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Abstract: Toroidal Lie algebras and their vertex operator representations were
introduced in [MEY] and a class of indecomposable modules were investigated. In
this work, we extend the toroidal algebra by the Virasoro algebra thus constructing
a semi-direct product algebra containing the toroidal algebra as an ideal and the
Virasoro algebra as a subalgebra. With the use of vertex operators and certain
oscillator representations of the Virasoro algebra it is proved that the correspond-
ing Fock space gives rise to a class of irreducible modules for the Virasoro-toroidal
algebra.

Introduction

Toroidal algebras t [ π ] are defined for every n ^ 1 and when n = 1 they are precisely
the untwisted affine algebras. Such an affine algebra g can be realized as the
universal covering algebra of the loop algebra g (x)c(C[ί, ί " 1 ] where g is a simple
finite dimensional Lie algebra over (C. It is well known that g is a one-dimensional
central extension of g (x) c C[ί , ί~ 1 ] . The toroidal algebras t[Λ] are the universal
covering algebras of iterated loop algebras g ΘcCCίf, . . . ,£*] which, for n^2,
turn out to be infinite-dimensional central extensions.

Unlike the finite dimensional case, there is a distinguished irreducible highest
weight module for any untwisted (or direct) affine Lie algebra. This is the basic
representation. In 1980 Frenkel and Kac [FK] gave a remarkable construction of
the basic representation by using vertex operators X(α, z), where a runs over the
root lattice Q of g. Already in [FK] it was observed that the Virasoro algebra also
operates on the basic representation and in particular the (energy) operator
d0 plays a distinguished role.

A decade later, the vertex operators X(<x, z\ where α now lies in the aίfine root
lattice, Q = Q © Zδ, were used to produce indecomposable representations of the
toroidal algebras t[2] [MEY]. Soon after, these results were shown [EM] to extend
to arbitrary n.

However these representations are not completely reducible, nor do irreducible
representations appear in a natural way in the picture. The objective of this paper is
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to show how one can greatly improve the situation by enlarging t [ 2 ] . The key point
is that our representations, as in the affine case, naturally afford representations of
the Virasoro algebra $tr too. We thus extend t [ 2 ] to ΐ [ 2 ] : = $ t n x t [ 2 ] .

The vertex representations of t [ 2 ] constructed in [MEY] arise from a canonical
representation of a degenerate Heisenberg algebra a(Q) whose centre is infinite
dimensional. We will embed Q in a nondegenerate lattice Γ and form the larger
Heisenberg (oscillator) algebra a(Γ). The representations of $tr that we will use are
the oscillator representations corresponding to a(Γ). Thus, to any generator dk,
k e Z, we associate the infinite normally ordered quadratic expression Lk = \ Y^jeΈ
Y}=ί : ui( — j)uί(j + k): where {wj ί i is an orthonormal basis for I = <C(g)zΓ.

The t[2]-module studied here is the Fock space V(Γ) associated with the lattice
Γ. It is the tensor product (C[Γ] ® c 5(α(Γ)_) of a twisted group algebra (C(Γ) and
the symmetric algebra S(α(Γ)_). As a (C-space, V(Γ) decomposes into a direct sum
IJmez K(m). We will show that if m + 0, K(m) is an irreducible t[2]-submodule
of V(Γ) and K(m) ~ K(nϊ) if and only if m = nί. The submodule K(0) is not
irreducible. In a forthcoming paper, [F l ] , the submodule structure of K(0) is
investigated.

