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Abstract: The method of moving planes is used to establish a weak set of condi-
tions under which the nonlinear equation — Au(x) = V(\x\)eu(x\ xeR2 admits
only rotationally symmetric solutions. Additional structural invariance properties
of the equation then yield another set of conditions which are not originally
covered by the moving plane technique. For instance, nonmonotonic V can be
accommodated. Results for — Au(y) = V(y)eu(y) — c, with yeS2, are obtained as
well. A nontrivial example of broken symmetry is also constructed. These equa-
tions arise in the context of extremization problems, but no extremization ar-
guments are employed. This is of some interest in cases where the extremizing
problem is neither manifestly convex nor monotone under symmetric decreasing
rearrangements. The results answer in part some conjectures raised in the litera-
ture. Applications to logarithmically interacting particle systems and geometry are
emphasized.

1. Introduction and Main Results

The present paper is concerned with spatial symmetry and symmetry breaking of
solutions of certain nonlinear field equations in two-dimensional domains without
boundary. The presence of (symmetric) boundaries is known to catalyze symmetry,
as well as its breaking, in many circumstances. In the absence of boundaries, on the
contrary, such features reflect intrinsic properties of the system under study.
Various approaches to this type of problem exist in the literature, the applicability
of which depends in part on the specific problem under consideration. We will be
using here the method of moving planes [A, GNN1, GNN2, Li, LN1, LN2, LN3,
CheL], which is based on the maximum principle and allows us to prove condi-
tions under which any solution of our equations is symmetric.

We recall that so far, the moving plane method has shown the absence of
symmetry breaking, under mild conditions, for positive solutions of the con-
formally invariant equations

(l.la)
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with

,-£!
and n ̂  3, see [GNN1, CGS], which in the case n = 4 is known to generate
solutions in a regular gauge of the classical Euclidean Yang-Mills equations, via
't Hooft's Ansatz [Wile]. All positive solutions are known and given by

l>lM)(χ; *o)]^ = C(n, λ)(ί + λ~2\x - x0|
2)"^ , (i.ic)

, λ) = (n[n - 2~\λ~2f^ (l.ld)

with x0 e Rπ the arbitrary center of symmetry, and λ e JR. + the arbitrary length
scale. Whence the well-known one-instanton solutions are all Yang-Mills solutions
that (l.la/b) generates. For n = 3, (l.la/b) is known as Plummer's model in the
theory of galactic structure; see [Al] for some rigorous results. The corresponding
result on R2 was supplied by Chen and Li [CheL]. The counterpart of (l.la/b) in
R2 is Liouville's equation

Δu(x) + eu(x) = 0;

which under the vital condition of finite total generating mass,

J Λ/2x < oo , (1.2b)
R2

admits only solutions which are radial about some point (Theorem. 1 of [CheL]).
All such radial solutions are known and given by

expDAx; x0)] = 8Λ-2(1 + λ~2\x - x0|T
2 . (1.2c)

For the sake of completeness, we mention that the results of [GNN1, CGS]
have a geometric analog on Sn, n ̂  3, proved by Obata [Ob]; the results of [CheL]
similarly have a geometric analog on S2; see also [Sch].

It should be noted in the above that the method of moving planes itself is a tool
to prove symmetry of solutions under the assumption that they exist. However,
once symmetry is established, existence follows in general readily by a standard
ODE argument. Furthermore, this PDE method does not discriminate between
solutions which have the additional virtue of being optimizers in some extremal
problem and those which are not. This appears as a disadvantage, but may also
turn into an advantage, as one is not always only interested in the optimizers. All
the above solutions (l.lc/d) and (1.2c) in fact are extremizers in conformally
invariant inequalities; see, for instance, [Lie, CaLl] for (l.lc), [CaL2] for (1.2c),
[On] for the counterpart of (1.2c) on S2, [Be] for S\ [Br] for S4 and S6, [CaL2]
for S"; and [OPS] for the more general compact closed surfaces. As such their
symmetry follows from symmetric decreasing rearrangement arguments. These
extremal problems leave open the question of existence of other solutions to
(l.la/b) and (1.2a/b), which may be of interest in some other context that does not
require extremal properties. The moving plane technique tells us in these cases
there are no other "natural" solutions.

The above equations are of the type Δu + F(u) = 0. Results in all 1R" exist
also for fully nonlinear equations F(u, |Vu|, detHess(u), . . .) = 0, see [GNN1],
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Theorem 4. For equations with explicit x-dependence, like Δu + G(u; x) = 0, re-
sults for finite balls are also given in [GNN1], Theorem Γ. The problem in all
of IR" is more delicate as the lack of compactness has to be compensated by a-
priori information about asymptotic behavior. For n ̂  3 the problem was over-
come in [Li] for quite general fully nonlinear equations F(x, M, |Vw|
, detHess(w), . . .) = 0, under a-priori assumptions on asymptotic decay pro-
perties of F. Li and Ni [LN1, LN2] treat more special equations
Δu + V(x)g(u) = 0, xelR", n ̂  3, with certain asymptotically power law
decaying V and for g = exp and g( ) = ( )p:> these cases are generalized in
[LN3] but still restricted to n > 2. The corresponding problem for n = 2 is critical
and not covered by the results of [Li, LN1, LN2, LN3].

In this paper we adapt the method of moving planes to study elliptic scalar
second order PDEs of the form

-Au(x)= V(x)eu(x) (13P)

with xeR2. We construct an almost minimal set of conditions on F under which
the moving plane method allows us to conclude that any solution of (1.3P)
is rotational symmetric and radial decreasing. Liouville's equation will be included
as a special case. We remark that in a specific situation additional a-priori
information on V might be available. Some of our conditions may then be
improvable. We give two examples in our section on applications. Rather than
trying to improve further some moving-plane estimates at the expense of more and
more specialized V, we find it more interesting to merely use the structural
inυarίance of (1.3P) under Kelvin transformations to obtain symmetry theorems
under conditions on V which are not originally covered by the moving plane
method. Using stereographic projection techniques, we also study the related
problem,

-Δsu(y}=V(y)eu^-c, (1.3sa)

4πc = J V(y)eu(y)dμ (1.3sb)
s2

with yeS2, dμ the uniform measure on S2 w.r.t. the standard metric, c a positive
constant, and obtain conditions on V under which any solution of (1.3s) is
rotational symmetric. In (1.3s), As is the Laplace Beltrami operator w.r.t. the
standard metric. Equations (1.3P) and (1.3s) arise in geometry and various branches
of physics, for instance fluid vortex distributions in decaying turbulence. Applica-
tions of our results will be discussed in Sect. 7.

We remark that in the following we understand V to be continuous and u to be
a classical solution. By a simple limiting argument based on super- and subsolu-
tions one can extend our results to discontinuous V. We also prove some results for
(1.3P) which are valid for more general nonradial V.

We now state our symmetry theorems for Eqs. (1.3P) and (1.3s). In order to
apply the method of moving planes to (1.3P), we will supplement (1.3P) by some or
all of the following hypotheses:

FeL°°(IR2), (HP1)

| x ' | > M , (HP2)
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where |x| = <x, x>1/2 = r is the Euclidean norm of xeIR2,

J \V(x)\eu(x)d2x<κ> , (HP3)
R2

j V(x)eu(x)d2x > 6π , (HP4)
R2

u + (x) = max{w(x), 0} eZ^IR2, d2x) . (HP5)

We will always explicitly state which of the above hypotheses are needed. Our
moving plane result is

Theorem PI. Under the hypotheses (HP1)-(HP5), any solution of(l.3p) is necessar-
ily radial symmetric and decreasing.

