
fundamental solutions to a set of linear matrix differential equations. Hence they can
not be independent but must be linearly related via

WOt 27w =WPeh, 27w T p), pes. (2.19)

The matrix T'(z*; 1) depends on the “time” variables only and is called reduced
monodromy matrix. Initially it is defined on S and then possibly through analytic
continuation. Clearly detT = 1. Once more, a uniqueness argument implies that

ATY @t A~ =T (@t wp), (2.20)

for TV = U~!TU. This means that also TV is parametrized by r + 1 independent
functions ¢,(z*;p), a =0, ..., r via

TV =D t,@52ma,
a=0
to(a™, Qu) := diagt, (z*; p), (@ wp), ..., t@h i w ).
For T one has an expression analogous to (2.6). From (2.20) it follows that the

functions ¢,(i), 0 < a < r are defined on the region S = |J w°R.
0<a<r

(2.21)

Proposition 1. The “time” dependence of t,, 0 < a < r is given by
Ea(@*s ) = £,(0; pexp ( >a- w“")(iu)‘"azj;) : 2.22)
nek
In particular to(:_c+; 1) = to(0; ) =: () is time independent.
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Proof. First note that (2.22) is equivalent to

0 s —-n U
635—+TU = [@us)™",T7], (2.23)

n
using [27,4%] = (1 — w*™) 2" A%. To show (2.23) express the transition matrix
T(z~,y™; p) in terms of the Jost solutions
T,y s m) =W myWwHy 3w

=W WOy w!

=W wT (wWHy—m™!

=WP@ ;mTW Oy 5w (2.24)
The first two equalities follow from the fact that the r.h.s. solves the differential
equation and has the correct normalization. The rest follows upon insertion of (2.19).
In particular,

T(p) = lim W@ ' TE,y s wWO s w
T —00,Yy  —— 00
= lim eHAT (g™ YT p)e Y (2.25)

T~ —00,YyT —— 00

WHE@ ) =T@ ,y s wWHY;p

= lim T(z ,y ;pe *#W | (2.26)
Yy~ —too
T(uw)= lim " "WH@ ;).
T —F o0

To proceed, derive the evolution equation for the transition matrix parallel to [8]
(Eqn. (1.3.21))

T (x™,y ;1) _ o - _
T ALy T@ Ty — T@ Ly AW T ), 22D)
n
where £ = i — A" the higher order Lax operators associated with z}
LE = Gt % are the hig o perators ith 7,
n

n € E. Now diagonalize A and rewrite all equations in terms of the transformed
quantities AV = U~ AU. Using (2.25) on the Lh.s. of (2.27) and (2.26) on the r.h.s.
one arrives at (2.23), if lim U~'ATU = (ipf2)™™ is taken into account [J
T —0o0
In particular Proposition 1 implies that the functions ¢,, a = 0, ..., 7, uniquely
associated to a solution of the field equations, can serve as a set of scattering data.

2.4 Scalar Formulation

In Sect. 2.2 a Lax formulation in terms of first order matrix differential operators was
used. It is well-known that the mKdV systems admit an equivalent formulation in
terms of scalar differential operators. For technical reasons it is often useful to exploit
the scalar formulation. In this section we relate the scalar and the matrix formulations.
First note that from each matrix solution of #W = 0 one can construct r + 1

vector solutions ZW, = 0 via
W, =Wy,, v,=0,0%..., 0", (2.28)

a
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where v,, a = 0,...,r are the eigenvectors of A:Av, = w®v,. Set W, =
Vo> - > Vyo). Applying (2.7) (within some domain of analyticity in u) gives
V() = w™ > W) (2.29)
k=0
Alternatively one can directly evaluate
T
Vo) = Wo,); = > W mw™. (2.30)
k=0
Inserting the explicit form of W, in (2.6) one obtains in both cases
T
Vo) =Y w @, ). (2.31)
b=0
In particular ‘
Vaht) = w9V, o), (2:32)

so that only the j-index labels independent functions. Inverting (2.31) yields

T

w, (1) = w MY W, (2.33)

r+1 pars

where (2.32) can be used to check that the r.h.s. is b-independent.
Consider now the scalar eigenvalue problem

L,V = prtv,

) . . . (2.34)
L, = (10_ + zsdrﬂ-). .(10_ + zedj),

(the indices taken modulo 7 + 1). For fixed j the functions V; ,, a =0, ..., r then
provide a fundamental system of solutions to (2.34). To see this, write out £ W, = 0

to find

@G0 +ied)V; , = uV,

7+la OS]ST‘

Acting successively with (i0_ + ied;), k > j on the j™ equation gives LV, ,=

prtV, , in the 7™ step. In particular, starting from the matrix Jost solutions W™ in

(2.28) one obtains a system of Jost solutions Vj(’f) for the operators LJ. From (2.15),
(2.31) there asymptotics is given by

Vj(i) s o g iwzT +o(1), r~ — +o00. (2.35)

Forming two fundamental systems of solutions of (2.34), the Jost solutions Vﬁ:) must
be linearly related. In fact

-
V=Yt WV, =0, 7. (2.36)
b=0
To see this, rewrite (2.33) as

1 «— .
W) = 7 D™ Ve 2.37)
k=0
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From (2.19) one finds

WO, 0=t @y WU, (2.38)
b=0
which results in (2.36).

Remark. From the viewpoint of the scalar eigenvalue problem Eq. (2.36) is nontrivial.
The definition of the Jost solutions for (2.34) implies only that

Vo = 25 1,1,
b=0

for some matrices Sj. The relation (2.36) tells that Sj is j-independent and coincides
with the transpose of TV

2.5. Integral Representation for Scalar Jost Solutions
Recall from Lemma 1 the integral representations

WUE (g p) = e 212 4 /sz(U’i)(x,z)e“”"Q, pes, (2.39)
I3

where for simplicity we set z := z~, etc. From A2A~! = w2 and (2.4) it follows that
the kernels I"®), being p-independent, must satisfy the involution AT'™®)(z, 2) A~! =
I')(z, z). This means that the matrix-kernels I"®) are parametrized by only r + 1
independent scalar kernels K*)(z,2), ¢ =0, ..., r via

-
U@, z) =Y KH(@,z)47°. (2.40)
c=0
In components one has (WU (z; p)),, = wl®, (z;wp) and (IVH(z, 2)),, =
K;i_)b(x, z), so that (2.39) becomes
w(ci)(a:; wb+cu) = 6C’0 e_”’”b“ + /dz Kéi)(x, z)e"iz“’b” . (2.41)

£

T .
Operating with >~ w7®*) on these equations and making use of (2.31) one finds

c=0
VJ'(,?(M) = wi® [e_m’a” + /de;i)(%Z)e—izwa”] ) (242)
IF
where -
K;i)(x, z) = ijchi)(% 2). (2.43)
c=0

From the integral representations (2.39), (2.42) one can also determine the analyticity
properties of the Jost solutions. The exponential factors e~ =%m in (2.42) will decay
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as z — oo if Im(w®u) s 0, respectively. This means that V( )(u), initially defined
on S, admit an analytic continuation to the half-planes Im(w® ,u) < 0, respectively.
For fixed ™ this also implies that

el w uv(ﬂ:)(m ) — wie 4 O(I/I/'[’Dv (2.44)

as |u| — oo and Im(w?p) < 0, respectively. Similar statements hold for the columns
of the matrix Jost solutions. The a™ column of U~ (2.14) U reads

U (@i p) = gge™ ™" + / dzI VP (@, z)e =", (245)
I3

where e, is the a™ vector of the canonical basis of R"*! in column notation. Thus, the
 yolumn of W% admits an analytic continuation to the half-planes Im(w®u) < 0,
respectlvely For fixed ™~ one has the fall-off properties

e Y RUE (275 ) — e, + o(1/|u), (2.46)

as |u| — oo and Im(w?p) S 0, respectively.

