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Abstract: We consider various models of polymer conformations using paths of
Gaussian processes such as Brownian motion. In each case, the calculation of the
law of the moment of inertia of a random polymer structure (which is equivalent to
the calculation of the partition function) is reduced to the problem of finding the
law of a certain quadratic functional of a Gaussian process. We present a new
method for computing the Laplace transforms of these quadratic functionals which
exploit their special form via the Ray—Knight Theorem and which does not involve
the classical method of eigenvalue expansions. We apply the method to several
simple examples, then show how the same techniques can be applied to more
complicated cases with the aid of a little excursion theory.

1. Introduction

This study extends and greatly simplifies previous work on polymer conformations
in pure straining motions (or elongational flows). The main method used is
a technique for characterizing the law of a quadratic functional of Brownian motion
(or other Gaussian process) which also extends and greatly simplifies previous work
in this area. Among other examples we consider the conformations of single-chain
polymers with one end attached to a suspended particle and ring polymers, in an
elongational flow at zero Reynolds number, that is, in a limit where inertia forces are
neglected. In each case we compute the law of the moment of inertia of the random
polymer. The laws of other functionals can also be computed, but we concentrate on
the moment of inertia as a particularly important physical quantity. To understand
why we can convert the polymer problem into one on quadratic functionals of
Gaussian processes, we first present some of the physics of the problem.
An elongational (or straining) velocity field u(x) is described by

u(x)=Ex, (1.1)

where x is the position vector and E is a traceless symmetric matrix called the
rate-of-strain tensor. The force on a single rigid particle in a zero Reynolds number
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flow is given by
F =Ru, (1.2)

where R is the resistance tensor of the particle; for simplicity we assume that R is
isotropic, so that R may be regarded as the scalar resistance of the particle in (1.2).
For the isotropic case, the work done against an elongational flow is conservative,
with the potential energy V(x) of a particle moved from 0 to x given by

V(x)=— % RxTEx . (1.3)

If we consider a single-chain polymer as a Brownian path threaded through
infinitesimal isotropic particles, and neglect the effects of hydrodynamic interac-
tions between the infinitesimal particles and self avoidance, we can define the flow
energy of the polymer by

V(X) = j TEX,R(dt), (1.4)
0

I\JI'—‘

where X;, 0 <t < 7is a three-dimensional Brownian motion describing the poly-
mer path before Boltzmann re-weighting and R is the resistance measure along the
polymer. Without loss of generality we may take 7 =1 and R[0,1] = 1. The
functional V is not quite appopriate for considering the statistical mechanics of
polymer shapes in an elongational flow, since it is not invariant under translations
of the whole polymer. To achieve translational invariance we must change to
centre-of-resistance coordinates, namely redefine the flow energy of the polymer by

V(X)= } YT E(X, — X)R(dt), (1.5)
0

NI'—‘

where X = | (l)X .R(dt) is the centre of resistance. The statistical mechanical en-
semble average of any functional F of the polymer shape is given by

Z YE{F(X)e VXOKT} (1.6)

where Z = E{e~V®/*T} js the partition function and kT is the temperature in
energy units, which we set equal to unity. Notice that the partition function
factorizes:

= [3] Z, (1.7)

i=

where
Z; = E[exp{%f(xi—if)zzz(dt)”, (1.8)
0

/; being the eigenvalues of E and X' the corresponding components of X. Thus in
calculations where the functional F also factorizes, the three-dimensional system
reduces to three independent one-dimensional systems and the calculation of the
partition function is reduced to the problem of calculating the law of the quadratic
functional (1.8) of Brownian motion. In the sequel we restrict attention to one-
dimensional systems and drop the index i.

The result on quadratic functionals which we shall make use of is the following.
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Theorem 1.1. Let (X,)o<:<1 be either a Brownian motion started at 0 or a Brownian
bridge, Xy = X, = 0, and let m; and m, be two finite measures on [0, 1]. Then

]E[exp { - A}Xf my (ds) — 21} Xsmz(ds)}]
0 0

= IEI:exp { - (}) X2 ml(ds)} ] exp {izi (jl) 74, t)mz(dt)mz(ds)} , (1.9

where 79(-, +) is the resolvent density (with respect to m,) of the diffusion in natural
scale in [0, 1] with speed measure my, killed at 0 and reflected at 1 in the case where
X is Brownian motion, and killed at both 0 and 1 when X is Brownian bridge.

This theorem is itself a special case of a more general result about Markov
processes, which we state here for finite Markov chains.

Theorem 1.2. Let A be the generator of an irreducible transient Markov chain on
a finite state space I, which is symmetrizable with respect to the diagonal matrix D:

DA=A"D . (1.10)
Let & = (&;)ie1 be the zero-mean Gaussian vector with covariance matrix
1 1
V==-GD '=—=-4"'D1, 1.11
3 5 (1.11)
where G = — A~' is the Green function of the Markov process. Suppose I is

a diagonal matrix with strictly positive diagonal entries. Then
El[exp{— A + a)"T'D(¢ + a) + Aa"I'Da}]
= [E[exp A£"I'DE} ] exp {42a" T DR, a} , (1.12)

for any vector a. Here R; = (A — I'"*A)~ ' is the resolvent of the chain time-changed
by I.

