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Abstract: We study the probability distribution of the appropriately scaled square
of the total spin for critical asymptotically hierarchical quantum models and show
that it converges, as the number of spins tends to infinity, to the same function
related to the corresponding classical systems. Thus, we exhibit explicitly a prop-
erty of statistical mechanical systems which, at the critical point, does not depend
whether one uses a classical or quantum mechanical description.

1. Introduction

It is widely believed that the critical behaviour of statistical mechanical system is
independent of the way (classical or quantum mechanical) used to describe it.
Sewell [8] has shown quite generally that the long distance behaviour of critical
quantum systems is classical, but the question on the relation between this classical
behaviour and the one corresponding to the classical version of the system
analyzed was not considered.

In the last decade, rigorous renormalization group methods have been de-
veloped, which permitted, among other things, a deep understanding of some
classical critical systems, particularly those having infrared asymptotically free
behaviour [6]. On the other hand, no such progress has been achieved to treat
quantum critical systems in general - a task much more difficult than the classical
case because of the appearance of non-commutative objects.

In this paper we consider a special class of spin systems which can be analyzed
both classically and quantum mechanically: the asymptotically hierarchical models
in the terminology of [9]. These are generalizations of Dyson's hierarchical models,
originally introduced in [4]. The classical version of these models, with the spins
taking values + 1, at the critical point was first studied in a rigorous way in the
fundamental paper by Bleher and Sinai [3]. Vector valued classical spins at low
temperatures were analyzed by Bleher and Major in [1, 2] and by Schor and
O'Carroll in [7], using a different hierarchical model. Here we consider instead
quantum mechanical spin ^ systems and compare them with the corresponding
classical three dimensional vector models. Specifically, we study the probability
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distribution of the appropriately scaled square of the total spin for critical
quantum systems and show that it converges as the number of spins tends to
infinity to the same function related to the corresponding classical systems. Thus
we exhibit explicitly a property of statistical mechanical systems which at the
critical point does not depend whether one uses a classical or quantum mechanical
description.

We now explain the organization of the paper. In Sect. 2 we define the class of
hierarchical quantum and classical spin systems which will be analyzed and show,
in heuristic terms, why the probability distributions mentioned above should be the
same in both cases at the critical point. In Sect. 3 we state our main theorem, the
proof of which is given in Sect. 4 and follows basically the ideas developed in [9],
which presents a simplified treatment of the original proof for the scalar hierarchi-
cal models [3]. As a corollary we also obtain a multiscale expansion for the free
energy associated to the systems of Sect. 2.

II. Definition of the Models and Main Results

To each site of the lattice An = (1, 2, . . . , 2n} we associate a spin variable which
may be a classical scalar variable: St = ± 1, a classical vector: S^eR3, or a quan-
tum spin \. St = / ® . . . ( g ) ^ σ ® . . . ® / acting on ((C2)2", where the components
of σ are the usual Pauli matrices and ^σ is placed in the zth position in the definition
of £.

A member of the class of asymptotically hierarchical models is specified by an
initial Hamiltonian Hno(Sι, . . . , S2«0) defined on Ano. The Hamiltonians
Hn(Sι, . . . , S2n) on Λn for n > n0 are given recursively by

Hn(Sl, . . . , S2n) = Hn-^S!, . . . , S2n-l) + Hn-1(S2n-l + l, ' ' ' , S2n)

We will assume that Hno is rotationally invariant. As shown in Dyson's paper
[4], the thermodynamic limit exists if c < 2 and there is phase transition if c > 1.
We assume in the sequel 1 < c < 2.

