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Abstract: One problem in quantum ergodicity is to estimate the rate of decay of the
sums

S^λ;A) = Σ \(Aφj,φj)-σA\
k

on a compact Riemannian manifold (M, g) with ergodic geodesic flow. Here,
{λj, ψj] are the spectral data of the A of (M, g), A is a 0-th order \|/DO, σA is the
(Liouville) average of its principal symbol and N(λ) = # {j: ^fλj ^ λ). That
Sk(λ;A) = o(l) is proved in [S, Z.I, CV.l]. Our purpose here is to show that
Sk(λ; A) = O((log λ)~k/2) on a manifold of (possibly variable) negative curvature.
The main new ingredient is the central limit theorem for geodesic flows on such
spaces ([R, Si]).

Quantum ergodicity is the study of the spectral properties of Schrόdinger operators
with ergodic classical flows. In this paper, we will be concerned with a special case:
that of a Laplacian on a compact n-dimensional Riemannian manifold M of
negative curvature. As is well known, the geodesic flow Gι on S*M is then ergodic.
A is also quantum ergodic in the following sense: for any choice of orthonormal
basis {φj) of eigenfunctions

Aφj = λjφj, 0 = XQ < λι ^ λ2- . t °°

and any A e Ψ°(M), one has

lim — - X \(Aq>j, φj) - σA\ = 0 . (0.1)

Here, N(λ) - # {j: y/I5 ^ λ}9 Ψm{M) is the space of ψDO's (pseudodiίferential

operators) of order m, σA is the principal symbol and σA := ————- $$*M σλdμ is
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the average value of σA with respect to Liouville measure dμ. We will refer to the
articles [CV, S, Z.I] for further discussion of (0.1) and its interpretation. Let us just
note here that it is a somewhat weak version of the limit formula

lim (Aφj9 φ5) = σA , (0.2)
λ~* 00

which has been so far neither proved nor disproved.
A natural problem is to determine the rate at which the sums

± σ\k
\(AφJ9φj)-σΛ

in (0.1) tend to 0 ([CV.2, Sa]). We will call any upper bound of the form

a rate of quantum ergodicity. Our purpose in this note is to estimate the rate of
quantum ergodicity for Riemannian manifolds of curvature K < 0.

Recently, Sarnak [Sa] has conjectured that (the optimal) rate JR^/1) = λ~*+ε

for compact (and, with appropriate modifications, non-compact but finite area)
hyperbolic surfaces. In fact, he conjectures this rate for the individual terms
\(AφJ9 ψj) — σA\. This rate is suggested by the Lindelof hypothesis for
Rankin-Selberg L functions,

L(s, φj <g> φj) : = (£(°, s)φj9 φj),

where E(z, s) resp. φj9 is an Eisenstein series, resp. a cusp form, on an arithmetic
quotient H 2 /Γ (e.g. Γ = SL2(Z)). The connection is of course that E(o9 s) is re-
garded as a multiplication operator playing the role of A above. We refer to [Sa]
for discussion of the grounds for this conjecture, and to [Z.2-3] for some related
results.

Our estimate of the rate of quantum ergodicity on negatively curved manifolds
(M, g) is based on M. Ratner's estimates on the rate of convergence in LP(S*M) of

the time mean ά(z, T) := — J J a(Gtz)dt to the space mean a of a smooth function

a on S*M. The main result is:

Theorem. Let (M, g) be a compact Riemannian manifold of (possibly variable) nega-
tive curvature. Then Sn(λ; A) =

Remarks and Acknowledgements.
(1) This logarithmic improvement over the earlier rate o(l) is somewhat ana-

logous to the logarithmic improvement 0(λn~7k)g/l) of Randol, Berard, and
others ([B, Rn. 1]) on the Duistermaat-Guillemin estimate o(λn~ *) for the remain-
der term R(λ) in WeyΓs law on a negatively curved manifold. In both cases, the
logarithm arises from the exponential growth rate of the geodesic flow and length
spectrum. Sarnak's conjecture is then somewhat analogous to RandoΓs conjecture
that R(λ) = O(Λi+ε) on a surface of constant negative curvature [Rn.2].

(2) We thank P. Gerard for correcting some errors in an earlier version and in
particular for pointing out an improvement of the main estimate. We also thank D.
Hejhal and M. Ratner for helpful comments on the central limit theorem.
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1. Preliminaries

We begin by reviewing some relevant background and terminology.

