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Abstract: Toroidal Lie algebras and their vertex operator representations were
introduced in [MEY] and a class of indecomposable modules were investigated. In
this work, we extend the toroidal algebra by the Virasoro algebra thus constructing
a semi-direct product algebra containing the toroidal algebra as an ideal and the
Virasoro algebra as a subalgebra. With the use of vertex operators and certain
oscillator representations of the Virasoro algebra it is proved that the correspond-
ing Fock space gives rise to a class of irreducible modules for the Virasoro-toroidal
algebra.

Introduction

Toroidal algebras 1, are defined for every n = 1 and when n = 1 they are precisely
the untwisted affine algebras. Such an affine algebra g can be realized as the
universal covering algebra of the loop algebra § ® ¢ C[¢,t~ '] where § is a simple
finite dimensional Lie algebra over €. It is well known that g is a one-dimensional
central extension of § ®¢C[t, ¢~ ']. The toroidal algebras ty, are the universal
covering algebras of iterated loop algebras § ® ¢ C[¢{, . .., ¢ ] which, for n = 2,
turn out to be infinite-dimensional central extensions.

Unlike the finite dimensional case, there is a distinguished irreducible highest
weight module for any untwisted (or direct) affine Lie algebra. This is the basic
representation. In 1980 Frenkel and Kac [FK] gave a remarkable construction of
the basic representation by using vertex operators X (, z), where o runs over the
root lattice Q of §. Already in [FK] it was observed that the Virasoro algebra also
operates on the basic representation and in particular the (energy) operator
d, plays a distinguished role.

A decade later, the vertex operators X (¢, z), where o« now lies in the affine root
lattice, Q = Q ® ZJ, were used to produce indecomposable representations of the
toroidal algebras t;,) [MEY]. Soon after, these results were shown [EM] to extend
to arbitrary n.

However these representations are not completely reducible, nor do irreducible
representations appear in a natural way in the picture. The objective of this paper is
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to show how one can greatly improve the situation by enlarging t;,;. The key point
is that our representations, as in the affine case, naturally afford representations of
the Virasoro algebra Bir too. We thus extend tz) to to = Birs<tyy.

The vertex representations of t;,; constructed in [MEY] arise from a canonical
representation of a degenerate Heisenberg algebra a(Q) whose centre is infinite
dimensional. We will embed Q in a nondegenerate lattice I' and form the larger
Heisenberg (oscillator) algebra a(I'). The representations of Bir that we will use are
the oscillator representations corresponding to a(I'). Thus, to any generdtor dy,
k e Z, we associate the infinite normally ordered quadratic expression Ly = 3 ) ez

’” u;(— j)u(j + k): where {u;}13 is an orthonormal basis for f = C®z I’

The fi2-module studied here is the Fock space V(I') associated with the lattlce
I'. 1t is the tensor product C[I'] ®¢ S(a(I')-) of a twisted group algebra €(I') and
the symmetrlc algebra S(a(I")-). As a C-space, V(I') decomposes into a direct sum
[ [ ez K(m). We will show that if m % 0, K(m) is an irreducible tm-submodule
of V(I ) and K(m)~ K(m') if and only if m = m’. The submodule K(0) is not
irreducible. In a forthcoming paper, [F1], the submodule structure of K(0) is
investigated.

1. The Heisenberg Algebras a(L) and the Canonical Representation

Let (L, (*]*)) be a (geometric) lattice, that is, a free Z-module L of finite
rank together with a nontrivial symmetric Z-bilinear form (¢|*). Lx L - Z.
Let l=C®zL and extend (*|*) to a symmetric C-bilinear form (also
denoted (+|+)) on . We call the lattice L nondegenerate if (+|+) is nondegenerate on
. Let I(n) be an isomorphic copy of [ for every neZ under the correspondence
a(n)ea, acl.