Structural invariance of (1.3P) under Kelvin transformations allows us to
accommodate the following set of hypotheses:

V(x) = \x\m~4U(x) (HPl*a)

with 2πm = l.h.s. (HP4),

l7(x)eL°° , (HPl*b)

U(x') £ U(x)ι | x ' |>M, (HP2*)

max{ι;(x), 0} eZ^IR2, \x\~4d2x) , (HP5*a)

φ) = ιι(x) + m l n | x | . (HP5*b)

We will explicitly state when we assume V to satisfy (HP1*), (HP2*), (HP5*).

Theorem P2. Under the hypotheses (HP1*), (HP2*), (HP3), (HP4), (HP5*) on V(x\
any solution of(1.3p) is necessarily radial symmetric. It is asymptotically decreasing
for large |x|, but not necessarily decreasing a.e.

Certain non-monotonic F(x) which are not in L°° are covered by Theorem P2.
The control over radial decrease is lost in the transformations.

A statement very close in appearance to Theorem PI can be made for (1.3s) and
is obtained from Theorem PI by stereographic projection techniques. We supple-
ment (1.3s) by some or all of the following hypotheses:

FeL?(S2), (HS1)

V ( y ) ^ V ( y ' ) ; <n, );> > <n,/> , (HS2)

for some fixed neS2,

J V(y)eu(y)dμ ^ 8π , (HS3)
52

J V(y)eu(y)dμ > 6π , (HS4)
s2

2^) . (HS5)

We will always explicitly state which of the above hypotheses are needed.

Theorem SI. Under the hypotheses (HS1)-(HS5), any solution of '(1.3s) is necessarily
rotational invariant around n.
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One can also show (see [CK]) that under (HS1)-(HS5) the solutions of (1.3s)
are monotone decreasing as function of <n, y>, but this is lost in the mapping from
Theorem PL

Interestingly, Theorem SI does not include all the information of Theorem PI.
Notice the differences (HP1) vs. (HS1), and (HP3) vs. (HS3). Theorems PI
and P2 can be fully combined into a single Theorem for (1.3s). We need the
hypotheses

(HSl*a)

for some fixed neS2,

U(y)eL°°(S2)9 (HSl*b)

U(y) ^ U(y'); <n, j;> > <n, /> , (HS2*)

ί \V(y)\eu(y)dμ< oo , (HS3*)
s2

) , (HS5*a)

v(y) = u(y) + cln [1 - <n, y>] . (H2G*b)

We will explicitly state when we assume Fto satisfy (HS1*), (HS2*), (HS5*).

Theorem S2. Under the hypotheses (HS1*)-(HS3*), (HS4), (HS5*), any solution of
(1.3s) is necessarily rotational invariant around n.

Before we start verifying our claims, several remarks are in order. As far as our
list of hypotheses (HP1)-(HP5) is concerned, we hope to convey to the reader that
it is close to the minimal set of hypotheses which would be needed to prove
statements like Theorem PI with the moving plane technique, but not completely
optimal. As far as the method of moving planes itself is concerned, we see that it
falls short of capturing all reasonable conditions on V such that (1.3P) has only
rotationally symmetric solutions. This becomes plain through Theorem P2. We
will also see that some of our hypotheses are intrinsically sharp.

(Rl): Hypothesis (HP1) is satisfied in some applications that we have in mind,
but does not seem to be vital given the other hypotheses hold. The emphasis here is
on keeping all other hypotheses. We will see below that the interplay of (HP1) and
(HP2) is crucial. Given (HP2)-(HP5) hold, one may try to relax (HP1) and lump it
together with (HP3) to VeLp, eueLp', p'1 + p''1 = 1, as in the blow-up study of
[BM]. A similar remark applies to (HS1). A model with F~ r~α at the origin and
decreasing in r occurs in screening problems, for which radial solutions have been
studied in [GP]. Our Theorem P2 includes some such V but is not directly
obtained by moving plane arguments. A weakening of (HP1), and (HS1), is
therefore desirable.

(R2): The non-increase hypothesis (HP2) is needed for some reflection esti-
mates which are vital for the moving plane technique; cf. [GNN]. (HP2) implies
also rotational symmetry of F, which is a trivial sine qua non to find radial
solutions of (1.3P), and this holds true for (HS2) regarding (1.3s).

(R3): The counterpart of (HP2) on S2, i.e., (HS2), demands monotonicity along
some neS2. It is thus suggestive that also for (l.3p) the important property is not
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(HP2) but just monotonicity, at least if boundedness of V is kept. This, however,
may be false in general. The full analog of Theorem SI is a special case of our
Theorem P2. Nevertheless, it covers nonmonotonic V and shows that (HP2) is
a technical restriction which comes from the moving plane method, not an intrinsic
requirement.

(R4): If, however, we relax (HP1) and admit unbounded V, then (HP2) seems
to be vital in the following sense. If besides dropping (HP1) we also replace
(HP2) by the weaker requirement that V is radial, but otherwise keep all further
hypotheses, we can construct counterexamples. The verification of this claim is
relegated to Sect. 6, where for power law increasing V we construct nonradial
C°° solutions of (1.3P) with finite generating mass >8π, with u+ compactly
supported on a bounded simply connected domain. Superficially this seems to be
in conflict with Theorem P2. We will see, however, that the hypotheses of The-
orem P2 imply that m ̂  4.

We remark that counterexamples to rotational symmetry for bounded increas-
ing Ffor simpler (linear) equations for u in a finite ball are given in [GNN1].

(R5): (HP3) is intrinsically vital in the sense that dropping (HP3) but keeping all
other hypotheses allows us to construct examples of C°°(R2) solutions of (1.3P)
with broken symmetry but infinite generating mass. To see that (HP3) is not just
a technical restriction, we give a nontrivial explicit counterexample to radial
symmetry in the special case of (1.3P) with a trivial weight V = 1, i.e., Liouville's
equation (1.2a). We note that [CheL] need (1.2b), i.e., our (HP3), to prove their
symmetry theorem for (1.2a).

Indeed, for any v and V in S * c R2 with <v, v' > = 0, and any ζ e R, K e R + and
2, the function t/ζ>κ(x; x0) given by

2τc2 {cosh ζ cosh <v, κ(x — x0)> + sinhCcos<v', κ(x — x0)>} 2 (1-4)

is a periodic C°° solution of (1.3P) for the constant weight V = 1. Solution (1.4) has
infinite generating mass and therefore it violates (HP3). Note that exp(L/ζ>κ)6L00. It
is of course a special case of Liouville's general solution. It was discovered
independently by Stuart [St] and by Schmid-Burgk [SB]. However,

which is > 0 for K > e~ |ζ |/<v/2, and thus (1.4) also violates (HP5). This is easily
corrected by defining w ζ j K = U^κ— \\ U^κ \\ «, and Fζ>κ = exp || U^κ \\ ̂ . Then wζ > κ is
a nonradial solution of (1.3P) for this particular F; it satisfies all hypotheses but
(HP3).