The proof of these two results occupies Sect. 2. In Sect. 3 we apply this, together
with ideas from excursion theory to compute:

(i) the joint law of (fo BZ ds, [, B, ds), where B is Brownian motion;
(ii) the joint law of ({; BZ u(ds), [ B, u(ds)), where
1(ds) = (@ 1io,ay(s) + B*1a, 13(5)) ds ;

(iii) the joint law of ({3 X2 ds, [ X, ds), where X is Brownian bridge;
(iv) the joint law of (|, X2 ds, |, X, ds), where X is a star polymer indexed by a
tree 7.

In each case, a trivial technique yields immediately the moment of inertia. We then
proceed at a more general level to obtain expressions for:

(v) the joint law of ([, X 2 u(ds), {7 X, u(ds)), where X is a Brownian motion
indexed by a general tree
(vi) as for (v) but with X a ring polymer with attached trees;
(vii) as for (ii) but with u(ds) = a?/2ds + koSo(ds) + ky 61 (ds).

Finally, we describe how to build up more complicated polymer shapes.
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2. Probabilistic Treatment of Quadratic Functionals of Brownian Motion

It is clear that if we can evaluate a Laplace transform of the form

92 1
]Eliexp{—if(Xs —a(s))zm(ds)}}, 2.1)
0

where a is some deterministic function and m is some finite measure on [0, 1], then
we can evaluate the factors (1.8) of the partition function by taking a to be
a constant.

Laplace transforms of quadratic functionals of the form (2.1) can of course be
calculated by the classical method of eigenfunction expansions; the papers of Lévy
(1951), Fixman (1962), Krée (1986), McAonghusa and Pulé (1989), Chiang, Chow
and Lee (1991), Chan (1991), Helfer and Zhao (1992) all discuss aspects of this
method. The laws of various quadratic functionals are discussed in these papers,
and also in Duplantier (1989), Yor (1989), Gaveau (1977), Donati-Martin and Yor
(1991). The last reference makes effective use of a different technique, namely the
stochastic Fubini theorem, to transform one problem into a seemingly unrelated
one which may be easier to solve. The purpose of this section, however, is to show
how expectations such as (2.1) can be computed by exploiting the key fact that the
covariance of the Gaussian process is the Green function of a symmetrizable Markov
process. This structural feature is widely used in the literature of random fields —
see, for example, Dynkin (1980, 1981), Williams (1973). This observation on its own
is not sufficient to give the explicit formulae we seek, and the concrete nature of the
Brownian motion (or Brownian bridge) enters through the Ray—Knight theorem
on Brownian local time to give the final answers. The idea that Ray—Knight
type computations involving integrals of local times are in some sense equivalent
to computations involving quadratic functionals has been used before, for example
in McGill’s direct proof of the Ray—Knight Theorem (McGill (1981)).

There is at least one other different technique for such problems, which are
shown to be equivalent to certain well-studied problems of optimal control by
Rogers and Shi (1992).

First, let us recall the following important result which features prominently in
statistics:

Lemma 2.1. Let X be an R%valued random variable with N (0, V) distribution for
some covariance matrix V and let ae R?. Then if Q is a positive-definite symmetric
matrix, the following identity holds:

IE[exp { — %(X +a)TQ(X + a)}jl

=det(I + QV)" 2 exp { - %aT(I + QV)“Qa} . 2.2)

Proof. Express the left-hand side of (2.2) as an integral over IR? with respect to the
Gaussian density, and complete the square inside the exponential. (]

Lemma 2.1 is sometimes called the “fundamental theorem of statistics,” since all
results concerning the joint distributions of sums of squares of Gaussian variables
can be deduced from it.
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The result can be generalized to infinite dimensions, but we keep to the
finite-dimensional setting and deduce the results we want by soft weak convergence
arguments, rather than get involved in the technicalities of unbounded operators.

Firstly, note that by taking

1
V=-— EA‘ID“, Q=2ID,
a little elementary matrix algebra yields Theorem 1.2 quickly from Lemma 2.1. The
fact that I'D = DI is used in an essential way. Next, we use Theorem 1.2 to prove
Theorem 1.1.

Proof of Theorem 1.1. We treat only the case where X is Brownian motion, the
other case being similar.

Let D,={j2 ™" j=1,2,...,2"} and firstly suppose that m, is concentrated
on D,, m, is concentrated on ID,, k < n, with

dmy =
Zir—n—l t)=a().