1. The Heisenberg Algebras α(L) and the Canonical Representation

Let (L, ( | )) be a (geometric) lattice, that is, a free Z-module L of finite
rank together with a nontrivial symmetric Z-bilinear form ( | ): L x L-> Έ.
Let I : = ( C ® Z L and extend ( | ) to a symmetric (C-bilinear form (also
denoted ( | )) on I. We call the lattice L nondegenerate if ( | ) is nondegenerate on
I. Let \(n) be an isomorphic copy of I for every neΈ under the correspondence
a(n)<^>a, a el

Form the Heisenberg algebra α(L) := {\\ne7L \(n)) 0 <C4, where 4 is some symbol,
with multiplication [ , •] on α(L) defined by [α(n), fr(m)]:= {a\b)nδn+mί0<\, for all
a,bel,n,meZ, and 4 is central. a(L) is graded with deg a(n):= — n and by 4 = 0.
Observe that 1(0) is an abelian subalgebra of α(L) and its complement
α(L):= (Π«ez\{0}I(w))Θ ^4 is a subalgebra of α(L) satisfying a(L) = a(L) x 1(0),
where x denotes the direct product of Lie algebras. One easily proves

Proposition 1. centre a(L) = 1(0) ® C4 0 \J ©y(n) . D
\ «6Z\{0} /

y e r a d ( l )

The most famous examples occur when Q is a lattice of type ADE, that is, Q is
of type Λh Dt or Eh (/ = 6,7,8). α(g) is a Heisenberg algebra
with dim c [centre (α(ζj))] = / + 1. Another set of examples occurs when
Q = QφZδ, where (Q\δ) = 0 = (δ\δ). Note that Q is a degenerate lattice and
the Heisenberg algebra a(Q) has centre [α(Q)] = ί)(0) © (C4 Θ(U»6z\{0} ^5(w)),
where ί ) :=(C® z (λ We call α(β) a degenerate Heisenberg algebra since the
associated skew-symmetric bilinear form ι//: o ( 0 x a(Q) -> (C given by
ψ(a(k), b(l)):= kδk + lt0(a\b) has nontrivial radical elements in the homogeneous
subspaces of non-zero degree.

We recall the canonical Fock space representation of α(L). Let
α(L)_ := J J π < 0 I(w) and let 5(α(L)_) be the corresponding symmetric algebra.
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Define an action of a(L) on S(α(L)_): for n, m > 0, a, bel, and feS(a(L)-)

a(-n) f=Lai-n)f (1)

a(n) f= da{n)f,

where L α ( _ n ) / = a(— ft)/is the left multiplication operator and da{n) is the unique
derivation of <S(α(L)_) satisfying

Proposition 2. S(α(L)_) is an a(L)-module and the following are equivalent.
(i) S(a(L)-) is an irreducible a(L)-module.

(ii) L is nondegenerate.
(iii) S(a(L)_) is a faithful a(L)-module.

D

Let M be any nondegenerate lattice containing L. One may choose M = L if
L is already nondegenerate. Put m:= (C®ZM and fix Λ,em. Let <£eλ be the
one-dimensional space spanned by the symbol eλ. Consider the (C-space

KL(λ):=Ce λ® cS(α(L)_). (2)

Of course, as (C-spaces, we have VL(λ) = S(α(L)_). We make VL(λ) into an
α(L)-module by extending (1) as follows:

(3)

Note that VL(λ) is an irreducible α(L)-module if and only if L is a nondegenerate
lattice but that VL(λ) is never a faithful α(L)-module.

2. Toroidal Algebras

Let g be a simple finite dimensional Lie algebra over (C. Let A be any commutative
algebra with unity over (C. Consider the Lie algebra QA:= g ® c ^ with bracket
[x ® a, y ® fc] = [x, y] ® αfc, x, j eg and a, be A. The structure of the universal
covering algebra of g ®^A has been worked out in [Ka].

Let ΩA be the X-module of differentials and d:A^ΩA the differential map.
Thus d is linear and satisfies d(ab) = a db + b da. Let — : ΩA-> ΩA/dA be the
canonical map. Then for a, be A we have d(ab) = 0.