Form the Heisenberg algebra a(L):= (] [,z 1(n)) @ €4¢, where ¢ is some symbol,
with multiplication [+, ] on a(L) defined by [a(n), b(m)]:= (a|b)nd, +m, o4, for all
a,bel, n,meZ, and ¢ is central. a(L) is graded with deg a(n):= — n and by ¢ = 0.
Observe that [(0) is an abelian subalgebra of a(L) and its complement
a(L):= (] Jnez 10 I(n)) ® C¢ is a subalgebra of a(L) satisfying a(L) = a(L) x [(0),
where x denotes the direct product of Lie algebras. One easily proves

Proposition 1. centre a(L) = [(0) @ C¢ @( ]_[ (Ey(n)) . ]
neZ\{0}
yerad(-|*)

The most famous examples occur when 0 is a lattice of type ADE, that is, 0 is
of type A, D, or E, (I=6,7,8. a(Q) is a Heisenberg algebra
with dlmc[centre(a(Q))] = l+ 1. Another set of examples occurs when
0 = Q @ Z5, where (Q]9) = 0 = (3|6). Note that Q is a degenerate lattice and
the Heisenberg algebra a(Q) has centre [a(Q)] = H(0) @ C¢ @ (] [sez: 10y TI()),
where hi= C®z0. We call a(Q) a degenerate Heisenberg algebra since the
associated skew-symmetric bilinear form y: a(Q)xa(Q)—> € given by
V(a(k), b(l)):= kdy+1 0(alb) has nontrivial radical elements in the homogeneous
subspaces of non-zero degree.

We recall the canonical Fock space representation of a(L). Let
a(L)-=]].<ol(n) and let S(a(L)-) be the corresponding symmetric algebra.
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Define an action of a(L) on S(a(L)_): for n, m >0, a, bel, and feS(a(L)_)

'L’F f= f
a(_ n f L n)f (1)
a(n)f= @a(m.f )

where L,(—, f= a(— n)fis the left multiplication operator and d,,, is the unique
derivation of S(a(L)-) satisfying
aa(n)(b(— m)) = ném,n(alb) .

Proposition 2. S(a(L)_) is an a(L)-module and the following are equivalent:
(i) S(a(L)-) is an irreducible a(L)-module.
(i1) L is nondegenerate.
(iii) S(a(L)-) is a faithful a(L)-module.
|

Let M be any nondegenerate lattice containing L. One may choose M = L if
L is already nondegenerate. Put m:= C®;M and fix Zem. Let Ce* be the
one-dimensional space spanned by the symbol e*. Consider the C-space

Vi(d)= Ce* @cS(a(L)-) . @)

Of course, as C-spaces, we have V(1) = S(a(L)-). We make V(1) into an
a(L)-module by extending (1) as follows:

¢ ®f )= =",
a(=n) (@ ®f) =" ® Lo(-n/f
an) (e ®f) =" ® duw [
a(0):(e* ®f) = (al)Ee* ®f) .

Note that 1, (2)is an irreducible a(L)-module if and only if L is a nondegenerate
lattice but that ¥ (4) is never a faithful a(Z)-module.

G)

2. Toroidal Algebras

Let § be a simple finite dimensional Lie algebra over €. Let A be any commutative
algebra with unity over €. Consider the Lie algebra g,:= § ® 4 with bracket
[x®a, y®b] =[x,y]®ab, x, yed and a, be A. The structure of the universal
covering algebra of § ® ¢ A has been worked out in [Ka].

Let Q4 be the A-module of differentials and d: 4 — Q, the differential map.
Thus d is linear and satisfies d(ab) = a*db + b+da. Let —: Q- Q,/dA be the

canonical map. Then for a, be A we have d(ab) =

Theorem [Ka, and Kac, Ex. 7.9]. The Lie algebra g:= (3 ®cA) D Q4/dA with
multiplication defined by

{[x®a,y®b]r= [x, y]1 ® ab + (x|y)(da)b

4
Q,/dA central @

is the universal covering algebra of § ® ¢ A. (Here (*|+) denotes the Killing form on §.)
O
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When 4 = C[t1, .. .,tE] we denote the algebra g simply by t;,; and we call it
the toroidal algebra. Consider the case n = 2 so that A = C[s*! t*!]. Then it is
easy to check that a C-basis for Q,/dA is given (see [MEY]) by

a(p, q)=s"""t'dt , (p, q)eZxZ\{0},
a(p,0):=s’t"'dt, peZ, (3)
a(0,0):= s 1ds .

Next, let Iy be a fixed Cartan subalgebra of § and consider the subalgebra b of
t;2) generated by the subspace h ® ¢ C[s, s~ ' ]. Using (4), we have for h, h' e and n,
meZ, [h®s", hW®s']=[hh]Qs" " + (hl)(ds™)s" = (h|W)mOp 1 os 'ds,
and hence b can be identified as the Heisenberg algebra a(Q) under the correspond-
ences h ® "« h(n) and s~ 'ds«¢.