The left-hand side of (1.9) is of exactly the same form as the left-hand side of (1.12),
since the integrals are only sums. To be explicit, the matrices are

D= diag(Z‘"), I = dlag(2"m1({]2_"})), Aj,j+1 = Aj,j—l = 2n—1‘

Theorem 1.2 is immediately applicable and yields Theorem 1.1 for this case.
Next, we generalize to arbitrary m,, while keeping fixed the measure m, concen-
trated on ID,.. Of course, we pick m{” concentrated on ID, such that m{” = m,. The
only piece of the weak convergence argument needing care is the convergence of
the resolvent densities on the right-hand side of (1.9). But this is evident from the

expression (50.10) in §V.50 of Rogers and Williams (1987):
fg(x’ J’) = ]Ex f exp{_ iAu} ly(du) )
0

where {I7:y =2 0, ¢ = 0} is the local time process of a Brownian motion W stopped

at 7:= inf {¢: W, =0} and
4= jml(dy)lty t<t
Tl + 0 t>1

The final extension to arbitrary m, is now immediate. O

While (1.9) may not at first sight seem very explicit, as it involves the A-resolvent
density, the examples in the next section will show that in many cases with
important applications explicit formulae for 74 can be found and the laws of most
of the quadratic functionals which are of interest to us can be obtained this way.

Theorem 1.1 permits us to pass easily from the case m, = 0 to general m,, but
gives no useful information about the case m, = 0. However, in this case the
right-hand side of (1.9) can be calculated very easily if X is a Brownian motion or
a Brownian bridge by means of a simple application of the famous Ray—Knight
theorem, (part of) which states the following:

Theorem 2.2 (Ray, Knight). (i) Let W, be a Brownian motion with values in (0, 1],
started at 1 and reflected at 1, let 1], a <1 be (the continuous version of ) the
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(semi-martingale) local time for W at a and let T = inf {t: W, = 0}. For independent
Brownian motions B (t), B, (t) starting from 0, let Z, = B, (t)* + B,(t)? be a squared
two-dimensional Bessel process. Then the two processes {l{: 0<a <1} and
{Z,: 0 £ a £ 1} are identical in law.

(ii) Let R, be a three-dimensional Bessel process with Rq = 0, let L} be its local
time process and let T = inf {u: R, = 1}. Let Y, be a two-dimensional squared Bessel
bridge. Then the processes {L7:0 < a < 1} and {Y,:0 < a £ 1} are identical in law.

Proof. Part (i) is proved in Rogers and Williams (1987, §V1.52). Part (ii) can be
proved using the famous path decomposition results of Williams; it follows directly
by combining the path decomposition result of Theorem 2 in Williams (1970) and
Theorem 4 in Williams (1970). (Theorem 4 of Williams (1970) is in turn a direct
result of (i) above, together with Theorems 1 and 2 of Williams (1970), the last two
of which are proved in Williams (1974).) |

o018 -2 [ imaa}

where B is now a Brownian motion, a direct application of the Ray—Knight
theorem gives in particular

02 1
¢> =E! [exp { -5 | lﬁml(ds)}] ) (2.3)

Consider now the right-hand side of (2.3). Define

Y= inf{u: jlh Ii(ds) > t} .

Let Wbe a time-change of a Brownian motion W on (0, 1] started at 1 and reflected
at 1: W, = W (y,); moreover the local time processes /7 I# for W is also a time- change
of the local time I{ for W and l“ = [“(y,) (see Rogers and Williams (1987, §V.49)).
The local time 7 also serves as an occupation density for ¥ in the sense that for any
bounded measurable function f

Putting

gf(Ws)ds = [ f(@T"m,(da) .
0

Now let Ho = inf{u: W, = 0} and let 7 be as in Theorem 2.2. Then we see that
H, = inf {u: y, > t} and in particular y(H,) = 7. Putting all these together, we have

1 1
fl§m1(d5 fl;(Ho)ml(ds)
0 0

1 ~ Ho
j Tyomi(ds) = [ dt = H, . (32)
0

Putting (2.3) and (2.4) together then gives
¢? = det(I + 02QV) ™! = El[e 0?Ho2] 2.5

If my is Lebesgue measure on [0, 1], we have y, =t and it is well-known that
¢? = (cosh§) ! is the Laplace transform of the hitting time of 0 for W (see, for
example, Proposition I1.3.7 of Revuz and Yor (1991)).
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Let {X,: te[0,1]) now be a Brownian bridge from 0 to 0. We_need only
consider the case of a Brownian bridge X from 0 to 0, since a bridge X from 0 to
¢ can be got by adding a deterministic drift ¢t to X: X, = X, + ct and this will only
contribute a deterministic term to the quadratic functional in (2.1) which can then
be absorbed into the function a(-). As before, putting

o050 ep {2 o} ]
0

¢* = 1E°[6Xp{ —H—Z}L?rml(dS)}:I ;
2%

where L is the local time of a three-dimensional Bessel process R starting from 0 as
given in the Ray—Knight theorem. Time-changing the three-dimensional Bessel
process R via

we have

1
I,= inf{u: | Lymy(ds) > t}
0

and using the same treatment as before shows that
¢? =det(I + 02QV) "1 = [E°[e” *H1/2] | (2.6)

where H is the hitting time of 1 for the process R(I;). If m, is Lebesgue measure, an
application of the Optional Stopping Theorem to the martingale
e Y2R ! sinh (OR,) shows that ¢ = /sinh 0.

