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Abstract. The geometry of certain moduli spaces of solutions to Nahm's equations
is studied, and a family of gravitational instantons is shown to arise as a deformation
of the Atiyah-Hitchin manifold.

1. Introduction

Considerable effort has been devoted to the study of moduli spaces of solutions to the
self-dual Yang-Mills equations and their dimensional reductions. One reason for this is
that such moduli spaces can often be naturally endowed with a hyperkahler structure.
This consists of a metric and three covariant constant complex structures satisfying
the quaternionic multiplication relations. Hyperkahler manifolds are necessarily An-
dimensional, where n is an integer, and their holonomy is contained in Sp(n).
The possible existence of such manifolds was implicit in Berger's classification of
the groups which could arise as holonomy groups of non-symmetric Riemannian
manifolds: however nontrivial examples of dimension higher than four were not
known until the work of Calabi [C]. Four-dimensional hyperkahler manifolds are,
in the terminology of physics, examples of gravitational instantons.

In this paper, we shall introduce a twelve-dimensional moduli space M 1 2 of
solutions to Nahm's equations, a nonlinear system of ordinary differential equations
arising as a reduction of the self-dual Yang-Mills equations. The manifold M 1 2 admits
a hyperkahler structure, and is acted on isometrically by U(2) and Spin(3). The U{2)
action is triholomorphic (preserves the Kahler structures) while the action of Spin(3)
permutes the Kahler structures. The hyperkahler quotient of M 1 2 by the centre of J7(2)
is an eight-dimensional hyperkahler manifold M 8 with an isometric SU(2) x 50(3)
action. We show that M 8 is homeomorphic to R5 x SU(2)/Z2 and calculate the
L2 metric on M 8 and on the quotient N5 = M*/SU(2). We also study a totally
geodesic submanifold Σ of M 8 which represents axisymmetric solutions to the Nahm
equations. Finally, we obtain a family of hyperkahler four-manifolds as hyperkahler
quotients of M 8 by a circle subgroup of SU{2). These manifolds, which we believe
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to be new examples of gravitational instantons, arise as deformations of the moduli
space of charge two SU(2) monopoles studied in [AH].

It is well known [HI, N] that Nahm data with appropriate boundary conditions
gives rise, via the ADHM-Nahm construction, to monopoles on M3. In another paper
[Dl] we have shown that the ADHM-Nahm procedure associates to points of our
moduli space SU(3) monopoles with symmetry breaking to U(2). Now Manton [M]
has observed that geodesic motion on a moduli space of monopoles should, at least
at low energies, give a good approximation to monopole dynamics. Assuming that
the transform from Nahm data to monopoles is an isometry, this means that we can
translate results about the geometry of our Nahm moduli spaces into information
about time-evolution of SU(3) monopoles. It is known, from the work of Nakajima
and Hurtubise [Na, Hu2], that the Nahm transform is an isometry of moduli spaces
in the case of SU{2) monopoles.

2. Nahm's Equations

In this section we review some material concerning the Nahm equations, the associated
moduli spaces, and hyperkahler geometry.

Let G be a compact, connected simple Lie group, and A a connection on a principal
G-bundle over E 4 . Let FA denote the curvature of A, and * the Hodge star-operator.

Definition 2.1. The self-dual Yang-Mills (SDYM) equations for A are

*FA = FA (1)

If we take coordinates x0, xx, x2,x3 on R4 and write

A = Σ Aιdxι' FΛ = Σ Fijdxidxj

where
Fi^diAj-djAi + U^Aj],

then the SDYM equations become

^ 0 1 = ^ 2 3 >

^ 0 3 = ^ 1 2

If we now impose the condition that the connection components Ai are independent
of x 1 ? x 2 5 χ 3 ' a n d if we relabel x0 as t, then we arrive at Nahm's equations

dA
^ + [AA] [AA]

dA

dA

(2)

(4)

The gauge group of smooth G-valued functions on 1R acts on solutions to Nahm's
equations by

(z = 1,2,3).
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The space of solutions to Nahm's equations modulo the action of the gauge group
is called the moduli space.

Observe that if we take the connection A to be independent of xQ only we arrive
at the Bogomolny equations

V,Φ = F 2 3 , (5)

V2Φ = F3l, (6)

V3Φ = Fl2 , (7)

where we denote — Ao by Φ and the covariant derivative dt + [Ai, ] by V .̂
Solutions (A, Φ) to the Bogomolny equations such that

(8)

for large radial distance r from the origin, where a and b are constants, are known
as monopoles. The Higgs field of a monopole, restricted to a sphere of large radius,
defines a homotopy class known as the charge. This is a single integer for SU(2)-
monopoles.

There is a remarkable relationship between moduli spaces of monopoles and Nahm
data.

Theorem 2.2. [HI] Consider the space of quadruples (To, T1 ? Γ2, T3), where
(i) Each Γ is a u{k)-valuedfunction on [0,2]. Γo is analytic on [0,2]; T (i = 1,2,3)

is analytic on (0,2) vvzY/z simple poles at t = 0,2.
(ii) T0,Tx,T2, T3 satisfy Nahm's equations.

(iii) The residues ofTx^T2iT3 at t = 0 form the irreducible k-dimensional represen-
tation of SU (2).
(iv) Tz{2 - t) = (T,(t))τ /or t G [0,2].

772£ quotient of this space by the group {g e Cω([0,2], U(h)): g(2-t) = (g(t)τ)~1}
is naturally equivalent to the moduli space of charge k SU(2)-monopoles. D

This equivalence between moduli spaces of solutions to reductions of SYDM
appears to be a general phenomenon. Another example is the equivalence between
moduli spaces for the full SYDM equations and the ADHM equations. The latter may
be interpreted as the SYDM equations with invariance under R4 translations imposed.
An account of this is given in [CG].

As mentioned in the introduction, our moduli spaces will admit hyperkahler
structures. We shall now give some details of this.

Definition 2.3. A hyperkahler structure on a manifold X is a quadruple (ft,, /, J, K),
where
(1) ft is a Rίemannίan metric on X.
(2) I,J,K are complex structures, covariant constant with respect to ft, and ft is
Hermitian with respect to /, J, K.
(3) The complex structures multiply according to the quaternionic relations; U —
K = -JI, etc.