Theorem [Ka, and Kac, Ex. 7.9]. 77ιe Lie algebra g:= (g ®(c^4) © ΩA/dA with
multiplication defined by

[x ® α, y ® fe] := [x, y] ® α6 + (x | y)(dα)fe

central

is the universal covering algebra ofQ ® c yl. (Here ( | ) denotes the Killing form on g.)
D
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When A = C[ί *, . . . , ί * ] we denote the algebra g simply by t[Λ] and we call it
the toroidal algebra. Consider the case n = 2 so that A = ([^[s*1' ί * 1 ] . Then it is
easy to check that a (C-basis for ΩA/dA is given (see [MEY]) by

a(p,q):=sp-Hqdt , (p, q)eZ x

a(p,0):=spΓ1dt, (5)

Next, let ί) be a fixed Cartan subalgebra of g and consider the subalgebra b of
t[2] generated by the subspace ί) (x) c (C [s, s ~x ]. Using (4), we have for h,hr eί) and n,
meZ, \h®sm, K ® sn] = [h, Λ'] ® 5w + m + {h\h')(dsm)s\ = (h^mδ^^QS"1 ds,
and hence b can be identified as the Heisenberg algebra α(g) under the correspond-
ences h (x) 5n <-> /2(π) and s~ι ds<-> 4

The subalgebra e:= b ©(JJ p e Z\ (o} (C«(p, 0)) of t [ 2 ] can be identified as the
Heisenberg algebra α ( 0 , where Q = Q 0 Έδ as in Sect. 1 under the above corres-
pondences together with α(p, 0)<-»<5(p), p e Z . The Heisenberg algebras α(β) and
α(Q) and their representations will play a central role in the sequel.

3. Vertex Representations of Toroidal Algebras

Let Q be of type ADE, and let Γ = Q 0 Έδ ® TLμ = Q 0 Zμ, where {Q\μ) = 0
= (μ\μ) and (<5|μ) = 1. Following [EMY] we let ε: Q x Q -> {+ 1} be a bimultip-

licative map satisfying

CC(i) ε(α,α) = ( -

CC(ii) ε(α,/0ε(j8,α)

CC(iii) ε(α, (3) = 1 ,

(6)

where α, β e Q. Extend ε to a bimultiplicative map s: Qx Γ ^ {+ 1}. For y e Γlet e7

be a symbol and form the vector space <C[Γ] with (C-basis {eγ: yeΓ}. Then <C[Γ]
contains the subspace <C[β] := ]J y eQ (C^y. We give (C[β] a twisted group algebra
structure by defining eaeβ\= ε{a, β)e«+β, α, βeQ. Then <C[Γ] becomes a C[Q]-
module in such a way that eaey\= ε(α, y)^α + y, α e β , y eΓ. Now form the/w//

(7)

Note that, as (C-spaces, K(Γ) = \}λeΓ VΓ(λ), where Kr(λ):= Ceλ(g)cS(α(Γ)_).
Let z be a complex variable and αeQ. Define

(8)

Then the vertex operator, X(a, z), for α on V(Γ) is defined by

(α, z) := z(α |α)/2exp Γ(α, z), where

exp Γ(α, z) := exp Γ_ (α, z) eα zα(0) exp T+ (α, z), and (9)
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The X(α, z) can be formally expanded in powers of z to give

nsZ

and the coefficients Xn(oc) are called moments. The Xn(a) are operators on V(Γ) and
for any /eS(α(Γ)_) and λeΓ, one has Xn{<x){eλ®f) = eλ + a ®/', where
f eS(a(Γ)-). Thus, in the decomposition of the full Fock space
V(Γ) = \ϊλer Vr{%) o n e can view the moments Xn(oc) as operators which move an
element in the "Λ-stalk" VΓ(λ) to an element in the "(Λ, + α)-stalk" VΓ(λ + α).

The determination of the commutation relations of the moments can be made
by standard techniques of contour integration [GO, MP] and yields

CR.0 lφ), Xn(βΏ = (oc\β)Xn+k(β) •
CR.l [Xm(α),Xπ(/?)] = 0 , ( α | / ? ) 2 ϊ 0 .
CR.2 [Xm(a), Xn(β)2 = ε(α, β)Xn + m(a + β), (a\β) = - 1 .
CR.3 If (α|α) = (Jff|j5) = — (α|/S) = 2, then

[*„(«), Xn(βΏ = ε(α, β){mXn+m{a + β) + Σ • Φ)Xm+n-k(* + β)-}
keZ

i{ k > m + n _ k .