In most of the applications later, the function a in (2.1) is a constant: a = x for
some x €IR. In this case, the identity (1.9) is easily worked to the form

]El:exp{—li(Xs + x)zml(ds)}]
0

= lE[exp { — A } stml(ds)}} exp{ — Ax? i (1—- l(ﬁgl)(s))ml(ds)} (2.7
0 0

(where R{ is the operator associated with the resolvent density 79(-, -)), which has
an interpretation in terms of results from excursion theory. In fact, we have already
seen the relevance of excursion theory to this problem in the earlier applications of
the Ray-Knight theorem, which is proved by excursion arguments that can be
modified to give similar results for other processes. (The survey article Rogers
(1989) contains an introduction to the basic ideas and results in excursion theory,
as well as good references to the literature where the interested reader can pursue
the details.) Consider first the case that X in (2. 7) is a Brownian motion. Let W2 be
the killed process whose resolvent operator is R, H, = inf{t: Wi = 0} and define

Ya(y) = B[e” "]
Then ; may be expressed as
Vi) =1-RID() .

It is well-known from excursion theory (see, for example, Rogers (1983)) that
a process W can be obtained by extending the killed process W beyond the time of
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death H,; this may be done by defining the resolvent R, of W via the identity

Rif(x) = R3S (x) + Y2 (x)R, f(0) .

Thus in order to obtain R, f from R, we need only calculate R, f(0). We shall
see in a moment how to obtain R, f (0).

Now let n,(dy) denote the excursion entrance law for the process W and denote
by n,(dx) its Laplace transform: n,(dy) = joo ~#p.(dy)dt. In particular, letting
A | 0 we get ng, the Green function of the excursion law. The Laplace transform
n, of the excursion entrance law satisfies what is essentially the resolvent identity:

for A = ¢, A, ¢ > 0. Furthermore, if W does not spend positive time at 0, R, f(0) may
be obtained from n, using
nzf

R,f(0) =

where for any measure u and any function f we write uf for | fdp.

The key observation which enables us to explain the result (2.7) in terms of
excursion theory is that m,, which is an invariant measure for W, is a multiple of
ng, and without loss of generality we may assume that m; = ny. To see why this is
the case, we now show that n, is also an invariant measure. For a fixed ¢ > 0,

AR, f = In(R5 [+ YR, £(0))

- A_Flii_r:‘f+ Ang(1 — (AR31)) R, £ (0)

A
A—¢
A A en, 1
- n,—n;)f+ i(mnzl—i )le(o)

—nof—n,f+ (An )R, f(0) asel0

= no f, as required .

(n, —n,) [+ ,1<n1 / T —nl)1>13,1f(0)

(In the above we have used the fact that the lifetime H of excursions is almost surely
finite, which implies that en, 1 = [(1 —e™*"@)n(dw) - 0 as ¢ | 0, where n is the Itd

excursion measure and n(H(w) = o) = 0.)
If W does spend positive time at 0, we have the following expression for R, f(0):
N nf + 3/(0)
R =t
+/0) g1+ 947

for some positive constant y (which we could usually take to be 1). A similar
treatment then shows that ny + yd, is an invariant measure of W.

Since m; = ny, the quantity inside the exponent on the right-hand side of (2.7)
may be expressed as

L ~ nol —n,1
Ax? [ (1 — AR§1(s)) my (ds) = Ax? nol—i—l— = x2An,1
0
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Finally, we may interpret the quantity An;1 in the following way. Suppose that
we mark the excursions from 0 of our process W at rate A: that is if 7 is the time until
the first mark (or the time between marks), then (¥ > t) = e~ *. The significance of
An; 1is that it is the local time rate of A-marked excursions from 0 for the process W.
In most examples we shall come across later, W is actually a time-change of
a Brownian motion W in (0, 1]. It is therefore easier if we could do calculations in
terms of excursions of Brownian motion. Note that we time-change W via the
right-continuous inverse of the additive functional

A=) lim(dy),

[

where 17, y€[0, 1] is the local time process of W, to obtain W. Hence marking the
excursions of W at rate 1 is equivalent to marking those of W according to the
measure Am;, or equivalently according to the additive functional A4,: in other
words, if 7 is the time at which the first mark occurs then IP(t > t| W) = e~ 4,
Equivalently we could say that, conditional on W, the marks arrive as a time-
inhomogeneous Poisson process where, conditional on W, the number of marks in
the interval [0, t] has a Poisson distribution with mean 14,. (In the case where
my(dt) = dt and X is Brownian motion, so that W?is Brownian motion reflected at
land killed at0 and D = I, Q = I' = I, we just have marking at exponential rate A.)
Thus we could (and usually do) interpret the quantity An, 1 equivalently as the local
time rate of Am;-marked excursions from O for the process W. Also, from the
Ray—Knight argument used to obtain (2.5) when X is a Brownian motion, we see
that ¢? at (2.5) also admits the following interpretation:

¢? = P} (W reaches 0 without being Am;-marked)
= IP‘(W reaches 0 without being A-marked) .

