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Abstract. We present a classification of W algebras and superalgebras arising in
Abelian as well as non Abelian Toda theories. Each model, obtained from a con-
strained WZW action, is related with an Sl(2) subalgebra (resp. OSp(l\2) superal-
gebra) of a simple Lie algebra (resp. superalgebra) .̂ However, the determination
of an U(l)γ factor, commuting with Sl(2) (resp. OSp(l|2)), appears, when it exists,
particularly useful to characterize the corresponding W algebra. The (super) con-
formal spin contents of each W (super) algebra is performed. The class of all the
superconformal algebras (i.e. with conformal spins s ^ 2) is easily obtained as
a byproduct of our general results.
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1. Introduction

Lots of efforts have been done recently to detect and understand the infinite
dimensional symmetries which underly two dimensional field theories. A particular
role is played by Toda theories, since each of them possesses a W symmetry [1, 2].
More recently, it has been shown that in fact Toda models can be seen as
constrained WZW models [3]. One can say that such a property reinforces the
fundamental role of WZW models in the realm of conformal field theories. It also
provides a natural framework to compute explicitly the W algebras which then
appear.

In order to reduce a WZW model to a Toda one, some of the conserved current
components have to be set to constants or zero. It can be realized that, from a given
simple Lie algebra (or superalgebra) 0, different choices of constraints can be
proposed, each of them giving rise to a different Toda model, to which will be
associated a W (super)algebra. Actually, to each such a Toda model corresponds
a (integral or half-integral) grading [4] of ̂  specified by a Cartan element H e 9. In
other words, ,̂ which is chosen maximally non-compact, admits a vector space
decomposition:

<S = @ %h with [#, Xh~] = hXh for any Xh e &h . (1.1)
he^Z

As an example, the usual or Abelian Toda model associated to ^ is obtained by
taking H as the Cartan generator of the principal 57(2) in the algebra (or superprin-
cipal OS/?(1|2) in the superalgebra) .̂

For each such a grading H can be defined either a 57(2) [4-7] or an S/(2) 0 (7(1)
[8] (resp. 05p(l|2) [9,10] or OSp(l|2) Θ C7(l)) sub (super) algebra of <S generated by
{Mo, M± } Θ { Y} (resp. (M0, M±, F± } Θ { Y}) and such that H = M0 + Y. More
precisely, even when the (7(1) part is not zero, the S/(2) (resp. 08p(\\2)} subalgebra
is sufficient to characterize the JF algebra: one can then say that the different Toda
models in ̂  are classified by the different 57(2) (resp. OSp(l|2)) subalgebras of G.
However, interesting information on the structure of the corresponding W algebra
can be obtained when the Y generator exists. As will be shown below, a conserved
hypercharge can be associated to it, which may greatly simplify the Poisson
Bracket (PB) computation of the different primary fields constituting the W alge-
bra. The usefulness of the conserved hypercharge Y is illustrated to calculate the
PB of the algebra of spins 2, f, f, 1 first considered in [11, 12].

Once given the S/(2) (resp. Osp(l\2)) subalgebra of ,̂ the conformal spin
content of the corresponding W algebra can easily be deduced, owing to the
existence of the so-called highest weight Drinfeld-Sokolov gauge [13], from the
decomposition of the ^-adjoint representation w.r.t. 57(2) (resp. OSp(l\Ί)). Since, as
mentioned above, the existence of a (7(1) factor in ̂  commuting with 57(2) (resp.
O5p(l|2)) can help for the computation of the PB between PF generators, it is the
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determination of 57(2)® 17(1) (resp. OSp(l\2)® U(l)) subalgebras in ^ that we
plan to perform, as well as the reduction of the ^-adjoint representation w.r.t. each
5/(2) Θ 17(1) (resp. OSp(l|2) ® (7(1)) algebras.

Let us distinguish for a while the Lie algebra case (or bosonic case), from the Lie
superalgebra one. Much is known, owing to Dynkin, concerning the first point.
Indeed, the determination of the semi-simple subalgebras of a simple Lie algebra
has been considered by this author [14], and made explicit for algebras of rank up
to 6 by Lorente and Gruber [15]. We have added the determination ofSl(2) φ U(l)
algebras and provided, by means of general formulae, the reduction of the adjoint
representation of a classical algebra ^ w.r.t. each of its 57(2) © (7(1) subalgebras. In
particular, in each case, the construction of the defining vector from which can
immediately be deduced the gradation has been performed. Such a detailed study
of the bosonic case was necessary to complete the W algebra part, and also to settle
down some material for the super W case.

As already mentioned, in the supersymmetric case, when ^ is a simple Lie
superalgebra, the 5/(2) algebra is replaced by its supersymmetric "extension"
OSp(l\2) [9, 10]. It is therefore the classification of OSp(l\2) ® (7(1) subsuperalge-
bras in ̂  which is now of interest. Contrarily to the bosonic case, not very much is
known about the classification of 05p(l|2) subalgebras in a simple Lie superal-
gebra. Note that a first attempt in that direction can be found in [9], and also that
[10] deals only with Abelian super Toda models, in other words with the super
principal 05p(l|2) in a simple superalgebra. Hereafter, we explicitly achieve this
classification in a way which, we believe, is clear and allows a direct use. As in the
algebra case, general formulae for the decomposition of the fundamental and
adjoint representations of a simple Lie superalgebra with respect to OSp(l|2)
® (7(1) subsuperalgebras are given, and the (super) conformal spin content of the
super W algebras determined. In order to illustrate these results, and mainly to
allow a comparison with the extended superconformal algebras [16], tables are
constructed for superalgebras of rank up to 4.

2. W Algebras and (Half-)Integral Gradings

2.1. W Algebras in Toda Theories. It has been elegantly shown that, starting from
a WZW model, the action of which is S(g) and the fields g(x) (resp. superfields
g(x, Θ)) belong to the group (resp. supergroup) G, and imposing some of the
components of the conserved (super) currents to be constant or zero leads to
a Toda model.

Let us, at this point, briefly fix some notations.
As far as G is a group, the WZW conserved currents read:

J+=g-^d+g J-=(d-g)g~1 (2.1)

with

d.J+ =d+J- =0. (2.2)

When considering a supersymmetric WZW model [10], a supergroup element
will locally be defined as:

, (2.3)
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where the φl (resp. φj) are bosonic (resp. fermionic) superfields, and the Bt (resp. Fj)
commuting (resp. anticommuting) generators in the considered finite dimensional
superalgebra .̂ Then the corresponding supercurrents are:

J+=g~1D + g, J.=(D.g)g~1, (2.4)

where g differs from g by the change of sign on its fermionic generator part, the
bosonic ones staying unchanged. We note that the fermionic character of
D+ = θ±dx± + dθ± implies the supercurrents to develop as:

j = yίβ. + φJFj (2.5)

the Ψl being fermionic and the Φj bosonic superfields.
The choice of the J components which are constrained to be constant with

respect to those which are put to zero naturally defines a grading (see 1.1) on the
(super)algebra .̂ The simplest and most known example is the Abelian Toda
model relative to .̂ In this case the J components associated to the opposite of the
simple roots have constant values while those relative to the other negative roots
are put to zero. The grading is ruled by the generator H, sum of the Cartan
generators in the Cartan Weyl basis. The ̂  subalgebra ^0 is exactly the Cartan
subalgebra of 0 in this basis, the simple root generators E+ α form the ̂  subspace
^+ι, and their partners £_α the subspace ^_ι; finally ̂ + is constructed from the
positive roots and ^_ from the negative ones.

As could be expected, imposing a set of constraints reduces the huge symmetry
provided by the Kac-Moody current algebra to a subset of quantities, polynomials
in the current components and their derivatives, which will constitute a W-algebra.
For example, the original conformal symmetry of the WZW model itself is broken
when constraints corresponding to the grading H are imposed, and in order to
construct the Virasoro symmetry for this Toda model a H dependent correction
term has to be added to the former one.

More precisely, the stress energy tensor reads [3]:

-ΊrHdJ (2.6)

when ^ is an algebra, and [10]:

TH = Strh* JJJ + -JDJ j - Str(# D2J) (2.7)

when ^ is a superalgebra.
The determination of the other generators of the W algebra can be achieved as

follows.
If ^ is an algebra, one selects in ^_ x a (constant) element M_ such that [3]

Ker(adM_)n^+ = {0} . (2.8)

Then one expresses J as:

J = M. + J > _ ! , (2.9)

where the variable dependent part J>_! belongs to @h^h with h > — 1.
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If ̂  is a superalgebra, then one picks up in ̂ _ 1/2 a fermionic (constant) element
F_ with (F_, F-} = M- Φ 0 such that:

Ker(adF_)n^+ = {0} , (2.10)

and one expresses J as:

J = F. +J>-±. (2.11)

Finally one has just to use the gauge transformations:

J^gJg-1 + (dg)g~1 , (2.12)

where g belongs to the local Lie groups generated by ^+, or:

J-,gJg-^+(D.g)g-1 (2.13)

in the supersymmetric case, to transform J into:

with μ _ = M _ ( r e s P . F ^ ) , (2.14)

where the Wh+ι( J ) are gauge invariant polynomials generating the W algebra
associated to the Toda theory, and Xh e &.

Note that the condition (2.8) expresses the non-degeneracy for h > 0, of the
operator:

adM_: ^->^ft-ι . (2.15)

Then Drinfeld-Sokolov (D.S.) gauges can be used to determine a complete set
of gauge invariant quantities Wh + ι( J ) In the highest weight D.S. gauge, each
Wh + ι ( J ) is "carried" by the highest weight Xh of a given SI (2) subalgebra built
from M_.

The PB among W generators will be calculated from the PB:

{ Ja(x\ Jb(y')}PB = ίfc

abδ(x - x ' ) J c ( x ' ) + kηabdxδ(x - x') , (2.16)

when ^ is a Lie algebra and:

{ Ja(X\ Jb(X')}PB = i( - l)[a](1+[bVfc

abδ(X - X')JC(X'}

+ kηabDxδ(X - X') , (2.17)

when ̂  is a superalgebra. fc

ab are the structure constants, ηab the scalar product and
k the central extension parameter of the Kac Moody (super)algebra; by [a] is
expressed the 7L2 grading of the generator Ta\ [α] = 0 (resp. 1) if T1 is a commuting
(resp. anticommuting) generator (see [10] for more details).

Using (2.6) (or 2.7) one understands that Wh+1(J) has a (super) conformal
weight 1 + h under TH.

2.2. Properties of (Half) Integral Gradations. We have presented in [8] three
propositions establishing a correspondence between (integral and half integral)
gradings of a simple Lie algebra ^ which specify Toda theories, and Sl(2) 0 £7(1)
subalgebras of .̂ The generalisation to the superalgebra case is straightforward,
replacing the 57(2) part by its "supersymmetric extension" OSp(l\2). Therefore, we
limit ourselves to enounce hereafter these properties.

Let H be a grading operator of a (super)algebra .̂ Then:
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Proposition 1.

i) *S being an algebra, any element M _ e *& - can be embedded in one of its 57(2)
subalgebra.

ii) ^ being a super algebra, any fermionίc element F _ e ^ _ with {F-, F _ }
= M- φ 0 can be embedded in one of its OSp(l\2) subalgebra.

Proposition 2. Let M- E &-1 (resp. F- e ̂ _ 1/2). 77zeπ, it is always possible to write
H as:

H = MO + Y (2.18)

with MO being the Carton part of an 57(2) algebra constructed from M_ (resp. an
OSp(l\2) superalgebra built on F_), αmf ί/ie generator Y commuting, when non-zero,
with this three (resp. five) dimensional subalgebra.