Consider the characteristic function of (£ίeyl S;)2 in the canonical ensemble
defined by Hno. Classically,

C f > ( 0 = e x p Γi{( Σ
L \ieΛn

= )ίexp Σ Si - βHHd*S± . . . d*S2n , (2.2)

where ξ eR, Z^ is the classical partition function and β is the inverse temperature.
If p(n\s) is the distribution of ΣieΛ Si (which depends only on |£ίeyl ^ i lX

s . (2.3)
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It follows easily from (2.1) that the function p^c}(s) satisfies the recursion
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- U\)d3u , (2.4)

where e± is the unit vector in the one-direction.
Proceeding heuristically as in [9], we expect that above the critical temperature

1 5 12 ~ 2" as n -* oo and hence the exponential in (2.4) should be irrelevant in this
case. On the other hand, below the critical temperature | s \2 ~ 22n and the exponen-
tial is dominant. At the critical temperature we may expect \s\2 ~ 22n and the

/4
exponential is dominant. At the critical temperature we may expect |s|2

and if this is indeed true, the characteristic function of I - 1 (Σί6yl ^)2 should

converge to

= lim C<c)

with the distribution q(c}(u) satisfying the relation

q(c\u] = const exp(βu2} J q(c)(\v\)q(c] d3v .

(2.5)

(2.6)

The constant above is determined by the condition C(c)(0) = 1.
The formal considerations were shown to be true for the scalar S/ = ± 1

models by Bleher and Sinai [3], who studied the problem under the restriction

-v/2 < c < 2. In this case, the transformation on the space of probability distribu-
tions defined by the right-hand side of (2.6) has a Gaussian fixed point which is
thermodynamically stable, i.e. the linearized map has only one eigenvalue greater
than one.

The arguments for the scalar models can be extended to the vector models so as
to justify the picture above. The Gaussian solution of (2.6) is

exp[ - (2.7)

where α(j5) = βc/(2 - c).
We consider now the quantum case. Let A(

p

j} = {(j — 1)2P + 1,
(7 - \)2P + 2,. . . , (7 - 1)2P + 2p}ϊor l^p^n and 1^7^ 2n~p. Define

ιeΛp

Then, as pointed out in Dyson's original paper [4], the set {(μlj))2 1 ̂  P ̂  w,
1^7^ 2"~p; (μ^1^} (where (μ^^s is the third component of μ^) is maximally
commuting in (<C2)2" and the common eigenfunctions diagonalize Hn. Denoting the
eigenfunctions by | {^7)}; mn>, we have

; mn> =

ny = mn\ {/«>}; mB> . (2.9)
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Since /#> = μ^'Γ1} + μ™\ (1 g p ̂  n), we must have |42Λ~1} -
^^r^ + ̂ î and initially ^efO, 1}. Also, the possible values of mn are

restricted to |mj ^ ̂ 1}.
In terms of the basis (2.9) the characteristic function of (Σίeyl Si)2 in the

quantum case is

, (2.10)

where Z$* is the quntum partition function and the prime in the summation takes
into account the restriction imposed on the set of possible values for {f^}, alluded
to above.

Writing (2.10) as

CP (ξ) = I W + 1) exp DW + 1)] zn(t) , (2.1 1)
^n / = 0

it is easy to verify, using (2.1), that

)1 Σ
J Λe{0, ,

1) Σ ^-ι(ΛK-ι(/2) (2.12)
e{0, ,2»-2)

Proceeding in analogy with the classical case we consider the characteristic
/cV

functions of I - j (Σίeyι ^ί)2> which can be written as

2 / 2 \" Σ U +
ueAn

+ u , (2.13)

where AM = < I ̂ — 1 /: 0 ̂  f ^ 2" 1 >. If the analogy can indeed be carried over to

((c\ \
the quantum case, we may expect that at critical β the limit of CM

(<Z) I T ) ζ ) exists as

n -> oo and is given by

C(β)(ί) = J w exp(iίfi2)p(β)(ιι)dιι, (2.14)
o

2 /4Y // 2 V \
with p(«>(u) = limll^GOpll

(«)(ιι), p^(w) = —I-J zJ (-7=) u ). In addition, since
n \ / >

from (2.12) p^}(w) satisfies the recursion

\V\~V2\ ^~7fU^Vi+V2

^ (2.15)
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we may also expect that p(q)(u) satisfies the equation

p(q\u) = const Qxp(βu2) f J p(q\vί)p(q)(v2)dv1dv2 . (2.16)

Assuming that all steps above can be carried out, we may ask about the relation
between the classical and quantum characteristic functions C(c\ξ) and C(q)(ξ). If we
set p(q)(u) = 4πuq(q)(u\ such that