The subalgebra e:=b @ (L[pEZ‘\{O} Ca(p,0)) of t,; can be identified as the
Heisenberg algebra a(Q), where Q = Q @ ZJ as in Sect. 1 under the above corres-
pondences together with a(p, 0)« 8(p), pe Z. The Heisenberg algebras a(Q) and
a(Q) and their representations will play a central role in the sequel.

3. Vertex Representations of Toroidal Algebras

Let Q be of type ADE, and let ' = 0 @ Z6 @ Zu = Q @ Zy, where (Q|p) =
= (u|u) and (6|u) = 1. Following [EMY] we let &: O xQ — {+ 1} be a bimultip-
licative map satisfying

CCi) &0, =(— D92,

CC(i) & f)e(B, o) = (= P, (6)

CC(iii) &(a,0)=1,
where o, f € Q. Extend ¢ to a bimultiplicative map &: Q x I' - {+ 1}. For ye ' let ¢’
be a symbol and form the vector space €[ I'] with C-basis {¢’: yeI'}. Then C[I']
contains the subspace C[Q]:= [],.o Ce’. We give C[Q] a twisted group algebra
structure by defining e*e? := ¢(, f)e**#, o, feQ. Then C[I'] becomes a C[Q]-

module in such a way that e*e” = &(a, y)e**?, € Q, yeI'. Now form the full Fock
space

V)= CLI'I®cS(a(l)-). ™)

Note that, as €-spaces, V(I') = [ [er Vr(4), where V(1) := Ce* ®¢ S(a(I)-).
Let z be a complex variable and «€ Q. Define

1
Telz)=— ) —a(mz™". (8)
nzo
Then the vertex operator, X(«, z), for « on V(I') is defined by
X (o, z):= 22 exp T(a, z), where
exp T(x, z):= exp T—(, z)e*z*® exp T (o, z), and )
Ot @f) =P ®f), feS(a(l)-).
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The X (o, z) can be formally expanded in powers of z to give
X(,z)=) X,(0)z™"

neZ

and the coefficients X (o) are called moments. The X, («) are operators on V(I') and
for any feS(a(I')_) and iel, one has X,()(e*®f)=e*"*®f, where
f'eS(a(r)-). Thus, in the decomposition of the full Fock space
V()= ]_[ ser Vr(2) one can view the moments X, (o) as operators which move an
element in the “A-stalk” V(1) to an element in the “(4 + «)-stalk” V(4 + ).

The determination of the commutation relations of the moments can be made
by standard techniques of contour integration [GO, MP] and yields

CR.O  [a(k), X,(B)] = (@] f) Xu14(P) -

CRI [X,(2), X,(f)]=0,(«[f)20.

CR2 [ X, (), X\(f)] = &( f) Xpsm(a + B), (2] f) = —
CR.3 If (x|o) = (B f) = — («|B) = 2, then

[X (OC X (ﬁ)] - 8(0( ﬁ){an+m o+ ﬁ + Z k)Xm+n k((x + B) }
(k) Xpmin-i(B) i k<m+n—k
Xpsni(Bok) fk>m+n—k.

Next we will state a result from [MEY] which gives vertex representations of
the toroidal Lie algebra t;,;. We fix a simple finite dimensional Lie algebra g of type
ADE with Cartan subalgebra b, root lattice 0, root system 4 and basis of simple
roots {ay,...,0}. We assume that {e., }, {o;} is a Chevalley basis of § (we
identify b with b* by the Killing form as usual) so that e+, €3%% and
[ea.a e-al] = — .

Now in t,; we can identify an affine algebra § ® ¢ C[s, s~ '] @ C¢. Its root
system is denoted 4, its root lattice Q and its set of real roots 4™.

where: a(k) X 1 p-1(f): = {

Proposition 3. Let s be the Lie algebra of operators on V(I') generated by the
moments X,,(x), x€ A™, meZ. Then s is isomorphic to t,, under the assignment

€1q @+ 5™t" > X(+ oy +nd), nymeZ, 1 i<, (10)
O

Now for ael" define the elementary Schur polynomials S.(o), r€Z by the
expressions

expT-(o,z) =Y " S, (0)z"

p7-( oo Sk(®) a1
S{)=0, r<O0,

where T_ («, z) is defined in (8). As in [MEY], we have

Y Xi@)z e ®@ 1) = X(p, 2)(e* @ 1)

keZ

= 202 exp T (9, ez e’ @ 1)