Moreover, the 57(2) part constructed from M_ (resp. OSp(l\2) superalgebra
built on F_)js unique up to a conjugation by group elements generated from the
subalgebra ^0 = Ker(adM_) n 00

Proposition 3.

i) Let M-, MO, M+ αrcd 7 generate an 57(2) 0 (7(1) subalgebra of & with
M_ E^_! and MO + F = H. Decompose $, considered as a vector space, into
irreducible representations ^j.(yi) of this algebra, where yt denotes the eigenvalue of
Y on the 57(2) representation <2)h. Then

Ker(adM_)n^ + = {0} iff \yt\ ^jt for any %(^) in % . (2.19)

ii) Let M-, F_, M0, F+, M+ and Y generate an OSp(l\2)@ U(ΐ) subsuper-
algebra of^ with F_ e ̂ _ 1/2 and M0 + Y = H. Decompose $, considered as a vector
space, into irreducible representations ^ 3i(y^) of this algebra, where yι denotes the
eigenvalue of Y on the 05p(l|2) representation ffth = @jτ 0 ^-1/2- Then

Ker(adF_) n ^+ - {0} iff |^| ̂  for any 9th(y^ in % . (2.20)

In the following, we will call the condition (2.19) (resp. 2.20) a non-degeneracy
condition for adM_ (resp./or adF_). Of course, as the grades satisfy ht =j> + yh one
must impose hi e^Z in the $ adjoint representation to have (half)integral grading.

These three propositions have to be completed by:

Proposition 4. The gradations H — M0 H- Y and M0 lead to the same W algebra.

This last proposition has been proven in [7]. From the point of view of the
decomposition under 57(2) 0 U(l), note that (2.19) ensures that the highest weight
of the S/(2) subalgebra are in the ̂ 0 part of ̂  for both H = M0 and H = M0 + Y
gradations. This is in agreement with the "halving" used in [7].

We end this section by a property which characterizes the position of Y in .̂

Proposition 5. Let ^ be the commutant of the chosen subalgebra Sl(2) (resp.
O5p(l|2)) in &. Then Y, when it exists, belongs to the commutant of the semi-simple
part if i of <$ in $.

Before proving this proposition, let us first remark that, once 57(2) (resp.
O5p(l|2)) is given, a necessary condition for Y to exist is the existence in the ^
decomposition w.r.t. S/(2) (resp. OSp(ί\2)) of a ̂ 0 (resp. ^0 = ̂ 0) part.
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Now, let us remark that Y belongs obviously to the commutant # of the
subalgebra 57(2) (resp. OSp(l\2)) under consideration, but cannot be any element of
#. Note that a subalgebra of a simple Lie algebra ^ is reductive, that is # decom-
poses as:

# = «Ί Θ I/(l) Θ Θ l/(l) , (2.21)

where ^ is a semi-simple Lie (super)algebra. The non-degeneracy condition
implies that any element of # reads as ^0(P)> that is 7 commutes with any element
in <g. It follows that 7 must belong to the 17(1) 0 0 £7(1) part commuting with
«Ί in <β.

2.3. Primary Fields of W Algebras. The spin of the W generators corresponding to
a given gradation H are obtained from the highest weights of the 57(2) 0 £7(1) (resp.
OSp(l\2) 0 £/(!)) decomposition of the ^-adjoint representation (DS gauge). Now,
we have to know whether the JF generators are (super) primary fields under TH.

(Super) primary fields satisfy the following Poisson bracket:

{TH(x\ Wh + l(x')}n = (ft

(2.22)

(TH(X\ Wh + 1/2(X')}PE =

l (2.23)

where we have used for the supersymmetric case the conventions

X = (x,θ) and δ(X - X') = (θ - θ')δ(x - x') . (2.24)

Note that (2.22) corresponds to PB between fields and (2.23) between superfields.
We will say, in the former case, that Wh + ί has spin h + 1, whereas, in the latter case,
Wh+ι/2 carries a superspίn1 h + ^.In fact, it is clear from the expression of TH that
the only generators WΛ + 1(resp. Wh + 1/2) which are not primary are those which
satisfy <#, Xhy Φ 0, where < , > is the ̂  non-degenerated scalar product and Xh is
the generator of ̂  carrying Wh + 1 (resp. Wh + 1/2) in (2.14). This implies that Xh is
a Cartan generator, so that h = 0 and Wh + 1 = Wv (resp. Wh+lj2 = WII2) forms
a singlet representation of 57(2) (resp. OSp(l\Ί)). Actually, by linear combinations,
one can always eliminate these non-primary generators, but one. Since for H — M0

all the W generators are primary (except ΓMo of course), we can think of the
non-primary generator as carried by Y itself [7]. This is ensured by the equality

7, 7> = <7, 7 > Φ O i f f F φ O . (2.25)

We will call this (super) generator W\ (resp. W\^. Note that because of its spin
1 (resp. superspin i), the PB of TH with W\(W\ί2} differs from the PB of TH with
a (super) primary field only by a central extension term, corresponding to a second
order derivative (resp. fermionic derivative D) of a (super)delta distribution.

1 Note that the two components of the super-field Wh + i/2 are of conformal spins h + % and h + 1
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Thus, all the W generators are primary with respect to TH, except TH itself and,
when Y φ 0, a spin I generator W\ (resp. a superspin ^ generator W\ί2) carried by Y.
In that case, W\ (Wl/2) differs from a primary field (resp. superfield) by a central
extension term.

2.4. Classification of Constrained WZW Models. The above properties suggest
a way to determine all the different (super)Toda models associated with
(half-)integral gradings of a simple Lie (super)algebra ,̂ and their corresponding
(super) W algebras, namely:

i) Classify all the 57(2) (resp. OSp(l\2)) sub(super) algebras of .̂
ii) Add to each of these simple sub(super) algebras a commuting (7(1) factor

such that in the decomposition of the ̂  adjoint representation into 57(2) 0 £7(1)
representations ^^(yi) (resp. OSp(l\Ί) © (7(1) representations .̂(3;^)), the follow-
ing conditions hold:

\yi\^jt i = 1 , . . . , * , (2.26)

jι + yi^TL (integral grading) j{ + ̂  e-Z (half-integral grading) . (2.27)

Note that the yt values are naturally restricted when calculating the 57(2) 0 (7(1)
(resp. OSp(l\2) 0 (7(1)) decomposition of the adjoint representation of ̂  coming
from the product of fundamental representations already decomposed into
57(2) © (7(1) (resp. O5p(l|2) 0 (7(1)) representations: this will be made explicit in
the following.

iii) Then to each such an 5/(2) © (7(1) (resp. OSp(ί\2) © (7(1)) sub (super) alge-
bra of ^ satisfying (2.26) and (2.27) there will correspond a classical (i.e. PB)
W algebra generated by the n elements PFΛl + ι, . . . , Whn + 1 (resp. Whl + i/2, . . . ,
Whn + 1/2) of conformal (super)spin under the (super)Virasoro algebra defined in
(2.6n, 2.7) h1 + 1, . . . , hn + 1 (resp. h1 + i, . . . , hn + i) with h{ given by

hi = yi+jι (2.28)

as a consequence of a Drinfeld-Sokolov highest weight gauge [3, 13].
iv) Reconstruct the grading H from the S/(2) © U(l) (resp. OSp(ί\2)φ (7(1))

decomposition. Varying Ffor a fixed 5/(2) (05p(l|2) super)algebra will give all the
isomorphic gradations.

v) Deduce informations of the PB from the 5/(2)©(7(l) (resp. OSp(l\2)
© (7(1)) reduction.

These five steps will be made explicit in the following. In Part I, we will focus on
the algebras case, while in Part II the previous results will be used to state the
superalgebras case.

Part I. W Algebras Built on Lie Algebras

3. The Different 57(2) Subalgebras in a Simple Lie Algebra ̂

The classification of 5/(2) subalgebras of a simple Lie algebra ^ has been achieved
by Dynkin [14]. His techniques can be summarized as follows:
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Any SI (2) subalgebra in & can be seen, up to a few exceptions occurring in Dn and
^6,7,8 algebras2, as the principal 57(2) algebra of a regular & subalgebra.

In the Dn case, one has to add —-— Sl(2) subalgebras, each of them being

a principal subalgebra of the singular ones:

BI 0 Bj with i + j = n - 1 and i 4=7 . (3.1)

For ^ = Bn and Dπ, n > 3, the diagram O—O—O must be considered
twice, one been related to an "algebra A^" and the other one to "D3." Indeed, the
^ subdiagram

et-ei+1 ei + 2-ei + 3

Π Π——Π
\^S \ ' V^/

ei+ι - ei + 2

defines a system of simple roots for "A3" while the subdiagram

ei + 1 - eί + 2

O ei + 1 + ei + 2

provides a system of simple roots of "D3." In order to convince the reader, we
remark that the fundamental representation of Dn reduces with respect to A3 as
2n = 4 + 4 + (2n- 8) 1_, and with respect to D3 as 2n = 6 + (2n - 6)1.

Again Bn and Dn admit two different types of 2A± subalgebras associated to the
diagrams

«ι - e2 e3- e4 e1 - e2 βi + e2

O O and O O

The fundamental of Dn reduces with respect to the first algebras as 2n =
(2 + 2,0) + (0, 2 + 2) + (2n - 8) (0, 0) and with respect to the second as
2n = (2,2) + (2n- 4) (0,0). We can note that as well as in case 1), it is the
bifurcation appearing in the (extended) DD of (Bn) Dn which is responsible for these
doublings, the first reduction being associated with "2^1?" and the second with

4. Sl(2) Decompositions of Simple Lie Algebras

Given any 57(2) subalgebra of a Lie algebra ^ in the A, B, C, D series, we need to
know the decomposition of the adjoint representation of ^ with respect to this
three dimensional subalgebra. For such a purpose, we will first compute the 57(2)
decomposition of the (1, 0, 0, . . . , 0) fundamental representation of .̂ We will
deduce the 57(2) decomposition of the ̂  adjoint representation by computing the
product of the fundamental representation by its contragredient one: for the An

series, the adjoint representation is given by this product, once throwing away
a trivial representation, while in the Bn and Dn (resp. Cn) cases, one has to select the
antisymmetric (resp. symmetric) part.

2 We will not discuss the £6 < 7 ; 8 cases: see [15]
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4.1. The <& Fundamental Representation with Respect to a 5/(2) Subalgebra.

4.1.1. Sl(n) case. Any 5/(2) subalgebra is the principal subalgebra of a (sum of) Sl(p)
subalgebra(s) in Sl(n). For each Sl(p) subalgebra will correspond a ^(p-i)/2
representation of 5/(2) in the n of 5/(n), which will be completed with singlets.

For instance, if we look at the 5/(2) principal subalgebra oϊSl(p) 0 Sl(q) in Sl(ri),
we will have

n = ®(p-ui2 Θ 0<β-i)/2 ®(n-p- q)@o . (4.1)

4.1.2. Sp(2n) case. An Sl(2) subalgebra is the principal subalgebra of a (sum of)
Sp(2p) subalgebra(s), S'/(2)1 subalgebra(s), or Sl(q)2 subalgebra(s). The superscript
refers to the Dynkin index of the 5/(m) subalgebra considered: it is 1 when the 57(2)
subalgebra is constructed on a long root, and 2 in the other cases. The Sp(2p)
subalgebra contributes to the fundamental representation via a ^p-(1/2) 5/(2)
representation, while the Sl(q)2 (resp. Sl(2)1) yields the &(q-i)/2 + @(q-i)/2 (resp.
^1/2) representations. The 2n representation is then completed by singlets. For
example, for the decomposition of Sp(2n) under the principal Sl(2) of
Sp(2p) © Sl(q)2 0 rSl(2)\ we have:

0 (®(β- 1)/2 θ %- 1)/2) ® ^1/2 Θ (2n - 2p - 2q - 2r)@0 . (4.2)

case. When 57(2) is principal subalgebra of either an SO(2p + 1) or an
S0(2p + 2) one, the n fundamental of S0(n) contains a ^p representation. In the
case of an Sl(q), q ή= 2, subalgebra, then it is the sum ^(β-i)/2 © ®(β-i)/2 which
shows up. For q = 2, one must distinguish the case S/(2)1 (long root) which leads to
^1/2 0 ^1/2 from the case Sl(2)2 (short root) leading to ̂ t.

Finally, we have mentioned in Sect. 3 the existence of two Sl(2) © 57(2) and two
57(4) ΞΞ 50(6) algebras. The corresponding decompositions are:

We recall that for each S0(2n) subalgebras, there exist 5/(2) algebras related to the
singular embeddings SO (2k + 1) © 50 (2n - 2k - 1), 0 < 2k < n.