C(q\ξ) = J Qxp(iξu2)(q(q\u)4πu2du , (2.17)
o

then q(q}(u) satisfies the equation

q(q\u) = const exp(βu2) J J q(q)(vί)q(q)(v2)
l^ dvίdv2 . (2.18)

2 ^ , M

Now we make the change of variables (vί9v2)-*(r9θ)9 where vί = r,

/4 4
v2 = l-u2 + r2 •= ur cos 0, to get

V c Jc

q(q)(u) = const Qxp(βu2) J r2q(q\r)dr J ^ («> ( -u2 + r2 --^=ur cos0 ) sinθ dθ ,
o o \ V C c /

that is

q(q\u) = const exp(βu2) (2.19)

which is the same as (2.6). Thus, provided the heuristic arguments for the quantum
/cV

case can be justified, we see that the distribution of lim,,^ I - 1 (£ίe/1 Si)2 at the

critical temperature is the same whether one uses classical or quantum Statistical
Mechanics.

In this paper we show that the above reasoning holds (for the quantum case) if

the parameter c is restricted to y/2 < c < 24/5. The region 2τ ^ c < 2, which is
allowed in the classical case, could not be handled within our method of proof.

The strategy we follow is to study the recursion (2.15) using the methods of the
scalar St = ± 1 case [9]. Unfortunately, we have not been able to implement the
very powerful analyticity techniques of Gawedzki and Kupiainen [5], due to the
discreteness of the spin values. In our problem we have to deal separately with large
fields and also with very small fields, so that the perturbative region corresponds to
intermediate values of the fields. The precise meaning of these statements, as well as
the formulation of our main theorem, is given in the next section.

III. Main Theorem

Definition 1. Given β > 0 and 1 < c < 2 define the operator £#(β) acting on
/ 4 3 \

the probability space L2[ [0, oo), —= γ( β)2 x2 exp( - y(β)x2)dx , y(β) =



280 C.H.C. Moreira, R.S. Schor

2(c — l)β/(2 — c\ henceforth denominated L2(β\ by

r\2\f(^r
X

d3r . (3.1)

The following properties may be easily verified:

PI. <stf(β) is a self-adjoint operator on L2(β).
P2. j/(β) may be explicitly diagonalized: s/(β)φn = c~"φn, neN, with

φn(x;Jβ) = [2" + 1

v

/(2^TΊ)!^x]-1H2π + 1(v̂ x), where H2n+1 is the
(2n + l)th Hermite polynomial (Hm(x) = ( - l)m exp(x2)(d/dx)m exp( - x2)).
The set {(jffn}™=o is an orthonormal basis for L2(β) and the first polynom-
ials are φ0(χ β)=ί, Ψl(χ , β) =

P3. Regarding <$tf(β) as an operator acting on /^([O, co)) we have |

Definition 2. Given β > 0, \<c<2 and ΛΓeN, define the subspace Jtf^(β) =
{feL2(β): (φkJ)L2(β) = 0, k = 0, 1, . . . , ΛΓ}.

P4. J^if(β) is invariant under

PS.

Induction hypotheses. Suppose we are given the set of parameters 0 < λ < 1,
0 < D < oo, N ̂  3, 7i0 ^ 0 and 1 < c < 2. At the nth step we are also given
a compact interval B(w) = [/Jίϋ^ βίf0] c (0, oo). Define the following sets:

Ln = {xeAπ: x > D^/n] ,

/ c \n

where Δn = I ̂ —-) . We state the following induction hypotheses referring to the

2
function αn(x; β) = - Z^p^(x) for βeE(n\

c
HJ. For each βeB™ and

^n(x; β) = Ln(β)xexpl - α(jS)x2 - επ(x; /Q] , (3.2)

where εn(x; β) is given by

εn(x; β) = βj Bί">(/0φι(x; /O + (^jB^(^φ2(x; β)

Σ 5jM)

7 = 3

O + -
X
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The following conditions are met:

(a) B(f(β) >0.
(b) Q(n)( ;β) is defined _ on [0, oo) such that \Q(n)(x;β)\9

d , v ,

dx" v "
(c) PF(M)( ; )5)' and R(l>y(';β) are defined on Dn such that | W(n\x; β)\ ^ n2Δn

^c"" Vj5eB(n) and B(?(β($) =
^. For each βeE(n) and xeSn,

(/9 exp[ - α(/?)x2] , (3.4)

^ For each βeE(n) and xeLw,

ίπ(x; /ί)| ^ ̂ (j8)x expΓ - α( (3.5)

where 0 < C(n)(jS) £

H"5. Ln, Bin}(k=l,..., N), C(n\ Q(n\ W(n) and R(n) are continuous functions with
respect to β over the interval B(w).