A corollary of this definition is that (ft, al -\-bJ + cK) is a Kahler structure on X
whenever a2 + b2 + c2 = 1. Therefore a hyperkahler manifold has a two-sphere of
Kahler structures. It is this fact which lies at the heart of the twistor space construction
for hyperkahler manifolds explained in [AH].
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Suppose now that a group G acts on a hyperkahler manifold X preserv-
ing (ft, /, J, K). The Kahler structures (ft, /), (ft, J), (ft, X) give us Kahler forms
ωι,ω1^ω3. If G is compact or semisimple there will exist G-equivariant moment
maps μι, μ2, μ3: X >—>• 0*, defined by

where dff is the contraction of ωi with £. Here we identify an element ξ e g with a

vector field on X .

We can combine the μ% into a single map μ:X ι-> M3 0 0*.

Theorem 2.4. [HKLR] If qx,q1 lq3 are elements of the centre 0/9*, ί/ien μ " 1 ^ ? q2,
q3)/G is hyperkahler (when it is a manifold). D

This result, known as the hyperkahler quotient construction, has provided many
examples of hyperkahler manifolds. In particular, it can be applied to moduli spaces
of Nahm data, as the following theorem shows.

Theorem 2.5. [H2] Let y& denote the infinite-dimensional quaternionic affine space

whose elements are of the form — + To + iTx + jT2 + kT3, where T%: [0,2] ι-> u(A ),
cue

TQ is analytic on [0,2], Tl:T2,T3 are analytic on (0,2) with simple poles of residue
Qi, att = O, and T4(2 - t) = (Ti(t))τ for t G [0,2].

Let 6={ge Cω[(0,2], U{k)):gφ) = Id,g(2 -t) = (g(t)τΓ1} act on Λ by

( i = 1,2,3).

Define a metric ft on Λ? by

}
= /

Define complex structures /, J,K on ̂ β by right multiplication by —i, — j , —k
respectively.

Then (ft, /, J, K) w α hyperkahler structure on <A, preserved by the action of G,
and the moment map for the action of G is

/ ^ + [T0,T1]-[Γ2,T3]λ

•[To^-IT^TJ
dt

(9)

Therefore the moduli space of solutions to Nahm's equations with residues ρi at

t = 0 is the hyperkahler quotient of ' ^ by G. D

Note that it was necessary to consider Nahm data with fixed residues ρi to ensure
that the tangent vectors to J& were finite at t = 0,2 and that the L2 metric ft was
defined.
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3. The Moduli Space

We shall now introduce a moduli space M 1 2 of Nahm data with modified boundary
conditions, and investigate its topology and isometries. We shall be particularly
interested in a hyperkahler quotient M 8 of M 1 2 by a circle action.

Definition 3.1. Consider the space C of quadruples (Γo,TX,T2,T3), where
(i) T^i = 0,1,2,3) is a u(2)-valued function on [0,3].

(ii) To is analytic on [0,3]. Tx, T2, T3 are analytic on (0,3] with simple poles at t = 0

of residue — i σ1? — | σ2, — i σ3, where σ% are the Pauli spin matrices,

(iii) The T{ satisfy Nahm's equations.

Note the differences with the conditions of 2.2. We now require the Nahm matrices
to be analytic at the upper end of the interval on which they are defined, and we have
dropped condition (iv) of 2.2.

In the construction which produces monopoles from Nahm matrices, the interval
on which the matrices are defined determines the eigenvalues of the Higgs field at
infinity. The choice of [0,3] as interval reflects a choice of these eigenvalues to
be 2 , - 1 , - 1 , as is discussed in [Dl]. Of course, the choice of interval makes no
significant difference to the geometry of the moduli spaces.

Let GQ denote the group of analytic U(2)-valued functions on [0,3] which are the
identity at t = 0,3. This group acts on C as in 2.5.

Let M 1 2 be the quotient of C by Gg.

Theorem 3.2. M 1 2 admits a hyperkahler structure.

Proof. This is very similar to the proof of 2.5. We consider the space 35 whose

elements are of the form — + To + iTλ -f jT2 + kT3, where T0,TuT2, T3 satisfy (i),

(ii) above. The metric h and complex structures /, J ^ o n J are defined as in 2.5,
and they define a hyperkahler structure on 35 preserved by the action of G\. If we
denote by / the induced moment map, then the hyperkahler quotient f~ι(0,0,0)/G[j
is just M 1 2 . D

Let us now discuss the group actions on M 1 2 .
(a) There is an action of R3 on M 1 2 , given by

Tj *-> Tj - iλjld (j = 1,2,3), (10)

where ( λ l J λ 2 , λ 3 ) G M3.
(b) G0 = {ge Cω([0,3], U(2)):g(0) = Id} acts on f~ι(0,0,0) c 3B as in 2.5. This
action descends to an action of G^G% = U(2) on M 1 2 .
(c) There is an action on M 1 2 of Spin(3), the double cover of SO(3), defined as
follows.

Let P e Spin(3) descend to (α ̂  ) e SO(3). Let g e Cw([0,3],t/(2)) satisfy
0(0) = P, g(3) = Id. Then the formula

T h-> T ~λ - — ~ι
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defines the Spin(3) action. This is well-defined because any two choices of g differ
by an element of GQ.

Note that the mapping

preserves Nahm's equations but not the condition on the residues of the Nahm matrices
at t = 0, so does not define an action on M 1 2 .

Proposition 3.3. The actions ofU(2) and Spin(3) on Mn commute.

Proof. It readily follows from the above description of these actions that they
commute up to an action of the gauge group GQ. AS GQ acts trivially on the moduli
space Mn by definition, the result follows. D

Let us now discuss the Riemannian structure of our moduli space. The natural
metric on Mn is the quotient metric on f~ι(0,0,0)/G[j, which is defined as follows.

Let π denote the projection from f"ι(0,0,0) to M 1 2 = f~1(0,010)/G%. The
tangent space to M 1 2 at a point T is isomorphic to the subspace of the tangent space
to f~ι(0,0,0) at S e ττ~ι(T) which is orthogonal to the orbit of Gg through S. This is
referred to as the space of horizontal tangent vectors at S. Given tangent vectors X, Y
to M 1 2 at Γ, we identify them using the above isomorphism with horizontal tangent
vectors X,Ϋ to f~ι (0,0,0) at S, and define h(X,Y) = h(X,Ϋ). This definition is
independent of the choice of S in π~ι(T) because the metric h is GQ-invariant.

It follows that the tangent vectors to M 1 2 at (T0,Ti,T2,T3) satisfy
(i) The linearisation of Nahm's equations at (TO,TUT2,T3).