4.2. The y Adjoint Representation with Respect to Sl(2) Subalgebras. To achieve
the 5/(2) reduction of the adjoint representation for any simple Lie algebra ̂  from
the knowledge of the fundamental representation, the following formulae are
especially convenient:

(4.5)

= ^2«-2 © ̂ 2n-4 © ' ' ' © ̂ 0 * £% , (4.6)

- ^2n © ̂ 2M-2 Θ Θ ®0 n e^ > (4.7)

= 021.- 1 © ̂ 2«-3 © ' ' ' © ®1 » ̂ ^ , (4.8)
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the subscript (A) S standing for (Anti-)Symmetric part of the product. We have also,
for m, peZ and;, ke^Z:

j x 0 ,.)A Θ ~ (̂  x 0,) , (4.9)

j x ̂  )s Θ ®j x ̂  ) , (4.10)

(4.11)

where m^7 stands for the direct sum of m representations Q>j.

5. 57(2) θ U(l)γ Decompositions of Simple Lie Algebras

5.7. Sl(n) Algebras. We start by considering the case ^ = Sl(ri), which has already
been studied in some detail in [8]. Let us recall that, for such an algebra, all the
S/(2) representations of equal dimension 3)^ have the same U(l)γ eigenvalue y^ in
the n fundamental representation, so that a general decomposition reads

n = 0M7 ̂  (^) with/s all different , (5.1)
j

where n 3 is the multiplicity of ̂  . One will have to impose to the product
n x n — ̂ o(0)> Λe non-degeneracy condition \y\ ̂  j for any representation @j(y) in
the ^ adjoint representation. Note that the condition ye%Z9 which ensures
a (half-)integral gradation, has to be imposed only in the adjoint representation,
and not in the fundamental.

As an example, consider the 57(2) which is principal with respect to An in An + 2.
Then

(5.2)

(5-3)

where we have, of course, imposed the traceless condition for Y. It follows:

n + 3 x n + 3 - S0(0) = © ®χθ)θ
2

Θ4D0(0) (5.4)

with the condition
n + 3 n + 3
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5.2. SO(n) Algebras. Now, let us turn to the 0 = Bn or Dn case. These algebras
have a real fundamental representation, so that if 3>j(y\ y Φ 0, appears in the
decomposition, then 2j( — y) must also be present with the same multiplicity. To
get the adjoint representation, we have to improve the formulae (4.5-4.11) by
specifying the (7(1) dependence. Using the reality of the adjoint representation, one
is led to

{[nSj(y) Θ n®j( - y)]

- n2(®j x ®j) (0) 0 ((n®j) x (H^))A (2y)

j) x (n®j))A ( - 2y) for j e -Z and n e Z (5.5)

where ((n^ ) x (n^))A is computed via (4.9). This formula shows that from a term
n@j(y) in the fundamental, we will always get a term &o(2y) in the adjoint, except if
n = 1 and; is integer. Moreover, when n = 1 and) is integer but non-zero, there will
always exist a @ι( ± 2y) term in the adjoint representation. The non-degeneracy
condition | y \ ̂  j for 3) .(y) will then lead to set y = 0, except for n = 1 and j integer,
where, for j ή= 0, we will have \2y\ ̂  1 and 2y e^Z, that is y = 0, or y = ± 4, or
j>= ±i

Thus, for the orthogonal series, the only Sl(2) representation with non-zero (7(1)
eigenvalues are those which appear in the fundamental representation as n(βp(y) ®
Q)p( — y)) with n = 1 and p integer. Moreover, for p φ 0, we have \2y \ = 0, or ,̂ or 1.

Note that these restrictions are necessary but not sufficient conditions on j;: we
still have to impose the non-degeneracy condition in the ̂  adjoint. To be complete,
let us add the formula:

φ n® - - x

θ (2> „ x ®f)(y - y') θ (3>n x 2f)( - (y - y')) . (5.6)

As an example, we look at the principal S7(2) of SO(2n - 1) in S0(2n +1):

2n+ l=^.-1(0)e^o(.v)θ^o(- V) = 2n+ 1,

( 2 n + l x 2 n + l ) A = (^2n_3 ® ̂ 2n_! φ φ ̂

Θ^n-ι(y)Φ^π-ι(-^), (5.7)

with the condition \y\ ̂ n — I.

5.3. Sp(2n) Algebras. Finally, let us study the case ̂  = Cn. From the S0(n) case, it
is easy to deduce the rule:

@j( - 3;)] x [n®j(

x ®Q Θ x

) x (n@j))s ( - 2y) for j e - TL and n e TL , (5.8)

where ((ra^/) x (π^/))s is computed via (4.10).
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Then, the 57(2) 0 17(1) decomposition of Cn is deduced from the Bn one by
exchanging integer and half-integer:

For the symplectic series, the only Sl(2) representations with non-zero U(l)
eigenvalues are those which appear in the fundamental representation as
n(@p+±(y) φ ^p+i ( — j;)) with n = 1 and p integer. Moreover, the allowed eigen-
values for the £7(1) generator Y are \2y\ = 0, or 2, or 1.

We illustrate these results on the decomposition under the 57(2) of
S/(2)2 0 Sp(2n - 2) in Sp(2n + 2):

= n-(3/2) (0) 0 ®t(y) © %( - y) , (5.9)

2n + 2 = 0π-(3/2)(0) © %( - y) © %(y), (5.10)

+ 2)s = (®2n-* Φ 02,,-5 © ' ' © ®ι)(0) Φ (^i Φ ®0)(0)

with 1 2y| ^ 1.

6. Classification of (Half-)Integral Gradings

The decomposition of the adjoint of a simple Lie algebra ^ in terms of 57(2) φ 17(1)
representations gives an exhaustive classification of the different constrained WZW
theory arising from a (half-)integral grading. Moreover, the different values of Y (at
fixed Sl(2) subalgebra) leads to the equivalent theories [7]. Thus, if we know how to
reconstruct the gradation H from this decomposition, we will be able to give an
explicit classification of gradations. This is the aim of this section.

6.1. Defining vectors. An 57(2) algebra in a simple Lie algebra ^ is specified [14] by
its defining vector (/l9 . . . ,fr\ itself defined from the relation

M0= Σ f t H t ft rational, (6.1)
i = l

where M0 denotes the Cartan part of 5/(2) and {Hί9 . . . , Hr} a Cartan subalgebra
of <$.

For the A, B, C, D algebras of rank up to 6, a defining vector for all 5/(2)
subalgebras has been explicitly computed in [15], and we will use the same
normalization here, up to a global factor 2. We compute them in the general case.

We set for a while 7=0, and look at the gradation produced by M0> Cartan
generator of a given 5/(2) subalgebra of &. This 5/(2) subalgebra can always be seen
as the principal embedding of a (regular or singular) subalgebra of .̂

First consider the case ^ = An. The defining vector components are just the
eigenvalues of M0, since one can always diagonalize M0 with hermitian matrices.
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Then, we have the rules:

,p- ! , . . . , ! , 0 , . . . , 0 , -1, -2 , . . . , -pV (6.2)
\

1
+ 2"

1
P~2>

n+l-2p

1

 Λ - - !
••'2'̂

n

v^ 2 '"

0
J

/

Γ
2 '••" ^ 2

A2p+ι c An-+f =
\ z* z, z, Y z, z,

n'2p-1 (6.3)

For example, the defining vector of A2 (resp. A!) in >44 is (1, 0, 0, 0, — 1) (resp.
(i, 0, 0, 0, - i)). The defining vector of A2 0 A1 is (1, i 0, - i - 1).

Let us now turn to the SO(n) case. Because of the antisymmetry of the matrices
in the fundamental representation, the Cartan generators cannot be diagonal. In
fact, they are constructed with σ2 matrices on the diagonal. Each σ2 matrix
possesses -I- 1 and — 1 as eigenvalues, so that one has only to specify the positive
M0-eigenvalues in the defining vector. The general rules are:

Bp or Dp+1 c Bn -*f= (p, p - 1, . . . , 1, 0, . . . 0), (6.4)

Dp+l c= Dn ->f = (p, p - 1, . . . , 1, 0, . . . 0), (6.5)

A2pcBn or PB->/= (p, p, p - l ,p- ! , . . . , ! , 1 , 0 , . . . 0), (6.6)

1 1 1 1 1
or

— ' " ' 2' r ' 2' r 2 > r 2' '"'2' 2'

As there are some exceptional embeddings of Sl(2) algebras in orthogonal ones,
there will be also exceptions for the defining vectors. For A3 = D3, they are two
different defining vectors, one associated to "A3," and the other one to "D3":

"A3

ncB,, or !),,-»/=ί||^,0, . . . , 0 j , (6.8)

"D3"cβn or !>„->/= (2,1,0, . . . , 0). (6.9)

They are also two defining vectors for 2A1 c S0(m),

"2^!"c:βn or DB-ji, 1,1, i, o, . . . , 0J , (6.10)

"ί»2"cβn or ί)n^(l,0, . . . , 0 ) . (6.11)

Finally, for the short root of Bn, we have

A\ c Bn-> (1, 0, . . . ,0). (6.12)

The defining vectors associated to the singular embeddings (J5t 0 #/) c DM (with
/ -f-j = n — 1, i Φ j) are computed with the above rules.

Finally, we study the case of Sp(2n) algebras. The rules are similar to those of
S0(n) algebras:

(6.13)

A2

2p <= Cn -»/= (p, p, p - 1, p - I, . . . , I, 1, 0, . . . 0) , (6.14)
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AϊP+ι c CB->/ = ̂ p + 1 p + 1 p -1 p -i . . . , 1 A o, . . . θV (6.15)

Cpc= Cn^/= (p + i p - i . . . , i 0, . . . θV (6.16)

6.2. Case 0/57(2) 0 17(1) Decomposition. When # Φ M0, we can no longer speak
about defining vector for H, since H cannot be embedded in an 57(2) algebra.
However, it is still possible to compute a vector /= (/1? . . . ,/„) that defines H,
using the relation (6.1). We give hereafter the rules to compute this vector asso-
ciated to H.

Let us first look at the S0(ή) case, where Y appears, in the fundamental
representation, only in combinations @m(y) ® @m( — y) with m integer. The rule is
then

®m(y) θ 3>m( - y) in Fund1 (m e% + )

->/ = (m + y, m - y, m - 1 + y, m - 1 - y, . . . , 1 + y, 1 - y, y, 0, . . . , 0) .
(6.17)

For example, for A4 a D6, we have

12 - @2(y2) φ 02( ~ J>2) θ ^o(^o) θ ®o( - yo)

/ = (2 + y2, 2 - y2, 1 + y29 1 - y2, y2, y0) . (6.18)

For the case ̂  = An9 the defining vector can be read directly in the fundamental
decomposition: the piece corresponding to a representation ^Oί) in tne funda-
mental is (i + yi9 i — 1 + yi9 . . . , — i + #). Note that the different eigenvalues yι
are related by a traceless condition:

Σm^+l^^O for π±I=θ'wi^(3'ί). (^}
i i

They are determined in the adjoint representation, by the usual condition \y\ rgy
and ye^TL for any representation @>j(y) in the adjoint.