Theorem. For each ^/2 < c < 2s there is a possible choice of the parameters λ, D,
N and n0 such that, given the inteval E(n°\ if the induction hypotheses HΪ° — HS° are
verified with Q(no) = 0, then for all n > n0 there is an interval
B<») = [βW9 β(n)^ c B(ΛO) for which HJ - H? are verified. The following recursive

relations are met:

C2~J

R") B(w + 1) c= B(w)

R5) On B("+1) we

forj=3,...,N and C(n+1)(β) = C(n\β) - λ".
R?) 2(n)(^; )8) = 2(^(β)_Q(n)) (x; j8) -I12ρί")(x; β), where Q(^( l β)eJ^^(β) Vj8eB(π),

x; jg) = 0/or x > max Όn + 1+ -̂ .

Remark. The condition β("o) = 0 is not strict, but the statement of the theorem
becomes simpler if we adopt it. Note that at the n0

th step all errors may be included
in R(no\

Remark. From the theorem above, one may conclude that there is a βcr e ΠΓ=« ^(Π)

and a set of initial Hamiltonians (that one may show to be non-void) such
that gn(x; βcr) (appropriately normalized) converges in probability
to const x exp[ — α(/J);x2] and therefore, at this critical point, the distribution of

Λ"
ieΛ ^)2 is equal to the corresponding distribution in the classical

vector case.
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Corollary 1. The free energy density fn(β) = -2~nβ~ί\n Zjp(β) admits the follow-
ing multiscale expansion (n > nQ):

Γ /2\^ Γ /2VΊΊ
fn(β)=fno(β)-β-ί Σ 2 - H l n - + 0 p 2 - V/?eB<»>. (3.6)

P=«O+I L W L \c / JJ

Corollary 2. ^4ί ί/ze critical temperature one has

/2\t
lim fn(βj = /„„(&,) - /ί-^-" In - + 0[c<-2+ε>π°] . (3.7)

-> C

IV. Proofs

Proof of the Theorem. Let us assume inductively that for each fc, n0 ^ k ?g n, there is
a compact interval B(fc) for which Hf — Hξ are verified. Furthermore, if n > n0 we
will assume that R\ — R* are true for each /c, nQ ^ fe ̂  n — 1. Then we will show
that there is a compact interval B(/I + 1) such that H? + 1 -H? + 1, together with
#ϊ - #3, are verified.

First of all, look at the recurrence relation for gn(χ-9 β\ derived from (2.15),

Σ" ffnfril β)dn(^ β) , (4.1)

where the double prime means that the summation is over pairs (xί9 x2) such that
2

\X1 — X2\ ^ ~/=x ^ xl + X2-

For xeΌn + ί we shall divide the sum into three terms (see Fig. 1). Define

2 Σ" βn(*ιl β)gn(*2 , β) , (4.2a)
i, X2eDn

Σ" 9*(xι; ftθnfa; β) , (4.2b)
(xieSn,x 2eAn}u

{xieAM,x 2eSn}

Σ" 0.(*ι; ^^(^2; /O . (4.2c)

Assuming that Rί and Rk

2 apply for n0 ^ fc ̂  n — 1, we prove that λ may be
chosen close enough to 1 so that the Bln)'s are uniformly bounded by a constant
depending only on the values assumed by the #/"o)'s on B(wo). Then is easy to show
that

(4.3)
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- xι =

\
Xl + X2 =

2 /

.-..--*•

Fig. 1. Regions appearing in g(

n

l)+!