(Here, W is the Brownian motion on (0, 1] started at 1 and reflected at 1, referred to
in the Ray—Knight Theorem 2.2. The fact that the process W in the Ray—Knight
theorem happens to be the same as the Markov process W? obtained from the
Green function v(s, t) of X when X is Brownian motion is purely coincidental; as
we have seen, this is not true if X is a Brownian bridge.) We may therefore
summarize these results by reinterpreting (2.7) (at least when X is a Brownian
motion) as

IE° [exp { —A } (X5 + x)*my (ds)H = pl2e " (2.7a)
0

where p = IP*(W? reaches 0 without being Am,-marked) and d is the local time rate
of Am{-marked excursions from O for the process W. The case where X is
a Brownian bridge can be interpreted similarly, once we have identified what the
corresponding p is using a Ray—Knight type argument. The main advantage of the
result (2.7a) lies in its simplicity; as we shall see in the next section, the excursion
ideas not only allow us to do calculations in cases where it may be difficult to find
the resolvent density 73 by other means, they also enable us to obtain some very
general but simple results for quite complicated polymer structures.

As has already been pointed out in the introduction, in the applications to
polymer conformations, we really need to find the laws of quadratic functionals of
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the form
1 1 2
Istd#—p<IXsdu> (28)
0 (4]

for 0 < p < 1. In particular, we wish to evaluate the partition function for the
quadratic functional (2.8) with p~! = u[0, 1], so that (2.8) is translation invariant.
We can calculate the Laplace transform of functionals of the form (2.8) using the
techniques we have developed in this section. The trick is to mix the parameter
p over a standard Gaussian distribution. Let G be a standard N(0, 1) random
variable. The key observation is that

]E[exp{—l(indu—p(iXsdu>2>}] 2.9)

can be expressed as

]E[exp{—/l}deu—Gd%ijJ,u}]. (2.10)
0 0

Conditional on G, the expectation in (2.10) has the same form as the Laplace
transforms considered earlier; therefore (2.10) can be calculated by first condition-
ing on G and using the methods developed earlier to evaluate the conditional
expectation, and then taking expectation with respect to G.

3. Examples and Applications

Example (1). We consider first the simplest possible case: that of a chain polymer
modelled by the path of a Brownian motion {B,: t€[0, 1]}. We are interested in the
moment of inertia (2.8) of this polymer, where in (2.8) X = B and u is Lebesgue
measure. In order to obtain the Laplace transform (2.9), we first condition on the
N(0, 1) random variable G and consider (2.10). In this case (2.10) has the same form
as the left-hand side of (2.7), where a = G./p/(22). As we have already seen in
Sect. 2,

1
E° [exp{ —A[B? ds}:l = (cosh§)~1/2 |
0

where A = 02/2 throughout this section. The A-resolvent density (with respect to
Lebesgue measure) is

_ 2sinh(0s) cosh(6(1 —t))

Ocosh 0 > 0

A
IA

ri(s, t) t<1. 3.1

N

(We drop the tilde and the 0 for notational convenience.) For s >t we define
r, using the fact that r,(s, t) = r, (¢, s). It is easy to check that

1
1 j tanh 0
0

Fis, t)ydsdt =1 — 7

O ey
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1 1
]EI:exp{ —AfBds — «/ZXprBsds} G}
0 o

=(amhey*ﬂexp{cz<3-pmnh9>}. 3.2)

Hence (1.9) gives

2 20

The right-hand side of (3.2) is simply the Laplace transform of a x? random
variable, and so taking expectations in (3.2) gives

efon{ st )

_ S|y p ptanhd -1z
(cosh 9) [1 2(2 20

sinh 0 ]1/2

(3.2)

=[(1 —p)coshf + p

which agrees with the answer given in Chan (1991) and Donati-Martin and Yor
(1991) obtained using different methods. Also, note that our above calculations give

1
E° [exp{—lf(Bs + x)? ds}} = (cosh )12 exp{ —ng— tanh 9} ;
(o]

comparing with (2.7a), we recognize

g tanh 0

as the local time rate of A-marked excursions made by W from 0.

Example (ii). This technique easily generalizes to the case of a measure possessing
a piecewise constant density. Consider the same example but this time in (2.8) let

_ fo?dt te[0,q]
“u”‘{Wdtzamu.

To spell things out a little, we have
o? te[0,a]

q(t)={p* te(a 1]
0 otherwise .