For example, for the reduction of A2 with respect to its regular A± algebra, we
have

2 = ̂ (y)®@0(-2y\ thus /=β + Λ -\ + y> ~2y}> (6 2°)

8 = (®! θ ®0)(0) ® %(3y) ® %( - 3y) , (6.21)

I ± 3j;| ^ - and ± 3y e \TL => 3; = 0, ± 7 . (6.22)
3 2 6

Finally, for the symplectic algebras, the rules are analogous to those of the Bn

case, that is:

^m+i( - y) in Fund1 (m ε% + )

(6.23)

,
»/= ( ̂  + - + y,m + - - y,m - - + y,m - - - y, . . . ,
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7. Poisson Brackets of W Algebras

7.1. Generalities. The knowledge of the spin contents of a W algebra with the use
of a 57(2) 0 Uγ(l) decomposition, together with Proposition 4 of Sect. 2.2, allows
us to determine many of the PB of this algebra, when Y exists. Indeed, let Wj be the
W generators, / e $ indexing the generators. The theory possesses a grading
operator //, and we suppose here that H Φ M0. The spin content associated to the
stress energy tensor TH is then given by s/ = 1 + jj + y/. It is conserved through the
PB, so that starting from the general form:

- σ0(/, J)dJ'+y'+J'+y' + 1δ(x - xf)

J/, J, K, p, q) (d*WK(x'}) (Pδ(x - x'})
K P,9

+ Σ Σ σ 2 ( I , J, K, L, p, 4, r)(dpWK(*)) (d'WL(x'))(d'δ(x - x')) +
K,Lp,q,r

: 5

where the σn(. . .) are coefficients, the conformal invariance imposes the sums to
satisfy the equalities

p, q, K such that p +jκ + yκ + q =jj + yt +jj + yj ,

p, ήf, r, K, L such that p +jκ + yκ + q + jL + yL + r+l=J! + yr + j j + yj

I - (7.1)

But Proposition 4 ensures that this algebra is the same as the one obtained from
the grading operator3 M0. The main change between tthese two algebras is the
stress energy tensor (TH or ΓMo). Then, the conformal invariance of the PB when
the gradation is given by M0 imposes:

P +jκ + q +JL + r H- 1 =J! +jj

': - (7.2)

Gathering (7.1) and (7.2) leads to:

P+Jκ + 4=Jι+jj and yκ = yι + yj

P +ίκ + q +JL + r + 1 =7/ +/, and j>* + )>L = j>/ + ̂

For each line, the second equality shows that the charge associated to the U(l)γ

generator is conserved. This severely limits the number of allowed fields in the r.h.s.
of the PB, since not only the ΓMo-conformal spin (associated to 57(2)) but also the
"hypercharge" associated to Y is conserved. Note that in this context, TMo has
a zero U(l)γ value.

3 This can be guessed if one remarks that the 57(2) highest weights are the same for H = M0 and
H = MO + Y
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Finally, let us add that there may exist several independent Cartan generators
Yt which can be added to M0 in such a way that Ht — M0 + Yt is a non-degenerate
gradation, the corresponding Sl(2) subalgebra of which is still (M + ,M0). For
example, in the decomposition of 5Ό(8) with respect to S/(3), we have

J>o) Θ ®ι( - (3Ί

In the above decomposition of the adjoint representation, one sees that y0 and y1

can take the values 0, i, independently from one another, without violating the
non-degeneracy condition. So, we can decompose Y in 70 + YI, YO ajιd Y± being
defined by the vectors /0 - (f, i i 0) and /x - (1, 1, i, 0).

Thus, we will now write the W generators as

WJ+y+1 = WJl\9 (7.4)

7 + 1 being the conformal spin in the basis where all the fields (but T) are primary,
and 3; being the set of "hypercharges" associated to the different possible U(l)γ.

For instance, in the case of 5Ό(8) reduced by S/(3), we will have as W gener-
ators:

τ(0,0) wYί Wγ21 M o •> Wί9 W γ ,

w$
1/2,1/2) τzX-1/2, -1/2) TJ/ ^,τ τ A l / 2 , 1/2) ττX-1/2, -1/2) τ^d/2, -1/2) ττ^-1/2, 1/2)

"" 2 ϊ "" 1 "" "

where the doublet superscript indicates the hypercharges of the W generator with
respect to W\l and W\2.

7.2. Use of the Stress-Energy Tensor. We know that the theory associated to
H contains a stress-energy tensor TH, and that all the fields but W\ are primary.
Moreover, from Eq. (2.6), it is clear that

TH = TMo + dWl for H = M0 + Y . (7.5)

Then, a generator W]y} being primary (we omit Γand W\} with respect to TH and
TMO> we will have

{dx Wl(x\ WJy\x')}PB = yW(jy\x')dxδ(x - x') . (7.6)

Note that although TMo is not an eigenvector of W}, we associated to it an
"eigenvalue" 0. Of course, if there are several t/(l), each of them will satisfy this
property.

Thus, the generator W\ associated to Y = H — M0 generates a conserved "hy-
percharge" and all the W generators except T are W\-eigenvectors:

{ W\(x), Wjy\*)}m = y W(?\x'} δ(x - x ' ) . (7.7)

T possesses a zero hypercharge, but the PB reads:

{T(x\ Wl(*)}n = - dWΐ(*)δ(x - x') + Wϊ(*)dδ(x - x'). (7.8)
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Finally, let us remark that the set of spin 1 generators must be closed, because of
the conservation of the conformal spin. This shows that we will have a KM algebra,
corresponding to the part of ̂  which has not been used for the definition of the
57(2) algebra, i.e. the commutant <β of S7(2) in 0. About the position of Y in #,
please come back to Proposition 5 at the end of Sect. 2.2.

7.3. Example. As an example, let us look at the W algebra coming from non-
Abelian Toda on S/(3). The W generators are

W29 W3/2+y9 W3l2-y, W, with y = 0 or 1 . (7.9)

Applying the above procedure to the PB of this algebra, we can determine their
structure. As a notation, we will write d for dx and d' for <9X>,

{W2(x\ W2(x')}n = (a,d'W2(xr) + a,d'2W,(x') + a4d
f(W, W,) (xf)

+ a2W3l2+yW3/2-y(xf))δ(x-xt)

+ (as W2(x') + a6 W, W,(x') + aΊ W1(x'))dδ(x - x')

+ asWι(x')d2δ(x - x') + a9d
3δ(x - x') , (7.10)

[W2(x)9 W3l2+y(xf)}m = (aί0d'Wι/2+y(x')δ(x - x') + flll W3/2+y(x')dδ(x - x")
(7.11)

{W2(x\ Wι(x')}m = (a,2d'W,(x'} + a,,d'W2(x'))δ(x - x')

+ a ί 4 f W 1 ( x f ) d δ ( x - x') + a15d
2δ(x - x') , (7.12)

{W3l2±y(x)9W3/2±y(xί)}n = Q 9 (7.13)

{W3/2+y(x)9 ^3/2-y(^)}pB

+ α19 Wί(xf)dδ(x - xf) + a20d
2δ(x - x') , (7.14)

{ Wι(x\ W3/2±y(x')}PB = a}, W3/2±y(x')δ(x - x') , (7.15)

{ W,(x\ Wι(*)}n = a22dδ(x - x') . (7.16)

Now, assuming that Y = 0, replacing W2 by Γthe Virasoro tensor, and recognizing
in Wl the W\ generator, we are led to the constrains:

flx = - 1, fl5 = 2, a2 = α3 = a4 = a6 = aη = a8 = 0 , (7.17)

α10 = - 1, an =-, (7.18)

a12 = - 1, ai4 = 1, ai3 = Λ I S = 0 , (7.19)

î = ± 1 (7.20)

Thus, the W algebra associated to the regular SI (2) in S/(3) must satisfy:

(Γ(x), Γ(X')}PB = - ffT(x!)δ(x - x') + 2T(x!)dδ(x - x')

+ cd3 δ(x - x') , (7.21)
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2

{Γ(x), »Ί(x')}rB = - d'Wι(x')δ(x - x') + Wl(x')dδ(x - x') , (7.23)

(7.24)

V^x') + α17 »Ί WΊίx') + α18:Γ(x'))<5(x - x')

+ α19 ̂ (xOSδίx - x') + awd
2δ(x - x') , (7.25)

{ W,(x\ ^(x'tfpB ^ ± ̂ ί*')** - *'), (7.26)

which has to be compared with the ^algebra made explicit in [12]. Note that the
Jacobi identities for the PB of the W algebra will also constrain the remaining
structure constants.

8. The Exceptional Algebras G2 and F4

Let us first consider the algebra G2. This (rank 2) algebra admits the system of
roots:

± (βi ± βj)ι ± (2et - βj - ek) with i, j, k = 1, 2, 3 all different . (8.1)

The fundamental representation of G2 is seven-dimensional, and its adjoint has the
dimension 14. These representations are real. To simplify the discussion about
57(2)0 17(1) decomposition, we remark that G2 can be embedded in SO(1) (in
a singular way). As a consequence, its adjoint representation will be present in the
antisymmetric part of the product 7x7. Indeed, we have [17]:

(7x7)A = 7014. (8.2)

Thus, we can obtain the adjoint representation from the fundamental by
14 = (7 x 7)A — 7. It is then sufficient to know the decomposition of the funda-
mental. This is done with the same rules as for the SO(n) algebras (because of the
embedding G2 c S0(l)). Note that none of the Sl(2) subalgebras of G2 can be
extended to a S/(2) 0 £7(1) subalgebra in such a way that (2.19) is still satisfied. The
results are presented in Table 8. The defining vector is given in the Cartan basis of
S0(l\ the Cartan generators of G2 being given by H1 — H2 and 2H2 ~ H1 - H3

(see Sect. 6).
The exceptional algebra F4 has rank 4 and dimension 52. Its fundamental

representation has dimension 26, and F4 can be (irregularily) embedded in 50(26).
However, one cannot directly obtain the adjoint representation from the funda-
mental one, since a new representation appears in the antisymmetric part of the
product:

(26 x 26)A = 52 + 273 . (8.3)

Thus, our general method cannot be applied to give the (7(1) dependence. The S7(2)
algebras have already been studied in [14], where the decomposition of the
fundamental representation was given: we recall in Table 9 this decomposition
giving the conformal spin content.
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9. W Algebras from Lie Algebras of Rank up to 4

As an application of the above formulation, we represent here an exhaustive
classification of W algebras arising from constrained WZW models based on
classical algebras of rank up to 4. For such a purpose, we follow the point of view
developed in Sect. 2.4, using the results presented in Sects. 3-6. Although the
algebras B2 and C2 on the one hand, and A3 and D3 on the other hand are
isomorphic, we have separately considered these four algebras to show the differ-
ences in the calculations. The classification is listed in Tables 1-9, where the
decomposition of the fundamental of ̂  with respect to 57(2) 0 £7(1) is given. We
give the minimal (i.e. the lowest dimensional) regular subalgebras containing the
57(2), when they exist. For the singular embedding associated to D4, we mention
the 50(3) 0 SO (5) subalgebra. Then, we give the conformal spin content s =j + 1,
with the convention: n*s means that the spin s appears n times. In the same column,
we give under the spin 5 the hypercharge(s) y when it exists. Finally, we write the
different gradations that lead to this W algebra.

Table 1. W algebras for Lie algebras of rank 1 and 2

Sublag. Sl(2) 017(1) decompos. Spin contents Gradation
(fundamental rep.) (Hypercharge)

A, A,

A2 A,

A2

B2 A1

A2 ")

2 A

B2

C2 A,

2Al}

C2

@1/2 2

@ί/2(y)®@0(-2y) 2 , i f , l

(0, 3y, - 3y, 0)

^i 3, 2

2^1/2e^0 2, 2*|, 3*1

®ι®®o(y)Φ®o(-y) 2,2,2,1

(0,J>, -}^,0)

^2 4, 2

^1/202^0 2, 2*f, 3*1

^1/2(30 θ ̂ 1/2! ~~ y) 2, 2, 2, 1

(0,2y, -2y,0)

®3,2 4, 2

(i -έ)
(i,0, -i)

a -i -i)
(1, 0, - 1)

(U)

(1,0)

d,i)
(1,1)

(2,1)

(2, 0)

(i.i)
(2. λ\
V 4 ? 4j

(1,0)

(U)
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Table 2. W algebras for A3 = D3

^ Sublag. Sl(2) 0 C/(l) decompos. Spin contents
(fundamental rep.) (Hypercharge)

4 3 A! @ί/2(y)®2@0(- y) 2, 4*|, 4*1

2Aί 2®1I2 4*2, 3*1

A2 @ι(y) ® 0o( ~~ 3);) 3, 2, 2, 2, 1
(0,2);, -2);, 0,0)

43 ^3/2 4, 3, 2

D3 yl j 20!/2 ® 0o(3θ ® ̂ o( ~3θ 2,4*2,4*1

(0,3>,3>, -y, -3>,4*0)

2.4! ^!®3^0 4*2,3*1

42 0ι(3>)θ0ι(-3>) 3,2,2,2,1
(0, 2y, -2y, 0, 0)

Z)3 ^2 0 ^o 4, 3, 2

Gradation

(i 0, 0, )̂

(J/^l'A)4

(1,0,0, -1)
/i i ^a ^_3_\
U, 4, 4 , 4 J
/a i î =-L\
V8, 8, 8 , 8 J

(i, i T1, T1)

(i i 0)

(t 2, 2)

(1, 0, 0)

(1, 1, 0)

(i i i)
<U,i)
(2, 1, 0)

Table 3. PF algebras for 53 and C3

& Sublag. Sl(2) 0 17(1) decompos. Spin contents
(fundamental rep.) (Hypercharge)

BI AI 2® 112 © 3^o 2,6*f,6*l

1 > ^i ®4^0 5*2, 6*1
/A! J

A! ®Al @! 0 2^1/2 |, |, 2, 2, f, f, 1, 1, 1

42 1

(0, 2y, y, - y, - 2y, 0, 0)

£3 | ^2(0)® ̂ o(y)® ̂ o( - y) 4, 3, 3, 2, 1

(0, y, -y, 0, 0)

£3 ^3 6, 4, 2

C3 AI ^1/2®4^0 2,4*f,10*l

1 f @ί/2(y)® ^1/2 ( — y)©2^o(0) 3*2,4*2,4*1

(0,2);, -2y, 2*y,
2*(-y),4*0)

4| 20! 3*3,2,3*1
C2 ^3/2® 2^o 4, f, f,2, 3*1

Al®A2l\ 391/2 6*2,3*1
34 !