(ii) Orthogonality to ( ^ + [Γo,ψ], [Tvψ], [Γ 2,ψl [T3,ψ]) for all φ e Lie(Gξ).

The tangent vectors will also be analytic on [0,3], because the residues of the
Nahm matrices at t = 0 are fixed.

This yields the following result.

Proposition3.4. The tangent space to Mn at (TQ,TX,T2,T3) consists of vectors
(Yo,YVY2,Y3) where Yi:[0,3] -* u(2) such that
(i)

Ϋ{ + [Y^TJ + [τo,γ{] = [Γ2,y3] + [ y 2 , r 3 ] , ( i i)
y'" _ι ΓV" T l j XT1 V I ΓT1 V 1 J_ Γ V T 1 ^ 1 0 \

2 L-* 0 ' 2 J ""^ »- 0' 2J — L 3 ? 1 J ' L 3 ? 1 J ? V ^•^/

τ ί,y t] = o. (14)
ΐ=0

(ii) y- w αnαfyί/c on [0,3] /or i = 0,1,2, 3. D

Proposition 3.5. Let
7 Λ α 2

&2

. c l C 2 C 3 .

be an element ofSOQ). Let g be an element ofCω([0,3], 17(2)). Then if(Y0, Y{, y2, Yz)
satisfies Eq. (11-14) at (Γo, T t , Γ 2, Γ 3) ίλe/i " " "~



Nahm's Equations and Hyperkahler Geometry 551

9(ΣctYi)9~ι) satisfies (11-14) at {gTog~' - gg~[,
l

Proof. This is a straightforward calculation. D

This result means that to find the tangent space at an arbitrary point of M 1 2 , we
need only compute the tangent space at one point in each U(2) x Spin(3) orbit on
M 1 2 . We shall use this in Sect. 4, when we calculate metrics on moduli spaces.

Differentiation of the R3, U(2) and Spin(3) actions yields

Proposition 3.6. R3 and U{2) x Spin(3) act isometrically on Mn. D

The Kahler forms on Mn associated to the complex structures /, J, K are defined
as follows. We have Kahler forms ώl)ώ2./ω3 on ./? defined by

{ ) , (15)

etc. Explicitly

ώ^X^X^X^X^^Ϋ^Ϋ^Ϋ,))
3

= J{xM - {xM + {X3,Ϋ2) - (x2,Y3)dt-
0

Given tangent vectors X,Y on M 1 2 , lift them to X.Ϋ on /~ ι(0.0,0) and let
ωι(X,Y) = ωι(:X,Ϋ).

This definition is independent of the lifts chosen because the Kahler forms on
Z" 1 (0,0,0) are degenerate along the orbits of the gauge group G®.

It is clear that the actions of R3 and U(2) are triholomorphic, that is, they fix the
Kahler structures of M 1 2 . The Spin(3) action, on the other hand, acts transitively on
the two-sphere of Kahler structures.

We are now in a position to calculate moment maps for triholomorphic actions on
M 1 2 .

Consider the centre of ί/(2), that is, the U{\) subgroup of scalar matrices. The
elements of this group may be represented by maps

^eτθt/3ld. (16)

Therefore the image of (T0iTvT2,T3) under the action of Ψ(θ) is (To -
 [-iθId,

Differentiating at θ = 0 shows that the vector field generated by the U(\) action

is constant and its value is (—|z/d, 0,0,0).

We deduce the moment map for this action.

Proposition 3.7. The hyperkahler moment map induced by the action on M12 of the
centre of U{2) is

m:(Γo, TUT2, T3) ^ 2i(traceTx, traceT2, traceΓ3). D (17)

Note that this is invariant under the action of GQ and so is well-defined on Mn.
We can now make the following definition.

Definition 3.8. Let M 8 be the hyperkahler quotient m~1(0,0,0)//7(l).
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We see that M 8 inherits an SU(2) x SO(3) action (rather than SU{2) x Spin(3))
from M 1 2 . The centre of SU(2) acts trivially. The SU(2) action fixed the complex
structures and the SO(3) action rotates them.

Note that M 8 can also be obtained as the ordinary quotient of M 1 2 by R3 x C/(l),
where the action of M? is that defined in (10).

Definition 3.9. Let N5 denote the quotient of M 8 by SU(2).

The 50(3) action descends to the quotient space TV5 because it commutes with
the action of SU(2) on M 8 .

We shall now solve the Nahm equations subject to the conditions of 3.1, and hence
obtain a concrete description of our moduli spaces M 1 2 , M 8 and TV5.

Let us first factor out the action of R3 and the centre of U(2). This just amounts to
making the Nahm matrices To, T\, T2,T3 tracefree. We can now use the SU(2) action
to gauge To to zero; Nahm's equations now become

fx = [T2,T3], (18)

T2 = [Γ 3,T,], (19)

T3 = [TUT2]. (20)

The space of solutions to these equations which satisfy our boundary conditions
is the space N5 of Definition 3.9. It follows from (18-20) that the quantities

Oι = (T^) - (T2,T2),

a2 = {TuTι)-{T3,T3),

a3 = (T{,T2),

are constant in t. In fact, the ai are coordinates on N5 and the map

(otγ -f a2) θί3 α 4

( α 1 , α 2 , α 3 , α 4 , α 5 ) ι - > I a3 | ( α 2 - 2 α 1 ) α 5 | (21)

α 4 α 5 ^(α 1 — 2α 2 ) y

is an 5O(3)-equivariant homeomoφhism from N5 onto an open subset of the space
W2 of real traceless symmetric 3 x 3 matrices. The latter space is a realisation of
the irreducible 5-dimensional representation of 5O(3). In this case 5O(3) acts by
conjugation.

Now, any element of W2 is conjugate under 5O(3) to a diagonal matrix with the
eigenvalues arranged in increasing order. From (21) we deduce that every orbit of
5O(3) in N5 contains a unique point with ( Γ ^ ) = (TX,T3) = (Γ2,Γ3) = 0 and
(TvTλ) < {T2,T2) < <T35Γ3). Together with our condition on the residues of the
Nahm matrices, this implies that

T0 = 0, T, = i/ 2 σ, (2=1,2,3) , (22)

where the fi are real-valued functions satisfying

h = hh , (23)
h = hh . (24)
h = hh . (25)
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and

Λ2 < ί\ < f\ (26)

The functions /p/2,/3 are analytic on (0,3] and have simple poles at t = 0 of
residue — 1.

The space of solutions to (23-25) satisfying these conditions is in bijective
correspondence with the quotient N5/SO(3).