Next we will state a result from [MEY] which gives vertex representations of
the toroidal Lie algebra t [ 2 ] . We fix a simple finite dimensional Lie algebra g of type
ADE with Cartan subalgebra ί), root lattice Q, root system A and basis of simple
roots {α1? . . . , a/}. We assume that {e±Uι}, {αj is a Chevalley basis of g (we
identify ϊ) with ϊ)* by the Killing form as usual) so that e±aι(=Q±ίXi and
leΛι,e-ΛJ = -Git.

Now in t [ 2 ] we can identify an affine algebra g® c (C[s, s x ] © (Eφ Its root
system is denoted A, its root lattice Q and its set of real roots Are.

Proposition 3. Let s be ί/ze Li^ algebra of operators on V(Γ) generated by the
moments Xm(α), αezl r e, meZ. Then $ is ίsomorphic to t [ 2 ] wfxrfer ί/ze assignment

e±Λl ® ± 5wί" h^ X m ( ± αf + n<5), w5 w e Z , 1 ^ f ^ /. (10)

D

Now for α e Γ define the elementary Schur polynomials Sr(a\ reZ by the
expressions

\ s p ( α ) ϊ = 0 , r < 0 , [ '

where Γ_(α, z) is defined in (8). As in [MEY], we have

Σ X*(<p)z-V ® 1)

(ψ\φ)

Matching powers of z we get

Xk(φ)(eλ ® 1) = ε(φ, ; , ) ^ + (/? ® S- fc-(φ,A+?)(φ) (12)
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4. The Virasoro-Heisenberg and Virasoro-Toroidal Algebras

In this section we introduce the Virasoro-Heisenberg and Virasoro-toroidal alge-
bras. We first define a representation by derivations of the Virasoro algebra on
both the Heisenberg algebra a(Q) and on the toroidal algebra t [ 2 ] and then form the
corresponding semi-direct product Lie algebras. The representations used here can
be identified as certain copies of the well-known module of tensor fields [FF, K].

Recall that the Virasoro algebra, denoted 23tr, is the infinite dimensional
Lie algebra with generators {dk, keΈ} and relations [dk, d{] = (fc — l)dk + ι

+ T2 δk + ι,o(k3 — k)z, where z is a central symbol. Define an action of 33tr on a(Q)
in such a way that z acts trivially and for keΈ and dk is the unique derivation
satisfying

dk-a(ή) = - na(n + fc) . (13)

Define an action of S3tr on t [ 2 ] in such a way that z acts trivially and, for keΈ,
dk acts as the unique derivation satisfying

^ia^) - (m + k)\(e±aι® sm+kn , (14)

where n, meΈ and 1 ^ i ^ I.
One can verify directly that (13) and (14) do determine representations of $tr on

a(Q) and t [ 2 ] respectively. As (C-spaces, define

α := $tr 0 α ( 0 and t [ 2 ] := 33tr © t [ 2 ] .

We make 8 (resp. t [ 2 ]) into a Lie algebra in such a way that $ir is a subalgebra and
α(Q) (resp. t [ 2 ]) is an ideal via (13) (resp. (14)):

[dk,a(n)]:=dk a(n)

ldk, e±aι (x) smn := dk-(e±aι (g) smtn) .

We call α and ΐ [ 2 ] the Virasoro-Heisenberg and Virasoro-toroidal algebras
respectively.

5. Oscillator Representations of the Virasoro Algebra

A very interesting class of representations of 35tr are the so-called oscillator
representations. The operators used arise from the Fourier components of the
energy-momentum tensor in quantum field theory and can be expressed in terms of
the canonical representation of a corresponding representation of the Heisenberg
(oscillator) algebra a(L).