J x» x»
1 ίX^ ί̂ £5) Λ^ ίM ^ X \4tJk_/2 ζt^ -ίlj e^/3i2 vD' °^l/2 ' '

C3 ^5/2 6, 4, 2

Gradation

(i i 0)

(1, 0, 0)

(i, i i)

(1, 1, 0)

(i i i)
(2, 1, 0)

(2, 1, i)
(2, 1, 1)
(2, 1, 1)
(2, 2, 1)

(3, 2, 1)

(ί 0, 0)

(i i 0)

(1, 0, 0)
(1, 1, 0)
(i i 0)
(i i i)
(iii)
(i, i, 2)
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Table 4. W algebras for A4

521

Sublag.

2X,

A2

Λ,*A.

AI

A4

Table 5.

Subalg.

A,

An
i )

A fr\ λ 2
VT. J ζt? -Λl J

A2

4A,

A2 0 4?

A3

Sl(2) 0 t/(l) decompos. Spin contents
(fundamental rep.) (Hypercharge)

/ - 2y\
fϊ> ( \τ\ (\\ '\<^/} 1 1 ^ f\±.— Q i 1
•*^1/2V.V/ vf -5=^0 1 J A ^ 2s -7* -«•

\ 3 /

(°'3V3J y '9*°J

20ι/2()0 © 0o( ~~ 4y) 4*2,4*2,4*1

(4*0, 2*5y, 2*(-5y), 4*0)

/ - 3y\
/^/> ( -iΛ /T\ Λ (̂ > / 1 ^ ^ d r ^ j d - J r l° ̂ ι\y) vf -^=-^oi i -^j ~>*z., *+*!

V 2 /
/ ^ 5y Λ _ - 5y \

V ' * 2 ' ' "* 2 ' * )

ί -ϊy\fϊ> ( v\ (Ύ\ <7> 1 i T. O ±ί Λ ±O ^-[--2. 1
°^ί\j) vΓ/ = - ^ i / 2 \ 1 ' 2> Z^Z, - ^ 2 ? -̂

V 2 /

V ' 3 ' 3 ' ' ' 3 ' 3 '

^3/2(y)θ^0(-4y) 4,3,2*f,2, 1

(0, 0, 5y, - 5y, 2*0)

^2 5, 4, 3, 2

PF algebras for B4

Sl(2) 0 ί7(l) decompos. Spin contents
(fundamental rep.) (Hypercharge)

201/2 0 5^o 2, 10*f, 13*1

^06^0 7*2,15*1

4^1/20^0 6*2, 4*f, 10*1

> 0j 02^1/20^o(};) 1,1,4*2,6*1,4*1

° (4*0, y, - y, 0, 0, y,
-y, -y, 4*0)

2 f 0i(y)e0i(-y)030o(0) 3,9*2,4*1
1 J

(0, 3*y, 3*( — y), 2y,

30! 3*3,6*2,3*1

2^3/20^o 4,3*3,2*f,2, 3*1

Gradation

(i, 0, 0, 0, ̂ )

(i 2, 0, ̂ , ̂ )

(lί ^5 ^~5 "5~5 ~5~)

(1, 0, 0, 0, - 1)

(22 3 3 3\
(55 5, — 5, ~5? — 5j

(1, i, 0, ̂ , - 1)

0 1 (i, I, 5> ~5~> ~5~)

(f, i, 0, ̂ , ̂ )
(f , f , ̂ , ̂ , ̂ )

(I, i ,̂ ¥, "i1)
/17 JL 1̂ ^A -13\

(2, 1, 0, - 1, - 2)

Gradation

(i i o, 0)

(1, 0, 0, 0)

(i i i, i)
(l, i i 0)

y, (1, i i i)

(1, 1, 0, 0)

-2y,5*0) (ϋiO)

(1, 1, 1, 0)

(i i i i)

4,4*3,2, 6*1 (2, 1, 0, 0)
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Table 5. (continued)

L. Frappat, E. Ragoucy, and P. Sorba

Subalg. Sl(2) ® 17(1) decompos. Spin contents
(fundamental rep.) (Hypercharge)

B2®Al 02®201/2 4,2*1,

BA*®A>} ®>®^®®° 4'4'3'

3[ 03(0)®00()0©0o(-J>) 6,3*4,
D4 (0, y, -
B4 04 8,6,4,

2*f,2,2,3*l

3,4*2

2, 1

- j>, 3*0)

2

Gradation

(2,1,

(2,1,

(3,2,

(3,2,

(4,3,

U)

1,0)

1,0)

ly)
2,1)

Table 6. fl^ algebras for C4

Subalg.

^1

5/(2) Θ C/(l) decompos.
(fundamental rep.)

0ι/2 Θ 600

01/2()0 ® 01/2( - Jθ θ 400(

Spin contents
(Hypercharge)

2,6*f,21*l

Ό) 3*2,8*f, l l*l

Gradation

(i o, o, o)

(i i, o, 0)

4^
1/2

(0, 2y, - 2y, 4*y, 4*( -y), 11*0) (1, 0, 0, 0)

6*2,6*f,6*l (i,i,i,0)

10*2,6*1 (i 2 , 2 , 2 )

^2

Λ i ®
C2

C 2®

C 2 ®

C 2®

2C2J

C3

C
/TN3 'φJ

C4

2 !̂ ® 2^o 3, 3, 3, 5*2, 6* 1

4ι 20! ® 0i/2 3*3, 2*f, 2*2, 2*f, 3*1

03/2 ® 400 4, 4*|, 2, 10*1

ΛI 03/2 Θ 0ι/2 © 200 4, 3, 2*f, 3*2, 2*f, 3*1

A\}
^A \ 03/2(0) ® 01/2(y) ® 0ι/2( - y) 4, 2*3, 6*2, 1

(0, 37, — y, 2 ,̂ — 2_y, ,̂ — }̂ , 3*0)

^3/2(y)@^3/2(~y) 3*4,3,3*2,1

(0, 2y, - 2y, 0, 2y, - 2y, 2*0)

2 s/2® 22 o 6,4,^,^,2,3*1

^i ®s/2 Φ ®ι/2 6, 4, 4, 3, 2, 2

®7/2 8, 6, 4, 2

(1, 1, 1, 0)

(i, i, i 0)
(1, i o, 0)
(i i i 0)

β, i i i)

(1, i, i 0)

(2, 1, 1, 0)

(!, 1, i o)
(iiii)
(i !, !, έ)
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Table 7. W algebras for D4

Sublag. Sl(2) 0 17(1) decompos.
(fundamental rep.)

A, 2^1/204^0

2Aί 0ι © 5^o

(240' 40ι/2

3,4 i 0! 0 201/2 0 ^0

^2 Ir ^I(JΊ) 0 ̂ ι( ~~ >Ί)
4^4 ! J

0 ^o(yo) 0 0o( ~~ yo)

A3 2@3/2

D3 92 0 3^o

#2 0 Bί ^20 0!

1)4 ^30^0

Spin contents
(Hypercharge)

2,8*|,9*1

6*2, 10*1

6*2, 10*1

f, f, 3*2, 4*f, 3*1

3,7*2,2*1

0, ±?ι ±y 0> ±2yι, 3*(

4,3*3,2, 3*1

4,3*3,2, 3*1

4, 4, 3, 3*2

6, 4, 4, 2

Gradation

(i, i 0, 0)
(1, 0, 0, 0)

(i i i i)
(i, i i 0)
(1, 1, 0, 0)

)) (i, i i, 0)
(2, 1, 0, 0)

(1, 1, i 0)
(1, 1, 1, 0)

(i i i i)
a f , i i)
(2, 1, 0, 0)

(2, 1, 1, 0)

(3, 2, 1, 0)

Table 8. Classification for G2

Minimal including
regular subalgebra

r*

Sl(2) decomposition
(fundamental rep.)

0! 0 201/2

20! 0 ^o

Spin contents

2, 4*f, 1, 1, 1

i i 2, i, i, i
3, 2, 2, 2

6,2

Defining
vector

(i i 0)

(1, i 0)

(1, 0, 0)

(2, f , i)

Table 9. Classification for F4

Minimal including
regular subalgebra

A,

Sl(2) decomposition
(fundamental rep.)

60j ,2 0 14^o

0ι 0 801/2 0 7^o

Spin contents

2, 14*f,21*l

7*2, 10*|, 15*1

30! 0 60ι/2

60ι 0 8^0

^2 0 70ι

^2 © 2^3/2 θ 30ι © 201/2

2^3/2 0 30ι 0 401/2 0 ^o

2*f, 6*2, 10*f,6*l

3, 13*2, 8*1

7*3,2, 14*1

2*4, 3*3, 6*2, 2*f, 1

3*3, 2*|, 6*2, 4*f, 3*1
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Table 9. (continued)

Minimal including Sl(2) decomposition Spin contents
regular subalgebra (fundamental rep.)

2*4, 4*3, 6*2

@2 Θ 4^3/2 Θ 5^o 4, 4*3, 4*|, 2, 6*1

202θ203/2θ0ιΘ201/2θ0ι 4, 2*i, 3, 4*|, 3*2, 3*1

3^305^0 6, 5*4, 2, 3*1

#202^]

8, 2*6, 4, 3, 2

>Θ^2 6,2*^,4,2*f,2, 3*1
^4 Θ ̂ 3 θ 2^2 2*6, 5, 4, 3, 3*2

12, 8, 6, 2

Part II. Super W Algebras Built on Lie Superalgebras

10. The OSp(l\2) Subsuperalgebras of Simple Lie Superalgebras

The determination of the different OSp(l\2) subalgebras in a simple Lie superal-
gebra ^ = &B 0 &F is greatly simplified by the two following remarks:

1) The 57(2) part of OSp(l|2) is in the (semi)simple bosonic part of the considered
superalgebra. The knowledge of a method to classify the 81(2) subalgebras of
a simple Lie algebra can be obviously generalized to the case of a direct sum of two
(or three, cf. D(2, 1; α)) simple algebras.
2) Any representation of OSp(l\2) is completely irreducible, and any irreducible
OSp(l\2) representation ^7 (j integer or half-integer) is the direct sum of two 57(2)
representations ^/θ^ -ι/2 with an exception for the trivial one-dimensional
representation ̂ 0 = ̂ o From the reduction of the fundamental representation of
^ into SI (2) ones, it is therefore easy to verify whether the SI (2) under consideration
can be embedded into an OSp(l\2) superalgebra.