2.6. Characterization of the Discrete Spectrum

Here we show that the discrete spectrum of the various scattering problems en-
countered above can be characterized in terms of the zeros of a function A (u)
constructed from the minors of the monodromy matrix. It is convenient to start
with the scalar eigenvalue problems L,V = w1V, Recall the asymptotic form

(2.35) of the Jost solutions. Clearly, for given p, V( )(N) decays as x — —oo iff
a € N(u), and V¥ (1) decays as = — oo iff a € N(u) :={0, ..., 7}\N (), where
N(w) = {0 < a < r| Im(w®y) > 0}. Eigenfunctions of the point spectrum of L;
o0
should be normalizable w.r.t. (f,g) = [ dz~ f*(z7)g(z™), ie. proper eigenfunc-
—00
tions. As the Jost solutions V(i)(,u) from a fundamental system, any solution of (2.34)
can be expressed as a linear combination of either Vj(;)(u) or V( )(u) In particular,
for a proper eigenfunction corresponding to p;, € o,(L;) in the pomt spectrum, the
linear combination has to decay as [z~ | — oo. Thus, 1, € 0,(L;) if and only if

Yo e VDwm = e viDam). 2.47)

a€EN(ug) a€N(uy)

We next show that (2.47) holds iff u, is a zero of A(u) = det(T b(,u))a bEN (1) For
functions Vj, ..., V. define the Wronskian W[V}, ..., V] = det(0* Vb)0< b If
the functions Va are solutions of (2.34) the Wronskian is 2~ -independent and vamshes
if and only if the solutions are linearly related. For the Jost solutions one has

r(r+l)
WV, o Vil = Cipd) 7 [t =) #0. @48)
a<b
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Consider then W[V;;f, e VB'(EI)"/}(,E)’ e ‘/3(7:1)~+1—l]’ where N(u) = {ay, ...,
a},a; <ayi<jand N(u) = {by, ..., by}, b; <bj, i < jare enumerations of

T
the index sets in (2.47). Inserting the relation V;(,;)(M) => T, (1 Vj(Jg), one obtains
b=0 ’

(=) (=) /() (+)
W[‘/;,al’ T V]aal ’ Vj’bﬂ o ‘/}:br+l~l]
= Z Tclal(u) o 'TCzaz(u)

€1 ,ClGN(/.L)
x WV oy Oy (2.49)

J:c1? Jrer? T3brr 0 Vb
Because of (2.48) the r.h.s. is seen to be proportional to det(7, c%)a,be N = A(w).
We have proved the

Proposition 2. The operators L;, j =0, ..., T have a common point spectrum, which
is given by
pwtteoy (L) iff A =0. (2.50)

However, since the function A(y) is defined through different minors of 7T'(u) for
different values of 1, the lemma can serve only to test independently given candidates
uy, € C: For given p;, € C determine N(u,,), calculate A(u,,) and check whether it
vanishes. In order to use Proposition 2 as a device to calculate the discrete spectrum
we have to lift the 4 — w®p ambiguities arising from the fact that the Jost solutions
are initially defined on S. From (2.47) one sees that this can be achieved by requiring
that 0 € N(u) for all candidates p™*! € o,(L;). W.rt. this framing the discrete
spectrum will be characterized by a subset of the upper half plane. (Similarly the
choice a, € N(p) for some fixed 0 < a, < r would characterize the discrete spectrum
as a subset of {u € C| Im(w®u) > 0}.)

Remark. i. The necessity for such a framing is not specific for the higher rank models.
Even for » = 1 one can use either W[Vl(’g), VI(,T)] = to(p) or W[Vl(;), Vl(};)] = ty(—p)
as a starting point, which corresponds to the functions A(u) = t,(1) and A(u) =
to(—p), respectively. In the first case the discrete spectrum of L; is characterized by
a subset of the upper half plane, in the second case by a subset of the lower half
plane.

ii. For ¢ = 1 the operators L; are formally selfadjoint on a suitable space of
functionals ald,, ..., d,] (cf. Appendix A). This implies that pwtl e R, ie.
p € U em'R. Usually one expects 4, € S not to give rise to normalizable

0<a<lr

eigenfunctions, in which case the discrete spectrum of L; (w.r.t. the above framing
to the upper half plane) is given by

1(2k+1)
o,(L;) C U e =R, e=1 (2.51)
0<kL[(r—1)/2]

This generalizes the well known result that for a Schrodinger operator with real,
rapidly decreasing potential all eigenvalues lie on the positive imaginary axis.

The reasoning leading to Proposition 2 can be repeated for the matrix differential
operator Z defining the eigenvalue problem (A.13) equivalent to ZW = 0.
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Equation (2.47) gets replaced by: u, € ap(;%; ) iff

Yo oUWy = > e UP ). 2.52)

a€N(pg) a€N(pg)

(One can show that the constants ci x in (2.47) and (2.52) coincide; cf. below.)
Equation (2.49) gets replaced by

- - (+) (+) —
WGy U5 Gy G 1= A, (2.53)
where [U,, ..., U,] is the matrix with columns U, ..., U,. Again, since the solutions

U™ are defined on S we lift the degeneracy under p — w®u by requiring

0 € N(u) for all p € 0,(%). Let thus Ct == {# € C|Im > 0} and set

A = tow) [l tow®n), where N,(u) C {I,...,7} is defined s.t. A,
a€N4 (1)

coincides with A on SN C*.

Proposition 2. The function A (1) admits an analytic continuation to the upper half
u-plane. The point spectrum UP(Z) of % is given by the zeros of A, in the upper
p-half plane.

As a corollary we note that the fall-off properties (2.44) imply that
A () = 1+o0(1), |p| — oo, Im(u) >0. (2.54)

Together with the analyticity it then follows that the zeros of A (u) are located in
a bounded region of the upper half plane and may only accumulate towards the real
line. If one assumes in addition that ¢ (1), a > 1 are of Schwartz type on R, this
implies ty(u) — 1+ 0(1), |u| — oo, Imp > 0. Unless r = 1, t,() will however in
general not admit an analytic continuation off the region S. For technical reasons it
is convenient (cf. [8] p. 49) to assume the following

Condition A. The zeros of A, (u) are simple and there are no zeros of A (u) on
S= U w'R
0<a<r
For r = 1 it is known that this condition is mild in that the scattering data satisfying
A describe a dense subspace of the phase space.

Remark. For € = 1 also the matrix differential operator Z is formally selfadjoint
on a suitable space of matrix functionals. By construction (cf. Appendix A) every
normalizable matrix wave function gives rise to a normalizable scalar wave function,
but not necessarily vice versa. This implies that for e = 1,

0,(£) Coy(L;). (2.55)

In the 7 = 1 case one can in addition conclude from det7'(u) = 1 that op(i};) is
empty, but this argument fails for » > 1.

So far we have considered only the spectral analysis of % = % . The additional
dependence of the functions dj(x+,x_) on xzt was treated as purely parametric.

In particular, it is consistent for the eigenvalues of Z o depend on these external
parameters. If, however, one is interested in the spectral analysis of the (compatible)
pair £_, £ a “time” dependence of the simultaneous eigenvalues is no longer
permitted. One would expect that the space of simultaneous wavefunctions £, W = 0
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becomes “smaller” and that suitably constrained scattering data are sufficient to
construct a dense subspace. We impose the following

Condition B. The functions t, (1), a = 1, ..., r are of Schwartz type on .S and satisfy
t,(w*n) =0forall 0 # a € N(u), pe SNCH.

Explicitly, the condition reads (for a # 0)
ty*PRY) =0, 1<a+b<[r/2],

(2.56)
t,wRTY=0, [r+1/2l+1<a+b<r.

Notice that (for € = 1) this is compatible with ¢,(1)* = t,(—p*), which follows from
the involution (2.8). The condition (2.56) guarantees that the minors defining A(u)
in the different half-lines of S have trigonal form, so that

Aw =[] towmw, (2.57)

a€N(u)

which, in particular, is independent of xE. We shall refer to data satisfying condition
B as AT-reflective. If all the t,(u), a > 1 vanish identically the spectrum can be seen
to be purely discrete and in extension to the » = 1 case we shall refer to such data
as reflectionless. In the AT-reflective case a continuous spectrum is present and the
t, (W)

to(p)
coefficients. Functions ¢,(1), a > 1 violating (2.56) may still serve as scattering data
for the mKdV systems, although the reasoning of Sect.3 will not go through. For
the AT systems we expect the data satisfying condition B to be generic in the sense
that they cover a subset of the phase space which is dense w.r.t. a suitable topology;
although we have no proof (or counter-example) to offer.

quantities 7, (u) := a > 1 turn out to play the role of generalized reflection

3. Decoupled GLM-Equations

In this section we show that for the class of models considered, the inverse problem
for AT-reflective data is equivalent to a set of decoupled, scalar GLM-type equations,
which are solved in terms of 7-functions. To do this, a number of preparatory results
are needed. Assume AT-reflective data and let u,, k € K C N be an enumeration
of the zeros of A(u), defined from (2.57). Clearly, K can be partitioned into (by
condition A non-intersecting) subsets K, for which #,(w®wu,) vanishes. For these
values of the spectral parameter the (components of the) Jost solutions have linear
dependencies in addition to (2.47), (2.52).

3.1. Linear Dependencies at Zeros of A (1)

Lemma2. For i = p, k € K, the functions Vi (W), ViPwem), ...,

Vj(,t)(wauk) are linearly related via
Vj(,a)(wa/*k) = Zcb,klfj(;g)(wa/"'k)7 (3.1)
b=1

for complex constants c,, , and k € K.
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Proof Recall the definition of the Wronskian in Sect.2.6 and consider W[I/J.(B),
Vj("f), - V;ﬁ], where the argument is (z~;w®u) in all entries. Then use (2.36) to
express Vj()g)(wau) in terms of V-(Jg)(wa,u), 1 < b < r. Rearranging the columns given

WV, VD, VI =ty WV, .. VP O (3.2)
Remark. A similar calculation shows

WV VD, Vi =t (), (3.3)

ja

with arguments (z7; ) in all entries. For AT-reflective data the r.h.s. vanishes for
a € Nw*1)\{0}, i.e. for a # 0 and Im p > 0. Thus,

Vi (w) = an NAYME (3.4)

valid for all 4 € C*. In particular, for u = p,, € C*, k € K, the subset N(u,)\{0}

of a’s also satisfies Im(w®p;) > 0 and can be used to eliminate V( )(/,l,k) from the
Lh.s. of the general relation (2.47); which reproduces (3.1).