We shall refer to Nahm data of the form (22) as being in diagonal form, because
such data corresponds under the mapping (21) to diagonal matrices in W2.

Note that j \ — / | and f\ — f\ are constant in t. This enables us to integrate the
equations completely. The solution (subject to our conditions) is

( 2 7 )

( 2 8 )

snk(Dt)

Ddnk(Dt)

snk(Dt)

hit) = ^— , (29)

where 0 < k < 1 and D < | K(k). Here snk, cnk and dnk are the elliptic functions of

Jacobi, and 4K(k) is the period of snk (see [WW] for details of the Jacobi functions).

We need the condition D < | K(k) because we require the Nahm matrices to be

analytic on (0,3].
We have established the following result.

Proposition 3.10. The quotient space N5/SO(3) may be identified with the set

\k< l , 0 < £ > < \K(k)}. D

Note that this is not a manifold. The reason for this is that the isotropy subgroup
for the action of SO(3) is not the same at all points of TV5.

(i) The point represented by D = k = 0 is fixed by SΌ(3). It represents the solution

fι = h = h = -\ (30)

We call this the spherically symmetric solution.
(ii) The points given by k = 0 or k = 1 have isotropy group Sι x Z 2 . They represent

the solutions

(31)

2 3 (32)

and

fλ = f2 = -D cosQch(Dt), (33)

/3 = -L>coth(D£), (34)

respectively.
For obvious reasons we call these trigonometric axisymmetric and hyperbolic

axisymmetric solutions respectively,
(iii) Other solutions have a Z 2 x Z 2 isotropy group.
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Note that the above statements are about isotropy subgroups of the SO(3) action
on N5 = MS/SU(2). On the larger space M 8 , the action of 50(3) is free.

We observe that the above results show that every element of M 8 lies in the same
SU(2) x 5O(3) orbit as a point of the form

(T0,TvT2,T3) = (0, \ f{σu \ f2σ2, \ f3σ3), (35)

that is, a point in diagonal form.
We conclude this section with some remarks on the topology of our moduli spaces.

Theorem 3.11. The moduli space N5 is homeomorphic to R5.

Proof. It follows as in [Hul] that iV5 is homeomorphic to {a eW2: Trα2 < 1}, the
open unit ball in W2 = R5. D

It is easy to check that the actions of U(2) and R3 on M 1 2 , and the action of
SU(2)/Z2 on M 8 , are free. We deduce the next result.

Corollary 3.12. M 8 is homeomorphic to R5 x 5J7(2)/Z2, and Mn is homeomorphic
to R8 x U(2). D

4. The Metric

In general the problem of calculating the metric on a moduli space is a difficult one.
In our case, however, we are helped by the explicit formulae we have for the solutions
of Nahm's equations which represent points of M 8 . We shall explicitly calculate the
tangent space to M 8 , and use this description to derive an expression for the metric.

Recall from 3.5 that to determine the tangent space at arbitrary points of M 8 we
need only calculate it at one point in each SU{2) x 5O(3) orbit. From the results of
Sect. 3, we see that it is enough to find the tangent space at points of M 8 represented
by Nahm data of the form (0, \fi&\,\ f2σ2> \ ίισz)-

Let us write a tangent vector to M 8 at a point of this form as (Y0,Yι,Y2,Y3).
Using the isomorphism su(2) = R3 we may write the components, Y% as

The equations (11-14) that Yi must satisfy to be a tangent vector are

Vl = f3Xl +Λ^3> ( 3 7 )

3̂ = fiVi + hx\ ?
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and three similar systems, each of three equations in three variables. These equations
may be solved exactly by elementary methods, and we arrive at the following theorem.

Theorem 4.1. The tangent space to M 8 at (0, | fγσλ1 ^ / 2σ 2, \ /3σ3) consists of

vectors (Fo, Yl}Y2,Y3), where

/

rn =

/ -

Ah \
m3

3 + X
• T - ^
3 2 hi
Ah \

m22 + T2
T + ^

3 h )
m i

' 3 4 "Λ/
ί3 \

and

γ> =

'•-I

t T A- - i
h '

ds (39)

for j = 1,2,3,4. D

The parameters m i 5 n t(i = 1,2, 3,4) are coordinates for the tangent space.
We are now in a position to make some statements about the Riemannian geometry

of M 8 .

Theorem 4.2. M 8 is irreducible as a Riemannian manifold.

Proof. M 8 is a hyperkahler 8-manifold, so if it is reducible it must be a product
P x Q, where P, Q are hyperkahler 4-manifolds.

Let p denote the point of M 8 represented by
)

is the spherically symmetric solution (30). Now the diagonal subgroup SO(3) of the
isometry group SU(2)/Z2 x SO(3) fixes p, so the tangent space to M 8 at p is an
8-dimensional representation of SO(3). Using the explicit description given by 4.1 it
can be checked that the tangent space is isomorphic as an SΌ(3)-module to W{ Θ W2,
where Wn denotes the irreducible (2n + l)-dimensional representation of SO(3).

If we have a decomposition M 8 = P x Q, however, then the tangent space
is a direct sum of two 4-dimensional representations of 50(3), giving a contradic-
tion. D
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The presence of a large group of isometries of M 8 gives us a supply of totally
geodesic submanifolds.

Proposition 4.3. Let Γ denote the curve in M 8 represented by Nahm data of the form

(0, 2 /iσi> 2 /2σ2> 2 ̂ 3σ3^ w n e r e /f ~ «/? ^ * ^ denote the circle bundle over Γ

obtained by applying the action of the U{\) subgroup of SU{2) whose elements are of

the form

ίeιθ 0 \
S = [ θ e-»J (40)

Then the surface Σ is totally geodesic in M 8 . Moreover the image of Γ in N5

under the projection M 8 —> N5 = M8/5£/(2) is a geodesic in N5.

Proof Σ is the fixed point set of the diagonal subgroup of the isometry group
5*7(2) x 50(3) given by

0 0 \

cos θ sin<9 I :θ e [0,2π]

— sin θ cos θ /

The image of Γ is the fixed point set in N5 of the circle subgroup of SO(3)

0 0 \

cos (9 sin (9 I : 6> G [0,2ττ]

- sin θ cos β /

Both these groups act isometrically, so the result follows. D

We can perform a similar construction by taking other circle subgroups of 50(3)
and considering the fixed point sets of the associated diagonal subgroup of the isometry
group. In this way we obtain a totally geodesic surface in M 8 for each point in RP 2 .
We can view these surfaces as representing Nahm data axisymmetric about an axis
through the origin in R3.