(wlw)

€ ® S, (p))z

Ms

0

]

r

Matching powers of z we get
Xi(@)e* ® 1) = &(p, )e* T @ S—i—p11+9) () - (12)
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4. The Virasoro—Heisenberg and Virasoro-Toroidal Algebras

In this section we introduce the Virasoro—Heisenberg and Virasoro-toroidal alge-
bras. We first define a representation by derivations of the Virasoro algebra on
both the Heisenberg algebra a(Q) and on the toroidal algebra t;,; and then form the
corresponding semi-direct product Lie algebras. The representations used here can
be identified as certain copies of the well-known module of tensor fields [FF, K].
Recall that the Virasoro algebra, denoted Bir, is the infinite dimensional
Lie algebra with generators {d,, k€Z} and relations [d,,d,] = (k — l)d,+,
+ 15 0 41,0(k* — k)z, where z is a central symbol. Define an action of Bir on a(Q)
in such a way that z acts trivially and for k€Z and d, is the unique derivation

satisfying
diyran) = — na(n + k) . (13)

Define an action of Bir on t},; in such a way that z acts trivially and, for keZ,
d, acts as the unique derivation satisfying

(€10, ® ") {gwiwi) —(m+ k)} Con® M. (14)

where n, meZ and 1 < i < 1L
One can verify directly that (13) and (14) do determine representations of Bir on
a(Q) and tp,; respectively. As C-spaces, define

d:=Bir®a(Q) and Tp=Bir Dty .
)

We make a (resp t[21 into a Lie algebra in such a way that Bir is a subalgebra and
a(Q) (resp. trz;) is an ideal via (13) (resp. (14)):

{[db a(n)]:= dy*a(n)
[di, €10, ® s"1"] = di* (€ +4, ® s™1") .

We call & and Ty, the Virasoro—Heisenberg and Virasoro-toroidal algebras
respectively.

5. Oscillator Representations of the Virasoro Algebra

A very interesting class of representations of Bir are the so-called oscillator
representations. The operators used arise from the Fourier components of the
energy-momentum tensor in quantum field theory and can be expressed in terms of
the canonical representation of a corresponding representation of the Heisenberg
(oscillator) algebra a(L).

Let L be an arbitrary nondegenerate lattice of rank [, | = C ®z L and {a;}}-,
an orthonormal basis for 1. Consider the normally ordered sums

1
k~—§ —jai(j+k):, (15)

H

M~
NM

1
where ke Z and for all neZ, q; (n) (L). The normal ordering defined by
i\r)a; <
ra;(r)a;(s): = {al(r)a,(s) , r<s

a;(s)a(ry, r>s
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ensures that only a finite number of the terms in L, act nontrivially and hence the
L, make sense as operators on V; (4). A proof along the same lines as in [KR] gives

Proposition 4. The assignment d; +— L, ke Z and z — I defines a representation of
Bir on Vi (A).

O

Let O be of type ADE and I' = Q @ Z5 @ Zu as before. Let {u;}!-, be an

. . 1) 1

orthonormal basis for h:= C®;Q. Let ;4= 3 +pandy =/ — 1 (5 — /1).

Then {u;}}11 is an orthonormal basis for .= C ® I'. Applying Proposition 4 with

I' = L we obtain a representation of Bir on Vy(2), L€', with the centre z acting as

multiplication by [+ 2. Since V(I') = err V(1) we can at once extend the
representation of Bir to all of V().

Proposition 5. (i) [L,, a(n)] = — na(n + k), aeQ, n, ke Z, and hence V() is an
d-module. K
(1) [Ly, Xm(®)] = {E(ala) —(m+ k)}Xerk(oc), m, keZ, aeQ, and hence V(I') is

a tp-module.

Proof. (i) follows by a standard calculation [KR] and (ii) follows easily from the
well-known commutation relation

CRA4 [Le, X (o, 2)] = 2* {E (o)) + zi} X(a, 2)
2 dz

whose proof can be found in [KF] or [GO]. O

6. Representations of the Virasoro—Heisenberg Algebra

The objective of this section is to study the structure of the G-module V(1) which
we simply denote by V(1). We begin this section by pointing out that the Lie
algebra d admits a triangular decomposition in the sense of [MP]. Indeed, define &"
to be €d, + h(n), n + 0, and &, := d° to be the linear span of {dy, §(0), ¢, z}. Define
a4 = U,,zo d". Then @ = d_ @ dg @ a4 provides a triangular decomposition with
root spaces d" determined by the eigenfunctions n¢: 3, —» € with {(¢,dy> = — 1
and ¢lyoyeci@c: = 0 and with anti-linear anti-involution 6:d@— @ defined by
6d,)=d_,, 6(a(n))=a(— n), §(z):= z and &(¢):= ¢ where neZ and aeh.