Now, in the same way that the 57(2) subalgebras of a simple Lie algebra ^ are
principal subalgebras of the ̂  regular subalgebras (up to exceptions arising in the
Dn case, see Sect. 3), it is rather clear that the OSp(l\2) Subsuperalgebras of a simple
Lie superalgebra ^ are superprincipal in the ̂  regular Subsuperalgebras (up to
exceptions arising in the D(m, ri) case). One recalls that the definition of a regular
subsuperalgebra (SSA) is a direct generalization of that of an algebra, and such SSA
can be obtained from the extended Dynkin diagrams for superalgebras, as for
simple algebras [18]. Of course, since several Dynkin diagrams can be in general
associated to the same superalgebra, one has to apply the method to each allowed
Dynkin diagram specifying the superalgebra. A SSA of ̂  which is not regular is
called singular. An example of singular SSA of ̂  is the superprincipal OSp(l\2\
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when it exists. It is defined as

F+ = Σ Ea and F_ = £ £_α , (10.1)
αeJ 'cteΔ

E+ = {F + ,F+}, £_ = {F_,F_} and H = {F+9F-}9 (10.2)

where A is a simple root system of .̂
Not all the simple Lie superalgebras admit a superprincipal embedding. Actually,

it is clear from the expression of the OSp(l\2) generators, that a superprincipal
embedding can be defined only if the superalgebra under consideration has a
completely fermionic simple root system A (which corresponds to a Dynkin diagram
with only grey or/and black dots). Notice that this condition is necessary but not
sufficient (the superalgebra PSl(n\n) does not admit a superprincipal embedding
although it has a completely fermionic simple root system). The simple superalgebras
admitting a superprincipal OSp(l\2) are the following: Sl(n + l\n\ Sl(n\n + 1),
OSp(2n ± l|2rc), OSp(2n\2n), OSp(2n + 2\2n) with n ̂  1 and D(2, 1; α) with α Φ 0, ±1.

Finally, the method for classifying the OSp(l\2) SSAs in a simple Lie superal-
gebra ^ can be summarized as follows:

Any OSp(l\2) SSA in a simple Lie superalgebra & can be considered as the
superprincipal OSp(l\2) SSA of a regular SSA ̂  of&, up to the following exceptions:

i) For 9 = OSp(2n ± 2\2n) with rc ̂  2, besides the superprincipal OSp(l\2) SSAs
described above, there exist 05X112) SSAs associated to the singular embeddings
OSp(2k ± ί\2k) 0 OSp(2n - 2k ± l\2n - 2k) with l^k^n-1.

ii) For & = OSp(2n\2n) with n^.2, besides the OSp(l\2) superprincipal embed-
ding, there exist OSp(l\2) SSAs associated to the singular embeddings OSp(2k ± 1|
2k) © OSp(2n -2k + l\2n - 2k) c OSp(2n\2n) with l^k^n-1.

11. OSp(l\2) Decompositions of Simple Lie Superalgebras

Following the general method explained above, once the possible 0Sp(l|2) embed-
dings are determined in the simple Lie superalgebra ,̂ one has to reduce the
adjoint representation of ^ into OSp(l\2) supermultiplets. Consider an OSp(l\2)
SSA of 0, and let <$ be the minimal including regular SSA of ̂  having this OSp(ί\2)
as superprincipal embedding. We will show on the example of Sl(m\n) how to
obtain the decomposition of a simple Lie superalgebra starting from the decompo-
sitions of its bosonic and fermionic parts with respect to the bosonic 57(2) sub-
algebra of the OSp(l\2) under consideration. Moreover, we will see that such
a decomposition can be obtained in a systematic way from the decomposition of
the fundamental representation of the superalgebra with respect to the OSp(l\2).

ILL The Unitary Superalgebras Sl(m\n). The bosonic part of ^ = Sl(m\n) with
m Φ n is yB = Sl(m) 0 Sl(n) ® U(l) and the fermionic part ^F is the (m, n) 0 (m, n)
representation of Sl(m) ® Sl(n). The regular SSAs of Sl(m\n) which admit a
superprincipal embedding are of the Sl(p + l\p) or Sl(p\p + 1) type.

Consider an OSp(l\2) SSA of ̂  such that the minimal including regular SSA in
<$ is& = Sl(p + ί\p) with p ^ inf(m - 1, n). Under Sl(2) (of OSp(l\2)), the repre-
sentations m and n of Sl(m) and Sl(n) decompose as

(11.1)
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Therefore the fermionic part ^Έ reduces to

(m, n ) θ (m, n) = 2(@p/2 0 (m - p - 1)^0) x (®(P- 1)/2 θ (n - p)S0)

= 2^p_ 1/2 0 2^p_3/2 θ θ 2®1/2 θ 2(m - p - l)0(p_ 1)/2

0 2(m - p - l)(n - p)^0 - (11.2)
The bosonic part &B is decomposed as

%B = S/(m) θ S/(n) ® 17(1)

(®P/2 θ (m - p -

- %θ 2^-i 0 ' θ 2®ι θ 2(m - p -

Θ2(n - p)%_1)/2Θ [(m - p - I)2 + (n - p)2 + 1]®0 (H-3)

Gathering the S7(2) representations ̂  into OSp(l|2) irreducible representations
fflj, one finds that the adjoint representation of Sl(m\ri) decomposes under the
superprincipal OSp(l|2) of Sl(p + l|p) c Sl(m\n) as4:

Ad[St(m|ιι)] = Λ θ Λ θ Λ θ . . . θ Λ φ 2(n _ p)^

e 2(m - p
θ [(m - p - I)2 + (n - p)2] ̂ o θ 2(m - p - ί)(n - p)3l'0 . (11.4)

Notice that the Wj+ι/2 superfield corresponding to the representation
fflj = Q)J ® @j-ι/2 has two component fields w7 +1 and Wj+ι/2 of spins j + 1 and
j + 1/2 respectively. If the representation ̂  comes from the bosonic (resp. fer-
mionic) part, w/+ ! is commuting (resp. anticommuting), whereas w7 + 1/2 is anticom-
muting (resp. commuting). Therefore, if j is integer, the generators w7 +1 and
W / + 1 / 2 have the "right" statistics, whereas they have the "wrong" statistics if j is
half-integer. The representations 3ίj denoted with a prime are used in the case of
W superfields obeying the "wrong" statistics.

Actually, this decomposition (which was obtained above in a rather heavy way)
can be derived directly from the decomposition of the fundamental representation
of the superalgebra Sl(m\n) with respect to the 05p(l|2) under consideration. From
(11.1), the fundamental representation of Sl(m\n\ of dimension m + n, decomposes
as

m + n = mpl2 0 (m - p - 1)#0 θ (n - p)®l , (1 1.5)

where we have introduced two kinds of OSp(l|2) representations. An OSp(l|2)
representation is denoted 3i^ if the representation @ϊj comes from the decomposi-
tion of the fundamental of Sl(m) and 3i* if 2j comes from the decomposition of the
fundamental of Sl(n).

Then the adjoint representation oϊSl(m\ri) is obtained from the fundamental one
by _

Ad[S/(ιφ)] - (m + n) x(m + n)-l. (11.6)

In the following, we will use ^— to denote the decomposition of the adjoint representation

of ^ with respect to the superprincipal OSp(l\2) of # c= <g
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Using the general formula giving the product of two OSp(l |2) representations
®qι and 0ί2:

4 = <Ii+<l2

*«ι X^q2

= 0 *β with 4 integer and half-integer , (11.7)
4=\<li-<l2\

one recovers the decomposition of the adjoint representation of Sl(m\n) under the
superprincipal OSp(l\2) of Sl(p + ί\p) given by (11.4).

Now, we consider the OSp(l\2) superprincipal embedding of Sl(p\p + 1) in
& with p ^ inf(w, n — 1). Then the decompositions of the representations m and
n of Sl(m) and Sl(n) are:

leading to the following decomposition of the fundamental representation m + n of
Sl(m\n):

m + n = gt%/2 ®(m-p)@Q®(n-p- l)0tζ . (1 1.9)

Therefore, the decomposition of the adjoint representation reads

Ad[Si(m|yι)] . . . φ 2(m -

© 2(n - p - 1)&'PI2

θ [(m - p)2 + (n - p - I)2] ̂ o θ 2(m - p)(n -p- 1)Λ{, . (11.10)

More generally, if is a sum of SSAs of S/(p + l|p) or Sl(p\p + 1) type, each
factor Sl(p + l\p) gives rise to an 0<Sp(l|2) representation &p/2 and each factor
Sl(p\p + 1) to an 05^(112) representation ̂ /2 in the decomposition of the funda-
mental m + n of Sl(m\ri), completed eventually by singlets ^0

 or ^δ Then the
decomposition of the adjoint representation of Sl(m\n) is obtained by applying
(11.6).

Finally, let us consider the case of the superalgebra PSl(n\ή) whose bosonic part
is Sl(n) 0 Sl(n) and its fermionic part is the (n, n) 0 (n, n) representation of the
bosonic subalgebra. If the minimal including regular SSA is Sl(p + l|p) with
p ^ n — 1, the fundamental representation of PSl(n\n) decomposes as

and the adjoint representation of PSl(n\n) is given by

Ad[PS/(n|n)] = (2n)x(2n) - 21 . (11.12)
One finds therefore

Acι/f ?(Γl? = ^P θ ^P- 1/2 0 ^P- 1 0 0 ̂ 1/2 0 2(n - p)@p/2Sl(p + l|p)

© 2(n - p - l)grp/2

®ί(n-p- I)2 + (n - p)2 - 1] Λo θ 2(n - p - l)(n - p)^0 -

(11.13)

The computation is completely analogous if the minimal including regular SSA is
Sl(p\P + 1).
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11.2. The Orthosymplectic Superalgebras OSp(M\2n).

11.2.1. Products of OSp(l\2) Irreducible Representations. Consider on OSp(l\2)
SSA of ̂  = OSp(M\2n) andjet 9 be the minimal including SSA in <S. Under the
superprincipal OSp(l\2) of ,̂ the fundamental representation of ,̂ of dimension
M + 2n, decomposes in a sum of OSp(l\2) representations, generically denoted as

2n - 0«j ® 0#£ , (11.14)

where the representations ^7 and 9t*. have the same meaning as in the previous
section: a representation 3t^ (resp. $*>) corresponds here to an OSp(l\2) representa-
tion where the <&j comes from the decomposition of the SO(M) (resp. Sp(2n)) part.

In order to know how to obtain the decomposition of the adjoint representa-
tion of OSp(M\2n) from the decomposition of the fundamental one, we come back
for a while to the Abelian case [10], specializing for the moment to the super-
algebra OSp(2m + l|2m). In that case, the fundamental representation of
OSp(2m + l|2m) of dimension 4m + 1 decomposes under its superprincipal
OSp(l\2) as

4m + 1 = mm , (11.15)

and thus the adjoint representation of OSp(2m + l|2m) decomposes as

Ad[05p(2m + l|2m)] = (^mx^m)^ Θ(®m-1/2 x^m-1/2)5 θ(^m x^m-1/2)

(11.16)

The two first terms correspond to the adjoint representations of SO(2m + 1) and
Sp(2m) respectively, and the last one to the fermionic representation (2m + 1, 2m)
of the bosonic part. Therefore, one has

(
/2m-1/2

©^2fe-l )θ( 0^2fc-l )θ|

θ

= 00*2*-ιθ#2*-ι/2). (11-17)

By analogy with the bosonic SO(2m) case (cf. 4.5), we set (with m integer)

w i t h / c e Z . (11.18)

Now we specialize to the superalgebra OSp(2m — l|2m). In that case, the
fundamental representation of OSp(2m — l|2m) of dimension 4m — 1 decomposes
under its superprincipal 05^(112) as

4m-l=#£- 1 / 2 (11.19)

and thus the adjoint representation of OSp(2m — l|2m) decomposes as

Ad[OSp(2m- l|2m)] =(®m- 1x®w- 1)AΘ(^«-ι/ 2x®m-ι/2)s

Θ(0 m -ιX® m -ι/2). (H.20)
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Therefore, one has

(m-1 \ / m \ /2m -3/2

®®2*-l Θ ®02*-l Θ ®
fe=l / \ f e = l / \ f c = l / 2

\ /m-1

-lθ®2*-3/2 Θ ®@2k-l/2
k=l / \k=l

m-1

= 0(^2*-lθ #24-1/2) θ^2m-l - (H-21)
fe=l

By analogy with the bosonic Sp(2m) case (cf. 4.8), we set (with m integer)

m-1

(Λϊ-l / 2 X«S-l/2)s= θ( Λ 2lk-lΘΛ2»-l/2)Θ«2»-l With fc 6 Z . (11.22)
fc=l

Using Eqs. (11.7), (11.18) and (11.22), one obtains also the useful formulae (with
k and m integer)

m-1

(^m_1 / 2x^m_1 / 2)A= φ(^2*Φ^2*+ι/2) (H.23)
fc = 0

and

(®l X ̂ m)s = "0 (#2* θ «2t + 1/2) θ ^2m (1 1-24)
fc = 0

The products between 3t^ and ^J representations are given by

* ™ ί®% if j ι+J2 is integer
Off . ^ 6jy . — y

•" J2 Iφ^j3 if ji +7'2 is half-integer '

^π Λ« J0ΛΛ if Λ +72 is integer
,

if 7ι +7*2 is half-integer

if A +7*2 is integer
> (1L25)

if J ι + 7 2 is half-integer'

where the representations @th and ̂  3 correspond to W superfields which obey to
"right" or "wrong" statistics respectively.