We have been unable to show the existence of any compact totally geodesic
submanifolds of M 8 . However we do have the following weaker result.

Proposition 4.4. Let Ω denote the RP 3 of spherically symmetric Nahm data in M 8

that is, the orbit of the isometry group of M 8 containing the point p defined in 4.2.
Then Ω is a minimal submanifold of M 8 .

Proof We have to show that the second fundamental form B of the embedding
Ω ^ M8 is tracefree.

Now, if 3Γ denotes the tangent space to Ω at p and JV* denotes the normal space,
then B lies in S2(3f) ®J^. Observing that the tangent space to M 8 at p is the direct
sum of 3F and JV*, and using the results and notation of 4.2, we see that J ^ = Wx

and JV = W2 as 5O(3)-modules. Using the Clebsch-Gordan formula it follows that:
5 2 0 O (g)e/Γ = (W2 Θ Wo) 0 W2, where the first W2 represents the tracefree tensors
in 5 2 0 H . By Schur's Lemma, B is tracefree at p.

The same argument works (using a different 50(3)), for each point of Ω. D

Let us now calculate the metrics on our moduli spaces. First we shall consider the
quotient metric on the 5-manifold TV5 = MS/SU(2).
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Let us take as coordinates on N5 the quantities α l 5 . . . , a5 defined earlier by

ax = {Tx,T,)-{T2,T2), (41)

a2 = (Tι,Tι)-{Ti,T3), (42)

« 3 = (Γ 1 ; T 2 ) , (43)

α 4 = (T, )T3>, (44)

as = (T2,T3). (45)

These are 517(2) and gauge-invariant, and independent of t as a consequence of
Nahm's equations.

We shall calculate tangent vectors F(α^) which are horizontal (i.e. orthogonal to
the 517(2) orbits in M 8 ) and dual to the above coordinates. The latter condition may
be expressed as

Ϋ) = δii>3 '

The inner products of these tangent vectors will give us the terms of the metric.
Explicitly, the metric will be

5

ds2 = ^2 G^da^a-, (46)

where G^ = f(Ϋ(at),Ϋ(a))dt.
o

It will be useful to establish the following lemma.

Lemma 4.5. Let Y, Z be tangent vectors to Ms at (0, | f\σλ, \ / 2σ 2, 5, /3CΓ3), given,

in the notation of4Λ, by parameters mif ni, and m[, n^ respectively.

Then their inner product is given by

4

i=\

where
/ 3 N 2

(48)

0 2 '

3 v 2

, (51)

3

52= / 4 (52)
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Proof. This follows from direct calculation, using integration by parts and the relation

(/i)2 + + = j t (Λ/2/3) (53)

Now, an arbitrary point of N5 = MS/SU(2) is of the form (fo,fuf2,f3) =
^ 1 X 1 Σ 1 Σ 1 ) , where

and t \-+ A(t) is an analytic map from [0,3] to SU(2) with A(3) = Id and A(0)
descending to A under the double cover SU(2) H-> 5O(3).

Equivalently, (fo,f{,f2,f3) is obtained by applying the SO(3) action of A to a
point in diagonal form.

The tangent vectors to M 8 at (Γo, T 1 ; f2, f 3) are of the form:

• = (yo,Yi,y2,y3)

- 1

where Y = (YQ, YUY2, Y3) is a tangent vector to M 8 at (To, T{, T2, T3).
Using the expressions (41-45) for α 1 ? . . . , α 5 we find that

—2m{ \

da2(Y)
da,(Ϋ)

daA{Ϋ)

Ua5(Ϋ)J

= R(A)
-2n{

m2

n 3

\m4- n4j

(54)

where the matrix R(A) is

-a2b2

-a2c2

\ —b2c2

-a3b3

—63C

2(axa2 — bxb2) 2(axa3 — bxb3) 2(a2a3 — b2b3)\

2{axa2 — CγC^ 2(axa3 — cγc3) 2(a2a3 — c2c3)

(2i&2 ~i~ ̂ 9 ^ 1 Cl\b3 -\- βo6i ^ 2 ^ 3 ~^~ ^ 3 ^ 2

(Xi Co j " ( X T C I Q/OCO "T" (ZOCO

6^3 H- 63Cj 62c3 + 63c2 / .

The mapping A \—> R(A) is in fact the irreducible 5-dimensional representation of
50(3), as can be seen by computing its character. Note that R(AT) = R(A)~ι so we
can find the inverse of R(A).

The duality relations for Ϋ(a{) are, therefore

-2mι \ / 1 \

3C3

-2n1

m2

n3

\mA — nά

0

0

0

\0/

= R(Aτ)e, , (55)
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where we denote by ê  the 5-element column vector with j t h entry equal to 1 and all
other entries equal to zero.

We get the duality relations for Ϋ(α2), > ^(^5) by replacing ex by e2, . . . , e5

respectively.
The coordinates aί are invariant under the SU(2) action, so the vertical tangent

vectors Z (i.e. the vectors tangent to the SU(2) orbits) are precisely those satisfying
daz(Z) = 0(i = 1, . . . , 5). Using (54) we can identify the vertical tangent vectors; by
applying the result of 4.5 we see that a tangent vector Ϋ is horizontal (i.e. orthogonal
to the vertical tangent vectors) if and only if

m2h2 + n2(h3 + g2) = 0, (56)
m 3(^i + 9\) + ^h2 = ° > ( 5 7 )

m4(/ι1 + h2 + gγ) + n4(h2 + h3 + g2) = 0. (58)

We have expressed the duality and horizontality relations that the tangent vectors
Ϋ(otj) must satisfy as a system of linear equations in mi^ni. We can now solve these
equations and, using Lemma 4.5, read off the inner products that give the terms of
the metric.

Theorem 4.6. Let (f0, f{, f2, T3) be the image ofφ, \fλσu\ /2σ2, \f3σ3) under the

( α l α2 α3 \

&! b2 b3 \ e 50(3).
c l C2 C3 /

ί/iβ metric of N5 at that point is

5

ds2 = J ^ Gijdaidaj , (59)

4
G ϋ = Σ ^ ^ f c ^ ! + 5,) + n K ^ + g2) + (mfn® + m^n«)/ι2 , (60)

j f e = l

gι,g2,hι,h2, h3 are defined as in Lemma4.5, and m(

fc

z), n(

fc

2)(A: = 1,2, 3,4) are given
by the following formulae.