Moreover, we note that centre [d] = §(0) @ C¢ @ €z and hence dimg(centre [d])
= [ + 3 where [ = rank Q.

Now let Bir, = ]_I,,>0 Cd, and introduce the subalgebra

a:= {dy,an): aeQ,neZ, k>0yca,

where the angular brackets denote the subalgebra generated by the enclosed
symbols. Observe that & = Bir, ><a(Q) and we have the inclusion of algebras
a < aca, where a = a(Q).

Proposition 6. Fix Z€ I arbitrarily. Then Vy(1):= Ce* @ S(a(Q)-) is an d-invariant
subspace of V(A).
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Proof. Clearly V,(4) is a(Q)-invariant. Now using (13), extend the action of Bir on
a(Q) to one on S(a(Q)) uniquely so that each d, becomes a derivation and z acts
trivially. Then, for any homogeneous polynomial feS(a(Q)-), it is clear that
do(f) = (deg f) f. To prove the proposition, it suffices to show that for any n = 0,

mww®f%=( (””f+dLm><*®1L (16
since the right side of this equation belongs to V,(4). Consider n = 0 first:
1 +2
do*(e* ®f) =5 Y 2 (= ui): (e ®f)
JjeZ i=1
Z Ou0)e* @) + 3 Y wl—ju(j)e* ®f)
= j>0i=1

1!
=2,
- (4 deur ) o

C“%‘%UQ@@D

As for n >0, first note that d,-(e*® 1)=0 since every summand
:u;(— j)u;(j + n): appearing in the definition of L, can be written u;(p)u;(g), where
p =0, g >0 (after removing the normal ordering) and each of these terms kills
e*® 1. Thus

dy (@ ®f) =dy [ (e ® 1)
=fd, @D+ [d,f1(®1)
=d,(f) (@),
as required. O

Before proceeding to the main result of this section we will need a preliminary
definition. For k > 0 let &, be the set of all partitions of k. We know that there
is a one-to-one correspondence between the elements m = (my,...,m,)eZ’,
with my2m,>---2=m, Y m=k and the monomials &(—m):=
O(— my) - - - 6(— m,) of degree k. Now we give &, the lexicographical ordering as
follows. For m = (my, .., m,), n=(ny,. .,n )€, r, s >0, we say m<n if
m; < n; for the first i such that m; % n;. Clearly then the partition (k) € &, of length
1 is the unique maximal element with respect to this ordering and the partition
(1,...,1)e®, of length k is the unique minimal element. In the next three results,
we assume that all given tuples m = (my, . .., m,)eZ", ,r > 0, are ordered in such
away that my =Zm, =+ - = m,.

Proposition 7. Fix .eI'\Q and suppose meZ'y ,neZ*, , where n, me %, and n < m
in the lexicographical ordering. Consider the elements e* ® 5(— m), e* ® 5(— n)e
Vo(2). Then dp (@ ®5(—m))eC (" ®1) and dy,(e* ® 6(— n))
=0, where dyy:=d,,. - -+ d,, € U(Bir,).
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Proof.
A (€ @ 0(—m)) =d,, = dy, " (" @ 6(—my) - - - 3(—m,))
=dp- - df (@ ®(— g - 3= a)),
where ¢; >g;fori<jand p, >0,1 k=<t
= (p1!mg,)* (A10))d; - - - A2+ (" ® 6(— q2) - -
o(—a)"),
by (16) and (13)

—_ = <(p1! e pt!) U mg:(lla)pl+-~.+pt>(el® 1)

eC*(*®1),
since (4|0) * 0.
Similarly, d, *(¢* ® 6(— n)) = 0. O

Proposition 8. Let AeI'\Q. Then Vy(4) = Ce* ®¢S(a(Q)-) is an irreducible &-
module.

Proof. First note that Ae '\ Q is equivalent to the condition (4|J) 4: 0.