For later use we note also that (3.1) can be reformulated in terms of the columns
of Wb, Let e, = (6,)0<q<r» D =0, ..., 7 be the standard basis vectors of R"*!
in column notation. Set

Uy D) o= Usg (), -, U5 )"
=WYH e, = Wiy, W m)ocas, 3.5)

for the b™ column of the matrix-Jost solutions W'¥)  Inserting (2.31) into (3.1)
gives

wi W) = Zc,, il @),  keK,, (3.6)
b=1

which is equivalent to

Uy (@ wime) = Y ey Ui (s w i) 3.7

b=1
A relation of this form can of course also directly be obtained from the matrix formula-
tion, where one finds from (2.38) and det W) = 1 that det[U ), U™, ..., UP] =

to(w®p) [again with arguments (z;w®p) on the r.h.s.]. The above derivation shows in
addition that the constants ¢, , in (3.1) and (3.7) coincide. The same argument has

been used to show that the constants ci i in (2.47) and (2.52) coincide.

3 2. Matrix GLM Equations

Recall the integral representation (2.39) for the columns of W@+, Further consider
the first column of the defining relation (2.38) for TY,

B w0 = 3 U s 6
b=0
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(again suppressing the “time” variables). For real u rewrite this as
1
to(wn)

= U (@ w) — gge™ ™ 4

b=1

Ui (@ wp) — gge ="k

ty @) o)
to@7) Uy (s wh), (3.9

where for p € C, a = a(u) is supposed to obey Im(w®u) > 0. In particular, on
the real line this means explicitly that 0 < a(u) = a(+) < [(r + 1)/2] for p € R*
and 0 < a(u) = a(—) < [(r + 1)/2] for p € R™. To simplify the notation we will
suppress the dependence of a on p in the following. Take now the Fourier transform

I dpe™*# of (3.9). For z < y the Lh.s. can be evaluated by complex contour
—0o0

deformation. The fall-off properties (2.46) imply
_Uo(i)(x; wp) — ey e 4 (1)

and ty(w®u) — 1 as |p| — oo, Imw®p > 0, so that the integrand vanishes in this
limit. Thus, for z < y the contour can be closed in the upper half p-plane and the
integral receives contributions only from the simple poles of 1/t,(w*wu),

1 .4
Lhss. = res U\ (23w i) eve m| 3.10
,2; Jes. [to(wam U @0 (3.10)

Using (3.7) and the integral representation for _Ub(+)(m; 1) this becomes

Cbk a b
lLhs. = zwpk(y w”x)
> Zt(wau)_

k€K, b=1
o0
+ Z Z dzI'P(z, z) e, e™ Cprly—w z) 3.11)
kEKq b=1 to(wa“k)
. d . . .
where {, = d—to(u). For the r.h.s. one finds upon insertion of the integral

representation (2.45),

a+b
rhs. = F(+)(CIJ y)60+z e / d/,bew @y —wba) )
b=1

r

7 t
/sz(+)(x z) (Zeb / due“" “uly=w’z) 12(‘*(‘;(1 ﬁ)”) 3.12)

1

Equating both sides results in

', y)e,

+2 {F§+><x,y>gb + / dzﬂ“(x,z)_ebFé“(z,y)} =0, =<y, 313
b=0 p
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where

Fé“(cc,y) - _ Z w—acb(wauk)eiwa,uk(y—wbm)

k€K,
o0
+ / dp e Hu="D p () (3.14)
. . . Ch,k t,(wPp)
introducing the notation C,(u,) := ——— and r,(u) := ———.
£ P e T T

Remark. We have suppressed the a-dependence in (3.13) and (3.14) because it just
labels the decomposition of the discrete spectrum into the subsets K, relative to the
real integration variable p of the continuous spectrum contributions; the only subtlety
being the u-dependence of a.

It is convenient to rewrite the result (3.13) in matrix form. To do this, multiply
(3.13) by A™¢ from the left and sum up the resulting equations for ¢ = 0, ..., r.
Using A%, = ¢, the first term in (3.13) just generates I")(z,y). The column

T T
S FEPey =0, FF, ..., F)T generates F™) := 3~ F(H A=¢, Together
b=1 c=1
(oo}
I'D(z,y) + FP(z,y) + / dzI'P(@, 2) F(z,y) =0, z<y. (3.15)

x

This is the matrix-GLM equation from the right. It generalizes the corresponding
equations for various rank 1 systems such as the (m)KdV system [21], the SG model
in lightcone dynamics [8, Sects. II.5, 7] and (essentially) the NLS model [8, Sect. I1.4].

By a similar chain of arguments one arrives at the matrix-GLM equation from the
left

T

I'Oz,y) + FO(z,y) + / dzI' Oz, 2) F(z,9) =0, z>y, (3.16)

—0o0
(=) — S~ (=) pb
where F' =bz—:1Fb A°,
F (@, y)=— Z wCy(w )™ emiw T Hiy—w ")
kEKa
oo
+ / due—iw_“w-“_bz)rb(waﬂ)* =FP@,yp*. (G.17)
—00

We just give some comments on the derivation. The starting point is the complex
x

conjugate of Eq. (3.9). The condition z > y arises because now [ dzI'7)(z,z) x

— 00
8(y — z) e, should result in I")(z, y)e,. Since = > y one has to use the complex con-

o
jugate of the integral representation (2.45) and the Fourier transform [ du et

— 00
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to obtain the required fall-off properties of the integrand on the Lh.s. This leads to

F(—)(CL', y)* €o

+> {Fé‘)<m,y>@b+ / dzﬂ"(x,z)*_ebF,ﬁ‘)(z,y)} =0, z>y. (313

b=0

—00

When rewritten in matrix form one can apply the involution I'“)(z,y)* =
JI' ) (x,y) J(*). For € = 1 the relation () is a consequence of (2.8) and the in-
tegral representation (2.14). For ¢ = ¢ one can compensate the change of sign in
€ — €* by changing the sign of 3. The latter is not an automorphism of the equations
of motion for ¢ - H but it is one for the bilinear identities (A.9). In Sect. 4 it will
turn out that I"(™)(x, ) is expressible in terms of the 7-functions, so that (x) holds
for both € = 1 and € = 4. From JAJ = A~! one finally obtains (3.16).

3.3. Scalar GLM Equations

With these preparations we can formulate

Theorem 1. For the affine Toda systems the inverse problem for AT-reflective scatter-
ing data is equivalent to a set of scalar, decoupled GLM-type equations

K@,y + FP (@, y) + / dzKP (@, ) FP(2,2)=0, o<y, (319

IF

for j=0,...,r.
(£) b (£)
= ij B
b=1
_ iw® _ . a+b

F,f”(x,y) - _ Zw aCb(wa'uk)e&(yﬂ pi)—E(@,iw ug)

keK
[

+ / d/,l.’)"b(wau) eé(yviwaﬂ)_g(f,iw

—00

(3.20)

a+b

W= F @y

The flow variables x,ﬂf, n € E enter via

E@w =Y @u " +a, (-, (3.21)
nekl

where in (3.19) (z,y) := (x],y; ) etc., the other variables being suppressed.

Proof. Consider the b™ row of the vector equation (3.13) for the “4” case, say

K@) + B+ Y [aK@aF e =0, s<y, 62

c=0 3
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T .
Operate with Y w’® on this equation to find
b=1

KP(@,y) + F{P(z,y) + / dzKP (@, ) FP@,) =0, z<y, (3.23)

T

with the notation (2.43) and F(+) Z w? bFH') The dependence on the flow variables
b=1
follows from (2.22) and Apendix A. Similarly one obtains the equations from the

left. O

Equations (3.19) are the main result of this section. They constitute a set of scalar,

decoupled GLM-type equations, where the kernels Fj(i)(ac,y) are specified in terms
of the scattering data through (3.20).

Remark. Notice that Egs. (3.19) do not coincide with the equations for the resolvent

kernels of the Volterra integral operators F;i)(x,y) (where the role of F; and K
would be interchanged). Note further that also at the level of Egs. (3.19) the » = 1

case is special in that the restriction (2.26) is empty and the kernel Féil is symmetric

Fl(i)(a:,y) = F(i)(y,m). Only in this case are the GLM equations equivalent to a
local RH-problem [17].
An alternative derivation of Egs. (3.19) starts directly from the scalar linear

problem (2.34). For the scalar Jost solutions Vj(it) one has the relation (2.36). Rewrite
the a = 0 equation as
1
to(wap) J 0

’LJJ(.Ua,LL

o (@5 wp) —

=V @w ) — e Y @iV, @et, (324
b=1
oo a
and take the Fourier transform f dpe’¥™ . From the falloff properties (2.44) the
Lh.s. can again be evaluated by complex contour deformation. Using (3.1) and (2.42)
one finds for z < y

™
Lhs. == "> " Cp(w ) e #e

Ko b=l
+ ) Z / dz Kz, 2) ( / duei“’a“(y_‘”bz)rb(w“u)) . (3.25)
k€Kq b=1 3,
On the r.h.s. insertion of the integral representation (2.42) gives for z < y,
r [ee)
rhs. = KP@,y) + > w?® / dp et ru="Dp (o)
b=1 o

/de(+)(x z) (Zwﬂ’ / dpe” Suly-w z’r p(w® u)) (3.26)

b=1
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Equating both sides one recovers (3.19). Similarly a scalar derivation for the equations
from the left is possible.