It is now a simple matter to compute the solution to the differential equation
6 =g, O)=1, #(1-)=0
with the matching condition that ¢ is C* at 1. We obtain
A[cosh Oo(x — a) — Etanh 0pb sinh Qo(x — a)J 0<x=<a,
$(x) = o

3.9
A[cosh 8B(x — a) — tanh b sinh 08(x — a)] as<x=1.
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where we have set b=1—a and
ﬁ -1
A= [cosh Ooa + 5 tanh 6b sinh Oaa] . (3.5)

If we extend ¢ to the whole of R by setting ¢(x)= ¢(1) for x =1 and
¢(x) = ¢(0) = 1 for x £ 0, then the process

M= ¢(Wﬁ)exp{—xg a(W,) ds —%q&'«»@} (3.6)

is a martingale, where L is the local time at 0 of the Brownian motion W. From this,
we conclude using the optional sampling theorem that

P! (W reaches 0 without being 1g-marked)
Ho
= IE{ —2 | q(Ws)dSH
0
=¢1)
ﬁ -1
= [cosh Boacosh 08b + p sinh 6fb sinh Gaa] ,
and moreover that the local-time rate of 1g-marked excursions is
1 1 .
- 5(;5’(0) = EA [0a sinh Ooa + Ofcosh Gaa tanh 6b] .
Accordingly Eq. (2.7a) takes the form

1 ~12
IE"[exp { —A[B? du}] = <cosh o cosh b + g sinh Qoasinh Hﬁb>
0

exp ) — x2 0o sinh Qoa cosh b + 0 cosh Oaa sinh 0b
P 2(cosh Oaa cosh OBb + (B/x) sinh Ooa sinh 8b) || -

Mixing x over the N (0, 1) distribution as before now gives

efon{ oo

= [(1 — pao® + bﬂz))<cosh 0pb cosh faa + gsinh 0pb sinh 90<a>
po p -2
+ 0 <cosh 0pb sinh foa + " sinh 88b cosh Hoa )] . (3.7

Example (iii). In this next example we let X in (2.9) be a Brownian bridge of length
1 from O to 0, and u is again Lebesgue measure. The quadratic functional (2.8)
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corresponds to the moment of inertia of a ring polymer. The covariance function
for X in this case is v(s,t) = s A t —st, from which we get the Green’s function
g(s,t) =2(s A t —st) for a Brownian motion on (0, 1) killed at 0 and 1. The
resolvent density (with respect to Lebesgue) for this process is

2sinh (6s) sinh (0(1 —¢))

= <s<t<
ra(s, t) Osinh 0 , 0<s=<t<1. (38)
(For s >t we again use r,(s, t) = r,(t, s).) Hence
A i ydsdt =1 2(_1 h6
[[rasnasas= 145 G -como).

We saw in Sect. 2 that

: inh ') ~1/2
0.0 ix? _(sin
E [exp{ i(f) 2 ds}:| < 5 ,

and so, for G ~ N(0, 1), (2.7) gives

[exp{ /Iszds—\/27GjX ds}

: -1/2
- <S‘n;‘ 6) exp I:GZ (%’ + —g(cosech 0 — coth 0))} . (3.9)

(Recall that in this example also, a = G./p/21.) Taking expectations in (3.9), we
obtain
1 1 2
]EO’O[exp{—}L<§des —p<j"Xsds> )}:l
0 0
inh 6\~ /2 2 -1/2
= <sm9 ) [1 —p+ yp(coth 0 — cosech 9)]

sinhf 2p (coshf —1 |71/2
_[(1—;)) ; +F<T>] . (3.10)

Example (iv). From these simple examples, models for more complicated polymer
shapes can be built up. One such example is a star-shaped polymer, which we
model by n independent Brownian motions of length 1 starting from 0. For such
a polymer we wish to calculate the partition function

¢ = JEO[exp { —/l(j) i:il B2(s)ds —5@2 By(s) ds>2>}] .
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Introducing G ~ N(0, 1) as before, we can calculate ¢ using the results (3.2) and
(3.3) together with the independence of the B;. Thus
dl

flel

¢=IE{]E° [exp{—g—zjl" i B (s)ds — 6G Bi i Bi(s)ds}
2051 Noi=1

=]E{]1[]E [exp{—g}B ds—HijB(s)ds
i=1
e

=(cosh9)—n/2<1 —p<1 - ta’;h‘g))_l/z. 3.11)