Let W be a submodule of V(1) and let 0 & xe W. Write x = e ®Z, 1 9ihi,
where g;€ S(a(Q)_) are Imearly independent and h;e D = S m>0 €I(— my)). By
Proposition 2, S(a(Q)_) is an irreducible a(Q)-module and hence by the Jacobson
density theorem we can eliminate g,,...,¢, and reduce g; to 1 with some
operator from (a(Q)). Thus we can assume without loss of generality that
x =e*®@h, where h =) 7_; 0;6(— m;), ;€ C*, where m; >m, > - - >m, in the
lexicographical ~ordering.  Finally, from Proposition 7, dp,*(e*® h)
eC*(e* ® 1)e W. It follows that W = Vy(2). O

Proposition 9. Let AeI'\Q. Then V(1) = Ce* ®¢S(a(I)-) is an irreducible a-
module.

Proof. Since I'=Q®Zyu we can write S(a(I')-)= S(a(Q)-)M, where
M= S([[s>0 Cu(—n)). Let W be a non-trivial d-submodule of V(4). Let
O%feW be arbitrary and write f=),e*® fu(—n), where pu(—n)=
u(—ny)pu(—ny) - - -and ny = n, = - - -and f,€S(a(Q)-). Then we can use the d(n),
n > 0, to eliminate all terms but one and reduce to the case where f = e* @ he W,
where heS(a(Q)-). But by Proposition 8, Vp(4) is an irreducible a-module. Thus
e* ® 1e W. Now write M = | [,>0 M,, where M, denotes the subspace of M span-
ned by elements of degree n. It suffices to show that for all n,

R=U(d) (' ®1) > Ce* ®cS(a(Q)-)M, . (17)

We will establish (17) by induction on the degree n. Since My, = C and ‘
=Cu(—1), we can writt M=C@®Cu(—H®([[>,M,). Since
U@) R > U@E_) (" ® 1) D Ce* @ S(a(Q)-), (17) is clear when n = 0. For
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n=1considerd_;*(¢*®1) = L_,(e* ® 1)eR. By definition we have
1+2
Loy (@®D) =) u(—Hu(0):(*®1)
i=1
1+2

= Y u(= D(Au) (" ® 1)

i=1

=d®<§umww40

=efr@A(—1).

Now writing 2= o +au, «€Q, acC*, we have L_(¢*®1)=e*@a(— 1)
+ a(e* ® u(— 1))eR. But e*® a(— 1)eR from the case n = 0. Thus we have
e’ ® u(— 1)eR and this shows (17) when n = 1.

Suppose then that (17) holds for all 0 <n <k — 1. We call this the first
induction hypothesis. We need to show R o Ce* ® ¢ M S(a(Q)- ). We prove this by
induction on the lexicographical ordering defined on %,. We “anchor” at the top
with the partition (k). That is, we will first show e* ® u(— k)eR.

Recall that for k > 0,

1+2

—ZZ wi(j — k):

]eZ i=

=% > { Yosul( = yu(j — k) + :0(— j)p(j — k)

i=1
+ (=)o — k)i} :
Note that in the expansion of L _,(e* ® 1)e R the only je Z which contribute are
k+1
j=kk—1,..., %], where [x] denotes the largest integer less than or equal

to x. We compute
1+2

Lo(e®l)= ( > uil— k)ui(0)> ©®1)

i=1

!
+ {( You(—k+ Duy(— 1)+ 6(— k+ (= 1)

i=1

+m~k+nm—n>+

regul (5 ]0)
s[5 el )
cal |5 feen

=@ ®A—k)+y,

l\>+

N+
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where ¢ = § or 1 depending on the parity of k, y e Ce* ®¢ (] [n<x M, S(a(Q)-)), and
y € R by the first induction hypothesis. Thus e* ® u(— k)€ R by writing 2 = o + au
and arguing as we did earlier in the case n = 1.

Next we fix m = (my, . . . ,m,)€P, and assume that for every ne 2, satisfying
n > m we have e¢* ® u(— n)e R. We call this the second induction hypothesis. We
need to show that e* ® u(— m)eR. Since Z,* -, m; < k, by the first induction
hypothesis e* ® pu(— m,) - - - u(— m,) e R. But then R also contains the element
x:=L_,, (" ®u(—my) - u(—m,)). Now, in the sum defining L_,,,, the only

j€Z which contribute in the calculation of x are je{m;}u<m; —1,...,

1
[ml?j- ]}U {m; +my, ... ,m + m,}. We calculate

Ly (e* @ u(—my) - p(—m,))
= (@ A—my)u(—my) -+ p(—m,))

+ {Z u(—my + Duy(— 1)+ 6(—my + Dp(— 1) + p(—my + Do(— 1) + - -

i=

e e
el ) m)
S R

£ e @ (= my — m) (= mz) - p(—m) (= m))

i=2

g

where the overbar denotes omission and ¢ = 3 or 1, as before.