Finally, one has

j x nMj)A = (Mj x ̂ )A θ (Λj x ̂  )s , (1 1.26)

, (1 1-27)
7

and

Λ θ ΛJ2) x (Λ^ θ Λ/2))A - (« ι̂ x ^Λ)A θ (% x ^)A θ (% x %) ,
(11.28)

(11.29)

Of course, the same formulae hold for $* representations.
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It remains to obtain the decompositions of the adjoint representations of the
simple Lie superalgebras from the decompositions of their fundamental repre-
sentations for the different possible OSp(l\2) embeddings in order to classify the
super-Toda theories. The following subsections are devoted to the study of the
superalgebras OSp(2m\2n\ OSp(2m + \\2n\ OSp(2\2n) and to the irregular
embeddings.

11.2.2. The Superalgebras OSp(2m\2n). The regular SSAs of 9 = OSp(2m\2n) (with
m ^ 2) which admit a superprincipal embedding are of the type OSp(2k\2k\
OSp(2k + 2|2/c) and Sl(p ± l|p).

Let Φ = OSp(2k\2k) with 1 ̂  k ̂  inf(m, n). Under the superprincipal OSp(l\2)
of&9 the fundamental representation of OSp(2m\2n) of dimension 2m + 2n decom-
poses as follows:

2m + 2κ = »l_ 1/2 0 (2m - 2k + 1)#0 Θ (2n - 2k)@% . (1 1.30)

The decomposition of the adjoint representation of OSp(2m\2n) is obtained from
the decomposition of the fundamental representation by taking the antisymmetric
product of the orthogonal part and the symmetric product of the symplectic part;
more precisely, one has

- 2k + 1)*0) x ((2m - 2k + 1)*0)|A

- 1/2 Θ (2n - 2k)®l) x (®l- 1/2 φ (2n -

Using the formulae (11.18) and (11.22-11.29), one finds

-3 θ ̂ 2fc-9/2 ® ' - ' ® ^3/2 Φ ΛI

Φ (2m -2k+ l)Λ t_1 / 2 θ 2(n - fe)Λί_1/2

0 2(2m - 2k + l)(n - fc)ΛS

Φ [(2m - 2fc + l)(m - k) + (2n - 2k + l)(n - *)]Λ0 (H-32)

Now, let & = OSp(2k + 2|2fc). Under the superprincipal OSp(ί\2) of <$ί, the
fundamental representation of OSp(2m\2n) decomposes as:

2m + 2n = ®k φ (2m - 2fc - 1)̂ 0 Φ (2n - 2fc)^?S . (1 1.33)

Therefore, one has

- 2k ~ !)ΛO) x (** Φ (2m - 2/c -

φ (Λt © (2m - 2/c - 1)Λ0) x ((2n - 2fc)^S) , (1 1.34)
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and one obtains in that case

- - 1 θ @2k-5/2 θ ̂ 2*-3© ' ' ' θ ̂ 3/2 θ «1
2|2/c)

0 (2m - 2k - \}Stk 0 2(n - k)Mk © 2(2m -k- l)(n -

θ [(2m - 2/c - l)(m - fe - 1) + (2n - 2k + l)(n - /c)] ̂ 0

(11.35)

Finally, let us consider the case where & belongs to the unitary series. First, we
study the case & = Sl(2k + l|2/c) with 4k ̂  m + n - 2. The decomposition of the
fundamental representation of OSp(2m\2n) under the superprincipal OSp(l\2) of
& is given by

2m + 2κ = 2^fc 0 2(m -2k- 1)«0 θ 2(n - 2/c)^S . (11.36)

Therefore, one has

θ (2(n - 2k)@l) x (2(n -

θ (2@k θ 2(m - 2/c - 1)Λ0) x (2(n - 2k) Λζ) . (11.37)

One obtains here

θ 3^2k-l/2 Θ ̂ 2k-3/2 θ 3^2k_5/2 Θ ' ' Θ 3^3/2 θ #1/2

0 4(m - 2/c - l)#fc Θ 4(n - 2/c)^

Θ4(m-2fc- l)(n-2k)@'0

Θ [(2m - 4/c - 3)(m - 2/c - 1) + (2n - 4/c + l)(n - 2/c)] ̂ 0 -

(11.38)

The other cases are similar. One finds easily the following results. If ^ =
Sl(2k - l|2/c) with 4k ̂  m + n, one has

2m + 2n = 2&ζ-1/2 ® 2(m - 2/c + 1)#0 θ 2(n - 2k)<%% (11.39)

and

= m™-ι®®2k~2 ® 3^2fe~3 ® ' ©^2 Θ 3

θ ^2fc-3/2 θ 3^2/c-5/2 θ ^2k-7/2 Θ ' ' ' θ 3^

0 4(m - 2A: + l)#fc_ 1/2 ® 4(n - 2fe) #ί_ i/2

Θ 4(m - 2/c + l)(n - 2fc)#{,

0 [(2m - 4k + l)(m - 2fc + 1) + (2n - 4/c + l)

(11.40)
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Ίf & = Sl(2k\2k + 1), one has

2m + 2n = 2^£φ 2(m - 2k)@0 © 2(n -2k- ΐ))&% (H-41)

and

Ύ)ςW9™l9*ιn

3<^? ζ& όd £E} 3 ?̂ ff) ' ' ' ff ) 3^ G) 01 @r) 3^?

G\ ύβ Q\ 'iόβ £E\ ύβ G^ £D\ ύβ £D ^ύβ
\^ t^*/2fe 1/2 ^̂  J*si>2fc—3/2 >E' '^2k 5/2 ^̂  ^̂  t^3/2 ^̂  ^^1/2

© 4(m - 2/c)^fc © 4(n - 2/c - l)#fc

©4(m-2/c)(n-2fe- 1)̂

Φ [(2m -4k- l)(m - 2/c) + (2n - 4/c - l)(n - 2/c - 1)]«0 -
(11.42)

Finally, if ̂  = S/(2fc|2fc - 1), one has

2m + 2n = 2^fe_1/2 © 2(m - 2/c)^0 © 2(n - 2k + l)#g (11.43)

and

Ί.ς:nθwi9^Ί
® fT\ ^ύβ Γ\\ ύβ (Ύ\ ^tfβζp Dc/L^ vX/ tΛ i \ty Je>ϊQ

© 3^2k_7/2 © © ̂ 3/2 © 3Λ1/2

© 4(m - 2/c)^fe_1/2 φ 4(n - 2/c + l)^fe-ι/2

© 4(m - 2k)(n - 2/c + 1)^0

© [(2m -4k- l)(m - 2fe) + (2n - 4/c + 3)(fi - 2/c + 1)]Λ0 .

(11.44)

77.2.3. The Superalgebras OSp(2m + l|2n). The regular SSAs of # = OSp(2m + l|2n)
which admit a superprincipal embedding are of the type 0S/?(2fc|2fc),
OSp(2k + 2\2k\ OSp(2k ± l\2k) and Sl(p ± l\p).

Let $ = OSp(2k\2k). Under the superprincipal OSp(l\2) of 99 the fundamental
representation of OSp(2m + l|2n), of dimension 2m + 2n + 1, decomposes as fol-
lows:

2m + 2n + 1 = #£_1/2 Φ (2n - 2k)<%% © (2m - 2/c + 2)^0 - (H-45)

The decomposition of the adjoint representation is then

- 2k + ̂  x «2w - 2k

/2 θ (2n -2fc)φ?) x (Λf_ 1 / 2 θ (2n -

φ ((2m - 2k + 1)Λ0) x (^π-1/2 φ (2n - 2/c)^S) , (11.46)
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i.e.

Ad[_OSp(2m

0 2(m - fc + l)Λk-1/2 ® 2(n -

θ 4(m - fe + l)(n - k)Λ'Q

© [(2m - 2k + l)(m - fc + 1) + (2n - 2/c + l)(π -

(11.47)

Now, let 9 = OSp(2k + 2|2/c). Under the superprincipal OSp(l\2) of #, the
fundamental representation of OSp(2m + l|2w) decomposes as:

2m + 2n + 1 = ̂ fc 0 (2m - 2/c)^0 θ (2n - 2k)@% . (1 1.48)

Then one obtains

© (Mk φ (2m - 2/c)^0) x ((2n - 2fc)«g), (11.49)
i.e.

.HmCnO™ j_ 1l9»ιVl
: ^2k-l/2 Φ^2fc-l Φ^2fc-5

OSp(2k + 2|2/c)

® . . . /T\ £2) /T\ (i®
ξΐ? <si'$i'2 vlx «^ i

Φ 2(n - fc)^fe φ 2(m - k)3lk Φ 4(m - k)(n -

© [(2m - 2k - l)(m - /c) + (2n - 2/c + l)(n - fc)]«0 -

(11.50)

Finally, let ̂  = OSp(2k - l|2/c). Under the superprincipal OSp(ί\2) of ̂ , the
fundamental representation of OSp(2m + l|2n) decomposes as

2m + 2n+l = @π

k-1/2 © (2n - 2k)@% © (2m - 2/c

which is the same decomposition as the case ^ = OSp(2k\2k). Therefore, the two
SSAs OSp(2k\2k) and OSp(2k - l|2fc) (when both can be embedded in 9) lead to the
same decomposition of the adjoint representation of 9 and consequently to the
same theory. On the same lines, one finds that the two SSAs OSp(2k + 2|2/c) and
OSp(2k + l|2fc) lead Jo the same theory.

The last case is & = Sl(p ± ί\p). We leave the different decompositions to the
reader. The results are summarized in the table of Sect. 11.3.

11.2.4. The Irregular Embeddings. We will study now the irregular embeddings,
which are present in OSp(2n ± 2\2n) and OSp(2n\2n).