Example (v). Even more complicated polymers can be analysed using these
methods. We now describe a general class of polymers of which the examples we
have given so far are special cases. Consider a branching polymer structure which
we model by a deterministically branching Brownian motion, B. This can be
thought of as a Brownian motion indexed by a tree 7. The root of the tree, which
we denote by 0, is the time origin of the time graph of B. We suppose that B, = x.
Each (internal) node of the tree corresponds to a time when branching has
occurred. A segment (branch) of the tree is defined to be the time interval between
two nodes. The length of each segment is the length of time the corresponding path
of the Brownian motion is run for. Let u be a measure on the tree. The value of y on
any segment of the tree is to be interpreted as the resistance of the corresponding
segment of the polymer in the flow. The partition function of the branching
polymer structure is

sorloni-(gmao(ppa))i]. o

when we take p = u(J )~ !, making the expression (3.12) translation invariant.
p g

Define
() = IE[exp{ — [ B¥du+v/2p | B, du}] . (3.13)
T T

Introducing G ~ N(0,1) and mixing the parameter v over G as before gives
E[¢(G)] = ¢. Completing the square in (3.13) gives

d) = e"z/ZIE[exp { — [ (Bs—v./p/2)? dyﬂ , (3.14)
T

so the key is to calculate

Y(x)= Ex[exp { — [ B? duH ;

where By = x is the starting value of the deterministically branching Brownian
motion.
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Given a particular choice of node as the root of the tree J for a deterministi-
cally branching Brownian motion B, we can assign to each segment of 4 a particu-
lar direction in the following manner: consider a particle moving along a segment
of the tree; define the direction on this segment to be the direction the particle
would have to move in order to get closer to the root. Thus we can think of each
segment as having an arrow pointing in this direction.

Given a deterministically branching Brownian motion B, we may associate to
B a Markov process with J as the state space in the manner described in Sect. 2. Of
course, this Markov process (which we denoted by W?) in this case is Brownian
motion on J with reflection at the free ends and killed at the root; at any internal
node, excursions are equally likely to go down any of the incident edges. We let
W denote the Brownian motion on 4 not killed at the root, but reflected there. For
each choice of node k as the root, and each segment ¢ = (i, j ) connecting nodes
i and j, where i is closer to the chosen root than j, define

P, ;= P/(W? reaches i without being u-marked)

Yi(x) = E* [CXP { — [ B? duH ,

where node k is chosen as the time origin of B and B, = x.

and

Theorem 3.1. Let B be a deterministically branching Brownian motion indexed by
tree I and choose node k of J as the root. Then if B, = x,

1/2
l//k(x) = (nPo,k> e—dkxz > (315)

where d, is the local time rate of u-marked excursions by W from node k.

Proof. The proof is by induction on the number n of nodes. The case n = 2 was
proved earlier at (2.7a). Now take n > 2 and suppose that the theorem holds for any
tree with at most n — 1 nodes. Two cases must be considered.

Case (1). kis an internal node. In this case, if there are m > 1 edges incident at &, the
tree J breaks into m subtrees (with fewer than n —1 nodes) with k as a common
node. Given B, = x, the behaviour of B on each of these m subtrees is independent,
from which (3.15) follows.

Case (2). k is an external node (i.e. free end). Let 7 ' denote the tree ~ with k and
its incident edge deleted, and let j be the node in J ' joined to k. Let J denote the
edge (k, j). Then

Yi(x) = E* [exp { — | B? du}}

®

=E

exp{—stzdu— f Bszdu}:l
L J T’

B 1/2
exp{—jdeu—@Bf}](]—[ PM-> ,
L J ced’

®

=E
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using the induction hypothesis. Applying (2.7a) to the measure mq(ds) = u(ds)
+ d;6;(ds) on J yields

12
!//k(x)=exp(—dkx2)(PJ,k I1 Pa,j> : O

oceJ "’

From (3.14), we have
$(v) = e"z’”E_"m[exp{‘ [ B dﬂ”’
v

which, on mixing v over the N (0, 1) distribution gives

1/2
¢=<I—[ Pa,n) IE[exp{—GZ(pd,,—l)/2}]
oceT

I1 1/2
=< p;’*) , (3.16)

where I, = [[,cs Pon-

Obviously, the expression (3.16) must not depend on the choice of root, which
we now verify by obtaining a “coordinate-free” expression for (3.16). Because we
are working with a tree, we only need to check that the calculation for two adjacent
nodes yields the same answer. Take the segment between nodes 1 and 2, say, and
consider the tree J as being two trees J; and J, rooted respectively at nodes
1 and 2 and connected by a segment between these nodes. The restrictions of u to
I, and 7, will be denoted respectively by u; and p,. Let n' and n? denote the
excursion measure of excursions by W from 1 and 2 respectively. Thus for example,
in the notation established by Theorem 3.1, d, = n? (u-mharked excursions from 2).
Let D; = n'(u;-marked excursions from 1 into ) and define D, similarly. Let the
connecting segment have length 7, and measure p. which is the restriction of u on
it. Taking node 2 to be the root one obtains

M, I, ,P'(W? reaches 2 without being pu-marked)
B pd, .