3.4. Interpretation as ZS-Dressing Problem

The GLM-type equations (3.19) can be interpreted as defining a dressing problem in
the sense of Zakharov-Shabat [30] for the linear problem (2.34). Rewrite (2.42) as

ViD= w4+ KD e (3.27)

,a

for upper/lower Volterra integral operators IA(](.i). Since the Jost solutions V;? form
a fundamental system, both of these operators solve the dressing equation

LI+ Ky =1+ K)o )+ (3.28)

Supposing that 1 4 IA{](.i) have an inverse (cf. the remark following Theorem 2) the
operators
1+ EP =@+ K~ @+ K7,

R ) R (3.29)
1+ FO =1+ K @+ K,

commute with (:0_)"*! if and only if (3.28) holds. This means that F'J(-i) solves a

linear equation and the mapping L, — F® can be interpreted a direct (“scattering”)
transformation linearising the dynamics. The GLM-type equations (3.19) in addition

yield a parametrization of £’ ;i) through scattering data. Conversely, for given ﬁ'](»i) the
inverse problem amounts to a factorization of F‘J(i) into upper/lower Volterra integral

operators. Rewriting (1 + K;i)) (n+ ﬁ‘]@i)) =1+ IA(fE)) in terms of the kernels one
recovers the GLM-type equations (3.19).

4. Fredholm Determinant and Tau Function
4.1. Solution of the GLM Equations

Each of Egs. (3.19) constitutes a family of Fredholm equations indexed by z € R
on a non-compact interval. These equations are no longer amenable to the classical
fredholm theory. Moreover, even for continuous kernels the operators

F®: f@) - / dzF{P(@,2) f(2)

pco)

are not trace-class. However these operators act as nuclear operators on a suitable
Banach space of continuous functions on I, so that Grothendieck’s generalized
Fredholm theory can be applied. Some of the basic results and the application to
the case at hand have been summarized in Appendix B. If the reflection coefficients
ry(1) are of Schwartz type one readily verifies that the kernels F;i) are of type

#°(I%) and the results of Theorems B.1 and B.2 apply. For z € R define the family of
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resolvent kernels by (I + F‘;i))_‘ f@=f@+ [ K;-i)(a:,y) f(x). Theorem B.2.b)
then gives Iy

DSI(F | z,y)

— 4.1
Dgi)(F|ilT) ) ( )

KP(z,y) =

where D;i)(F | z,y) and D;i)(F |z), z € R are the family of Fredholm-Grothen-
dieck minors and -determinants, respectively. The expansion coefficients in

(£) _ (£) n (+) _ () n
D7 F |z,y) = nzz:o Di(F | z,y) 2™ and D (zF |z) = ngo D;)(F | £)z™ are
given by (B.4). To calculate the determinant explicitly we make use of the following

Lemma 3. Let d)(x) denote the n™ expansion coefficient of the determinant D™(z)
with kernel

F(z,y) = / dpu(p, g) KPS, (4.2)
Cc2

where du(p, q) is some measure on C? having support only for Re p < Re q and which
is otherwise s.t. F € ?(Iﬁ). Let 1(p) be a free Fermi field on semi-infinite wedge

space ((15], p. 315) satisfying (0| 1(p)¥*(g) |0) = ;f—q. Then:

D$P(z) = (0] A(z)™ |0),

du(p, B 4.3)
Ag) = [ FLD yygetier-ten,
where the powers of A are understood to be normal ordered.
Proof. Write z(s) for s,z,, ..., z,,, ...) and recall from (B.4)
D, (z) = / dsl...dsnF[sl'”S"] . 4.4)
Sl e Sn
ar
Explicitly,
S;...8
F {si s:] = det(F'(s;, 8;)1<i j<n
S G | RACHEN!
TESK =1
= / du(py,q) - - - Ay, 4,)
C2n
= &(z(sp),py)—&(x(sy)
% H Z (_)7\'6 z(s1),p1)—&(x(s; ’qw_](l)) . (45)
l=17€Sn

The integrand is invariant under permutations of the p’s and ¢’s separately, so that
the integration variables can be ordered according to Rep; < ... <Rep, <Regq, <
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. < Reg, at the expense of an overall factor 1/n!)%. In particular Rep, < Reg,,,
< I, m < n. The s-integration in (4.4) can now be done, the basic integral being

o0
/ dsefe@p—ta@a _ _ 1 tap-teo “.6)
pP—q

The ordering can now be lifted again so that

%@=/@%wm@%%)

c2n
5(931,:01)—5@1,(1,,—1 )
JI T S
=1 7€Sn L0
= /du(pl,ql).--du(pn,qn)
c2n
1 n
« det ( ) H s@LP)—E@La) 4.7
b — 1<i,j<n 1=

The integrand has an almost factorized by w.r.t. the du(p, g)-integrations. A complete
factorization can be achieved by inserting

01 @)™ (a,). www%mp®% q) O @8
Dbi =95/ 1<ij<n

We can now prove

Theorem 2. a) The determinants D;i)(F | £) can be written as matrix elements in the

wedge space realization of (a version of) the affine group S/’ET +1 and define generalized
T-functions in the sense of the Kyoto School,

D;i)(F |z) = <Aj| L@ g(A(:I:)) e~ E@) IAj> - Tj(A(:i:) | z). 4.9)

In particular, they solve the bilinear equations (A.8). All of the quantities in (4.9) refer
to the wedge space realization. The elements g(A®)) of 5"2, 41 are defined in terms of
Lie algebra elements A™®, which in turn are functions of the scattering data (given by
Eqs (4.17), (4.18) below). |A;) is the h.w.v. of the 4™ fundamental representation of

slr +i- The evolution operators etB® gre defined in terms of the principle Heisenberg

subalgebra [E,, E 1 =mé,, . K ofsl,H via E()= Y [sfE_, +(—)"z, E 1.
nek
b) In terms of the T-functions the solution of the affine Toda equations is given by

1 ™
— X (+) ()
@-—gﬂ §=0ajln7j(A )+ ((AT)K (4.10)
where the “+” and “—” parts of the solution match whenever the AP initial data

are consistent.
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Remark The formulation in a) explicitly refers to the wedge space realization and
avoids the notion of the dressing group (see [2] for a discussion) for the fol-
lowing reason. The expectation values in S/’zr +1» i.e. the 7-functions are defined
here in terms of the Fredholm-Grothendieck determinant. The latter are not de-
terminants of trace-class operators, so that the resulting 7-functions are ‘“general-

ized” T-functions. The normal ordered exponentials eA(i), although by construction
well-defined in the wedge space realization, need not correspond to a (realization-
independent) element g(A®)) = g"'g . of the standard dressing group. The Bruhat
decomposition for (centrally extended) loop groups, which usually guarantees this
gives 7-functions which are determinants of trace-class operators. To ensure the ex-
istence of a dressing group the determinant bundles of the Grassmannian formulation
[28] would have to be generalized to nuclear operators on Banach spaces (cf. Ap-
pendix B).

Proof. a) We wish to apply Lemma 3 to the kernels F;i) in (3.20). Clearly, choosing
for the measure du(p, g) a suitable sum of §-function contributions, one can produce
the kernels F;i), which have already been seen to be of type &'(I2). Consider first
the “+” case. In the analogue of Eq. (4.5) there will appear two types of exponentials

of the form VPV 19—10)) \with the substitutions,

iwa(uklﬂ-bz

p, = iwa(ukl)p’kl , g = f1y,, » for the discrete part,

P = Wy, g = Wby, for the continuous part.

