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Abstract: We study representations of Temperley-Lieb algebras associated with the
transfer matrix formulation of statistical mechanics on arbitrary lattices. We first
discuss a new hyperfinite algebra, the Diagram algebra Dn(Q), which is a quotient
of the Temperley-Lieb algebra appropriate for Potts models in the mean field case,
and in which the algebras appropriate for all transverse lattice shapes G appear as

subalgebras. We give the complete structure of this subalgebra in the case An (Potts
model on a cylinder). The study of the Full Temperley Lieb algebra of graph G reveals
a vast number of infinite sets of inequivalent irreducible representations characterized
by one or more (complex) parameters associated to topological effects such as links.
We give a complete classification in the An case where the only such effects are loops
and twists.

1. Introduction

Finding integrable statistical mechanics systems in dimension greater than two is
notably difficult, and very little is known about that question [1]. In two dimensions
there are algebraic structures more general than integrability, whose study nevertheless
provides some physical information [2, 3, 4], These structures are not all constrained
to two dimensions. For example the Temperley Lieb [5] algebra: consider the complete
unoriented graph of n nodes, here called n, and all those subgraphs G C n obtained
by removing bonds (edges) from the complete graph.

Definition. 1. We define TG(Q), the Full Temperley-Lieb algebra of the graph G [2],
to be the unital algebra over C with generators

(1, Uim (i = 1 ,2, . . . ,n), Utj = U3i (edge ( i , j ) e G)}

* Permanent address: Mathematics Department, City University, Northampton Square, London
EC1VOHB, UK
** Present adress: Physics Department and Mathematics Department, University of Southern

California, Los Angeles CA 90089-0484, USA
*** Packard Fellow



156 P. Martin, H. Saleur

and relations:
U2 = v/QC/ (1)

(any indices)

[Uim,U3J = [U%3,Ukl\ = [Uif,Ukj]=0, i^kj. (4)

We note the very useful nested structure of inclusions of these algebras (cf. [6]):

GCG'=>TG(Q)CTG,(Q),

where the restriction is achieved by simply omitting the appropriate bond generators.
For example, with G = An, the n node chain graph, we recover the original
Temperley-Lieb algebra T2n(Q). Conversely, it follows from the definition of the
Potts model [7] that TG(Q) is a generalization of the transfer matrix (TM) algebra
^2n(Φ) — ̂ An(Q) appropriate for building a transfer matrix layer of shape G [2] -
in other words for overall lattice shape G x Z. This graph G corresponding to the
shape of physical space is not to be confused with the configuration space graphs of
[8, 9], which work only for the two dimensional case. For example, G a square lattice
produces a cubic lattice statistical mechanical model.

For every Temperley Lieb based statistical mechanical model which has a suitable
generalization onto a lattice with spacelike layer G, such as the Potts model (defined
by Hamiltonian

•*= Σ ^<W (5)

where β is essentially an inverse temperature variable) the transfer matrix algebra
provides a representation (abstractly, a quotient) of the Full Temperley Lieb algebra.
The inhomogeneous transfer matrix itself is a representation of the element

v

where v — exp(/3) — 1. The Potts representation is given explicitly in [2, 10]. By well
known arguments [2, 11, 12] the irreducible representations of TG(Q) which compose
this representation are then the most efficient blocks to use in computing the TM
spectrum. Moreover in two dimensions (G = An), the exceptional cases, where the
algebra is not faithfully represented in physical transfer matrices, correspond to models
with "rational" conformal field theory limits. A large amount of information about
this conformal limit can actually be read in the algebraic properties for finite systems
[9, 13]. By establishing the physically correct generic algebra in other dimensions we
develop a procedure for addressing any analogous situation there.

The G = An algebra is finite dimensional for finite n, and typically faithfully
represented by the finite dimensional physical transfer matrices. We will show that
for general G the Full algebra is always infinite dimensional unless G = An. Since
the physical transfer matrices usually remain finite dimensional in higher dimensions
(for finite systems) one problem is to find explicitly the finite dimensional quotients
of the Full algebra appropriate for these physical systems.

We begin (in the next section) with a discussion of an algebra related to Tn,
called the partition algebra Pn(Q). It corresponds very closely to the diagram algebra



Algebraic Approach to Higher Dimensional Statistical Mechanics 157

Dn which is the "mean field limit" of the Potts model. Pn(Q) also has subalgebras
indexed by a graph, and is one of the easiest cases to analyse, as expected from a
"physical" point of view. The algebra Pn(Q) provides an organisational link between
the physical and abstract algebras we have described. We begin analysing TG(Q)
in Sect. 3. We give a complete analysis of the "affine" An case in Sect. 4. The
complications that appear here for the Full algebra, compared to the planar case,
may be given a topological interpretation which leads us in Sect. 5 to a topologically
motivated analysis of the general case. The classification scheme of representations
includes all links that can be embedded in G x Z. Sundry additional remarks are
collected in the last section.