(R6): If Fis not everywhere positive, our condition (HP3) is somewhat stronger
than demanding finite total generating mass. At present we do not know whether
(HP3) remains that vital in case of a nontrivial V which takes negative values on
a set of finite measure, or whether it can be relaxed to some improper sense of
J Veu < oo. In fact, a definition of an improper integral may be unnecessary by
demanding instead a uniform upper bound on J^ Veud2x on nested compact
subsets A c= R2. This is an open problem, however. We add that (HP3) rules out
also some u which are solutions only in the distributional sense.

(R7): Condition (HP4) enters through the moving-plane argument. Hypothesis
(HP4) is sharp in the moving plane arguments because we do not make any a-priori
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assumptions on asymptotic behavior of V. It is an interesting open question
whether (HP4) is sharp also in the following PDE sense: Is it possible to find a V(x)
and a corresponding nonradial solution u of (1.3P) which satisfy (HP1)-(HP3) and
(HP5), but (HP4) is violated?

In Proposition 1 (Sect. 5) we state a sufficiency condition for V which implies
that any solution of (1.3P) satisfies (HP4). In these cases (HP4) is automatically
sharp. If the sufficiency condition is not satisfied, it does not seem a-priori obvious
that for given V there will be a solution of (1.3P) satisfying (HP4). In a forthcoming
work we address this problem of whether (HP4) is intrinsically sharp with a very
different technique, see [CK].

On the other hand, in more specialized cases where some asymptotic decay to
zero of V is known a-priori, our (HP4) can be improved. See Sect. 7.

(R8): Inequality (HS3) enters through the stereographic projection; see Sect. 4.
We will see in Sect. 6 that well behaved but not rotational symmetric solutions of
(1.3s) which violate (HS3) are likely to exist. (HS3) is stronger than (HP3); never-
theless it turns out that such a bound is automatically satisfied in 1R2 under
the conditions expressed in Theorem PI, and on S2 under the conditions of
Theorem S2. See Sect. 4.

(R9) Condition (HP5) is again vital given we do not know anything more
than (HP1)-(HP4) and the fact that u solves (1.3P). It enters technically
through Lemma 1, which we need for the proof of Theorem PL The proof of
Lemma 1 is based on an a-priori L°° estimate for u+ as given in [BM],
Theorem 2. In [BM], instead of our (HP1), (HP3) the conditions FeZ/,
eueLp\ pe(l, oo], with p and p' conjugate exponents, are employed, which
for p = oo [our (HP1)] yields etieL1, in which case our (HP5) follows; see
[BM]. Clearly, for p = oo the [BM] condition is somewhat stronger than our
(HP1), (HP3). One may want to try to generalize the [BM] argument to get
an L°° result for u+ on basis of (HP3), but compactly supported V provide us
with counterexamples. Notice that u is harmonic on IR2\supp(V\ so it is easy
to construct u which tend to -f oo as |x| becomes large in certain directions
of space. Physically these asymptotically harmonic functions correspond to
external sources at infinity, which generically destroy the rotational symmetry.
As we are interested in system-intrinsic results, we have to control the asymptotic
behavior of u+. Our condition (HP5) is relatively mild, but in fact sufficiently
strong to rule our sources at infinity.

(RIO): The various hypotheses (HS5) are analogs of (HP5) on S2. The strange
factors enter through the stereographic projection.

(Rll): If a little more is known about V, for instance V is bounded away
from 0, then we can drop (HP5). This is clear as V ̂  c > 0 together with (HP1)
and (HP3) imply that eueL1

ί and we are back to the [BM] estimate that we need
in Lemma 1.

This ends our remarks on our system of hypotheses. It remains to outline
the structure of the rest of the paper. In the next section we prepare the proof of
our Theorem PI, which itself is presented in Sect. 3. In Sect. 4 we prove
Theorems P2, SI and S2. Section 5 offers a sufficiency condition on V implying
that any solution of (1.3P) (so it exists) necessarily satisfies (HP4). In Sect. 6
we construct a class of nonradial solutions of (1.3P) for radial V satisfying
all constraints but (HP2) and (HP1). In Sect. 7, some applications to physics
and geometry are discussed. For vortex systems we expect our results signal
a symmetry breaking phase transition.
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2. Preliminaries

For the proof of Theorem PI we need

Lemma 1. Let u be a solution of(\3p\ xeR2. Assume (HP1), (HP3), (HP5) hold.
Assume further that JR2 V(x)eud2x > 0. Then

lim - = - - f K(x)^wd2x . (2.1)
^oolnlx l 2π,p[2

Let

= f On|x - y l - ln|y|)K(y)^>d2y . (2.2)
2πR 2

Then,

J!P(x) = V(x)eu(x} . (2.3)

Since w satisfies (1.3*) and y satisfies (2.3), the function h(x) = u(x) + Ψ(x) is
harmonic. By hypothesis (HP1), FeL°°(R2). By (HP3), Fe'eL^R2). By (HP5),
u + e L1 (R2). Thus by examining Theorem 2 of [BM] or by Corollary 3.3, p. 430 of
[ChaL], we conclude that \\u+ H ^ < oo. Moreover, by the definition of Ψ,

lim f-f = - f V(x)eu(xWx . (2.4)

This implies that the harmonic function h is bounded by

Λ(x) ̂  w + (x) + ^(x) ̂  C + C'[ln(|x| + 10)] . (2.5)

Thus h(x) = C". Therefore

(2.6)

which proves Lemma 1. Q.E.D.

Corollary 1. Assume u satisfies (l.3p) with (HP1), (HP3)-(HP5). Then for some ε > 0
we have uniformly

eu(x^C\x\-*-£ (2.7)

as |x|-> oo.

Proof. By (HP4), for some δ > 0,

J V(x)eu(x)d2x ^ 6π + δ . (2.8)
R2

By Lemma 1,

= _ F(χ)^(,)d2χ < _ = _3 _
2 π 2

 v 2π v ;

Thus

e«<*) = |χ |«(χ)/in|χ| ̂  c |xΓ 3~ ε , (2.10)

provided |x| ^ r0 for some r0. Q.E.D.
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We continue preparing the proof of Theorem PI. Note that by Lemma 1, if
JR2 V(x)eud2x > 0, then u(x) -> — oo as |x| -> oo uniformly. Thus it is possible to talk
of a global maximum for u. We will now show that without loss of generality we can
arrange coordinates so that this global maximum is at the point (—4, 0). We shall
moreover see that these coordinate transformations leave (HP1, 3, 4, 5) invariant.

First note that by a coordinate rotation σ we can arrange coordinates so that
the function u ° σ = uσ has its maximum at the point ( — a, 0), with a ̂  0. We have
to distinguish two cases.

Case 1: Let a > 0. In this case we scale coordinates to a new system via z = 4x/a.
We set μ = 4/a. Now notice that uσ satisfies the equation — Auσ(x) = V(σx)eu<t(x\
We will henceforth denote V(σx) by Vσ(x) (we do not use (HP2) here). Thus
-Auσ(z/μ) = Vσ(z/μ)eu'(z/μ\ Denoting the function uσ(z/μ) by ΰ(z) and μ~_2Vσ(z/μ)

by V(z\ we see that ΰ satisfies the equation —Aΰ(z) = V(z)eu(z\ where A denotes
the scaled Laplace operator. It is easy to check that, if the pair u and V satisfies
(HP1, 3, 4, 5), then so does the pair ΰ and V. Thus, if a > 0, we can always assume
without loss of generality that a = 4. The proof of our Theorem PI will eventually
show us that this case cannot arise unless Fis constant, so that a > 0 does not arise
unless V is constant.