(i)
m(

1

1) = i ( 6 ? - ^ ) ,

rn2 = —bxb2,

(I) _ b\b3h2

(l) _ -6263(/ι2 + fo3 + fe)

h3 + ^ -f
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(ii) The expressions for πvϊ \n\ are the same as those above except that bj is
replaced by Cj throughout.
(iϋ)

m\ = a2b2 — axbι ,

m2 •> = axb2 + a2bι,

(3) _
1714 "°4 hλ+2h2

2(3) = a b _ a b

(3) _ _ ( a Λ + Q

77,3 = ax

(3) _ _
4

(iv) The expressions for mi^ni are the same as those in (iii) except that b3 is
replaced by Cj throughout.

(v) The expressions for mf\nf^ are the same as those in (iii) except that α^ is
replaced by c throughout. D

We can also derive an implicit expression for the L2 metric on the 8-dimensional
manifold Ms.

We saw earlier that M 8 is topologically R5 x SU(2)/Z2, so global coordinates will
not exist. We can take as local coordinates on M 8 the functions α l 5 α 2 , α 3 , α 4 , α 5 of
(41-45), together with the Euler angles α 6 , α 7 , α g , which satisfy

c o s α 2||f3(3)|| '

3(3),σ3]||

([T3(3),fI(3)],[σ3,f3(3)])

where ( T o , T V T ^ T A ) are the Nahm matrices representing a point on M 8 .
If we view the Nahm matrices at t = 3 as vectors in R3, then α l 5 . . . , α 5 specify

them up to an overall rotation. This rotation is parametrised by the Euler angles.
Note that α 1 ? . . . , ce8 are invariant under the action of the gauge group GQ, SO are

well-defined on M 8 .
As usual, we need to find tangent vectors Ϋ(a{), . . . , Ϋ(a%), at each point of M 8

dual to dav . . . , das, and then compute their inner products to find the metric. The
duality relations that the Ϋ{a^) will satisfy are
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These relations will be expressible as linear equations in m^n^ and solving these
equations will give us the tangent vectors Ϋ(ai). Their inner products can then be
calculated using Lemma 4.5.

Now a general point of M 8 will be of the form

(fo,ΐl,f2,f3)
= (-E(t)A(t)A(tyιE(tyι - E(t)E{tyι,E(t)A(t)ΣaιΆA(tyγE(ty\

E(t)A(t) ]Γ b^Aity1 E(t)~\ E(t)A(t) ]Γ c^A^y1 E(tyι), (62)

where
T — - fσ, (i — 1 2 3)

Λ2 < /| < /I, (63)

S(i),A(i)GCw([0,3],5t/(2)),

f?(0) = Id, J5(3) = E G 5C/(2),

and

A(0) descends to A = I bλ b2 b3 I e 50(3), A(3) = Id. (64)

In other words, (Γo, fλ, Γ2, T3) is obtained from (0, | / ^ , ̂  /2σ2, | /3σ3) by applying
the 5O(3) action of A and the SU(2) action of E (recall from 3.3 that these two
actions commute on M 8).

From 3.5 we see that a tangent vector Ϋ at (To, Tγ^^^T^) may be represented as

= (E(t)A(t)Y0A(tyι E{ty\E{t)A{t) Σ

1, E(t)A(t) Σ CiYiA(trι E(tyι), (65)

where F - (Y0,Yl:Y2,Y3) is a tangent vector at (T0,Tl9T2,T3) = (0, i fxσv \ /2σ2,

5 /3^3) defined by parameters m^,^ as in 4.1.
3 3

Note that, using the obvious notation, f(Ϋ,Z) = f{Y, Z).
0 0

We have the following proposition.

Proposition 4.7. Let (To, fvf2, Γ3) e M 8 ̂  ^ zmα£<? ̂ /α configuration (0, | / ^ 1 ?

I /2σ2' I /3σ3) under the action of A £ 50(3) and £ G SU{2), given by the expression

)
We can define tangent vectors Ϋ(ax), ..., Ϋ(a%) at (Γo, fl5 f2, Γ3)

l 5 . . . , dα8, Z?j the following prescription.
Let

1 E(tyι),
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where (Yθ1 Yι,Y2, Y3) is a tangent vector at (0, -

by parameters mi, ni satisfying

~2™ι \

m 2

n3

JCΓJ , - / 2 σ" 2 , ^ f?>σ?) a s in 4-1 defined

\mά — nά/

ifje {1,2,3,4,5}
m, \

\ ra4 - n 4 ,

if j e {6,7,8}, and

da6(Y(aj)) = 1 z/ j = 6, dα^YXα^ )) = 0 otherwise ,

dα^ΫCc^)) = 1 z/ j = 7 , dα/yία^)) = 0 otherwise,

<iα8(y(αJ )) = 1 z/ j = 8 , dαgίΫXα )) = 0 otherwise. D

Combining this with Lemma 4.5, which shows us how to calculate the inner
products of tangent vectors, we obtain an expression for the metric.

Theorem 4.8. The L2 metric on M 8 is given at (To, fvf2,f3) by

where

ds2 = Hιjdaidaj

4

= Σ
k=\

and {τn^\ rv£ A; = 1,2,3,4} is the solution to the system of linear equations given
in 4.7. D

5. A Surface of Revolution

The expression for the metric we have obtained is a complicated one involving elliptic
functions and their integrals. However these functions will in some cases (Nahm data
with axial symmetry) reduce to elementary trigonometric and hyperbolic functions.
In this section we shall study the totally geodesic surface of revolution Σ in M 8

introduced in 4.3. The points of Σ represent Nahm data symmetric about a fixed axis
in space and the metric on the surface is expressible in terms of trigonometric and
hyperbolic functions. In [Dl] we used this explicit expression for the metric to study
geodesic flow on Σ, and, as mentioned in the introduction, used Manton's argument
to make deductions about the dynamics of SU(3) monopoles.
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Recall from 4.3 that we defined the curve Γ in M 8 to be the family of Nahm data
of the form

where /2

2 = /3

2.
This means that the functions fi are

fλ(t) = -Dcoth(Dt) ϊ

f2(t) = -Dcosech(Dί) > (66)

f3(t) = - D cosech(Dt) J

for 2) > 0, or

fi(t) = f2(t) = f3(t) = -l/t (67)

or

fx(t) = -Dcot(Dt) ϊ

/2(ί) = -Dcosec(Dί) V (68)

J
for 0 < D < τr/3.