2. The Partition Algebra

We now discuss the partition algebra which will play a crucial role in our analysis
[14].

2.1. Partitions of a Set M

First we need to introduce the set Sm of partitions of a set M of m distinguished
objects

W, C M s.t. M% φ 0, (J Mτ = M, Mj n Mk = 0 (j φ k)\.

For example, if M is the set of the first m natural numbers

S4 = {((1234)), ((1)(2)(3)(4)), ((123) (4)), ((124) (3)),

((134) (2), ((234) (1)), ((12) (34)), ((13) (24)), ((14) (23)),

((12) (3) (4)), ((13) (2) (4)), ((14) (2) (3)),

((23) (1) (4)), ((24) (1) (3)), ((34) (1) (2))}.

We call the individual equivalenced subsets of the set of objects "parts." Thus
(Mj) = (123) is a part of the partition ((123) (4)), and so on. The set Sm is finite for
finite m. The total dimension is well known [2, 10, 15]

m 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

1 2 5 15 52 203 877 4140 21147 115975 678570 4213597 27644437

We write i ~A j in case objects ί , j are in the same partition in A e Sm, so ~A is
transitive.

We will be mainly interested in the case ra = 2n. We will then write our 2n
objects simply as

1,2,3, . . . ,n, 1',2',3'j ,n'.
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2.2. Operations on Sm (m = 2n)

For Q an indeterminate and K the field of rational functions of Q we define a product
[2,10]

(A, = Qf(A'B)C
(7)

1 2 3

Fig. 1. Pictorial realisation of parts as clusters and composition of partitions by juxtaposing clusters.
In this case f ( ( A , B}} = 0

Where C e Sm and f(A, B) e Z>0 are defined as follows. Relabel the objects in B
from

l 7 / ,2 7 7 , . . .χ 7 , l / 7 7 ,2 7 7 7 , . . .,n 7 7 7

Form a partition of 4n objects from ^4 and B by first taking the parts in A and
including into the part containing i' the part from B containing i". Then delete all
the i' and i'1 [counting the number f(A, B) of parts which become empty, and are
then discarded, in the process] and finally relabel all the i1" as i'. The partition of 2n
objects obtained is C.

For example,

((1234) (1'3') (2') (47)) ((11'2') (233;

-> ((1234) (l/ / /2/ / /3/ / /) (47//)) -> ((1234) (l/2/3/) (4')).

This is illustrated in Fig. 2.2. There are other such illustrations in Sect. 2.5.

Definition 2 (Partition algebra [14]). Considering the vector space over K spanned
by S2n, the linear extension of the product & gives us a finite dimensional algebra
over K which we call the partition algebra Pn(Q).

Definition 3. The natural inclusion 5? is defined by

(8)
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Fig. 2. Part of the graph 3 x Z

Fig. 3. Diagram for the connectivity !12t/3 = ((12/)(21/)(3)(3/)) which restricts to 112 for n = 2

It is convenient to introduce the following special elements of the partition algebra:

1 = ((ll /)(22 /).. . (nn)), (9)

\%3 - ((II7) (22')... (i/)... (jϊ)... (nn7)), i, j = 1 , 2 , . . . , n , (10)

1
') (22')... (i)(z')...(nn')), (11)

(12)

Proposition 1 (see [14]). These elements generate Pn(Q).

Definition. 4. For A e Pn let [A] denote the maximum over the Sm components of
A of the number of distinct parts containing both primed and unprimed elements.

For example [1] = n, [AL] = n — 1. Then

Corollary 1.1. For A, 5 e Pn,
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Proposition 2. There is a homomorphism from the Full Temperley-Lieb algebra of the
complete graph n to the partition algebra given by

Propositions (see [2]). The subalgebra of Pn(Q) generated by

(l,Aim (i = 1,2, . . . ,n), Ail+l (i = 1,2, . . . ,n - 1)}

w isomorphic to TAn (Q).

Definition 5. For given n we define Σn as the subalgebra of Pn(Q) generated by

{l,lυ.(i,j = l , 2 , . . . , n ) )

or, where appropriate, as the corresponding symmetric group.

2.3. Full Embedding of Pn_l in Pn

We will need the following simple but surprisingly powerful theorem:

Theorem 1 (see [14]). For each n, Q ^ 0 and idempotent e — en = AnJ^/Q there
is an isomorphism of algebras

As a consequence the categories of left Pn__ι and left PnenPn modules are
essentially isomorphic categories (the extend to which they are not isomorphic is,
for our puφoses, a technicality - the interested reader should turn to [14, 16, 18] for
details).