Case 2: Let a = 0. Here we translate the origin to (4, 0). Set ΰ(x) = u(x^ + 4, x2),
with x = (x j9x2). Let F(x) = K(X! + 4,x2). Then from (l.3p), ΰ(x) satisfies
-Aύ(x) = V(x)eύ(x) in 1R2. Note that, if the pair u and V satisfies (HP1, 3, 4, 5),

then so does the pair ΰ and V.
Thus, if u and F^atisfies (HP1, 3, 4, 5), we have converted our problem to a new

pair ΰ and F, with F = μ~2F(σx/μ) in Case 1, and with V — V(x± + 4, x2) in Case
2. We shall now simply denote ΰ by u and thus our new equation is

-Au(x)= V(x)eu(x} . (2.11)

We introduce some notation. Let Σλ = {x: x = (xl9 x2) with x1 < λ} denote
a half space, and let Tλ = {x: X j = λ} be a line (a "plane"). For a given x, let xλ

denote its reflection across Tλ, that is xλ = (2λ — Xi , x2). Next we prove

Lemma 2._Let V satisfy (HP2). Then for x^ ^ λ g —4, and in particular for xeΣλ,

Proof. According to our construction, we have to consider two cases for F

Case 1: In this case, F(x) = μ~2F(σx/μ), where σ is a rotation. Since Fis radial
symmetric as a consequence of (HP2), it follows that F(x) = μ~2F(x/μ). Since
|x| ^ | X A | for Xi ^ λ ̂  —4, our claim follows from the fact that Fis decreasing by
(HP2).

Case 2: In this case, F(x) = V(xv + 4, x2), and thus V(xλ) = V(2λ - X A + 4, x2)
To verify our claim we now have to show that for x^ ^ λ ^ — 4, we have
(x1 + 4)2 + x| ̂  (2/1 — Xi + 4)2 + x|, which is evident. This concludes our proof
of Lemma 2. Q.E.D.

Next we introduce uλ(x) = u(xλ\ then vλ(x) = uλ(x) — u(x) and #(x) =
ln( |x j - 1). We finally set WΛ(X) = vλ(x)/g(x). Notice that for xeΣ A , λ < -2, the
function wλ(x) is well defined. We see from (2.11) that

. (2.12)
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For xeΣλ, λ ̂  — 4, Lemma 2 applied to the identity above yields Auλ(x) +
V\x)eu*(x} ^ 0. The inequality above coupled with (2.11), (2.12) yields υλ(x) +
V(x}(eUλ(x) — eu(x}) ^ 0. By the mean value theorem there exists a ψ(x) with values
between uλ(x) and u(x\ such that eUλ(x} - eu(x) = vλ(x)e*(x). Thus vλ(x) satisfies the
partial differential inequality

Avλ(x) + V(x)<*™Όλ(x) ^ 0 . (2.13)

We are now in the position to prove

Lemma 3. Under (HP1)-(HP5) there exists R0 > 0 such that for x0 a minimum point
ofwλ(x) in Σλ9 λ ̂  -4, ifwλ(x0) < 0, then |x0| < R0.

Proof. First recall that by definition WΛ(X) = vλ(x)/g(x). Since vλ(x) satisfies the
partial differential inequality (2.13), we see that WΛ(X) satisfies the partial differential
inequality

ZJWA(X) + 2 — VwA(x) + ( — + Ϋ(x)e*(x)) WA(X) g 0 . (2.14)

Next,

-If lndxl-l)]- 1 . (2.15)y ri-.i/i-.i ι \2 i—/i-. i ι\~ι —1

We will now produce a contradiction, that is, assume that no such R0 exists.
Then |x0| is arbitrarily large, |x0l > M for any M. But since WA(XO) < 0, further
x0eΣλ, we have W([XO]Λ) < u(x0). Thus ψ(χ0) ^ u(x0\ and thus e*(xo) ^ eu(XQ\
Therefore, as V_ satisfies (HP1)-(HP5), by Corollary 1, eu(xo) ^ C|x 0Γ 3~ ε Thus for
|x0 1 large, as FeL00,

o) ^ — + C| K(xo)l l^oΓ 3~ε < 0 . (2.16)

At a minimum point, VWA(XO) = 0. Whence from (2.14) and (2.16) we get that
Awλ(x0) < 0 as wA(x0) < 0 by assumption. But at a minimum point x0>
^w^Xo) > 0. Thus we have produced a contradiction. Q.E.D.

Remark. If it is known that F< 0 for r large, or FJ,0 sufficiently fast, then l.h.s.
(2.16) < 0 for |x0| large. Corollary 1 is superfluous in these cases, and (HP4) can be
dropped.

3. Proof of Theorem PI

We are now ready to prove Theorem PI.

Proof. First note that WA(X) ^ 0 for λ< — M, M large. This is because by
Lemma 1, wA(x)-»0 uniformly as |x|-» oo. Indeed, if there were a x, with |x|
large, for which WA(X) < 0, then a strictly negative global minimum of WA(X) for
large |x| would result, which is ruled out by Lemma 3. So WΛ(X) ^ 0 for λ < — M,
M large.

We now slide the line Tλ (recall that X! = λ on Tλ) to the right until we reach
a critical value λ0. This λ0 is the largest value of λ for which WA(X) ^ 0, xeΣλ.
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Claim A: vλ(x) = uλ(x) - u(x) > 0 for xeΣλ, λ < λ0, and dxιu > 0 for xx < λ0.

Claim B: λ0 = -4.

Proof of Claim A. Recall the maximum principle (MP) and the Hopf maximum
principle (HMP) [GT]:

Let Av + bi(x)dx.v + c(x)v ^ 0 in Ω c Rπ and v ̂  0. (Here we use summation
convention.)

MP: If v(x) = 0 for at least one xeint(β), then v = 0 in all of Ω.
HMP: If v φ 0 in Ω, v ̂  0, and dΩ is smooth with v\dΩ = 0, then dv/dv < 0,

where dv/dv is the exterior normal derivative on dΩ. (Notice that no sign condition
is being imposed on c(x) as the minimum of v is 0.)

We begin by establishing Claim (A). Suppose, for λ < λ0, that vλ(x) = 0 at some
point xeΣλ. Since WA(X) ^ 0, for xeΣλ and g(x) > 0, we see that vλ(x) ^ 0 in Σλ.
Thus if vλ(x) = 0 the minimum of vλ(x) is achieved in Σλ. Since (2.13) holds, and
vλ(x) ^ 0, we can apply the maximum principle and deduce vλ(x) = 0 in Σλ. This
means for λ = λ0 — δ, some δ > 0, that u(λ0 — 2(5, y) = u(λ0, y). But υλ(x) ^ 0, thus
u(xλ) ^ u(x\ which implies du/dx± ^ 0 for xt ^ λQ. This fact together with the fact
u(λ0 — 2(5, y) = u(λθ9 y) yields du/dx^ = 0 for λ0 — 2δ ̂  xt ^ /10. In particular,
du/dxi = 0 when xx = A0 — 25. By the Hopf maximum principle and the maximum
principle we have υλ = 0 iff dvλ/dx1 = 0 on {xi = λ}. Now dvλ/δxί = — 2du/dxί for
Xi = A. But since du/dx^ = 0 when x^ = λ0 — 2(5, we see dvλo-2δ/dxι = 0 for
X j = A0 — 25 or, which is the same, on Tλo-2δ Thus the Hopf maximum principle
says ^^0-25 = 0. We may repeat this procedure indefinitely and thus deduce that
u is independent of xίt This is a contradiction, and so the first assertion of claim (A)
is proved.