Note that the condition £) < π/3 in the last example is necessary because one of
the conditions we have imposed on our Nahm data is that it should be analytic on
the interval (0,3].

Consider the U(l) subgroup

of 517(2).
We defined Σ to be the union of the orbits of this U(l) containing points of Γ.

Therefore Σ is a surface of revolution in M8. Moreover, we proved in 4.3 that Σ was
totally geodesic by identifying it as the fixed point set of a subgroup of the isometry
group of M 8 .

We could take α 1 = (T^^Tγ) — (T2,T2) as a coordinate on Γ, but it is convenient
to introduce coordinates v, K as follows. If a{ > 0, let v = — 3λ/άΓ!~; if ax < 0, let

Therefore

v represents the solution given by (66) with D = — - ,

is = 0, K = 0 represents solution (67),

K represents the solution given by (68) with D = — .

We shall refer to the part of Σ representing hyperbolic and spherically symmetric
Nahm data as region i , and to the part representing trigonometric and spherically
symmetric solutions as region 2. Letting θ denote the ί/(l) coordinate, we can take
v, θ as coordinates on region 1, and K, θ as coordinates on region 2.

Let us first work in region 1. The U(l) symmetry of Σ means that we need only
consider points of Σ representing Nahm data in diagonal form.

A basis for the tangent space to Σ at each point in this region is provided by the
vector field Y(v) dual to the coordinate υ, and the Killing vector field Y(θ) generated
by the £7(1) action. We shall calculate the metric with respect to these vector fields.
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Now the tangent vector Y(v) dual to v is given by

where Y{ax) and Y(a2) are the vector fields calculated in Sect. 4. Using Lemma 4.5,
and substituting in our expressions for the fi9 we find that the coefficient of the dv2

term of the metric is

3

ΐ sinh2z/ \ sinh2z/ 1

lj + - . (69)+

Similarly, in region 2 of Σ, parametrized by ft, θ we find
3

2

..Ύr l l 9 1 9 /sin2ft \ 1 sin2ft

" ( K ) " fC osec2ftcotft(-^--lJ + - - - ^ — , (70)

where y(ft) is dual to ft.
Observe that the elliptic functions of the expression for the metric on M 8

have reduced to hyperbolic and trigonometric functions in region 1 and region 2
respectively.

We now need to calculate the dθ2 term of the metric on Σ (recall θ is the U{\)
coordinate) which is given by the length squared of the vector field generated by the
U{\) action. Let us first find this vector field explicitly.

The vector field obtained by differentiation of the action of U{\) takes the value

X = (X0,XuX2,X3) at (0, \ fxal9 \ f2σ2, \ /3σ3), where

0

-tf2.

Now X is not orthogonal to the orbit of the gauge group G[] through (To,TX,T2,T3),
so is not a tangent vector to Σ (or even M 8 ) . Our Killing field Y(θ) on Σ is the
orthogonal projection of X onto the tangent space to Σ.

Referring to the formula above for X, and to our explicit expressions for the
tangent vectors to Σ, we arrive at the following expression for the dθ2 term of the
metric.

In region 1

l 4 /3sinh2z/ \
4 cosech v I 3

V
/J 3 Λ /3sinh2z/ V 9 /3sinh2z/ λ

—cosech2 z/cothi/ 3 + - ^ 3
v \ 2v ) v2\ 2v )

, (71)

and in region 2

A 4 (Ί4 cosec4 KI 3

/ ITOII2 ^ F-^ (72)
7 3 0 / 3 s i n 2 f t \ z 9 / 3 i 2 \

2

3 0— cosec2 ft cot ft
ft \ 2ft

F
\ z 9 / 3sin2ft\

3 H — = - 3
/ ftz \ 2ft J
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We also find that the dvdθ and dκdθ terms vanish.
Now —IdG SU(2) acts trivially on Σ1, so we shall take φ = 2Θ as our angular

parameter.
After making this reparametrisation, and simplifying our expressions further, we

finally obtain the following form of the metric on Σ.

Theorem 5.1. The metric on the totally geodesic surface Σ is

ds2 = (v — sinh v cosh v)

vdφ

3v sinh3 v v" " ' "^ 3 cosh v sinh z/(tanh v — v)
x ^— (v — tanhi/)di/ -\ (73)

in region 1, and

(is2 = (/̂  — sin ft cos ft)

c o s / ^ , XT? ^ ^ 2 \ , π ί N

- — r y - (ft - tan ft) dft2 + : — 7 (74)
3ft sm ft 3 cos ft sin ft (tan ft - ft) y

m region 2. D

Remember that z/ < 0 and 0 < ft < π.
We have calculated the metric on the totally geodesic surface Σ, and we can use

this to get a detailed picture of the geometry of Σ. First we shall check that the
expressions we have for the metric on region 1 and region 2 fit together in a smooth
fashion at v = ft = 0. Recall that region 1 of Σ represents hyperbolic Nahm data,
while region 2 represents trigonometric Nahm data, in the terminology of Sect. 3. The
circle defined by v — 0 on Σ corresponds to spherically symmetric Nahm data.

Let us write the metric as ds2 = Ax(y)dv2 + Bx(u)dφ2 in region 1 and
ds2 — A2(κ)dκ2 + B2(κ)dφ2 in region 2.

It can easily be seen that

~ + Bx(y)dφ2 = A2(iv)d(iv)2 + B2{iv)dφ2 .

Recalling that v — — ?>^fa[ for ax > 0 and K = 3Λ/ZΓα^ for aγ < 0, and expressing
Aι,A2,Bι,B2 as functions of the coordinate α l 5 we find that the expressions for the
metric fit together smoothly at v — 0.

Our formula for the metric has a coordinate singularity at v — 0, where Ax(v)
v2

vanishes. This singularity is removed by the reparametrisation aγ = — .

The functions AX,A2,BX,B2 have the following properties.
(i) Ax(y) is monotonic decreasing for v < 0 and A2(κ) is monotonic increasing for

0 < K < π, A{(0) = A2(0) = 0 and A2(κ) tends to infinity as K tends to π.
(ii) Bι(v),B2(κ) are monotonic increasing o n z / < 0 , 0 < κ < π respectively. B2(κ)
tends to infinity as K tends to π.