Let us denote by Fn(M) = enM the object map from (Pn -mod) to (Pn_j -mod)
at level n.

Corollary 1.1 (see [14]). Let fn be the object map of categories defined by restriction
of left Pn modules to left Pn_\ modules through the inclusion J^7,

Then the following diagram of object maps of categories commutes:

(Pn-mod) -̂  (P^-mod)

in I ! / „ - , . (13)

(Pn_! - mod) -1 (Pn_2 - mod)

This implies that, up to edge effects caused by the difference between Pn and
PnenPn, the Bratteli restriction diagram for the algebras Pn (see Sect. 2.6.3 onwards)
has the same structure on each level n. But then
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Proposition 4 (see [14]). The following is a short exact sequence of algebras

Thus, at least for Pn semi-simple, a knowledge of the structure of Pn_ι essentially
determines for us the structure of Pn.

Corollary 4.1. In case Pn(Q) semi-simple the distinct equivalence classes of irre-
ducible representations may be indexed by the list of all standard partitions of every
integer from 0 (understood to have one standard partition) to n.

In fact Pn(Q) is semi-simple for Q indeterminate and for all Q £ C except for
the roots of a finite order polynomial in Q for any finite n (see Sect. 6).

2.4. Diagram Algebra for a Graph G

Let us return to Proposition 3. More generally we have

Definition 6. For graph G the Diagram algebra DG(Q) is defined as the subalgebra
of the partition algebra generated by

Note that Dn(Q) C Pn(Q), as 1^ cannot be built with these generators. However,
under certain conditions it can be substituted, for example,

123AL = ALA12A2A23A3A13AL . (14)

In fact we are more interested here in Dn(Q) than Pn(Q) (compare Proposition 2
with Eq. 6), but Pn(Q) provides a more versatile general setting. We will see shortly
that it is straightforward to move from one to the other.

The relationship between the algebra types T, P, and D is summarized by the
commutative diagram

0

which is exact at D.

Proposition 5. The subalgebra Dn(Q) C Pn(Q) is invariant under conjugation by
elements of the group Σn, i.e.

Corollary 5.1. Every word in Pn(Q) can be written in the form AB where A G Σn

and B e D(Q).
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Clearly we have the rich inclusion structure again

It also follows that DG(Q), and indeed Pn(Q), obeys a number of quotient relations
in addition to the Temperley-Lieb relations. For example, with W E DG(Q) there
exists X(W) a certain (known) scalar function of Q (see [2]) such that

V <
Specifically, if W e 5m with bw parts

X(W) = Qbw .

This relation is suitable for at least part of the set appropriate for physical systems,
as it corresponds to the existence of disorder at very high temperatures (there is also
a dual corresponding to order at low temperatures). At the level of the dichromatic
polynomial it corresponds to isolating bw clusters (cf. [7], for example). Several
analogous relations have also been found [2].

2.5. Pictorial Realisation by Connectivities

Definition 7. For a graph G let J$G be the universal set of the set of bonds of G, i.e.
the set of all (not necessarily proper) subgraphs of G of order |G| nodes (obtained
by omitting bonds).

Note that elements of ̂ G may not be connected graphs [7,17].
The partitions A e Dn(Q) ΓΊ Sm may be realised as classes of ^nxZ under a

certain equivalence ρ. The construction of ρ is as follows.
Explicitly number the nodes of n at "time" t = 0 from 1 , 2 , . . . , n. Practically it

will be convenient to restrict attention in ^?nx% to the subset of elements which for
sufficiently large t have all time-like bonds present and all space-like bonds absent.
This is a sort of very large time asymptotic smoothness condition. For some such
very large t — T number the nodes of (n, T) from 1;, 2 ' , . . . , n'. Then introduce the
map

where B G Sm such that i ~B j iff i,j are connected by a path of bonds present in
the subgraph B0, and b is the number of isolated connected components in B0 not
connected to any point in either of the layers t = 0 or t = T.

The point about the limits t = 0,T is that for finite n there exists some finite
T beyond which (range Fτ) Π Sm does not increase. Thus the asymptotic condition
is not important (just convenient), but ensures that Fτ and Fτ+1 are essentially the
same map.

The equivalence classes of ̂ nxZ are defined so as to make this map an injection
(i.e. B0ρC0 only if B = C).

The range of Fτ does not include the whole of Sm however large we make T (see
the remark after Definition 1). We can extend to the whole of Sm by, for example,
building our "connectivities" on n + 1 x Z (but only labelling the "first" n nodes).
This complication is connected to the nature of the lattice and the TM formalism;
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it will be discussed further elsewhere. In general, different choices of G in J?Gxz»
realise different sets of connectivities, i.e. different ranges for Fτ. This is, in fact, the
essence of the physically important problem of finding irreducible representations of
DG(Q) (see later).