As for the second assertion of (A), note that since vλ > 0 in Σλ for λ< λ0, and
vλ = 0 on Tλ, we get the Hopf maximum principle dvλ/dx± < 0 on Tλ. Since for
x1 = λ we have du/dx^ = —(l/2)dvλ/dxίywQ also have du/dx^ > 0 for x^ = λ, with
λ < λ0. So claim (A) is proved.

We now prove (B). From the second assertion in claim (A) we see u is strictly
increasing for x± < λ0. By our earlier choice of coordinate axis the maximum of u is
at (—4, 0). Thus λ0 ^ —4. We now consider the case λ0< —4. There are two
possibilities. Either wλo = 0 or wΛo φ 0. We will first rule out the case A0 < —4,
wΛo Φ 0.

By (2.14) and the maximum principle, as wAo = 0 on ΓAo, we get wAo > 0 for
xί < λ0. Hence, by the Hopf maximum principle, dwλo/dxι < 0 when x{ = λ0. On
the other hand, by definition of /L0, there exists a sequence of numbers λkί

decreasing to Λ,0»
such that wλh < 0 and λ0< λk< — 3. Notice wAk is well defined for

λk < —3. Let xk be a minimum point for wAk. Then wAk(xfe) < 0 and VwAk(x fe) = 0.
As Lemma 3 implies \xk\ < R0, there exists a subsequence xkj -> x0 such that
Vwλo(x0) = 0 and wλo(x0) ̂  0 for x0 = (A, B), A ^ λ0. This is a contradiction.
Thus our claim is proved in this case.

We will next rule out the case λ0 < — 4 and wAo = vλo = 0. This means
u(xλo) = u(x\ for xeΣλo. But u attains its maximum at (—4, 0) and by part (A) of
our claim, du/dx1 >0 for x^<λQ. Since A0 < —4, it follows du/dx1 = 0 at
(4 + 2λ0,0), which again is a contradiction.

Thus wλo(x) ̂  0 for λQ = —4, whence vλo ^ 0 or, which is the same,
u(xλo) ^ u(x) for AO = —4, where u has a maximum at (—4,0). We may now repeat
this argument by sliding the "plane" Tλ in from xx = oo to get u(xλo) ^ u(x) for
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λ0 = — 4. Putting the two inequalities together we see that for λ0 = —4 we have
W(XA O )

 = MM This now implies that u is radially symmetric about ( — 4, 0).
Next we notice that, if V were given by V(x) = μ~2V(\x\/μ\ then the radial

symmetry of u and the fact that u satisfies (2.11) imply that Fis radially symmetric
about ( — 4,0). This can only happen if Fis a_constant (since Fis radially symmetric
around the origin by assumption). Thus F has to be a constant or of the form
F(X! + 4, x2), for non-constant F. In both cases, through translating axes back, the
solution of the original equation for w, i.e. which satisfies (1.3P), is radially sym-
metric around the origin. Moreover, from the arguments involving the Hopf
maximum principle we see that any solution is also radial decreasing. This com-
pletes the proof of Theorem PL Q.E.D.

4. Proofs of Theorems P2, SI, S2

In this section we show first that by stereographic projection our Theorem PI
about (\3P) in R2 implies Theorem SI about (1.3s) on S2. We then prove in the
same fashion Theorem S2, and finally Theorem P2.

Proof of Theorem SI. Consider S 2 to be embedded in IR3 and centered at the
origin. Then S2 = {y(l\y(2\y™ \ Y,/02 - 1}. We project S2 stereographically
onto IR2 = {y(1) = x(1), y(2) = x(2), j^} | y(3) = 0}. Points in R2 will be denoted by x.
We assume without loss of generality that the symmetry axis n of V(y\ y e S 2, is the
north pole (0, 0, 1). We set V(y) = F«n, y». We have <n, y> = 1 - | J|, with

and r = |x|, xeIR2. Note that | J|2, the Jacobian of the stereographic projection
S2 -> IR2, is radial decreasing. Thus (1.3s) becomes

-Δu=\J\2[_V(\-\J\}eu-c\. (4.2)

In (4.2), A is the Laplace operator on IR2, and in u the yeS2 are to be expressed as
functions of the Euclidean variables.

Next we introduce

v(x) = u\_y(x)'] + cln |J | . (4.3)

A straightforward integration yields

-Δv= Vp(r)ev (4.4)

with

VP(r)=\J\2-'V(l-\J\). (4.5)

Next, notice that 1 — | J \ is increasing as a function of r and that, by (HS2),
ίi— >F(ί) is nonincreasing, so F(l — | J|) is nonincreasing as a function of r.
Obviously, for c :g 2, Vpis nonincreasing as a function of r if V ̂  0. Equation (1.3sb)
together with (HS3) implies c ̂  2, thus Vp is nonincreasing as a function of r by
(HS1) and (HS3). By substitution of variables, since (HS4) holds by assumption,
then (HP4) holds for J Vpe

vd2x. Radial symmetry of Vp holds by construction, and
the L1 bound (HP3) for Vpe

v holds by substitution of variables as the requirement
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(HS3) holds. Similarly (HP5) holds for v+ as (HS5) holds for w, by assumption.
Therefore Theorem SI holds as a consequence of Theorem PI. Q.E.D.

Proof of Theorem S2: In the first step we define n to be the north pole and then
proceed as in the proof of Theorem SI. This time, however, the stereographic
projection results in an equation (1.3P) with weight

Y p ( x ) = U l y ( x ) l 9 (4.6)

and the decrease and boundedness of Vp, demanded by (HP1) and (HP2), follow
from (HS1*) and (HS2*). (HP3) and (HP4) are conformal to (HS3*) and (HS4*).
Finally, (HP5) is satisfied by substitution of variables. This proves Theorem S2 for
n being the north pole.

In the second step, we notice that nobody knows which direction is "north" on
S2

9 which proves Theorem S2. Q.E.D.

Proof of Theorem P2. Notice that a Kelvin transform x-> x/\x\2 in R2 is equi-
valent to n -> — n on S2. We pick the situation covered by Theorem S2 and choose
n to be the south pole. Then we proceed as before. The resulting stereographically
projected situation is the one covered by Theorem P2. Q.E.D.

We remark that automatically m ̂  4 in (HP1*), and c ̂  2 in (HS1*). We like to
thank J.J. Aly for suggesting to us to combine our Lemma 1 and Pohozaev's
identity to extend [CLMP] (7.6). Indeed, one then concludes a priori that m ̂  4 for
any solution of (1.3P) with finite generating mass provided (HP1) and (HP2) are
met. Therefore, Theorem P2 does not cover V which are asymptotically increasing
according to a power law.