Let L be an arbitrary nondegenerate lattice of rank /, I = (C ®ΈL and {flf}/=i
an orthonormal basis for I. Consider the normally ordered sums

Z i = 1 jeΈ

where keΈ and for all neΈ, ai(ή)ea(L). The normal ordering defined by

aiisjaiir) , r > s
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ensures that only a finite number of the terms in Lk act nontrivially and hence the
Lk make sense as operators on VL(λ). A proof along the same lines as in [KR] gives

Proposition 4. The assignment dk t—• Lk,keΈ and z \-> II defines a representation of
$ίr on VL(λ).

D

Let Q be of type ADE and Γ = Q © ΊLδ © Έμ as before. Let {ui}\ = ι be an

orthonormal basis for ί) := C ® z Q Let uι+ x := - + μ and wz + 2 := -J — 1 ( μ ί

Then {wf} • ί i is an orthonormal basis for ϊ := C ® z Γ. Applying Proposition 4 with
Γ = L we obtain a representation of 33tr on FΓ(/l), λ e Γ, with the centre z acting as
multiplication by 1 + 2. Since V(Γ) = \\xer Kr(^) we can at once extend the
representation of $ir to all of V(Γ).

Proposition 5. (i) [Lfc, a(ή)~\ = — na(n + fe), aeQ, n, keZ, and hence VΓ(λ) is an
a-module. /-, ^

(ii) [LΛ j Xm(α)] = ]-(α|α) - (m + k) >Xm+k(oc), rn,keZ,oιeQ, and hence V(Γ) is

d

Proof, (i) follows by a standard calculation [KR] and (ii) follows easily from the
well-known commutation relation

CR.4 [Lk, X(ot, z)Ίί = zkl-(μ\u) + z—\ X(α, z)

whose proof can be found in [KF] or [GO]. D

6. Representations of the Virasoro-Heisenberg Algebra

The objective of this section is to study the structure of the α-module VΓ(?ι) which
we simply denote by V(λ). We begin this section by pointing out that the Lie
algebra α admits a triangular decomposition in the sense of [MP]. Indeed, define α"
to be <£dn + f)(rc), n φ O , and α0 := α° to be the linear span of {d0, ί)(0), 4, z). Define
α+ := LJH^O δ". Then α = α _ φ d o © α + provides a triangular decomposition with
root spaces an determined by the eigenfunctions nφ: α0 -> <C with < φ, d0 > = — 1
and φ|ϊ)(0)Θ(C4Θ<cz = ^ a n ( i w i t n anti-linear anti-involution σ:α-»α defined by
σ(dn):= d-n, σ(a(n)):= a(— ή), σ(z):= z and σ(4):= 4 where n e Z and αel).

Moreover, we note that centre [α] = f)(0) © C4 © (Cz and hence dim^centre [α])
= / + 3 where / = rank Q.

Now let $tr+ := JJ n > 0 (Cdn and introduce the subalgebra

α:= (dk,a{n)\ aeQ, neZ, k > 0> cz a ,

where the angular brackets denote the subalgebra generated by the enclosed
symbols. Observe that ά = $tr+ xa(Q) and we have the inclusion of algebras
α cz ά cz α, where α = a(Q).

Proposition 6. Fix λeΓ arbitrarily. Then VQ(λ):= <£eλ (x) ̂ ( α ^ ) - ) is an ά-invariant
subspace of V(λ).



8 M.A. Fabbri, R.V. Moody

Proof. Clearly VQ(λ) is α(<2)-invariant. Now using (13), extend the action of $ίr on
α(g) to one on S(a(Q)) uniquely so that each dk becomes a derivation and z acts
trivially. Then, for any homogeneous polynomial / eS(α(Q)_), it is clear that
do(f) = (deg / ) / To prove the proposition, it suffices to show that for any n ^ 0,

eλ®i), (16)
,u 2 J

since the right side of this equation belongs to VQ(λ). Consider n = 0 first:

1 ι + 2

^ jeZ i = 1

I 1 + 2 ί + 2

- Σ Ui(0)Ui(0)(e"®f)+ Σ Σ «, (-;)«i(7)(eA<
^ i = 1 j > O i = l

— I _ j. 2-/+4(/)J(eA®l).