Substituting the form depicted in HΪ and approximating exp( — ε) by 1 — ε
we get

; β) = Ln(β}2 exp[ - x χ1x2[l - 2επ(xι; β)

where the truncation error T(

|exp -α( j

Γ /2\ 2 "Ί 4(π) is clearly O n 4 - - + 0(n4 JJ)
L \c J J

inteεral we must extend εTπ) and T(n} o^

(4.4)

In order to replace sum by integral we must extend ε*π) and T(n} over all values of
their arguments. In ε(/l) all terms admit natural extensions, except for W(n} and R(n\
These two terms, together with T(n\ shall be extended as step functions constant over
line segments of length Δn (or squares of area Δ%) centered in the points of the discrete
lattice. Observe that the extensions R(n\ W(n} and T (π) thus obtained preserve their
uniform bounds. Now approximate the sum by an integral including an error term S(π):

J JD

\^ ~X^Xί+
V c

- 2επ(xι; β)

. (4.5)
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The symbol D above means that the integral is taken over the square x ί ? x2 e

mm DM — - ,̂ max Dn + -y . The error S(n) may be regarded as the difference

between the integral of a function constant over each square of area Δ% and the
integral of a function coinciding with the former on the centers of the squares
located at the points of the discrete lattice. Since we have adopted a convenient

extension and have ground bounds over — β(n)(x; β) the error thus obtained is

quite small. One may easily check, using standard techniques, that it is inferior to
0(Δn\ In fact, the dominant contribution to S(n} comes from the border of the
integration area, where the profile of the squares does not much the profile of the

2
strip I Xi — x2 1 ^ —/= x g Xi -h x2 (see Fig. 2). This error term is not present in the

treatment of the classical scalar model [9], where the domains are linear, and is
genuinely 0(An). Enlarging the area of the borders and integrating we obtained the
following estimate:

|S (n)(x;β)\ ^ 0(Δn}(\ + x2) VjSeB ( π ) .

For xeDn + 1 this bound is uniformly majorized by 0(nΔn).

(4.6)

maxDn

mίnDn

minDn ~ΓX maxDn

Fig. 2. The approximation of sum by integral in j
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Define the following operator
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x2

2

We may write

^(x; /?) = Lπ(/?)2exp[ - α(/?)x2 +

+ 2T (x; /f) + £<">(x; β) + S<">(x;

where

(4.7)

(4.8)

(4.9)

Γ /2\ 2 "Ί 4
is 0 n4! -J 1 + 0(n4A*). E(n} is the error we get when we increase the domain of

integration to include the whole strip. The inclusion of the little corners indicated
2

by "2" in Fig. 1 adds an error xO(An) because the integration area is 0(Δl) and the
j_

integrand is xO(Δl\ The error which arise by the inclusion of region "3" may be

made arbitrarily small. This happens because exp — u(β)\x\ + x\ x2 1
L \ c /J

^ 0[exp( — D2n)] for xeDπ + 1 and (x1? x2) in "3." Fixing D large enough (but not
depending on ή) we may make this error as small as required.

Implementing the change of variables given just after Eq. (2.18) we get an
important relation between the operators $(β) and <£/(/?), namely

x/o =

Using the explicit diagonalization o:

WJβ)[l-ε<«'])(x;Jβ) =

we readily obtain

B{"\β)φι(x; β)

-K Bϊ\β)φ2(x;β)

/ 2 \ Π + 1 N

-λn+i 4 Σ
C =

; β)

(4.11)
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We write the last term in the form

N

'<">)(x; β) = £ b%\β)φk(x\ β) + β?>(x; j8) , (4.12)

where the coefficients b^(β) are to be chosen such that

7 2 x2exp( - y(£)x2)flin)(x; β)φk(x; β)dx = 0 (k = 0,1,. . . , AT). (4.13)

Define β^ (x; β) = β(? (x; β) χ [0, max Dπ ). It follows that

The upper bound on \R(n}(x; β)\ implies that if n0 is sufficiently large, then

k = 0,1,. . ., N) VβeB ( M ), (4.14)

llf l^ί /Ol loo^oU^ί^) Vj8eB ( ">. (4.15)
L \c / J

One may easily verify that

ύ 0(n2Δn) (4.16)