(la) Friedrichs quantization ([Z.I, CV, T]). We will fix, once and for all, a quanti-
zation map

0pF: C°°(S*M)-+ Ψ°(M)

with the property that
OpF(a)^0 i f α ^ O .

Such an OpF is called a Friedrichs quantization. It is actually defined for all
symbols on Γ*M; we regard CCO(S*M) as a subspace of symbols of order 0.

(lb) Microlocal Lifts of Eigenfunctions. We denote by dΦk e Jit (S*M) the follow-
ing positive linear functionals on C(S*M):

<α, dΦk} := (OpF(a)φk, φk) .

Clearly, dΦk is a probability measure on S*M. For an explicit formula, see
([Z.I, CV]). We will refer to dΦk as the microlocal lift of φk to S*M, although of
course it projects to φ\.

(lc) Egorov's Theorem ([T, ch. VIII, CV]). Let U(t) = exp it J~A. For each ί, U(t)
is an FIO (Fourier Integral Operator) in the Hόrmander class 7°(MxM, Ct\
where Ct c= Γ*(M x M)\0 is the graph of the geodesic flow G\

Egorov's theorem states:

U(-t)OpF(a)U(t) = OpF(aoG') + Rt, (1.1)

where Rt is a v|/DO of order — 1.

(l.d) The Central Limit and Moment Estimates for Geodesic Flows on Compact
Negatively Curved Manifolds ([R, Si]). A function / eLco(S*M) is said to obey the
central limit theorem (CLT) relative to the geodesic flow Gr if

h m A* W 7 ^ = r < « H -η= ί e / 2 ^ (1-2)

Here, μ is Liouville measure, / is (as above) the Liouville mean of/ and Dτ is the
variance of /:

Dτ(f):=
S*M

Γ

J (/(G'z) - (1.3)

Equivalently, / obeys the CLT if

dμτ^~±=e~χ2/2dx (Γ-oo), (1.4)
/2

where

( J / ) (1.5)

(the pushforward to R of dμ under the indicated partial time average of / ) . Also,
—̂  denotes weak* convergence of measures on Cb(R), the space of bounded
continuous functions.
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Ya.G. Sinai (in the constant curvature case) and M. Ratner (in the general case)
have proved that a broad class of functions, including C^^M), obey the CLT on
a negatively curved manifold. Ratner in fact proves the CLT for compact (M, g)
with transitive Anosov geodesic flow.

In this paper we will actually need the stronger property:

= O(jψ) (/eC°°(S*M)). (1.6)

Here || \\2k is the L2k-novm on S*M. In the case k = 1, this is contained in Ratner's
Variance Theorem:

(1.7) Theorem [R, Theorem 3.1]. Let V denote the generator of Gx and suppose
feCco(S:¥M). Then:

(i) / / / — f = Vh has no solution in L2(S*M), then Dτf ~ σfT(as Γ-> oo) for
a certain constant σf > 0;

(ii) / / / - / = Vhfor some h e L2{S*M), then Dτf = 0(1) as T-+ oo. •

Some comments: First, the h in case (ii) is now known to be C 0 0 [LMM,
Theorem 2.1], so the Dτf estimates becomes obvious. Second, we may plug the
formula for Dτf in case (i) into the CLT to obtain the more familiar version:

(CLT) dμτ -± — L e~χ2/2dx , (1.8)

where

dμ.

(Here, σ = σf) Third, we see that the L2fc-estimates in (1.6) are automatic in case
(ii), and in case (i) are equivalent to:

J x2kdμτ(x) = 0(1) as T -> oo . (1.9)
R

These moment estimates would follow from (1.8) if the weak convergence were
valid against the (unbounded) powers x2k. In fact, this can be proved to be the case.
For fc = 1, (1.9) follows immediately from Ratner's Variance Theorem (1.7). The
general case is implicit in [R], but the statements (1.6) and (1.8) are not explicity
noted there. For the sake of completeness, we will now explain how to dig the proof
of(1.6)-(1.8)out of [R].

(1.9) Theorem. Let f e CCO(S*M), and suppose f is in case (i) above. Then

J \f(T,z)-f\2kdμ = ^-Έ (l + o(l))
S*M λ

(case (ii) is obvious, as mentioned above).

Proof. The first step is to put this problem in normal form. The normal form is
a suspension (S\ W, v) of a shift (φ, X, μ) of finite type. We refer to [R] for precise
definitions and background. Let us just note that (φ, X, μ) is constructed from
a Markov partition of (G\ S*M,dμ). This Markov partition also determines
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a positive Holder continuous function { on X, a suspended flow S* on

and a Lipschitz continuous, finitely-many-to-one conjugacy φ: S*M -> P^such that

φS* = &φ .