As for n > 0, first note that dn (£A (x) 1) = 0 since every summand
'.Ui( — j)Ui(j -f n): appearing in the definition of Ln can be written ut{p)Ui(q), where
p ^ 0, f̂ > 0 (after removing the normal ordering) and each of these terms kills
eλ ® 1. Thus

as required. D

Before proceeding to the main result of this section we will need a preliminary
definition. For k > 0 let ^k be the set of all partitions of k. We know that there
is a one-to-one correspondence between the elements m = (m1? . . . , m r ) e Z +
with m1 ^ m2 ^ ^ m,., £ m, = k and the monomials (5(— m):=
δ(— mx) • - - δ(— mr) of degree k. Now we give g?k the lexicographical ordering as
follows. For m = (m1? . . , mr\ n = (n l 5 . . , ns)eέPk, r, 5 > 0, we say m < n if
πii < rii for the first i such that mt Φ n, . Clearly then the partition (k)e&k of length
1 is the unique maximal element with respect to this ordering and the partition
(1, . . . , l ) e ^ f c of length k is the unique minimal element. In the next three results,
we assume that all given tuples m = (m l5 . . . , mr)eΈr

+, r > 0, are ordered in such
a way that mγ ^ m2 ^ * ^ mr.

Proposition 7. Fix λeΓ\Q and suppose meZr

+,neΈs

+, where n , m e ^ and n < m
in the lexicographical ordering. Consider the elements eλ ® δ(— m), eA ® δ(— n)e
KQ(A). Then dm*(eλ ® δ ( - m ) ) e ( C x (eλ ® 1) αnrf dm (eA ® δ ( - n))
- 0, where dm:= dmr J m i
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Proof.

dm-(eλ®δ(- m)) = dmr dmi-(eλ® δ(- m,) • δ{- mr))

= dK' -dl\-{eλ®δ{-qiT- δ{-qtr),

where qt > q-j for i < j and pk > 0, 1 ̂  /c ̂  t

by (16) and (13)

Π mg(λ|δr+ "'+ft V

Similarly, dm (eλ ® δ ( - n)) = 0. D

Proposition 8. Let λeΓ\Q. Then VQ(λ) = <Leλ^^SiaiQ)-) is an irreducible α-
module.

Proof. First note that λeΓ\Q is equivalent to the condition (yl|<5) Φ 0.
Let W be a submodule of FQ(A) and let 0 φ xe W. Write x = eλ ® ̂ Γ=i ^Λf,

where ^j6iS(a(0-) are linearly independent and htsD = S(Σm>0 <£δ(— m)). By
Proposition 2, S(α(β)_) is an irreducible α(β)-module and hence by the Jacobson
density theorem we can eliminate g2, . . . ,gm and reduce g1 to 1 with some
operator from U(a(Q)). Thus we can assume without loss of generality that
x = e

λ(g) h, where h = Σϊ=ι α/<H~ mίX ^ e C x , where m1 > m 2 > > mr in the
lexicographical ordering. Finally, from Proposition 7, dmi (̂ Λ (x) /z)
e (C x (^ (x) 1) G PΓ. It follows that W = VQ(λ). D

Proposition 9. Let λeΓ\Q. Then V(λ) = ( C ^ O c S ^ Γ ) - ) is an irreducible α-

Proo/ Since Γ = Q®Zμ we can write 5(α(Γ)_) = S(α(0_)M, where
M:= S(JJn> 0 <Cμ(- ή)). Let ^ be a non-trivial α-submodule of V(λ). Let
0 ^rfeW be arbitrary and write / = ]Γn e

λ ®fnμ{— n), where μ(— n) =
μ(— Πi)μ(— n2) ' and «i ^ «2 ^ ' ' ' andXeS'ίαίβ)-). Then we can use the δ(n%
n > 0, to eliminate all terms but one and reduce to the case where / = eλ ®heW,
where heS(a(Q)-). But by Proposition 8, VQ(λ) is an irreducible α-module. Thus
eλ ®\eW. Now write M = ]Jn>o Mn, where Mn denotes the subspace of M span-
ned by elements of degree n. It suffices to show that for all n,