Adding (4.12) to (4.11) and going back to g(nlι we get

π

'8cα(jS)3 Π V
- α(j8)x2

"+1

T H + l

^ Σ
(x;Jβ)-2β<n'(x;^)-2(^(j?)i

\

π x

Now identify the following terms:

2V",
.2

WJφΛχ /0

*;β)

(4.17)

(4.18a)

(4.18b)
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; β) =

c

2β(/"(χ;1
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(4.18c)

(4.18d)

(4.18e)

Thus we may write

j=3

[-

(4.18f)

(4.19)

Approximating 1 — ε by exp( — ε) and including the corresponding error term
\ we get

; β) = Ln + 1(β) exp Γ - x(β)x2 - 0Y + V

J=3

<;/θ], (4.20)

where

(4.18g)

So, we have formally reproduced the ansatz in the intermediate fields region,
but we still have to show that some estimates are valid. The estimate on | W(n+ί)\
derives clearly from the upper bound on \S(n)\. The estimation of ^+\ and
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0ί+}ι follows in general terms the same reasoning employed to bound E(n\ The
outcome is that

-α(β)x2) VxeD M + 1 ,Vj8eB ( π ) , (4.21)

and if D is fixed large enough

l0«3+ι(x;β)l ^ Ln(β)20(Al) exp( — α(/?)x2) VβeDn + 1, VβeB(7l) . (4.22)

Using the estimates so far obtained, one may bound \R(^\ as follows:

1
x

V. l_ \

-0(n4An) VxeD n + 1 ,VβeB ( M ) . (4.23)

In the interval ^/2 < c < 21 we may choose λ depending on c sufficiently close
to 1 such that if n0 is sufficiently large, then

- #<M)(x;β)\ £ λ2" -j VxeD Λ + 1 ? VjβeB ( M> . (4.24)
\c /

Note that R$ applies from the very definition of β(n+1). Iterating #3, with
WG ^ k ̂  n, we get

Observe that we are using Q(Mo) = 0. Take ωe H° ,1) and define
L"o + 1 /

«! = [nco]. In order to estimate the sum above up to the term k = n± we shall need
the following lemma of Tauberian type:

Lemma. Given βe\_β-, /?+] c (0, oo) andfe Jfji(β)9 \\ f ||«, ^ 1, ί/z^rβ are constants
NO, M and L depending on c, β- and β+ such that, if N ^ N0 and p ^ 1,

LI. |t«/(/y/)(x; /?)| ^ exp( - -^-pN } Vx ̂

L2.

The proof of this lemma will be left to the end. First of all, note that if k ̂  n± ,
then n — k ̂  n(l — ω). So it is possible to choose N depending on ω, c, β("o), j8(+o)

and D so large that max DM+ 1 + ±± ̂  ̂ M(c, j?"_°, β(ΐo))^(n - k)N for all fc ̂  ̂  .

Then for x ^ max Dπ+ ! H — the lemma tells us that

(4.26)
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21nc
Choosing N so large that 2 expl -- — N I ̂  (λ22c~2γ-ω we get

(4.27)

and the sum up to order k = n^ turns out to be less or equal to

To estimate the remaining terms of the sum, use P3 and the uniform bounds on

Γ / 2 V Ί
O N,2fl ( -=• 1 .

L V ) J

«ι + l «! + !

const 2n(i~ω)nN+1 . (4.28)

Choosing ω so close to 1 that 2l_~ω(λ2 2c~2)ω ^ x42c~2 we see that the second

m is of orde

required in H"H

term is of order 0\nN+1λ^(^} |, yielding the upper bound on |Q(n+1)(x; β)\

To verify the bound on
d

, we follow basically the same steps. We
dx~

estimate the corresponding sum up to order k = n^ using the second part of the
lemma and the remainder terms using the easily derived property

together with the uniform bounds on Q(k). The only term that should be treated

separately is 2 — βίw)(x; β\ but again from P3 we easily get that this term is less

Γ ΛΓ- 1 ^/2\ M Ί An + ίthan or equal to 0\ n 2λ2 ^ for x < maxDπ + 1 H—— and βeE(n).
L \c J J 2

Inserting all the estimates obtained so far, one may verify that λ may be chosen
in (0,1) such that