¢ 2
Now let

b, = n*(excursions from 2 which reach 1 without being u.-marked)

= n'(excursions from 1 which reach 2 without being u.-marked)

and a. = n' (excursions from 1 which reach 2 or get u.-marked) ,
d, = n*(excursions from 2 which either reach 1 or get y-marked) .
Then
IP*(W? reaches 2 without being u-marked) = . _‘Iic D,
and

2
c

d, =D, +d, — .
2 2 ac+D1
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Hence
nn, 1, ,b,
¢* = Tl 72 v (3.17)
p{(ac + Dl)(ac + DZ) _bc }
which is clearly symmetric in 1 and 2. 0

Example (vi). So far we have only considered polymer structures modelled on trees.
By making use of our previous results for Brownian bridges it is possible to handle
polymers with rings. Consider a graph which consists of a loop (which we think of
as the path of a Brownian bridge of length 7 from x to x) with n trees J,,
m=1,...,n, attached by node k,, to the loop at time 7,,. In this case

V) = Ex'x[exp{— [X2du— ¥ dmx%m}]( I Hg-,,,km)m
0 m=1 m=1
T n 1/2
=IE""‘[exp{—ijdu*}:'< I1 Hfmkm> , (3.18)
0 m=1

where X is now a Brownian bridge of length 7 from x to x and p*(dt) =
p(de) + Y _, dndr,, (dr). We have seen already how to deal with each of the factors
appearing on the right-hand side of (3.18).

Obviously, the examples we have presented so far, especially the single chain
polymer and the star-shaped polymer, are very simple trees and we leave the reader
to check that Theorem 3.1 gives the same answers as the ones obtained earlier in
this section. We conclude by illustrating the use of (3.17) with two further examples.

Example (vii). The first is a relatively simple one involving two particles joined by
a single strand of polymer, which we model by a Brownian path of length 7. Thus
we take the measure of resistance on the tree to be

2
u(de) = %dt + R, 80(d) + R,07(dt) .

Choosing 0 to be the root, we have
b = n®(excursions from 0 which reach T without being u-marked)
= n”(excursions from 7 which reach 0 without being u-marked)

o
= —cosechaT,
2
a = n"(excursions from T which either reach 0 or get u-marked)
o
= EcothocT+ R, ,
d = n®(excursions from 0 which either reach T or get u-marked)

=§cothaT+ R, .

(Some of these calculations may need a little explanation: the fact that
2b = acosech T is shown in §VI.56 of Rogers and Williams (1987) (the positive
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masses at either end do not affect these calculations); next, if R; = R, = 0 we know
from Example (i) in this section that excursions from 7 have probability
(coshaT)~ ! of reaching 0 without a mark and hence if R; = R, = 0, we deduce
that a = a/2cothaT. The case of positive R; and R, now follows easily.) Since
Dy = Dy = 0, we then have from (3.17),

p=p1? b 1/2
ad — b? ’

Example (viii). Consider next the more complicated structure of a “bottle brush”
polymer. This has a “backbone” consisting of n + 1 nodes, m joined to m + 1 for
eachm=20,1,...,n—1;ateachnodek,fork=1,2,...,n—1, a tree 7, rooted
at node k is attached. Let the rate of marked excursions into J; from node k be
S, and let S, = 0. We let node n be the root of the tree thus constructed and we have
a measure y on the tree as before. Then

= 1/2n-1 1/2
Vg a(x) = { I H%} [T P*(no p-mark before hitting k + 1)} e~ n¥?
k=1 k=0

where d, is the rate of y-marked excursions from the root n. Define recursively
Dy=0;
i bi
Dy =S+ a, — Diita’
where, if p, is the restriction of u to the segment connecting node k to node k —1
and n* is the excursion measure of excursions from k, then
d, = n*(excursions which either contain a yk-mark or reach k —1)
a, = n*~!(excursions which either contain a y,-mark or reach k)
by = n*(excursions which reach k — 1 unmarked)
= n*~!(excursions which reach k unmarked) .

The meaning of D, is that it is the rate of marked excursions from node k into that

part of the tree which is farther away from the root n; in particular we have D, = d,

and

k . bk +1

IP*(excursion reaches k + 1 unmarked) = ———— .

ar+1 + Dy

Hence using the same argument as that used to arrive at (3.13), we have
1 IHgb

Pdni=1ax+ Dy_y’

¢ =

if we put IT, = 1 for convenience. The simplest form we can take for the 7 is Just
a single strand of polymer, that is, a single-segment graph. Th1s then gives
a fish-bone polymer structure. If the k”’ strand has resistance measure a7 /2 x Lebes-
gue and length T then

Sy = % tanh o, 7,
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and IT,, = sechoy T;. If . = B /2 x Lebesgue then

dk=ak=§2500thﬂkATk s

b, = % cosech 5,47, ,

where AT, is the length of segment joining nodes k and k —1.

Once we have managed to deal with this bottle brush structure, we can apply the
same methods to even more complicated structures, for example, by attaching bottle
brush polymers to each of the nodes 1, 2,...,n —1. The possibilities are endless!
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