R:= U(a)-(eλ® 1) 3 <Ceλ ®*S(a(Q)-)Mn . (17)

We will establish (17) by induction on the degree n. Since M o = <C and
M x = (Cμ(- 1), we can write M = C φ C μ ( - 1)® (LI^ = 2 Mn\ Since
U(α) (eA(x) 1) 3 U(α_) (eA® 1) 3 <CeA®cS(α(β)_), (17) is clear when n = 0. For
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n = 1 consider d-1 '(eλ ® 1) = L-λ(eλ ® l)eR. By definition we have

1 + 2

L-r(eλ<8)l)=Σ Mi(-lK (0) (eλ®l)
ί = l

1 + 2

= eλ®λ{- 1).

Now writing λ = α + aμ, α e β , αe(C x , we have L^1(eλ (x) 1) = eλ (x) α(— 1)
+ a(eλ ® μ(— l))eR. But βΛ(x)α(— l)eΛ from the case rc = 0. Thus we have

eλ (x) μ(— \)eR and this shows (17) when n = 1.
Suppose then that (17) holds for all 0 g n ̂  fe - 1. We call this the first

induction hypothesis. We need to show R => <£eλ ®(cMkS(a(Q)^). We prove this by
induction on the lexicographical ordering defined on 0>k. We "anchor" at the top
with the partition (k). That is, we will first show eλ (x) μ(— k)eR.

Recall that for k > 0,

L-* = \Σ Σ -Uii-jMj-k):
L jeΈ ί = l

= \ Σ ί Σ : ".-( —J)"iθ' - k): + :δ{-j)μ(j - /c):

Note that in the expansion of L_λ(eλ ® l)ei? the only j e Z which contribute are

7 = k, k — 1,. . . ,

to x. We compute

Note that in the expansion of L_λ(e ® l)ei? the only j e Z which contribute are

7 = k, k — 1,. . . , —-— , where [x] denotes the largest integer less than or equal

W
1 + 2

Σ u,(-k)Ui(O)
i = l

I

*+!._,

= (eλ®λ(- fc)) + y ,
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where c = \ or 1 depending on the parity of k, ye(£eλ ®C(LJIKΛ MnS(a(Q)-)),
yeRby the first induction hypothesis. Thus eλ ® μ{ — k) e R by writing λ = oc + aμ
and arguing as we did earlier in the case n = 1.

Next we fix m = (m1? . . . ,mr)e^k and assume that for every n e ^ satisfying
n > m we have eλ ® μ( — n)e.R. We call this the second induction hypothesis. We
need to show that eλ ® μ(— m)eR. Since Yj = 2mi < K by the first induction
hypothesis eλ ® μ(— m2) μ(— mr)eR. But then R also contains the element
x:= L^mi(eλ ® μ( — m2) μ( — mr)). Now, in the sum defining L_m i, the only

which contribute in the calculation of x are je{mί}v<m1 — l,...,

—*—— > u {mi + m 2 , . . . , m1 + rar}. We calculate

^ - m i ( e λ ® μ ( ~ m 2 ) μ ( - m r))

- ( β λ ® ; , ( - m 1 ) μ ( - m 2 ) μ ( - m r))

Ui{- m1 + 1 K ( - 1) + δ(~ mί + l ) μ ( - 1) + μ ( - mi + ϊ)δ(- !) + •••
ί=l

+ X m, (eλ ® μ ( - mx - m f)iu(- m2) - ' μ{- mf) μ ( - mΓ)) ,

where the overbar denotes omission and c = \ or 1, as before.
Let x1 denote the sum in the brace brackets and x2 the sum with the overbar.