\RW(x; β)\ ^ λ 2 n ϊ VxeD Λ + 1, V/?6B<"> . (4.30)

Estimates (4.24) and (4.30) prove the required upper bound on |#("+1)|.
To finish the verification of Hjn+1) note that

)} >0 Vj?eB(π) (4.31)

provided that n0 is sufficiently large.
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We now consider the question of determining the interval B(π + 1). From esti-
mate (4.14) we see that Bn

2

+1(βV) > λn+ic~(n+1) and Bϊ+1(β(?) < - λn+1c~(n + 1\
The continuity of B(f + υ then implies that there are two numbers, β(" + υ and β(+ + ί\
such that β(ή) < β(? + 1) < jg<£+1) < β(t? and Hn

2

+1 is satisfied with the definition
B(π + 1> = [jS(ϋ+1), jβ(+ + 1)]. Repeating this process, one generates a sequence of
nested compact intervals. In the end, βcτ will lie in the intersection of all B(M)'s. This
is the usual Bleher-Sinai prescription for finding the critical temperature.

Let us now check H^"1"1. Here we follow an approach similar to the one
employed to verify H? + 1, with the simplification of working only with upper
bounds. It is enough to note that for y e Όn u LM we may adopt the estimate

\gn(y,β)\ Ln(β)yexpl- a(β)y2^ . (4.32)

Substitution in the recurrence relation (4.1) yields

\gn + 1(x; β)\ ̂  Ln(β}2 exp[ - x(β)x2 + βAn+,x] Γ^(Λ(/?)l)(x; β) + K<">(x;

(4.33)

where V(n} stands for all error terms. Using the same techniques already intro-
duced, it is straightforward to check that | V(n)(x\ β) \ ̂  0(An) for x e Sn+ 1 . From the
definitions of &(β) and Ln+1(β)it follows that

) \ ,\gn+1(xiβ)\ ^ Ln + 1(β)expl - x(β)x2 + βAn+1x + 2&fr>(/?)] x + 0(Δn)

(4.34)

U3 + 1 then follows from the fact that x ̂  An}ι in Sπ + 1 and from (4.14).
The proof of U4+1 presents some new features. To begin with, note that if

2
x E Lw + ! then condition xl + x2 ^ ~rx implies that x1 and x2 cannot be simultan-

vc

eously smaller than v ' . In fact, we could drop the "2" in the denominator, but for
2^/c

technical reasons we shall keep it. Divide gn + 1 into two terms, namely

0$ι(x; β) = exp[/fx(x + An + ί)-]A2

n X / x gH(Xl; β)gn(χ2; β) , (4.35)

gn(Xl; β)gn(x2;β). (4.36)

' 2 v ^
For x ~ Jn the leading term in ε(π) is clearly (-=•) B^(β) l-^y(β)2x4. The

positivity of this term is guaranteed by inequality (4.31) (with n + 1 replaced by n).



Dyson's Quantum Hierarchical Models 291

So it is easy to prove that for xeDM, x ^ γ_, the following estimate applies:

fi.fc/0 >ϊ. &y(ff(ί}nBγ>(β)x* > (^}ncM(β)x* . (4.37)

This result means that the large fields upper bound (3.5) may be used for all

x ^ ^ Γ . To estimate ̂  +\ insert this bound and use that xx + x2 ^ — - F x implies

2
= χ4 Then

Γ - ocexp - oc(β)x2 -

= Ln(jS)2expΓ - α(£)x2 -

f f * XiX 2 [ - α ( j S ) x 2 + xi - -

(4.38)

where the symbol * stands for the restriction of the domain of integration to a set of
squares compatible with the sum. Since the integrand is positive, we may majorize
this integral by dropping the restriction and thus obtaining (J*(/?)l)(x; β). The
error relative to the approximation of sum by integral may be estimated analog-
ously to the estimation of S(n\ One verifies that

I U(n}(x; β)\ ̂  0(An)x2 V x e L π + 1, VβeB ( M + 1 ) . (4.39)