5. A Sufficiency Condition on V Which Implies (HP4)

We are now proving a sufficient condition for Fso that all solutions of (1.3P) satisfy
(HP4).

Proposition 1. Suppose there exists constants cl9 c2 = ess sup V, with ci/c2 > 3/4,
such that 0 < c1 ^ V(x) ^ c2 < oo for xeR 2. Then any solution o/(1.3p) satisfies

j V(x)eu(x)d2x > 6π .
R2

Proof. First we introduce U (x) via V(x) = II Π «> U(x) and w(x) = u(x) + In || V \\«,.
By the demanded bounds on V, we have 3/4 < U(x) ̂  1. Moreover, since u satisfies
(1.3P) by assumption, w satisfies

-Aw = U(x)ew (5.1)

in all R2.
We now proceed by a modification of an idea of Ding, see [CheL]. For

w a solution of (5.1), let w* denote the non-increasing radial rearrangement of w.
Let Λc = {x\ w(x) ̂  c}, and let BRc(0) denote the ball with radius Rc centered at the
origin, with Rc chosen such that \ΛC\ = \BRc\. By the isoperimetric inequality,

- J dlxlw*ds^ - J n V w d s = - j Awd2x . (5.2)
dBRc(0) dΛc Λc
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By virtue of the fact that w solves (5.1) and the bounds on U9

- J Awd2x = f Uewd2x ^ J ewd2x = J e™*d2x . (5.3)
Ac Ac Ac BRc(0)

Let now
/(r)= J ew*d2x. (5.4)

Br(0)

Then/'(r) = 2πr*w*(r) and/"(r) = 2π[rw*(r)' + 1>W*« With the aid of (5.2), (5.3)
and (5.4) we see -2πrw*(r)' ^/(r). Thus 2πr/"(r) ̂  2π/'(r) -/(r)/'(r). Since
/'(O) = 0, integration by parts leads us to 4πr/'(r) ̂  8π/(r) -/2(r). Next, with
0(r) = l/f(r)9 we get from the last inequality [r2φ(r)J ^ r/4π which upon integra-
tion immediately yields

J ewd2x ^ 8π . (5.5)
1R2

Thus, since U > 3/4 by the assumed bounds on V9 we get

J U(x)ewd2x > (3/4)8π = 6π . (5.6)
R2

However, by construction

J V(x)eud2x= J U(x)ewd2x, (5.7)
R2 R2

and the proposition is proved. Q.E.D.

Remark. Note that in Proposition 1 it is not assumed that V is radial monotonic
decreasing. Note also that by assumption Fis bounded away from 0, so that in this
case we can drop both (HP4) and (HP5); see the corresponding remark in the
introduction.

6. An Example of Broken Symmetry

In Sect. 4 we saw that for c > 2 the stereographic projection S2 -> R2 maps a Ffrom
problem (1.3s) to a problem (1.3P) with a V(x) that contains an additional factor
(1 + r2)c~2; see (4.5). For strictly positive V which are also bounded away from zero,
the so generated V(x) increases asymptotically like a power law for r large. This
violates both (HP1) and (HP2). Since this case is not covered by our Theorems PI,
P2, it is of interest to clarify whether this implies a breaking of the radial symmetry.

In this section we consider the slightly simpler but related problem of radial
symmetric V(x) which increase according to a pure power law. The essential feature
of a radial V which violates (HP1) and (HP2) is thus kept. Explicit counterexamples
to radial symmetry which satisfy all hypothesis but (HP1) and (HP2) will now be
constructed.

Proposition 2. For Λ eN, let V(x) be given by Vk(x) = 8fc2r2(fc~1), where r = |x|,
xeIR2. Let φ be the polar angle in R2, φQ some reference angle, and let r0 be
a reference scale. Then for each £e!R, r0e!R+, φe[0, 2π), the function
Wf\r, φ; r0, φ0) given by

2(r/r0)
fecos(/c[> - ^0])tanhC + (r/r0)

2k}-2sech2C (6.1)
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is a C°°(IR2) solution of(\3p) with V = Vk. In particular, (6.1) satisfies (HP3) and
(HP4). For ζ = 0, any k eN, the solution (6.1) is radially symmetric around the origin.
For fc = 1, and ζ Φ 0, (6.1) is radially symmetric about some x0eΊSί2

|x0| = tanh|C|. For k > 1 and ζ Φ 0, wf} is not rotationally symmetric about any
point in IR2. We have

J Sk2r2(k-ί)QxplW^(x)^d2x = 8π/c (6.2)
R2

independent of ζ, r0 and φ0. Also, Wζ (x) is compactly supported in a simply
connected bounded domain; hence (HP5) holds, too.

Proof. It is straightforward to insert (6.1) into (1.3P), using the definition of Vk and
to verify that it is a solution. It is however more instructive to see how it is
constructed ab initio.

We construct (6.1) from (1.4), the periodic solution of (1.3P) for constant
V(ί 4) = 1, i.e. Liouville's equation. With the transformations ξ = Inr we have

A = r-^K) + r~2dφφ = r~2(dξξ + dφφ) . (6.3)

If we interpret ξ and φ as cartesian coordinates of 1R2, then UζtK(x; x0) from (1.4)
with <v, x> = ξ, <v', x> = φ, satisfies Liouville's equation in these coordinates, and
so, using (6.3) and transforming back to r, φ coordinates, and further absorbing
a numerical factoHnto the emerging F, we arrive at a formal solution of (1.3P) with
formal potential Vκ = Sκ2r~2. We say formal as we have yet to check the singular
behavior of this solution. First it is clear that, in order to get a single valued
function, K has to be restricted to positive integers k e N, since φ is a polar angle in
the left-hand side of (6.3). Second, it is easy to check that this solution generates
a Dirac singularity at the origin, with mass — 4πfc, therefore we have so far only
arrived at a solution of (1.3P) in IR2\{0}. To get a solution for all IR2 we add the
corresponding Green's function — 2/cln r to our formal solution, lump the compen-
sating r2k together with Vk to a new Vk and arrive at (6.1).

The rotational symmetry in the case that ζ = 0 is obvious. It is left as an exercise
to verify that for k = 1 our (6.1) is just a rotationally symmetric solution (1.2c) of
(1.2a), with the identification λ~2 = cosh2£, |x0| = tanh|£|, and with <x, x0) =
r|x0 |cos(φ — <po). (This means that the variable r here is not the radial variable
measured from the center of symmetry of wf^ for k = 1.) For k > 1, we have
solutions which are nontrivially periodic in φ provided ζ Φ 0.

A standard calculation shows that

(6.4a)

for r -> 0, and
- r~2 ( k + 1 ) (6.4b)

as r-> oo, and (6.1) is C°° for re[0, oo). This proves that (HP3) is satisfied.
Obviously wf^ -21n(r£coshQ for r->0+ and PFf^-oo for r->oo, so
wf^ is compactly supported on a bounded simply connected domain. Hence
(HP5) holds true.