We may extend ̂ n+1 x Z/£ or ̂ nxZ/ 'g to an algebra (over rational functions in Q)

by defining a product B0C0. We first build a new graph (BC\ by discarding t > T
in jB0 and t < 0 in C0 and the joining BQ and C0 by identifying the layer t = T
in BQ with t — 0 in C0. Let D e Sm have the same connectivities as the graph so

produced has between t = 0 and t = 2T - I [i.e. F2T_l((BC)Q) = Qd£> for some

d\. We then define £0C0 = Qd£>0, where £>0 e ^/ρ is such that Fφ0) = D. The
map F is then an algebra homomorphism.

The explicit pictorial realization is particularly neat (but sufficiently general) if we
distribute the nodes of n linearly, as in An, and only draw the part of the graph not
in the asymptotic region. Then for example with n = 12 the g class of Aii+l has a
simple representative

The g class of Ai has representative

v^. - 1 1 1 1 1 1 1 : n i :
The composition rule is to identify the top row of dots in the second diagram with

the bottom row in the first. Clusters then isolated from both top and bottom rows of
the new diagram so formed may be removed, contributing a factor Q.

Finally, then, for example, the TL relation 2

A A A —A
^ί i+l^i.^i i+l — ̂ ιz+l

amounts to the statement that the subgraph

I I I I I Π Π I I I
has the same list of connections within and between the top and bottom layers as the
Q representative of Aii+l above.

Note that no composition of diagrams increases the number of distinct connected
clusters connecting between the top and bottom layers. This means that the subset
of Q cosets with no connections top to bottom form a basis for a Pn(Q) bimodule.
Furthermore, the subset with < p distinct connections top to bottom also form a basis
for a Pn(Q) bimodule.

2.6. Structure and Representation Theory of Pn(Q)

This picture is particularly useful for constructing representations. The number of
distinct connections running from t = 0 to t = T is evidently non-increasing in any
composition (it is a measure of the number of distinct bits of information which can
be simultaneously propagated through the bond covering, which cannot exceed the
number propagated across any fixed time slice). So for example, writing simply P or
Pn for Pn(Q), and defining idempotents

H(UJ

VQ'.-Π
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(Q =^ 0) then /0 allows no connections from t = 0 to t = T, so Pn/0Pn is the
invariant subspace of Pn, where

Proposition 6. The element /0 /s α primitive idempotent.

Corollary 6.1. Γλe left ideal PnI0 is indecomposable (and generically simple).

Note that dim(PnI0) - \Sn .

Proposition 7. The element Iγ is primitive in the quotient algebra Pn/Pn/0Pn, so
again Pnl\ is indecomposable in this quotient.

Now J2 is not primitive in Pn/Pn/1Pn since, for example

On the other hand — /2 and -—γ̂  I2 are primitive idempotents.

Similarly /3 is not primitive in Pn/Pn/2Pn, but, for example

_ (1 ± 112 ± 123 ± !l3 + 112123 + 1 13*23)
^t *3 ~ 3 Ϊ ^ 3 ,

and two further combinations (with other symmetries) are.
From the definition of Iτ we have PnIi_lPn c PnIiPn and a nest of short exact

sequences, i = 1 ,2, . . . , n,

0 -> PnIl_lPn —> PnIjPn —> PnIiPn/PnIi_lPn -* 0,

where finally Jn = 1.

Definitions. Let us define the algebra PJz] = P^PJP^^P^

This is the algebra of elements with not more than ί distinct connections running,
as it were, from t = 0 to t = T, quotiented by the invariant subspace of all elements
with strictly less than i distinct connections from 0 to T.

Proposition 8. In the quotient Pn[i]9

T y T — y TJL^Zjnl^ — ^i^i

(we take ΣQ = Σ^ — I).

Proposition 9. Let Σ be any left Στ module. Then we can write the left Pn[ί] module,

2.6.1. To Construct Irreducible Representations. For each i — 0 , . . . , n and λ h i (λ
a partition of ϊ) and Σχ the λ simple Σi module [20], the set Smlfx generates a
basis for a generic irreducible representation.

Let us first consider the fully symmetrized case for the left Σi module, call it Σ1',
in each sector i. Then we get a basis for the left Pn[i] module Pnl^

s from Sm as
follows. List the elements as partitions of 1 ,2 , . . . , n, ignoring 1', 2' ,...,nf except
in so far as to note which parts originally contained primed elements. We discard
duplicate copies of partitions not distinguished by this property, and partitions in