Using the properties oΐ&(β), the definition of Ln + ί ( β ) and taking into account

that c < 2$ 9 we see that λ may be chosen to that

\gΆ\(x', β)\ £ Ln+1(β)x expΓ - v(β)x2 - ί^J + Yc<">(jB) - \ λ^x4! . (4.40)

Concerning g^t i, one may check that if D is chosen large enough

\g(

n

Bίί(x;β)\^Ln + 1 ( β ) x Q x p \ - α(β)x2 - (^ ) C(M)(jδ)x4 0 A")^] .
L V J J L V J J

(4.41)

So, it follows that, for xeLπ + 1 and

/ 9 \ » + l
(C ( n )(jS)-An)x4 . (4.42)
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We satisfy H£+1 defining C(n + 1)(β) = C(n)(β) - λn. The required upper and
lower bounds on C(π+1) are easily verified, as well as the continuity statements in

Proof of the lemma. We follow closely [9]. First of all, note that there is a constant
L(c,β+) such that

(m = 0 , 1 , 2 ) Vj8e[/L,/ί+] . (4.43)

Let us suppose that there is a x0 ^ M^pN (the value of M will be fixed later)
such that

(s/(βYf)(xo; β) > expf - ~ pN\ . (4.44)

The case with (^(β)pf)(x0ι β) negative may be treated analogously.

Define Γ = L~p exp ( -- p N J , f i x / ? e [ / ? _ , / J + ] and construct the function

h(χ) = ί WWfK**' β) ~ LP(x ~ *° if x° = x =
(0 otherwise

Clearly h(x)2 ^ (^(β)pf)(x; β)2 Vxe[0, oo).
It is easy to check that \\f\\^(β} ^ H / I U ^ l Together with property P5, this

implies that

^ y(β X2 eχp( _
o

/ 4 |*o+r

V7*y ί / ϊ ) Jo ̂

^ const(c, β-,β + )LpΠ exp[ - y(β)(M^/pN + Γ)2]

= const(c, jS_, jS + )Γ^~exp — y(β)(M^/pN + Γ)2 —

(4.45)

Hence

- p(N + l)ln c ̂  - y(β)(M^/pN + Γ)2 5—^ - ^P^L + const. (4.46)

Rearranging terms we obtain the inequality

0 ̂  ^ In c - y(β)M2 pN - 2γ(β) MΓ^/pN

+ pί lnc - -In L J - y ( β ) Γ 2 + const . (4.47)



Dyson's Quantum Hierarchical Models 293

Define M = <N/lnc/3y(/? + ) to obtain, for all p ^ 1,

0 ̂  - In cN + const^/iv + const' . (4.48)

Since c > 1, there is a N0(c9 β-,β+) such that the left-hand side of (4.48) is
positive for any N ^ N0. The contradiction proves LI.

In order to show L2, assume that there is a x0 ^ 2 M^/pN such that

(
j \

-~pN). (4.49)
/

From (4.43) one may conclude that \\(^(β)pf)"\\oo ^ Lp \\f\\ «>, implying that
(j/(β)pf)f(x; β) ̂  (j/(β)pfy (x0; W — Lp(x — x0) for all x ^ x0. So

(s*(βγf)(x; β) ̂  (^(β)pf)(xol β) + (x- Xo)(^(β)pf)'(xo; /9 - y (x - ^o)2 -

(4.50)

Then, from LI and (4.49), it follows that

j?)>-expί-^pNJ + 2(x-x0)L fexpί--^p]vJ-y(x-Xo)

(4.51)

Let x = x0 + 2L"2expί —^-pN\ We see from (4.51) that

(s/(βYf)(χ 9 β) > exp ( - ^pN\ . (4.52)

But clearly x ^ M^/pN for N big enough. The contradiction of LI proves L2.
This completes the proof of the lemma and also the proof of our main theorem.

Proof of the Corollaries. Use that Z<β) = - ̂ nΣX€\n (2x + Δn)9n(x', β) to obtain

. (4.53)

From the induction hypotheses one may verify that

Using (4.18g) and (4.14) one gets

f n + 1 ( β ) - f * ( β ) = -β-12-^»^a(jj + 0\n2(^} I |. (4.55)

Iterating (4.55) one easily proves the Corollaries.
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