Knowing this, we can calculate the total mass generated by the solutions by
using that wf} solves (1.3P) with V= 8fc2r2(fc~1}, and partial integration. We get

J 8fe2r2(fc- "expfflf })d2x = - lim r j dt Wf\t, φ)\rdφ = 8π/c . (6.5)
R2 i-»oo dBr(0)
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Thus (HP3) holds too, as well as (HP4). For k = 1, i.e., for the rotationally
symmetric solutions, we recover the total mass of (1.2c). Q.E.D.

To the best of our knowledge, this is the first counterexample to radial solutions
of a radially symmetric equation in R2 of the type (1.3P) which has finite mass. In
the next section, where we apply our results to some problems in physics and
geometry, we will see that the symmetry breaking (6.1) indicates the possibility of
a new phase transition in vortex gases.

7. Applications

We now discuss three applications of our results to physics and geometry.

la. Planar Onsager Vortex Theory. The thermodynamically unstable vortex
Hamiltonian

H=-(4πΓ1 Σ Σ ln |x ,-x j l (7a.l)
ie./ J6./\{i}

with QeR2, ie,/ = {1, 2, . . . , N} admits as further constant of motion

which effectively confines the vortices. (In R2, the center of vorticity is a trivial
further constant of motion, which we imagine to be at the origin by a simple
translation.) One is interested in constructing directly the corresponding "bi"-
microcanonical ensemble (MCE) in a thermodynamic mean-field limit, which is
expected to have importance in two-dimensional turbulence; see [Ons] for the
original idea and [MMSMO] for recent simulations on the 2-torus T2. The direct
construction of the MCE for (7a.l) is an open problem in general; see below. So far
one relies on the weaker bi-canonical ensemble (CE) for which better control is
available, which allows one to construct rigorously the thermodynamic mean-field
limit as in [K, CLMP] for the joint N vortex distribution μ(N\d2Nx) =
Z~levρ{-H/T- yl}d2Nx9 with temperature scaled like T(N) = β~^N, β fixed,
and y > 0 the conjugate variable to LAsN-> oo, for all β > — 8π and all γ > 0, IP
weak limit points of the marginal probability measures μ^N) exist for p e [1, oo ). Any
weak limit point μn is a convex superposition of marginals of infinite product
measures p®N which satisfy

exp( — Bώ — y r 2 )
p(x) = T -

 P P* 2 . 2 > (7a.3a)\^2Qxp(-βφ-yr2)d2x

-Δφ = p. (7a.3b)

In the bi-canonical ensemble, only solutions of (7a.3a/b) which are global minim-
izers of (β times) the free energy per pair of particles,

βF(p) = p(x) Γ - θ n | x | *p)(x) + lnp(x) + y |x | 2~ d2x (7a.4)

are admitted in the convex superposition. Here * denotes convolution. In case
(7a.4) has a unique minimizer the superposition measure is a singleton, implying in
fact weak Lp convergence of the marginals as N -> oo. The limiting measures are in
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L°°. Note that our statement implies that a finite global minimum on L1 n L°°(1R2)
of (7a.4) does exist for β > — 8π; γ > 0, see [K, CLMP]. For the canonical en-
semble it is enough to determine and evaluate all minimizers of (7a.4) for β > — 8π.
For the microcanonical ensemble this is not a-priori clear, as β is a secondary
quantity in the MCE and may well be below — 8π, for instance, and the corres-
ponding solution of (7a.3a/b) may not be a global minimizer of (7a.4) then. We
remark that in a finite disk this happens, see [SO'N] for numerical Monte Carlo
results and for perturbation theoretic results.

Concerning symmetry of canonical minimizers, a number of results follow from
the investigation of [CLMP]. For β > 0, p^>βF is neither a sum of convex
functionals (as — In |x — y\ is not a positive kernel) nor monotone under symmetric
decreasing rearrangement. For β > 0 (7a.4) is however almost convex, suggesting
a unique, hence radial, solution of (7a.3a/b). For — 8π < β < 0, (7a.4) is decreasing
under symmetric decreasing rearrangements, which implies radial symmetry of the
minimizers in that range of β values. These arguments are essentially due to
[CLMP], proof of Theorem 6.1, with some slight modifications; cf. [CLMP] Sect.
6. Caglioti et al. also showed by a standard ODE argument that radially symmetric
solutions exist, moreover that they are unique for each β > — 8π, γ > 0, and further
that all radial solutions satisfy β > - 8π. It is then possible to conclude the same
symmetry and uniqueness results for the microcanonical entropy maximizers by
a convexity argument, as in Caglioti's thesis, cf. [ES].

The next objects to inquire into after the canonical and microcanonical ex-
tremizers are possible metastable solutions. From the work of [CLMP] it is not
clear a-priori whether all solutions of (7a.3a/b) are radial also for all β < 0, and
especially whether nonradial solutions exist for β < — 8π. Nonradial solutions
would come in a family, as the orientation must be degenerate. This would remind
us of a symmetry breaking phase transition, though at most for metastable states.
Nevertheless it is an attractive possibility to inquire into. Restricting (7a.3a/b) to
a finite disk with 0-Dirichlet b.c., such a phase transition was found both numer-
ically and with perturbation techniques in [SO'N]. Notice however that 0-Dirich-
let b.c. for φ mimick an adjustable environment (image "charges") so that
a catalyzer effect for symmetry breaking prevails. On the basis of numerical
computations Williamson [Will] conjectured that only radial solutions of (7.3a/b)
exist in IR2.

Our Theorem PI confirms Williamson's conjecture for all β < — 6π. This can
be expressed as

Corollary PI. All nondίstrίbutίonal solutions o/(7a.3a/b) in the regime β < — 6π are
necessarily radial symmetric and decreasing.

We can go further and confirm Williamson's conjecture for all β ^ 0. We notice
that here we have an example where we gave away some information about our V,
which is decreasing rapidly to zero. By inspection of the proofs of Theorem PI and
Lemma 3, we see that we can drop (HP4) [see the remark after Lemma 3] and thus
have proved

Theorem VI. All nondistributional solutions of (7a.3a/b) in the regime β ^ 0 are
necessarily radial symmetric and decreasing.

Notice that this goes further than the radial symmetry of only all minimizers of
(7a.4) for βe(-8π, 0), which exist by [K] and [CLMP], and which are radial by
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symmetric decreasing rearrangement; see above. Since by Eq. (7.6) of [CLMP]
all radial solutions satisfy β > — 8π, we can conclude also from Corollary PI
that (7a.3a/b) has no nondistributional solutions for β g — 8π. For further rigo-
rous results on the planar vortex problem (7a.3) in IR2 we refer to [CLMP
and CK].

We see that to have the possibility of symmetry breaking in IR2 we have to
admit distributional solutions of (7a.3a/b) or relax some other hypothesis.

An interesting situation arises if we extend (7a.l) and assume that the vortices
are subjected to a fixed external stream field Φ which is radial in IR2. We remark
that this fixed field cannot act as a catalyzer of symmetry breaking in the sense in
which 0-Dirichlet b.c. for φ do. We expect it difficult to find a symmetry breaking if
Φ is bounded. The situation changes if we take as the source for Φ a point vortex of
opposite sign and strength NM > 0 at the origin. In the mean-field limit we have to
consider

_

P(X) ~ ̂ 2

-Δφ = p . (7a.5b)

If

M = (7,6)

with fceN, k > 1, then for γ = 0 and β = — 8π/c, we obtain solutions with broken
symmetry from (6.1). We leave it as an exercise to rewrite (6.1) into a solution of
(7a.5). Questions of stability will be discussed in [CK].