Recall that the boundary of Σ given by K = π represents Nahm data with a
pole at t — 3, which corresponds via the Nahm transform to 5£/(2)-monoρoles. This
boundary is not included in the moduli space M 8 . A natural question to ask is whether
our metric extends over the boundary; if this were the case, the metric on M 8 would
be incomplete. We see from the expressions for the metric that the dκ2 and dφ2 terms
have triple and simple poles respectively at K = π and hence the metric fails to extend
over the boundary.
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Let us consider the asymptotic behaviour of the metric as v tends to — oo and as
K tends to π. Letting v tend to — oo corresponds to considering hyperbolic solutions
fι(t) = - DcosechCDί) etc. with D tending to oo.

It is easily seen from our expressions for the metric that A^^^B^u) —> 1/3 as

v —> — oo. Therefore the metric is asymptotically | {dv2 -f dφ2), that is, a cylinder of

radius —=.

We can perform a similar analysis in the case K —> π. Letting

3(π - K)

the metric becomes asymptotically

dr2 + I r2dφ2 (75)

as r —> oo. This means that the surface Σ is asymptotically a cone of vertex angle
τr/3.

Our surface Z, with the metric we have calculated, is a surface of revolution.
Using the standard expressions for the radius and curvature of such a surface, and
examining the behaviour of the coefficients AX,A2BX,B2 of the metric, leads us to
the following conclusions. We take 7 G (—00,00) to be a coordinate on Σ orthogonal
to the {7(1) direction, such that 7 < 0 in region 1 and 7 > 0 in region 2.

Theorem 5.2. The totally geodesic surface Σ has negative curvature and monotonic

increasing radius. The radius tends to —j= as 7 tends to —00 and tends to 00 as 7 tends
V3 1

to 00. As 7 —•*• — 00, Σ is asymptotically a cylinder of radius —γz, and as 7 —> 00, Σ
is asymptotically a cone of vertex angle π/3. D ^ 3

6. Hyperkahler Quotients

We have encountered the hyperkahler 8-manifold M 8 as a hyperkahler quotient of
Mn by a triholomorphic circle action. Now, as explained in Sect. 3, there is a
triholomorphic action of SU(2) on M 8 , so there will be an induced moment map from
M 8 to R3 (g)5u(2). In particular, we may restrict ourselves to considering the action of
a Ϊ7(l) subgroup of SU{2) on M 8 ; this will give rise to a moment map μ taking values
in R3. In this way we obtain a hyperkahler 4-manifold μ~ι(\1, λ2, λ3)/ί7(l) for each
triple (λ1? λ2, λ3) in M3. As a first step towards understanding these 4-manifolds, let
us explicitly calculate the moment map μ associated to a circle subgroup of £{7(2).

Theorem 6.1. Consider the 17(1) subgroup of SU(2) which fixes σ2 when 517(2) <zcfa
<9« 5u(2) m ί/*£ adjoint representation (this subgroup is just 5O(2, C)J.

77z£ moment map μ:Ms ι-» R3 g/vew by this 17(1) αcί/o/? w

μ:(Γ0,T1,Γ2,T3)^((Γ1(3),(72>,(Γ2(3),σ2),<T3(3),σ2>). (76)

Proof This is a straightforward (though long) calculation along the lines of 3.7.
Differentiation of the action of the {7(1) subgroup at θ = 0 gives the vector field
X generated by the action. Using the formulae (15) we can calculate ω^X, Y)(i =
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1,2,3), where ω^ί = 1,2,3) are the Kahler forms on M 8 and Y is a tangent vector
to M 8 . We find that

ωι(X,Y)=(Yi(3\σ2) (i = 1,2,3).

The result follows. D

Note that μ is invariant under the action of the gauge group G§ and of the centre
of £7(2), so is well-defined on the moduli space M 8 .

Corollary 6.2. For each (\u\2,\3) e R3, μ~1(λ1,λ2,λ3)/C/(l) is a hyperkahler
4-manifold.

Proof. This follows from Theorem 2.4 and the freeness of the U{\) action. D

Definition 6.3. Let us denote μ" 1(2λ 1,2λ 2,2λ 3)/ί7(l) by M(λv λ2, λ3).

We have produced a family of hyperkahler 4-manifolds. By virtue of the hy-
perkahler property, they are self-dual and Ricci-flat, and so are of interest in physics
as examples of gravitational instantons.

It follows from our expression for the moment map μ, and from the description
of our 4-manifolds as quotients of level sets of μ, that the 50(3) action on M 8

gives an isometry between M(λ 1 ? λ2, λ3) and M(0,0, λ), where λ2 + λ2 4- λ2 = λ2.
Consequently, we need only consider M(0,0, λ), where λ > 0.

We see that the full group 5O(3) acts isometrically on M(0,0,0), whereas only
the Sι subgroup of SO(3) given by

cos θ sin# 0\

sin θ cos# 0 I : θ e [0,2τr]

0 0 1/

acts on M(0,0, λ) for λ φ 0.
In fact we can identify M(0,0,0) with a known gravitational instanton, as follows.

Proposition 6.4. M(0,0,0) is isometric, up to a constant scale factor, to the double
cover of the moduli space of centred, charge two, SU(2) monopoles.

Proof. It easily follows from our description of μ and the properties of Jacobi elliptic
functions that (To, Tx, Γ2, T3) lies in μ" 1 ^, 0,0) if and only if it extends to a solution
to the Nahm equations with the boundary conditions of 2.2 on the interval [0,6].
Restriction of Nahm matrices from [0,6] to [0,3] gives us a diffeomorphism from
the moduli space of Nahm data for centred, charge two, SU(2) monopoles onto a
quotient by Z 2 of M(0,0,0). Moreover this map is (up to a constant scale factor) an
isometry. Hurtubise [Hu2] and Nakajima [Na] have shown that the Nahm transform
for SU(2) monopoles is an isometry, so the proposition is proved. D

Corollary 6.5. M(0,0,0) is complete and homeomorphic to the double cover of
S4 - RΨ2. It has the homotopy type ofS2.

Proof. This follows from the results of [AH] and [Hul] on the completeness and
topology of the SU{2) monopole moduli space. D

We see, therefore, that we have a one-parameter family of gravitational instantons
arising as deformations of the SU(2) monopole moduli space studied by Atiyah and
Hitchin. In a future paper [D2] we shall show that the moduli spaces M 1 2 and M 8 are
isomorphic as complex manifolds to spaces of based rational maps from CP 1 to CP 2.



568 A. S. Dancer

We shall use this description to express the hyperkahler four-manifolds M(0,0, λ) as

hypersurfaces in C3, and make more precise the sense in which they are deformations

of the Atiyah-Hitchin manifold.
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