To perform the s-integrations we have to show that Rep; < Reg, for all . For the
continuous part this is guaranteed by condition B on the reflection coefficients. If
i € R one needs

Re[ipw* (1 — w®)] = p(sin(, ) + 8,) — sinb,,)) <0,

[where 6, = 2ma/(r + 1)] at least for those b € {1, ..., r} for which ¢,(w®) is non-
vanishing. By condition B the latter is the case only if sin(d,,, + 6,) < 0, for given
a(+) € {0, ..., [(r+1)/2]}. But then also sin 6, ,, is non-negative and Re p < Req
holds. Similarly one checks

Re[ipuw® (1 — w®)] = (sin(lg_y + 6,) — sinf,_)) <0,

for ;€ R™. This means that for the continuous spectrum contributions the boundary
terms at £~ = £ oo vanish. For the discrete spectrum contributions the analogous
condition is Re[ip,w® (1 — w®)] < 0. By construction p,w***) is of the
form p,e**k, where p, > 0 and 0 < «; < 7. The condition then becomes
p(sin(oy, + Obk) —sinay,) < 0. In principle this gives a constraint on the possible
b-sectors which contribute to ¢,(uw®). In practice also p,, will depend on the type b
so that the discussion is specific for each class of excitations in the discrete spectrum.
We defer the details to a later publication but anticipate that usually no restriction
arises. Thus, the boundary terms vanish also for the discrete spectrum contributions
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and the result of the s-integration is

D{P(z) = / ds, ... ds, det(F{"(s;,8,))1<; j<n

aHr
= Z Wi+ +bn)Dl()‘:') by (4.11)
by bn
+ . .
Dzl) b, = ()" Z [Cbl(—zp,) .. Cy (—ip,)
k1 kn€Ka
1

% det (p — ) H e£@p))— &(wz,qz)] 1=iwa(”kl)#kl

¢ J l= . a</‘kl)+bl

q=iw Bk

o0
+ / dp, ... du, ["'b, (=ipy) ... 7y, (—1Dy,)

n
x det ( ) H E(wlmz)—ﬁ(wl,qz)J iy (4.12)
Pi =45/ 15

q=iw® 0ty

so that
D§Y = (0] (AP @)™ 0) 4.13)

where A§+)(;c) Zl wi® A{Y(z) and

4@ == [C”(_ip : ¢<p>w*(q>ef<fyp>—€<z’q>]

alpg) pr=iw Ry,
keK, HY Ik q=iw®HRITb
oo
Tp(—1p)
+ / d/"‘[ b ¢(P)¢ (q )e&'(zyp) E(z,q)] . (4.14)
— 00 g=iwdW+b,,

Recall now that the fundamental representations g;, 0 < j < 7 of AL admit a
fermionic realization on semi-infinite wedge space AC* [14, 15]. In particular, recall
that finite or infinite (if well-defined) superpositions of bilinears 1)(p)1*(q) realize

elements of ;ZTH iff p/qg = w® for b € {0, ..., r}. The latter is the case for all
the terms in (4.14), so that (for r, (1) of Schwartz-type) (4.14) defines an element of

sAlr +1- Further let E,, n € Z be the generators of the principle Heisenberg subalgebra

in this realization and set E(z) = Y (z}tE_, + (=)"z; E,). Then
nek

L@y e B@® = eE@P(p) |
eE@y* (p)e=B@) = ¢=€@Py*(py |
If finally |Aj) denotes the h.w.v. in the wedge space realization one has

(p/q)‘
-l

(4.15)

(A @ Y(@* |4;) = w90 Y(p)¥(g)* |0) -
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for all the terms in (4.14). Combining (4.11)—(4.15) one ends up with
() () — E@) Ay ,—E@)
Dj,n(‘Z) - <A]| e’ (A )ne ‘ |AJ> ’ (416)

T
where AP = 3 A§)+) and (notice that the sign of b flips)
b=1

C,
AP =- % [ b)) <qk>J

a(ig) pr=iw Pk
k€Kaq WG q:=iw“(“k)f§,4k
i )
Ty (—1p
+ / du[ (@)Y ( )] e, (4.17)
—0c0 q:iwa(#)_bu

“w 9

Finally summing up the Fredholm series yields the claim. The result for the
sector is obtained similarly. The conditions for the vanishing of the boundary terms
coincide with that of the “+” case (since Re 2 = Re z*) and the s integrations can be

T
performed. The element A = >~ A{™ takes the form
b=1

_ C, (—ip)*
A== [—"(—”i);z/)(pk)w*(qm]

w"a(l‘k)q pk=—iw_a'('“‘k)p,k
k€Kq Qp=—iw ORI
[ [ry=ip*
ry(—ip
+ / du[ Y)Y ( )J a0, (4.18)
—00 g=—1ww—a(W)+b,

b) From Eq. (4.9) it is clear that the dynamics of D$"(z) is the same for both,
the “4” and the “—” sectors. But this means that the matching of the “+” and
the “—” parts of the solution is automatically guaranteed whenever the initial data
are consistent, i.e. whenever the branches of the logarithms can be choosen s.t.

> &, In7, (AP 0) = Ea In7;(A)]0) and (AP [0) = (A [0). O
=0

]._

Remark. i. Since A = (A™)* the 7-functions Tj(A(i) | ) will just be complex
conjugates of each other. The branches of the logarithms can therefore always be
adjusted to achieve ®(A™M [0) = H(A)|0) for the initial data. Theorem?2 in
particular then guarantees that both parts of the solution match consistently under the
evolution of all the 27 flows and the “+” parts of the solution will be construction
always admit an extension to the vicinity of =~ — Foo. Thus, it suffices to consider
only one part of the solution. In particular, we may simplify the notation and work
with the “+” sector alone, dropping the “+” superscripts in all quantities.

ii. Theorem 2 holds with minor changes also for the mKdV hierarchies. From the
discussion in Appendix A it follows that the mKdV lows can be identified with
the 0 _—-flows of the AT hierarchy. Thus, dropping x; variables in (4.10) yields

T- functlons for the mKdV system. The mKdV variables are recovered from

&)
1 N _ 1w )
— 0. In (—§> = — E(KJ (x,x) — K ~(z,x)), 4.19)
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using K (i)(:c z) = 0, ,In D(i)(ac) for the second equahty As remarked before the
AT- reﬂectlve data are however presumably not generic for the mKdV systems.

The preceding remark applies whenever the initial value problem is well-defined.
Here we consider affine Toda theories in 0, -lightcone dynamics. As in the SG model
[16, 8] this implies that the initial data ¢(0,z7) are subject to an infinite number of
constraints. One can argue that these constraints are satisfied if ¢,(x), a > 0 vanish
together with all its derivatives at p = 0. For the first few constraint equations and in
the linearized limit this can be checked explicitly. In particular, in the linearized limit
it is a well-known property of lightcone dynamics to enforce the Fourier transform
of the initial data to vanish at the origin together with all its derivatives. It is then
convenient to reverse the viewpoint ([8] p.451) and define the constraints (for the
class of solutions considered) by the condition on ¢,(x), @ > 0. Thus, for a discussion
of the initial value problem in lightcone dynamics, we impose finally

Condition C. <i> o
dp

The identification of the 7-functions with Fredholm determinants also gives the

=0,n>0,a=1,...,7.
u=0

Corollary 1. a) For AT-reflective data (in particular v, (1), a > O of Schwartz type
on S) and lim sup|zE|'/™ = 0 the T-functions (4.9) are &> in all its arguments.

b) Scaling the Lie algebra element by z € C*, the functions T; (zA®) | ) are entire
analytic functions of z. They admit a product representation of the form B.1.b) with
z*-dependent spectral values M\, (z*,z7).

Proof. a) The condition on the reflection coefficients guarantees that the kernels are
of type #°(I2) (cf. Appendix B). The condition on the flow variables ensures that
&(x; p) is analytic in its arguments. The proof then rests on a standard argument
based on Hadamards inequality, which is also used to prove the convergence of the
Fredholm expansions (B.1), (B.2). We omit the details. Part b) is a consequence of
Theorem B.1. O

Remark The corollary does not imply that the solutions @ of the field equations are
% °° because the evolutions in xf may cross the branch cuts of the logarithms. This
can be detected from the product representation B.1.b). At the zeros of this product the

operators [ + R *) have a nontrivial kernel and the solution & crosses a branch cut.

In principle, the product representation for T(i) would allow also to deduce restriction

on the eigenvalues A, (z*,z7) and to dlscuss their dependence on the scattering data,
but this is beyond the scope of the present paper.

As a further application of Theorem 2 we can also express the Jost solutions in
terms of the 7-functions.