Let x; denote the sum in the brace brackets and x, the sum with the overbar.
By the first induction hypothesis x;:(e*®1)eR and since (m; + m,
My, ... Wy, ... ,m,) > (my, ms,...,m,)for each 2 < i < r, the second induction
hypothesis implies x, € R. Finally since the left side belongs to R we conclude that
e* @ A(—m)u(— my) - - - u(— m,)eR. Bxpressing A = o + ap, aeQ, acC*, the
first induction hypothesis gives e* ® u(— m,) - - u(— m,)e R as required. This
completes the proof of Proposition 9. O

Finally, we indicate how to identify V(1), Ae '\ Q, as an irreducible highest
weight module. Indeed, recall that & admits a triangular decomposition
d=0a_ ®a®a,.Let ae(dp)* be defined by a(a(0)) = (4|a) for all aeh, a(¢) = 1,

A4
a(dy) = (—y, o(z) = [ + 2. Consider the Verma module M(a) = U(d) ®yw C,,

where b = a, @ d, with unique irreducible quotient L(x).

Proposition 10. (1) V(1) = L(x).
W) If 2, X eT\Q, then V() = V(X) if and only if 2. = 1.

Proof. (i) Since e* ® 1 is a highest weight vector for & with weight o and since it
generates the irreducible module V(A), V(1) = L(«).
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(i) By [MP] Proposition 2.3.4, L(x) is uniquely determined by « and clearly
A, '€ I'\ Q determines the same « if and only if 1 = 4. O

7. Irreducible Representations of the Virasoro-Toroidal Algebras

In this section we show that the full Fock space V(I')= C(I') ®¢S(a(l')-)
decomposes into a sum of subspaces K(m), meZ, and for m + 0, K(m) is an
irreducible t},)-submodule with K(m) ~ K(m') if and only if m = m'.

Note that, as C-spaces, V(I') is the direct sum of the C-spaces
K(m)= C[mu + Q] ®¢ S(a(I')-). Itis clear that each K(m), meZ, is a t;;-module.
Suppose that m =+ 0, and hence mu + Q < I'\Q. We will need the following
formula which is a special case of (12) in Sect. 3:

X—(yll%—ﬁ)(’)))(el@ 1)=8(% l)(el"’)’@l), ’))EQ’ /IEF (18)
Proposition 11. For m % 0, K(m) is an irreducible Y(Z]-module.
Proof. It suffices to show

(a) K(m)=U(t,) (™ ® 1) and,
(b) every nonzero submodule R of K (m) contains ™ ® 1.

For (a), note that K(m) =[] (Ce™ " *®¢S(a(I')-)) = || Vr(mu + o), where
o runs through Q. By (18), l[(fm) -(e™ ® 1) contains e™** ® 1 for every a € Q and
since mu + oel'\Q (m +0), Proposition 9 implies U(d)*(e™ ® 1) > Ce™**
®cS(a(I')-), Yae Q. This establishes (a).

To prove (b), we note that as an G-module K(m) is a direct sum of non-
isomorphic modules Vp(mp + ), and hence so too is R. Thus

e P @ 1eVr(mu+ p) =R
for some fe Q. Now by (18), €™ ® 1€ R and we are done. (|
Proposition 12. K(m) = K(m') if and only if m = mw'.
Proof. K(0) is not irreducible [F1]. Consider m 3 0. Define
Vac(K(m), @):= {xe K(m): a; *x =0} .

Note that since V(mu + @) is irreducible over @ we have Vac(V(mu + «), a)
=Ce™"*® 1. Moreover, since K(m)=|[.,co V(mu+ o), Vac(K(m),a)=
[Jaco Ce™ *® 1. Now for aeQ, 6(0):(™ *® 1) = (mu + «[d)e™ @ 1=
m(e™** ® 1). Thus 6(0) acts as m on Vac(K (m), d). Finally, if K(m) =~ K(m'), where
m, m' +0, then Vac(K(m),d)= Vac(K(m'),a), as €o(0)-modules and hence
m=m'. O
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