By the first induction hypothesis Xi'(eλ ® l)eR and since (/% + mt ,
m2 , . . . ,m ,̂ . . . , mr) > (m2, m3, . . . , mr) for each 2 ^ / ̂  r, the second induction
hypothesis implies x2 e î . Finally since the left side belongs to R we conclude that
£>Λ ® λ(— m1)μ(— m2) μ(— mr)eR. Expressing λ = a + aμ, oteQ, αe(C x , the
first induction hypothesis gives eλ ® μ(— mx) μ(— mr)eR as required. This
completes the proof of Proposition 9. D

Finally, we indicate how to identify V(λ), λeΓ\Q, as an irreducible highest
weight module. Indeed, recall that α admits a triangular decomposition
δ = β - ® δ o © α + . Let αe(α 0 )* be defined by α(α(0)) = (x|a)for all aeί), α(4) = 1,

°̂ (z) = 1 + 2. Consider the Verma module M(α) = lί(d) ® U ( b ) Cα,

where b = Q o 0 Q + with unique irreducible quotient L(α).

Proposition 10. (i) V(λ) ^ L(α).
(ii) Ifλ, λ'eΓ\Q, then V(λ) ^ V(λ') if and only if λ = A'.

Proo/ (i) Since eλ ® 1 is a highest weight vector for α with weight α and since it
generates the irreducible module V(λ), V(λ) ^ L(α).
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(ii) By [MP] Proposition 2.3.4, L(oc) is uniquely determined by a and clearly
λ, λ' eΓ\Q determines the same α if and only if λ = λ'. D

7. Irreducible Representations of the Virasoro-Toroidal Algebras

In this section we show that the full Fock space V(Γ) = <C(Γ)®cS(α(Γ)_)
decomposes into a sum of subspaces K(m), meZ, and for m φ 0, K(m) is an
irreducible t[2]-submodule with K(m) ~ K(rή) if and only if m = m'.

Note that, as (C-spaces, V(Γ) is the direct sum of the (C-spaces
K(m):= <C[mμ + Q] ®<cS(α(Γ)_). It is clear that each K(m), meZ, is a t[2]-module.
Suppose that m Φ 0, and hence mμ + Q cz Γ\Q. We will need the following
formula which is a special case of (12) in Sect. 3:

X-{y\λ+ί)(y){eλ®l) = ε(γ,λ)(eλ + y®l)9 yeQ, λeΓ. (18)

Proposition 11. For m Φ 0, K(m) is an irreducible \2]-module.

Proof. It suffices to show

(a) K(m) = U(t[2])-(emμ ® 1) and,

(b) every nonzero submodule R of K(m) contains emμ ® 1.

For (a), note that K(m) = U(<Cerμ+a<g)(CS(a(Γ)-)) = \J VΓ(mμ + α), where

α runs through Q. By (18), U(t [ 2 ]) * (emμ ® 1) contains emμ+a ® 1 for every α e Q and
since mμ + aeΓ\Q (m φ 0), Proposition 9 implies U(a)-(emμ ® I) => (Πemμ+a

®<cS(α(Γ)_), Vαeβ. This establishes (a).
To prove (b), we note that as an d-module K(m) is a direct sum of non-

isomorphic modules VΓ(mμ + α), and hence so too is R. Thus

emμ+β ®leVΓ{mμ + β)aR

for some βeQ. Now by (18), emμ®\eR and we are done. D

Proposition 12. X(m) = K(m!) if and only ifm = m'.

Proof K(0) is not irreducible [Fl ] . Consider m φ 0. Define

Vac(K(m), α):= {xeX(m): α+ x = 0} .

Note that since V(mμ + α) is irreducible over α we have Vac( V(mμ + α), α)

= (Cemμ+α ^ L Moreover, since K(m) = \}aeQ V(mμ + α), Vac(K(m), α) =
L J « e Q ^ m μ + α ® 1. Now for α e β , (5(0) (e m μ + α ® 1) = (mμ + α|<5)emμ+α ® 1 =
m(emμ + a ® 1). Thus 5(0) acts as m on Vac(X(m), α). Finally, if K(m) ^ K(m'\ where
m, πί Φ 0, then Vac(X(m), α) ^ Vac(K(m'), α), as (C<5(0)-modules and hence
m = m!. D
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