Corollary 2. The Jost solutions V»(i) of the scalar linear problem (2.34) are given by

+ —
ye _ D@ ET — EF D) et v i

2,0 T(.CL'+ 4+ ) (420)

and V(i)(,u) = WV, o(w*n). The Jost solutions W) of the matrix linear problem
(2.2) are given by (2. 6) with
1 T T (2T, ExT —e((F
W () = Z i 5 ((Fiw) ™)) Lo (401

r+1 T(x+ +a7)
=0
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Proof. We recall from [29] that there exists a Hirota-Hierarchy of the form,
HPDy, ..., Dlrw; =GPID,, ..., D7 v,

HOID,, ..., D170, =GOD,y, ..., D, n>1,

where H®, G&) are Hirota polynomials of degree n in the Hirota operators
Dn = D;lt for 1:7::: Further vj(w+,x_;u) = Tj($+,:1:_ _ 5((—-1:/1)—1)65@_‘_7;“) and

e(u) = (u, p2/2 42, ..., u™/n, u",...). The lowest non-trivial equations are
Ditrv, =7 0.,
_1 h%y 7+1%5-1 (4'22)
D Ti1V; = TjVjqq -
v,z ) 1 &
Set W.(zt, 2 ;) = 4———"= and recall ¢* = —— S o%In7, wrt. the
a # (@t ) ¢ ef Eo 7

2
basis H® of h. After a rescaling 0, — — iy —0,,0_ — —(ip)~! 2 0_, Eqgs. (4.22)
become m m m
O_W; = —¢eBh;-0_¢W; —iu > Wi,
m (4.23)
0L W; = —(im) ™" 5 e PW,_,,

which is the explicit form of (2.1). In particular (W, ..., WT)T forms a vector
solution of £_W = 0. In general the asymptotic behaviour of the 7-functions would
not be controllable. For AT-reflective data the expression (4.9), (4.11) in terms of the
Fredholm determinant ensures that

W, — ef@ T T o,

Comparing this with (2.35) one deduces Vj(f) = Wj (from the uniqueness of the Jost
solution with given asymptotics) so that we have gained an expression for the Jost
solution Vj("g) in terms of the 7-functions. Since .%£_ is invariant under the simultaneous

sign change =~ — —x~ and p — —u, also the other Jost solution can be obtained,
which results in (4.20). The expression for the functions wy, ..., w, parametrizing
the matrix Jost solutions is then obtained form (2.33). [

Given the fact that the Jost solutions are expressible in terms of the 7-functions one
expects that also the monodromy matrix can be reconstructed from the 7-functions.
This is of particular interest because the solution of the GLM equations in terms
of the affine group orbits shifts emphasis from the construction of solutions to the
reconstruction of their (preferred) parameters. In fact, recall that A, () defined in
Sect. 2.6 admits an analytic continuation to the upper half y-plane and has at most a
finite number of zeros contained in some bounded region |u| < R, Im > 0 of the
upper half plane.

Proposition 3. For AT-reflective data

(rt —p— — 00y 1
A= tim ] L@ 2O S0l > R, (424

- (ot o
27200 NG 'TJ(CE ,—x7)

where the t.h.s. is independent of the flow variables m,:f as well as j-independent.
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Equation (4.24) is the basis of the approach [19, 20] to use the 7-function formalism
for the derivation of trace identities. It allows one to recover the relevant part of the
scattering data from a given set of 7-functions. The evaluation for the 7-functions (4.9)
is deferred to a separate publication. The proof of Proposition 3 and the contributions
to the trace identities from the solitons and breathers can be found in [20].

5. Conclusion

We have given a survey of the results already in the introduction. Perhaps here is
the place to list some of the problems that were not addressed. Most importantly,
we ignored questions of completeness, i.e. whether or not the solutions constructed
from scattering data subject to conditions A, B, C cover some dense subspace of the
phase space. For the AT theories (but not for the mKdV) systems we believe this to
be the case. Further, the construction has been on the level of the 7-functions and
we did not discuss the conditions under which the dynamics of In, is confined to
a given branch of the logarithm (cf. the remark after Corollary 1). A mathematical
desideratum is to generalize the Grassmannian formulation of Segal and Wilson [28]
and the notion of a dressing group from (the determinants of) trace-class operators to
(the determinants of) nuclear operators. In particular, this should yield a classification
of linear integral equations whose solutions are described in terms of affine group
orbits. From a physical viewpoint it should be interesting to repeat the analysis in
finite volume and seek contact to the quasi-classical limit of the form factor equations
[27].

Appendix
A. The Models

Here we summarize some basic definitions and results for affine Toda theories. In
lightcone dynamics these models are closely related to the mKdV systems. Each of
the models is specified by the following

Data.
e An affine Lie algebra §, where the finite dimensional Lie algebra g is simply laced

of rank 7.
e A graduation s = (sy, ..., 5,) € Ng” by means of which § can be realized as
centrally extended loop algebra
S
4= Clu,p~ e CK +d,),
where K is the central extension and d, is the scaling element.

o A field :R"! — A on 2-dim. Minkowski space, which takes values in the Cartan

subalgebra A of §,
=3¢ H+nd, + (K,

T
where ¢- H =Y ¢°H® and H*, a =1, ..., r is a basis of the cartan subalgebra h
a=1

of g, normalized s.t. (H®, H®) = 26,,. The coefficient field n: R — C of the scaling
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element will be set identically to zero later, while ¢ :R"! — becomes a functional of
¢ - H through the equations of motion.

Lagrangian. The conformally extended affine Toda theory CAT(g, s) [3] associated
with these data is defined by the Lagrangian

L1 m> (o eplay dtsm)
f =0, 0" e — ) 3 eTN :
F za#qs ot¢ +40,mo"¢ L 2 ae (A.1)

Here 3 € R is the modulus of the coupling constant, m is the mass scale and € = 1,
1 for real and imaginary coupling models, respectively. Further al, ..., o, are the

simple roots of g and oy, = —6 is minus the highest root. N = Z a;s; and d; = a,
are the labels of the (dual) Dynkin diagram. =0

Equations of motion. The equations of motion are

0"9,¢" +— Zaja“ (o ¢+%s]n) =0,

0*9,¢ + Z;nw ;a]s] eeﬁ(a} s o1) =0, 4.2
o*o,n =
Introducing o(s) = Z C, Ay €, = ?’]s\’[, 0 < i < r, the second equation becomes
i=1 a;
o0 (C o(s)- @) = T:; so that one is left with the first equation. The equations

of motion of the affine Toda theories AT(g, s) are obtained by setting 7 to zero. These
admit the following reformulation. Let h,(s) = a4, + ¢,K, 0 < i < r denote the

Chevelley generators of A in the graduation s, where 4, = %ai - H are the simple

coroots (, - o, = 2). Let A,(s) € h* denote the basis of fundamental weights dual
to them (4,(s), h;(s)) = é;;. Explicitly

Ai(s) =N —d0() + 4,8y,  §=0,...,7, (A.3)

where )\, ..., A, are the fundamental weights of g, A, = 0 and }, is dual to K|, i.e.
(K,Xg) = 1. Define r-variables 7;:R"! — C by ( = 0),

1 . m2a?
— 5 07 6) = (4,00 9) + 8, T
2.2
=X p—d;0(s) ¢ +4a, <C+Tg€;>, (A.4)

where one is still free to choose the branch of the logarithm. In particular,

2,2
((s) = ( I <s>C> ’;‘52 . (A3)
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Conversely,

M 2.2
a;m-x

1 ¢ !
¢=- > hj(s)In(r;(s)€? )
j=0

1 -,
-~ gaj In7,(s) + (()K . (A.6)

The equations of motion for AT(g, s) are then equivalent to

6;1(‘9# In7,(s) — mzdj <H Ty (8) 7% — 1) =0,
k=1

m2
0pd,,(((s) — o(s) - ¢) = — %5
The normalizations are choosen s.t. the vacuum solution (aj -¢p=0fore =1;
2

(A7)

a;-¢p=2mn/B,neLfore=1) P, =— gng—ﬂ—sz corresponds to 7;(s) = 1,
j =0, ..., 7. In particular, for g = A, the equation for the 7-variables is
m2
7j0,0_7; = 0,7,0_7; = - (T Ty — ). (A.8)

Linear system. The equations of motion (A.3) can be recovered from the compatibility
condition [£, , £ _] = 0 of the following linear system:

gﬂ: = a:t - A:I: )

~ m A

A__ = —‘25,88__@"‘ EE, (A.9)
fl+ __m 6—2554515625;3@,

n I8 s
where £ = Yle, F = Y &,f, are the standard regular elements of §, and
=0 i=0
. s
[d,,e;] = NJ e; and [d, f;]1 = — NJ f; has been used.
To a given solution @ of the field equations one can associate a wave function
solving
LW =0 (A.10)

and vice versa, where W takes values in the affine group. Because of the rapidly
decreasing boundary conditions (cf. Sect. 2.2) one has

2

L L
A_—>2E 4xK,
A m A
A+—>—-§‘F,

as |z~ | — oo. Let E(xz*, ™) denote the asymptotic wave function solving

( lim g;)Ezo.

|z—|—o00
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Using [E, F'] = K one checks

Because of the simple K-dependence, the problem of solving ,%AiW = 0 can be
reduced to an equivalent linear problem .2, W = 0 in the loop group. Set

A = —sﬂa_¢-H+%E(s),

. e ., (A11)
A, =~ > e~ P H(s)ehP? H
where E(s), F'(s) are the projections of £, £ into the loop algebra. Set %, = 0, —A,
and consider £, W = 0.

Lemma 2. [2] Any solution W of £, W = 0 can be lifted to a solution W of (A.10).