7.b Spherical Onsager Vortex Theory. As a second example, which bridges the
"gap" between statistical mechanics of classical vortices and the random surface
problem studied by Onofri [On, OV], consider the Hamiltonian

H = -(Sπ)-1 Σ Σ ln(l - <y,,^» (7b.l)
ίeJ? j e J f \ { i }

with yteS2

9ieS = {1, . . . , N}. Here the angular brackets denote scalar product
in IR3, in which we imagine S 2 to be embedded. The Hamiltonian (7b.l) gives
rise to point vortex motion on the 2-sphere [PD] when the canonical variables are
given by <p, y f> and φh with peS 2 fixed and φt the polar angle around p as
measured from some fixed meridian through p. It admits a further constant of
motion

D = Σκ, (7b 2)
f

which may be termed a vortex dipole moment. As for bounded domains in IR2, or
all IR2, the mean-field limit for the bi-canonical ensemble on S2 exists for β > — 8π
in the sense mentioned above. This time

-Δsφ = p- l/4π , (7b.3b)



Rotational Symmetry in Statistical Mechanics and Geometry 235

with n in S2, and dμ the uniform measure on S2. Here Δs is the Laplace-Beltrami
operator on S 2 with respect to the standard metric. In order to eliminate the zero
mode, we add the requirement

J φdμ = Q. (7b.3c)
52

Now γ may be positive or negative; however, by a simple rotation we see that
without loss of generality we may assume y ̂  0. In the bi-canonical ensemble, only
those solutions are admitted which minimize

J(Φ) = \lWsΦ\2dμ + Γ 'In Jexp(-/ty - y<n, y»dfl + $φdμ, (7b.4)

the integrations being over S2, with dμ = (l/4π)dμ. For the bi-microcanonical
ensemble this would generally not be the case. As far as the CE is concerned, for
β > 0 (7b.4) is convex, so a unique solution of (7b.3a/b/c) exists, which is thus
rotationally symmetric. For β < 0, convexity does not manifestly prevail, leaving
the possibility for multiplicity of solutions. For 0 > β > — 8π, in the canonical
ensemble, we use symmetric rearrangements to characterize the minimizers as
rotationally symmetric, but that is inappropriate for the microcanonical ensemble,
for which also nonminimizing [regarding (7b.4)] solutions of (7b.3a/b/c) are of
interest and β > — 8π is not a-priori required.

Our problem is to find conditions under which all solutions of (7b.3) are
rotational symmetric around n. An immediate consequence of Theorem SI is

Corollary SI. All solutions 0/(7b.3a/b/c)/or jδe[ — 8π, — 6π), are necessarily rota-
tional invariant around n.

We notice that again we gave away some information on V. We remark that by
a more careful inspection of the estimates Lemma 1 and 3, we can drop (HP4) for
the stereographically projected problem and arrive at

Theorem V2. All solutions o/(7b.3a/b/c)/or βe [ — 8π, 0], are necessarily rotational
invariant around n.

This is more than rotational symmetry of only all minimizers of (7b.4) for
βe(— 8π, 0), which exist by [K] and [CLMP], and are rotation symmetric as
explained above. Notice the difference to 1R2. We remark that the solutions are also
monotone decreasing as a function of <n, y), which does not follow from projecting
the moving plane results but will be shown in [CK].

Proof of Theorem V2. Let us for convenience display equations (7b.3a/b/c) stereo-
graphically projected on IR2. We assume that β < 0 and w.l.o.g. y ̂  0. Then, with
A the Laplace operator on R2,

- - (7b.5)
\'Ί** 4»

with φ(x) = φ ( y [ x ] ) and with \l/(r) = 1 — | J\. Introduce

Φ(x) = -βlΦW ~ (l/4π)ln(l + r2)] (7b.6)

(recall β < 0, the interesting case). Then

-Aφ(x)= Vy(r)e*(x} (7b.7)
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with

Vl(r) = -β _ |J|2+"4"eXP,[y|J|] _ . (7b.8)

Now by Lemma 1,

φ ( x ) ~ ( β / 2 π ) ] n \ x \ , (7b.9)

and therefore

} ~ r~4 (7b.lO)

for r large. Therefore, l.h.s. (2.16) < 0 for r large automatically, hence we can drop
(HP4) and still come to the same conclusion as in Lemma 3. The rest of the proof of
Theorem V2 is identical to the proof of Theorem PL Q.E.D.

We recover that our ability to conclude, in Corollary SI, or Theorem V2,
rotational symmetry of solutions of (7b.3a/b/c) only for β ^ — 8π, comes from the
fact that the stereographic projection S2 -> 1R2, which we employ in the mapping
(1.3S)-»(1.3P), generates asymptotically power law increasing V(x)\ xeIR2 for
β < — 8π (we recall | J\ ~ r~2). Thus we expect our example (6.1) of broken sym-
metry in 1R2 to be of intrinsic interest also for the vortex, and related, problems on S2.
Evidently the possibility of a symmetry breaking phase transition in the micro-
canonical ensemble corresponding to smooth solutions for some β < — 8π without
the help of an external point vortex source is in fact suggested for this model.

This brings us back to the existence problem of the mean-field limit for the
MCE. The canonical ensemble requires β > — 8π as a sharp constraint. To estab-
lish the regime β ^ — 8π as the limit of finite N problems, the microcanonical
ensemble is needed. This more interesting case is in general open. For A a finite disk
in R2, the CE and MCE are equivalent if y = 0, in which case Caglioti in his thesis
has established the microcanonical mean-field limit by convexity arguments. If one
cuts out the logarithmic singularity, more can be said. Here we recommend the
recent article by Eyink and Spohn [ES].

7.c Geometry. Next we mention that (7b.3) with β = — 8π is equivalent to a prob-
lem of finding the conformal map that sends the uniform metric on S 2 into a metric
with prescribed Gaussian curvature ~exp( — y<n, y». It is known that this prob-
lem has a solution only if y = 0, see [KW] Theorem 8.8, in which case we are back
to Onofri's problem. This is due to the special case of the putative curvature
function. We notice that we may admit more general prescribed Gaussian curva-
ture. The main difference between the mean-field limit problem of statistical
mechanics and the geometrical problem is that in the latter a Gaussian curvature
function is not necessarily everywhere positive. For recent results see [CY].

For a pointwise conformal change of metric on S2, we have (1.3s) with c = 2. In
that case the Gaussian curvature is related to V(y) by 2K(y) = V(y) = U(y)9

which is therefore monotone. Our Theorem S2 does not a priori demand V ̂  0
everywhere; however, by monotonicity it must be positive in order to be a curva-
ture function on S 2. And so from Theorem S2 Corollary S2 follows:

Corollary S2. Any conformal map that sends the uniform metric on S2 into a metric
with prescribed bounded, rotationally symmetric and monotone Gaussian curvature
function K(y); yeS2, is itself rotational invariant around the same axis.
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Unfortunately this corollary is less illuminating than it pretends to be. By [KW]
Eq. (8.11), the only monotone curvature function that admits a solution of (1.3s) is the
constant function. We are indebted to S.Y.A. Chang for recalling to us [KW] (8.11).
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