φ takes Liouville measure dμ on S*M to an invariant Gibbs measure v = φ*dμ on
W and it takes C™(S*M) to a class (denoted Γp,κ in [R]) of Holder continuous
functions on W. The theorem is therefore reduced to the case of suspended shift
automorphisms.

The proof of (1.9) for Holder /, relative to (S\ W, v) is implicitly contained in the
proof of [R, Theorem 3.1]. However, only the case k = 1 is explicitly considered.
Let us indicate, briefly, the modifications necessary for general k. We will assume
the reader is familiar with the notation and material in [R]. In particular, we will
need to use:

(i) a(T, W) = -Lfi(f(S-uw) - f)du\

(ii) B(T, x) = A=(] (f(S'u(x, 0)) - f)du);
x/ΓVo /

(iii) F(x)= j f(x9y)dy;
o

(iv) F(x) = F(x) - (g

(v)D(T,x)= Σ F ί f ' x ) ; (1.10)
i = 0

where

(vi) n(T, x) = the number of times an S^-trajectory, starting from x, hits X in
time T;

i [ Γ / / / V T ]

(7; )

(where ε > 0 is given),

(viii) AkT ={xeX:Z+ kεy/f S n(T9 x) ̂  I + (k +

and finally

(ix) S(T9 x) = Sk(T, x) for xeAkτ.

One has [R, p. 188]:

\a(T9vή-B(T9x)\<-^=9 (1.11)

where w = (x, y) and Ci is independent of w and x. Therefore,

2k( (a2k(T, w) = B2fc(Γ, x) + 0 ( X Γ-^ / 2β2 f e-^(Γ, x) j . (1.12)
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Integrating both sides of (1.12) against dv on W, using that dv = -^(dμ xdy) ([R,
V

p. 182]), and applying Holder's inequality, we get:

\ a2k(T, w)dv - I B2k(T, x)άμ{

J B2k(T, x)dμ
X

Here, dμ< = ̂  dμ ([R, (19)]). Further, we have ([R, p. 194-5]):

C 2B(T, x) - — D(T, x)
T

D(T, x)
- Sk(T, x)

Hence,

and

2k

7 = 1 \X

Λ2k(D2k(T,x)

(compare [R, (19), (20)].
By [R, (23)] one has:

1

(1.13)

Ξ Rε on AkT (for a certain R > 0) . (1.14H)

D2k(T,x)

(1.15U)

(1.16)

where 0 < L < infx/(x), and where Eμ is expectation relative to dμ£. Hence,

Eμ,(S2k(T,x)) = O(l) asΓ^cx)

^ ( D 2 f e ( Γ , x ) ) = O(l) by (1.15U)

•Eμ(B2k(T,x)) =

jwa
2k(T,w)dv = O(l) by (1.13)

•\s.M\f(T,z)-f\2kdv = (1.17)
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(where / denotes any Holder continuous function in either case). This latter
estimate is all we need for the rate of q u a n t u m ergodicity, but we will go on with the
proof of the sharper asymptotic formula (1.9) since we have nearly completed it
anyway.

As in [R, p. 195], we introduce a continuous cut-off function hN e CC(R), and
write:

2k 2k * (1.18)

Since x2khN(x) e Cb(R), the CLT applies to the first term and gives the limit σ2k as

Γ-> oo. We claim that the second term is 0 ί —- L uniformly as Γ-> oo. To see this,

we only need to make the following changes in [R, p. 195-6]:

(i) On the first line of (22), change S 2 to S2k everywhere;
(ii) On the second line, change S4 to S4k;

(Hi) On the third line, change N2m~4 to N2m~4k;
(iv) In the middle of p. 196, set m ^ 2k + 1.

Ratner's argument is stable under these modifications, and shows that

C
lim

R

hence

Eμ/(S2k(T9 x)) - J x2hN(x)e~χ2l2σ2 dx

lim Eμ,(S2k(T,x)) = σ2k

9

which implies, as above, (1.9). •

2. Proof of the Theorem

The proof will closely follow the pattern of our proof of (0.1) in [Z.I]. The new
feature is the control over the time dependence of all the relevant terms.