From now on we specialize to ¢ = A, = sl,,, and the principle graduation
s=(1,..., 1) and set AT(r, 1) := AT(sl, ., 1).
Spectral problem. For a given solution of the field equations the integrability condition
[£_, %, ] =0 is satisfied and it suffices to consider the linear equation £ W = 0.
This can be rewritten as a genuine eigenvalue problem, which for the AT(r, 1) models
takes the form

4

W =puW, £:=id"0_+ieDA", W =AW, (A.12)
where the parameter of the loop group was redefined by a factor of —i, so that
E(l) = _i#’Aw Aab = 6a,b—1 ’
1
with the indices taken modulo 7 + 1. Introduce the matrix U,, = ——=w®,

vVr+1

satisfying U? = J, J,, = 6, .14 U* = J* = I. On the space of matrix-valued

functionals A = A[d,, ..., d,] introduce an inner product by [7],
(4,B) = / dz~ Tr(ATJB). (A.13)

The conventions in (A.10), (A.11) are then chosen s.t. for the real coupling models
(¢ = 1) the operator .%4 is formally selfadjoint w.r.t. to the inner product (A.12)
on a suitable subspace of functionals A. To see this introduce the automorphism
kAldy, ..., d,] = Alkdy, ..., kd, ], where kd; = —d,,_;,1 =0, ..., r. It satisfies
(kA, kB) = (A, B). From the analysis of the scalar linear problem it follows that one
can restrict attention to the subspace of x-invariant functionals A (cf. the remark
below and [18] for a discussion of this fact in the context of W-algebras). From
JAJ™' =A=', JADJA = — kD one checks that £t = J(k.%)J, for € = 1. This
implies

(A, ZB) = (%kA, kB), (A.14)

so that .% is formally selfadjoint for € = 1 on the space of k-invariant functionals
A. In particular this means that for the real coupling models the spectral values p are
real.
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Remark. For the scalar operators L; the restriction to k-invariant wave functions
is possible because also the operators xL; have the key property of lying in the
commutant of  screening operators [18]. Alternatively one could work directly with
the symmetrized scalar differential operators L™ = %(Lj + kL;). We preferred
here the first viewpoint (restriction to invariant wave functions) because there is no
simple matrix analogue of L?™ (in particular %(,‘Z_ + k.%_) would not do). Notice
also that by means of the relation (2.37) the inner product (A.12) induces an inner
product on the space of scalar wave functions in terms of the standard inner product
(a,b) = [dz~a™b. W.rt. the latter the operators L; are formally selfadjoint on x-
invariant scalar functions a. By construction every normalizable matrix wave function
gives rise to a normalizable scalar wave function, but not necessarily vice versa. This
implies that for e = 1

0, (£) Co,(Ly).

Affine Toda vs. mKdV hierarchy. A partial differential equation arising from the
integrability condition of a linear system .%#,, 4 can be systematically extended
to an infinite hierarchy of partial differential equations by studying the kernels of
ad £, .5

Proposition A. Any element of Ker(ad %, ) can be written in the form GS G;l,
where

G_=1+) g ,Gud™",

! . (A.15)
G, =e P H <11+Zg+1n(—iu/1)">
n=1
and g, , are diagonal matrices. Further, S_ = 37 s_ (ipA)" and S, =
nim_

>Z Sy n(—ipuA)", where s, are constant diagonal matrices and m. € Z.
n>mqy

Proof (Sketch). For the “—” component this is Proposition 1.2, Lemma 1.3 of [6] (see
also [23, 24]). For the “+4” case observe that

Pt Hop emehP H — 9§ —eBd, ¢ H — (ipA)~",

which is form-identical to 4 upon replacing 0, with 0_ and puA with (uA)~! and
changing the sign of 3. Thus

V_ eKer(@d % ) iff V, := P Hy e=P? H| 5 €Ker@d.%,). O
pA—(uA)~!1

Each element of Ker(ad %) can now serve to define an evolution equation
consistent with the original one. The coefficients of the positive/negative powers
of 4y in S, do not enter the construction (cf. below) so that if suffices to consider

V, = G (FipHF' G, (A.16)

3> Depending on the context such kernels are also known as the kernel of the Adler map or the
kernel of the Poisson pencil
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and powers thereof. Observe that the matrices V. define a resolution of the identity,
VI+! = (ip)"t!1. For any Laurent series V in iy use the notation (V). and (V)s,
for the parts containing powers < k and > [ respectively. Similarly let (V),, denote the
coefficient of (ix)*. In this notation the defining property V., € Ker(ad Z,) implies
that

(VM50 Z 1= (VM) _ A7 Al = = [V, 21,

are p-independent and
(VD)o Z] = [(V]g, e P HAT e™P0 Bl = —[(V)5, %, 1,

are of order (z’,u)‘l. This means that for V, € Ker(ad %4, ) one has a consistent set
of evolution equations

0
where A" = V)50, A% = (V) o In particular one shows 6
,41i =4, (A.13)

so that one can identify av:;—L with z* and the n = 1 equations become trivial.

So far the “4” and the “—" sectors have been treated as independent. But because
of [(Z_,%,] = 0 the kernels ad %, and ad.Z_ intersect. To see this, note that
[%_,%,] = 0 implies [0_ — AS,G_%,G="] = 0, so that G_.%,G~" is of the
form G_$+G:1 = 0, + C, where C takes values in Ker(ad A). Thus,

[Z,,V"]=0, n>1. (A.19)

Similarly it follows [.£_, V'] = 0, n > 1. Correspondingly there is a consistent set
of “crossed” evolution equations

0

For n =1 one recovers [£,,.£_] = 0, i.e. the original affine Toda equation.

Remark. i. Notice that the elements of Ker(ad %, ) are uniquely determined by their
constant part. In particular V* = (£iuA)™ + ..., which also implies for rapidly
decreasing boundary conditions

lim A% = (ipA)T". (A.21)

|z~ |00

ii. Since £ = 0_ + €D — iuA coincides with the differential operator defining
the mKdV hierarchy in the DS scheme, the “—” flow equations (A.17) coincide
with that of the mKdV hierarchy in the variables dy, ..., d.. In particular, the flow
variables 22 and z! correspond to the usual time and space coordinate in the mKdV
equation. Since £, can be made form-identical to £ by a gauge transformation
(and pA — (uA)~', B — —p) the “+” flow equations in (A.17) essentially also
define a mKdV-hierarchy in disguised form. The higher order generalization of the
affine Toda equations arise from the crossed flow equations (A.20).

6 This holds only in the principle graduation
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Abelization Maps. As a corollary of the previous construction one obtains the Lax
representation and the zero curvature condition for the hierarchies. To simplify the
notation sett, =z, t_, = x:, n € E and similarly A™ = A", A™" = Ai, nekl
and V* =V, V™" =V, n € E. Then

a n n ny _

Wv —[A™", V"] =0, (A.22)
0 n 8 m n my
&—A _EA —[A™", A™]=0. (A.23)

The second equation is just the integrability condition for the Egs. (A.17) and (A.20).

0
The first equation can be obtained by differentiating [.£,, V"] = 0 w.r.t. T which
results in 5 2
no_ m n % =0.
[—OTm vr—[A™V ],gi] 0
The left entry of the commutator is again an element of Ker(ad %, ). Since elements
of Ker(ad %4, ) are uniquely determined by there constant parts (in ¢,,) and the latter
vanishes for the quantity in question one arrives at the Lax representation (A.22).
Inserting now V. = G7'(£iuA)F'G, into the Lax representation one finds that

1o} 0
G =— — AT )Gy = — — A9™, A.24
o e 829
for some Ker(ad A)-valued A ™. Since Ker(ad A) is abelian this means that Ad G,
(considered as a function of all the flow variables) serves as an abelization map for

all of the higher order linear operators %" = % — A™. The case m = 1 leads back

n
to the proof of Proposition A. Since the transformed connections A™ are abelian

the zero curvature conditions (A.23) imply

0
— A% () — — AS™(w) =0, A.25
ot () oL, () (A.25)
so that A% ™(y) are generating functions for the conserved charges. In particular for
(m,n) = (2, 1) one obtains the conservation equation for the lowest KdV flow while
(m,n) = (—1,1) gives the conservation equation 9, AS! = 9_A%~! for the lowest
affine Toda flow. In particular, we note explicitly the

Corollary A. The functional A% (1) = AG’I[dO, ..., d, 1 () is the generating func-
tional for the homogeneous, polynomial conserved currents of both, the 8%_ -KdV flow

and the 0z1+-ajﬁne Toda flow in lightcone dynamics

Here, homogeneous and polynomial means that the expansion coefficients in
powers of iuA are differential polynomials in d,, ..., d, and are homogeneous of
degree n + 1 w.r.t. the grading degd; = degd_ = 1.