Our first step is, predictably, to invoke the identity

(Aφs, φj) = (U(-t)AU(t)φJ9 φ3) (2.1)

and Egorov's theorem

U( - t)OpF(a) U(t) = Of {a o &) + Rt, (2.2)

where ord Rt = — 1 (cf. (l.c)).
Averaging in t for t e [0, Γ ] and substituting in Sk(λ; A)τ9 we easily obtain:

Sk(λ; A)ϊ ^ Sk ίλ 1 J OpF(σAo G')dt\k

+ Sk[λ;-lRtdt) . (2.3)

We will estimate these two terms in Lemmas 1-2 below. For notational simplicity,

we will abbreviate — j J σA o G*dt by σA(T).
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/ ecT\
(2.4) L e m m a 1. S2k{λ\ OpF(σA{T))) = 0A [T~k + — for some c e R + .

Proof. We may (and will) assume σA = 0.
Then

F(σ JS2k(λ, OpF(σA(T))) =

By Holder's inequality on L2k(S*M, dΦj\

Hence,

<\σA(T)\2\dΦj)

1 Trπ A Op F ( |σ^(Γ) | 2 f c ), (2.5)

where πλ is the orthogonal projection onto the span of the φ/s with
We now study the asymptotics of the traces in (2.5):

(2.6) Proposition. Let b e C°°(S*M), and let B = OpF(b). Then:

ΎrπλB-b
N(λ)

where | |b | |c^ is the Cm norm and m is some number ^ 2(3n + 4); the O-symbol is
independent ofb.

Proof Except for the b-dependence, this estimate has been proved by Guillemin in
[G, §3 Theorem Γ ] . We therefore have only to keep track of the fo-aspect in this
proof. Actually, it is convenient to modify the proof a little to bring this aspect out
more clearly.

Let

Following [G, §3 Lemmas 2-3], we note that

for any p e C°°(R) with β e C^(R), J p = 1. The 5-dependence is easily read off
from [G, loc. cit]. The O-symbols are understood to be independent of B unless
indicated otherwise.

It follows from the Calderon-Vaillancourt theorem [T, ch. XIII] that
|| 51| ^ ||fr||c™ f° r a nY m ^ 2(3n + 4). The remainder of the proposition therefore
amounts to showing that

(2.8) Proposition. ρ*φB(λ) = b—— 4- O(|| & || c ^ l " 1 ) if β e C?(R), \ρ = 1.

Proof p*φB(λ) = Jjλ p* —~^-dλ, and
dλ

P*~TrW ={eiλtβ(t)ΎvBU(t)dt, (2.9)
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where U(t) = exp it λ / A . Now for small ί, say | ί | < ε, we can represent the Schwartz
kernel l/(ί, x, y) in the form [G, loc. cit.]:

U(t, x, y) = J (1 + a-^y, f7)y<"''>+«<* ™> dη + Γ,(x, j,) ,
R w

where:

(i) α_! is a symbol of order — 1.
(ii) q is homogeneous of degree 1 in η and q(x, x, η) = 0.

(iii) Tt is a smoothing operator.

BU(t) can be represented in a similar form, but it seems more convenient just to
compose the kernels directly. Writing B in the usual form

B(x,y)= J bF(x9ξ)ei<ξ χ-y>dξ
R"

(cf. [T, VII]), and composing, we get

TrBU(t) = JJJJ bF(x, ξ)(ί + α . ^ y , ^))β'[<*-*O+t|ιH+ί(*,*»ι)] dx dy dξ dη

+ TrBTt. (2.10)

Plugging (2.10) into (2.9), and replacing (ξ9η) by (λξ,λη), we end up with an
oscillatory integral as Λ,-> oo plus a remainder Γλ = j eiλt p(ί)Tr BTtdt. We can
integrate ΓA by parts in Λ, to see that it is O(\\B\\λ~N) for all N, so again the
Calderon-Vaillancourt estimate shows that this term is as it should be.

We are left with the principal term,

βλ = ίeiλtβ(t)I(λ9t)dt9

where I(λ, t) is the integral in (2.10). We can apply the method of stationary phase
to determine the asymptotics of βλ. The principal term has to agree with the result
in [G, loc. cit.], so the only question is the ^-dependence of the remainder estimate.
As is well-known, the remainder is of the form O(λ~11| bF || c 2 ) , where the O-symbol
depends on the C2 norms of α_ 1 ? q, etc., which are irrelevant to our purposes
[Ho I, Theorem 7.7.5]). Thus, the proposition reduces to showing that | |bF | |c2 is
bounded by || b \\ c™ for some m ^ 2(3n + 4). This is straightforward, and we will
only sketch the proof. First, one has an explicit integral formula relating bF to b
[T, VII (1.5), (2.1)]:

feF(x, ξ) = f J F(ξ2, ζ)b(y, ζ)F(ξ9 ζ ) β ^ - * ) «2-«) dy dξ2 dζ 9

where F is a certain amplitude [T, loc. cit.]. We can pass any derivatives on bF

under the integral sign and estimate the resulting integral. The only problem is the
absolute convergence of the dζdξ2 integrals, which due to the form of F, can be
reduced to the convergence of the dξ2 integral as \ξ2 — ξ \ -> oo. However, repeated

partial integration with —— -^— introduces sufficient decay in ξ2 to render the

integral absolutely convergent. The result is evidently bounded by a Cm-norm of b,
concluding the proof of both Propositions (2.8) and (2.9). •
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From Proposition 2.6, it follows that:

(2.11) Corollary.

S2k(λ;OpF(σA(T)))= J \σΛ(T)\2kdμ +0(\\\σΛ(T)\2k\\cm)
S*M

(for some m e N).

Note that \σA(T)\2k is in fact smooth, since the power is even.
The next step is to estimate these two terms. The first term was estimated in

Theorem (1.9):

J \σA(T)\2kdμ=θ(±λ. (2.12)
S*M \ 2 /

This leaves us to estimate the C^-norm of \σA(T)\2k.

(2.13) Proposition. Let f e C^iS^M). Then there exists L > 0 so that

\\foGt\\cκ = O(eLt) ast-> oo .

Proof This follows immediately from the well-known exponential growth of the
derivatives of G* (i.e. of Jacobi fields and their derivatives). We refer the reader to
[Be, Appendix] or to [V], for further details. •

Lemma 1 now follows from Propositions 2.12 and 2.13. •

We now turn to the second term in (2.3):

/ i \\ ίeLT\
(2.14) Lemma 2. Sk[λ;- j J Rtdt = 0 — - ) for some L > 0.

\ T ) \ λ J

Proof It suffices to show that \\J~ΔRt\\ = O(eLt).
Essentially, this requires a series of estimates on amplitudes, phases and

remainder terms of the wave kernel as t -> oo. A very careful and detailed study of
these estimates has recently been published by Volovoy [V]. For the sake of
brevity, we will only summarize the main points in the estimate of 11-^/JΛt|| and
refer the interested reader to [V] for further discussion.

First, we recall [V, Theorem 0.2] that for any ί0? there is an interval
(ί0 — ε, t0 + ε) on which U(i) can be represented in the form

U(ή = Q(ή + T(t),

where Q(ή is a local FIO constructed by the method of geometric optics and T(t) is
a smoothing operator satisfying

|| T(ή(x, y) | | c k = 0{eu) for some L > 0 .

Further, the amplitudes and phases of Q(t) satisfy a similar exponential bound.
We can (locally) break up Q(t)

into its leading order part plus a (— 1-st) order remainder. Then

U(-t)ΛU(t) = Qo(-t)AQo(t) + St,
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where St is a \|/DO of order —1. Hence,

\\y/ARt\\ ^ \\JΊ\{Q0{-t)OpF{a)Q0{t) - Op^ao&M + \\^ASt\\ .

•s/~ΔSt is a \|/DO of order 0 and its norm can, as above, be estimated by some Ck

norm of its complete symbol. By Volovoy's estimates, all such norms have ex-
ponential growth.

This leaves the first term, which we know from Egorov's theorem is also a \|/DO
of order 0. It thus suffices to estimate the Ck norm of its complete symbol.

To determine this complete symbol, we can explicitly write out the composition

yfi(Qo(-t)OpF(a)Q0(ή- Op>oG'))

as a Fourier integral. The phase in the first term can be made to match that in the
second by an application of the method of stationary phase. The leading term in
this expansion is of course cancelled by the second term above, OpF(a o G% leaving
a 0-th order symbol, which is determined from the amplitude and phases of Qo(t)
and of OpF(aoGt), together with some time independent data from OpF(a). By
Volovoy's estimates and the exponential growth of G\ it is a straightforward
observation that the Ck norms of this complete symbol have exponential
growth. •

We now conclude from Lemmas 1 and 2 that

S2k(λ; A) = O (τ~k + ̂  + ̂  (2.15)

for any T > 0. Setting T= — log λ for sufficiently large M, we get
M

S2k(λ;A) =
(logλ)kJ'

If n is odd, we also have Sn(λ; A) ̂  S2n{λ, A)ϊ=θl —^ ) .

\(lθg λ)2 /
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