Equations (A.25) can also be used to relate the abelization maps Ad G to wave

1o}
functions W, solving £™"W, =0, n € £E, where £ = T A™. To find the

relation, rewrite this as n

o (A.26)
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which means that AW, can be viewed as an abelization map for which the

transformed connection vanishes identically.” Given Ad G satisfying (A.24) and
Eqgs. (A.25) for the transformed connections an abelization map Ad W, implementing
(A.26) can be obtained as follows. Define

w(p) = Z ASndt, (A.27)
neExtkE
which by (A.25) is a closed 1-form on some contractable region of the phase space
(where t,, n € E are good local coordinates). Hence it is exact and has a potential
¥ = A(t,,n € L E;p) satisfying 9, § = AG™ | Explicitly,

1

Atz ipd) = / ds< 3 4Gt u)tn) + 9, (A.28)

0 nexk

where st = (st ;, st,,...) and the integration constant 4, is chosen s.t. lim 4 =0.
Identifying . T oo
W:l: - G:I: e’Y y (A29)

one checks

2 G\ ~-1 5y 0 §y—1
g”:Gi(a—tn—A ’)Gi :(Gie’Y)a—tn(Gie’Y) .
Asymptotics. The asymptotics of the function # is related to that of the 7-functions.
Consider the “—” part of the relation (A.29) and return to the notation U —ly By =
W©E) for the Jost solutions of .. Since the matrices U~'g_ U are differential

polynomials in dy, ..., d,., they vanish for |z~| — co. Thus,

lim e €@ e Dy UL
= lim e @ aTindtyEt 2 Tin2) (A.30)
T~ ——00
Observe from (A.21) that as z— — —oo, 4 contains a field independent part
4 = &(x,iu82) + 7, which cancels against the factor £ on the r.h.s. of (A.30). In
terms of components (A.30) reads

. —f(at =i
lim e &= ,wﬂ)wg*'_)b(wa'u)
rT ——00

lim a=b.
T ——00

0, a#b,
= { AT (A31)

Inserting the expression (4.20) for the Jost solutions this becomes

—_ T. l‘+,$_—6 —iw)~!
lim Y@z MY = lim J( ((=iw)™") '

A.32
T ——00 T~ ——00 Tj(l’"",x_) ( )

7 The advantage of using an abelization map of the form (A 24) with nontrivial image in Ker(ad A)
is that the recursion relations encountered in the proof of proposition A can be solved locally, i.e.
no integrations are necessary
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o

1
From here one can deduce the relations I E_Ln ) = F r+l (6,6)_(n+1)8x:l: InT;
n n

for the conserved charges quoted in the introduction. See also [20].

B. Fredholm Theory on Banach Spaces

The decoupled GLM equations (3.19) constitute a family of Fredholm equations
indexed by £ € R on a non-compact interval. These equations are not directly
amenable to the classical Fredholm theory. In particular, Egs. (3.19) do not coincide
with the equations for the resolvent kernel of the Volterra integral operators ﬁ';i).
Nevertheless, up to some technical modifications the major results of the classical
Fredholm theory carry over. One way to show this would be to go back to the
original discretization procedure and to check whether for suitable continuous kernels
F;i) the required bounds can be established. For several reasons it is however more
convenient to embed the set-up into the broader context of Grothendieck’s generalized
Fredholm theory on Banach spaces [11]. For orientation we remark that the classical
Fredholm theory is recovered for the Banach space % (/) of continuous functions
on some compact interval I = [a,b] C R with the usual norm ||f|| = sup |f(z)|. A
zel

continuous kernel A € (I x I) then defines a nuclear operator and its trace coincides
b
with the “naive” trace [ dz A(z, z).
a
Fredholm theory on Banach spaces. Let E be a Banach space satisfying the (Banach)
approximation property. We refrain from giving the definition because all the standard
Banach spaces (continuous functions, Hilbert spaces, LP-spaces, Sobolev spaces)
satisfy the approximation property. Let E’ be the dual of E and use (v, w), v € E’,
w € E to denote the duality pairing. The relevant class of operators (replacing the
trace-class operators on Hilbert spaces) are the nuclear operators in E. A nuclear
operator A in E is one which can (non-uniquely) be represented as a series A = > " a,,,
n

where each a,, is of rank 1 and )’ ||a,,|| is finite (so that the series A converges in

n
operator norm). Explicitly one may write a,, = A, |v,,) (v,], for v, € E, v, € E’ s.t.
lv,]l = ||lvi,]l = 1 and X, € C. The nuclear norm la]|, is the infimum of the set of
numbers Z la,ll = Z I)\ | for all decompositions A = Za The space L!(E) of

nuclear operators then is a Banach space for the nuclear norm The crucial properties
of nuclear operators are

NI. Let E be a Banach space satisfying the approximation property. There exists a
linear form Tr on L(E) s.t. | Tr(A)| < ||A]|; and taking |v) (w|(c € E,w € E') to
(v, w).
N2. For any A € LI(E) and € > O there exists a Hilbert space H and bounded
operators a:H — E, o':F — H st. A = ad’ and o/« is a Hilbert Schmidt
operator in H with ||o/«||, < ||A]|, + € (where || - ||, is the Hilbert Schmidt norm on
L*(H).)

The modified determinant of A € L!(E) can then be defined by det,(1 + A) :=
det, (1 + &’@), where the r.h.s. is the determinant for Hilbert Schmidt operators (see
e.g. [26, 10]). Finally, define the (“Grothendieck”) determinant of A € L'(E) by

det(1 + A) := T det, (1 + A). (B.1)
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Using the analogous properties for the determinant on L?*(H) one deduces

Theorem B1. For A € L'(E), a) | det(1+A)| < exp(||A||,). The map z — det(l+2zA)
is an entire analytic function.
b) det(ll + zA) = e* T [T (1 — A, 2)e?, where || A||, = Z PYR

n>1
c) det(l1+ A)det(ll+ B) = det(1+ A+ B + AB).
d) If =\ is an eigenvalue of A then det(]l+ zA) has a zero of order nat z = — X7,
where n is the algebraic multiplicity of —\~

e) det(I + zA) = > 2"d, (A), where for a decomposmon A= Z |v,,) (vl,| one has
n>0

d,(4) = Zdet(( V5, V5 jep with T = {(y, ..., 1) e N [i) <. <, }.
f) det(]l+ zA) = exp ( > % Tr(A")(—z)”),for |z] < 1/]|Al};.
n>1

In particular, it follows that for A € L'(E) the resolvent set is given by
0(A) = {—z7! € C| det(1+zA) # 0}. To describe the resolvent, define the modified
first Fredholm minor by Dﬁ(A) := D?(d/a), where the r.h.s. denotes the Fredholm
minor for Hilbert Schmidt operators, i.e. DE(A) := det, (11 + zA) (1 + zA)" ' A. Then
define

D_(A) := e* T D2(A) (B.2)

to be the Fredholm minor for A € L!(E). Using the analogous properties for the
Fredholm minor on L*(H) (e.g. [26, 10]) one deduces

Theorem B2. a) || D, (A)||, < C, exp(zv,||4l|,) for constants C|, ~,.
b) For —z~' € o(A) the resolvent is given by

D.(4)

-1 _
(+24)" = det(1+ 2A4)

c) D,(A) = ) 2"D,(A), where D, (A) is given by a Plemelj-Smithies formula (in
n>0
terms of the nuclear trace).

Fredholm theory for GLM equations Set I, = [z, 00[ and consider the Banach space

, < oo} with

norm || f|, , = sup If(s)[ (s :c+1)”, 5 < v < 1. Similarly define 3/([2) with norm
s€ly

Al = sup |A(s,®)|(s—x+ 1)"({ —z+ 1)". Then, if A € g(]ﬁ) is a continuous

(s,t)EI2
kernel, the function Af defined by Af = f dy A(z,y) f(y) belongs to & (1) if f
does. The linear operator A is bounded w1th norm || Al < — HAH Since A € £(1%)

is also square integrable A can also be considered as the restrlctxon A=A
of a Hilbert Schmidt operator acting on L*(I,). One can prove the

Lemma. The operator A acts on (1) as a nuclear operator. The Hilbert Schmidt
operator AHS approximates A in the sense of N2. Moreover, the trace of A as a nuclear

operator coincides with the “naive” trace TrA= f ds A(s, s).
I
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Remark. We emphasize that A does not act on LZ(Im) as a trace-class operator and
the sum ) A, does not converge, generally speaking. A criterion for A to be trace-
n

class is that the kernel is hermitian positive, i.e. satisfies f dsdt A(s,t) f(s) ft)* >0
2
for all f € ©°(I,) (e.g. [10], p. 114). For the class of kernels relevant to Egs. (3.19),
however, this fails. For the same reason the Grassmannian formulation of Segal and
Wilson [28] (where only determinants of trace-class operators are considered) does
not apply here.
From (B.1), (B.2) it follows that

det(l + zA) = exp (z / ds A(s, s)) det, (1 + zleS),

f= (B.3)

D, (A) =exp (z/ds A(s, s)) Dﬁ(A).

Iy

In particular one obtains from (B.3) expressions for the expansion coefficients d,,(A)
and D, (A). These turn out to be of the same type as in the classical Fredholm

theory, because the €T factor essentially re-inserts the diagonal terms into
A(8,5)1<i j<n» Which are absent in dZ,(A). Thus, dy(A|z) = 1, Dy(A|z,y) =
A(z,y) and

81...8

dn(Alx)z/dsl...dsnA {31"‘5”], n>1,
ITl
(B.4)
Dn(Alx,y)z/dsl...dsnA [; 81"'2"], n>1,

1z

where

Sp..a8n ]
4 [tl tn} = det(A(s;, t)1<a,5<n) -

Note added in proof. In wish to thank H. Flaschka for pointing out the relevance of [31]; and also
L. Dickey, P. Santini and P. van Moerbeke for enjoyable dicussions.

Acknowledgements 1 like to thank L Bonora and S. Theisen for discussions and D. Maison for
reading the manuscript.
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