Consider first the superalgebra 9 = OSp(2n + 2|2n) and take the OSp(l\2) SSA
of 9 such that the minimal including SSA in 9 (which is now singular) is

9 = OSp(2k + ί\2k) φ OSp(2n -2k+l\2n- 2k) and 1 ̂  k ̂  -̂̂  . Under
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the superprincipal OSp(l\2) of ,̂ the fundamental representation of ,̂ of dimen-
sion 4ft + 2, decomposes as

4ft + 2 = mk 0 Stn-k , (11.52)

and we get for the OSp(2n + 2|2n) adjoint representation

+ . i o - .p. - a,
(11.53)

which leads to the following decomposition:

Ad[OSp(2ft + 2|2ft)]

l|2fc) Θ OSp(2ft - 2k + l|2n - 2/c)

= @2n-2k- 1 θ ^2»-2fc-3 θ ' ' * Θ #1

-2/c-3/2 θ ' ' ' θ ^3/2 θ

0^w-l/20^«-3/20' * 0^M-2fc+l/2 - (11.54)

Consider then the superalgebra ^ = OSp(2n - 2\2n) with & = OSp(2k - l\2k)

0 OSp(2n - 2/c - l|2ft - 2k) and 1 ̂  k ̂  -̂y- . The fundamental representa-

tion of #, of dimension 4ft - 2, decomposes under the superprincipal OSp(l\2) of

The adjoint representation of OSp(2n — 2\2n) is given by

Ad[05p(2n-2|2n)]

φ OSp(2n -2k- l|2n - 2Jk) ~

x(^π-ι/2θ^n

π- fc-ι/2)ls, (H.56)

Ad[05p(2n - 2|2n)]

OSp(2k - ί\2k) φ OSp(2n -2k- l|2n - 2fc)

^2Π-2*-lθ^2»-2*-3Θ φ^l

Θ^2»-2/i-5/2Θ^2Π-2k-7/2φ " θ ^3/2 Φ @2k- 1 θ ^24-3 θ ' ' ' Θ

Φ ^Π_3/2 Θ Λ.-5/2 Φ * * * Θ ^n-2*+l/2 (11-57)

Consider finally the superalgebra ^ = OSp(2n\2n) with ̂  = OSp(2fc + l|2fc) φ

OSp(2n - 2k - l|2n - 2fe) and 1 ̂  /c g -̂r— . Under the superprincipal

OSp(l|2) of ̂ , the fundamental representation of ̂ , of dimension 4n, decomposes as

fc_1/2 (11.58)
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and we get for the OSp(2n\2ri) adjoint representation

OSp(2k + l|2/c) Θ OSp(2n -2k- l\2n - 2k)

= («* x «*)A θ (^-k-ι/2 x *:-*-ι/2)s Θ (Λ* x Λ;-*-ι/2) (H-59)

which leads to

n - 2/c - l\2n - 2k)

2n-2k-3®' "®^1

θ ^2n-2k-7/2 θ ' ' ' θ ̂ 3/2 θ ^2k-l θ ^2fc-3 θ ' ' ' θ

®@n-l/2®@n-3/2® ' '®^n-2k-l/2 (H.60)

If $ = OSp(2k - l|2/c) ® OSp(2n - 2k + l|2n - 2/c) with 1 ̂  k ̂  -̂̂  L the

fundamental representation of ,̂ of dimension 4n, decomposes under the super-
principal 05^(112) of$ as

and we have the following decomposition of the adjoint representation of
OSp(2n\2n):

OSp(2k - l|2/c) 0 OSp(2n - 2k + l\2n - 2k)

θ @2k- 1 Θ @2k- 3 θ

Θ »n- 1 θ «„- 2 Θ ' ' ' Θ ̂

Θ ^n- 1/2 Θ Λn-3/2 θ ' * Θ «n-2fc+ 1/2 - (H-62)

77.2.5. 77ze Superalgebras OSp(2\2n). The superalgebra OSp(2|2n) requires special
attention. Actually, the regular SSAs of ^ = OSp(2\2n) which admit a super-
principal^embedding are only OSp(2\2) and Sl(l\2).

Let ^= OSp(2|2). Under the superprincipal OSp(l\2) of ,̂ the fundamental
representation of OSp(2\2n\ of dimension 2n + 2, decomposes as follows:

(2n - Ί)mi . (1 1.63)

Therefore, the decomposition of the adjoint representation of OSp(2\2n) under the
superprincipal OSp(l\2) of OSp(2|2) c OSp(2\2n) is

= «ι Θ «ι/2 θ (2n - 2)Λ'1/2 Θ (2n - l)(n - 1)«0 θ (2n -

(11.64)
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Now, let 0 = S/(l|2). Under the superprincipal OSp(l\2) of <S, the fundamental
representation of OSp(2|2n) decomposes as:

2n = 2^f/2 ® (2π - 4)^3 .

In that case, the decomposition of the adjoint representation is

Ad[OSp(2|2n)] ,Λ

(11.65)

?ι/2 θ (4n - [(2n - 3)(n - 2)

(11.66)

77 J. Summary of the Results. The previous results can be easily extended to the
case of sums of simple Lie SSAs. The decomposition of the fundamental representa-
tion is obtained by taking the corresponding 0Sp(l|2) representation for each
factor of the sum, which can be read in the following tableau. Then, starting from
a decomposition of the fundamental representation of the form

(11.67)

the decomposition of the adjoint is given, in the orthosymplectic series, by

A d =

and in the unitary series, by

Ad =

θ

(11.68)

for SL(m\n) m Φ n , (11.69)

7 - 2^o for PSl(m\m) . (11.70)

For explicit formulae, one has to apply the product rules given in (11.18) and
(11.22-11.29).

<$ $ Fund. Rep. of <S

S/(m|n) Sl(p + ί\p)
Sl(p\p + 1)

- p -

OSp(2m|2n) OSp(2fc|2fc)

OSp(2fe + 2|2fe)

S/(p + l|p)

S/(p|p + 1)

φ (2m - 2k +

Θ(2π-

^P/2 Φ 2(m - p
Θ2(n-

3t;/2θ2(n-p

®2(m-
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^ 3 Fund. Rep. of <S

OSp(2fc|2/c) 1 «j?_ 1/2 φ (2π - 2*)<*5

2|2fc)| t̂ 0 (2m -

OSp(2/c + l|2/c) J Θ (2π -

OSp(2\2n) OSp(2\2) 0t%/2 Θ ̂ 0 θ (2n -

OSp(2k+l\2k)®
• z\zn)

OSp(2n-2k+ \\2n-2k)

OSp(2k-
OSp(2n-2k- \\2n-2k)

OSp(2n-2\2n) Λ O _ / Λ _ _ ^,_ 1 I Λ _ , Λ I_, ^-1/2 <*>**»-*-1/2

77.^/. Γ/zβ Exceptional Superalgebra G(3). The superalgebra G(3) has dimension 31
and rank 3, with &B = G2 θ Sl(2) as bosonic part and the representation (7, 2) of
&B as fermionic part. The Dynkin diagrams of G(3) are

®—(

leading to the following regular sub(super)algebras:

G2 @Al9 G2, ^42» ^i

B(l, 1) θ A19 B(l 1), C(2), 5(0, 1), ^L2 0 B(0, 1)

, 2), 4(0, 1), 4(1, 0), Z)(2, 1; 3), G(3) . (11.71)

Only the superalgebras 5(0, 1), C(2), B(l, 1), 4(0, 1), 4(1, 0) and D(2, 1; 3) admit
a super-principal embedding. As an example, we will treat the case of
B(19 1) = OSp(3|2). From the results of Sect. 8, the bosonic part G2 0 S/(2) decom-
poses under the principal S/(2) of SO (3) 0 S/(2) as

Ad[G2 © S/(2)] = ̂ 3/2 © ̂ 3/2 © 2 !̂ © 3^o , (11-72)
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and the fermionic part (7, 2) as

(7, 2) - ̂ 3/2 θ 2S1 0 ®1/2 θ 2^o . (H.73)

Putting together the 57(2) representations into OSp(l\2) ones, one obtains the
following decomposition under the superprincipal 05^(112) of OSp(3\2) c G(3):

= ^3/2 θ 2^3/2 θ Λi © 3^o θ 2^ . (1 1.74)

The other cases are similar and are summarized in Table 15.

77.5. The Exceptional Superalgebra F(4). The superalgebra F(4) has dimension 40
and rank 4, with &B = 57(2) 0 0(7) as bosonic part and the representation (2, 8) of
&B as fermionic part. Its Dynkin diagrams are:

® — ®=4Q — O

The SSAs of F(4) which admit a superprincipal embedding are ,4(0, 1), 4(1, 0),
C(2) and D(2, 1; 2) (the extended Dynkin diagrams of F(4) can be found in [18]). As
an example, we will treat the case of C(2) = OSp(2\2). The bosonic part Sl(2) ® 0(7)
decomposes then as

Ad[S/(2) ® 0(7)] = 50! θ 9^o (H-75)

and the fermionic part (2, 8) as

(2,8) = 8®1/2. (11.76)

Putting together the S/(2) representations into 05^(112) ones, one obtains the
following decomposition under the superprincipal OSp(l|2) of OSp(2|2) c F(4):

(1L77)

The other cases are analogous and are summarized in Table 16.

12. £λSp(l|2) 0 17(1) Decompositions of Simple Lie Superalgebras

72.7. Introduction of the £7(1). Now, we are in position to introduce the
factor. In the case of the unitary superalgebras, since the formulae for Sl(p + l|p)
are completely analogous to those of Sl(n) (the <%j representations replacing the Q)j
ones), one can write the following statement.

A decomposition of the fundamental representation F of ̂  = Sl(m\n) under the
superprincipal OSp(ί\2) of <i c= ^ being given,

(12.1)

the corresponding decomposition under OSp(l\2) 0 t/(l) has the form
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F = 0n(£((Λ) θ (@njΛJ(yj)\ , (12.2)

identical representations (i.e. labelled by the same index i or j) having the same
value of y. Moreover, one has to impose the supertraceless condition

(12 3)
J

Then the decomposition of the adjoint is given by

Ad = φfiiΛiίtt) ®njΛJ(yj) x ©rc^( - yt) © nj<X]( - Vj) - Λ0(0) .
V i j / \ i j /

(12.4)

For an explicit calculation of this expression, one uses the fact that

ί+j
(nt&i(yi)) x (nj3tj(yj)) = n^ 0 &k(yι 4- yj) with k integer and half-integer

k = \i = j\
(12.5)

and the same formula for Mπ representations.
In the case of the orthosymplectic superalgebras, one considers the following

decomposition of the OSp(M\2n) fundamental representation:

i

F = ©n& ® ®nja (12.6)

which implies for the fundamental representations of SO(M) and Sp(2n):

0 0n^ . (12.7)
V j /

For the SO(M) part, one can introduce a non-zero t/(l) eigenvalue yt only for
representations Q){ with ϊ integer, which appear twice and only twice. For the Sp(2n)
part, a non-zero U(l) eigenvalue yt is allowed only for representations @t with
i half-integer, which appear twice and only twice.
For the superalgebra ^ itself, one has to group the 81(2) 0 17(1) representations
&i(yi) into OSp(ί\2) ® (7(1) representations ^X^ ) = D/^-) ® ̂ _1/2(^). There-
fore, if the decomposition of the OSp(M\2n) fundamental representation F under
a certain OSp(l\2) is given by (12.6), non-zero values y of the (7(1) factor are allowed
for the following combinations:

- the representation ̂  appears twice and only twice (HI = 2), and i is integer,

- the representation <Ά? appears twice and only twice (fy = 2), and i is half-integer.

Moreover, y can only take the values 0, 1/4 or 1/2 if i φ 0 (which lead to the values
0, + 1/2 or ± 1 for the (7(1) factor in the adjoint representation of ^). Finally,
starting from a decomposition of the fundamental representation of OSp(M\2n)
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under OSp(l\2) 0 17(1) of the form

) θ »ι( ~ yd θ

L. Frappat, E. Ragoucy, and P. Sorba

θ 0 *,
i , Π i Φ 2

θ 0 n,«7(0) ,
\j,nj Φ 2 /

the decomposition of the adjoint is given by

Ad =

(12.8)

i, Mi Φ 2

i , n i Φ 2 /

~\ * π Γ] « }

j 7 , « , Φ 2 /

/ \

0#t(j>,) θ «/( - yj) 0 n^i(O)
\ i i,«! Φ 2 /

f ©aj(yj) θ «?( - Λ) 0 n^(θ)
\ j j,nj Φ 2

(12.9)

The (anti)symmetric products of ̂  representations are given by the formulae
(11.18) and (11.22-11.29) modulo the following modifications due to the U(l)
eigenvalue:

) θ (Λι x «i)A( - 2y«) θ (Λ,

and

x Λf )s (2yt) θ (Λf x ΛΓ)s ( - Γ) (0) -

(12.10)

(12. 1 1)

Finally, considering D(2, 1; α), G(3) and F(4), a direct calculation shows that no
ί/(l)y can be added to any of the OSp(l\2) subsuperalgebras of these exceptional
superalgebras.

72.2. Superdefining Vector. The determination of the grading H from the
OSp(l|2)0 [/(I) decomposition of the fundamental representation is strictly the
same as for the algebras case. One just has to "double the calculation" since the
bosonic part of ̂  is in general the direct sum of two simple algebras. Using the
same basis for the Cartan algebras (see Sect. 6.1), we will denote the defining vector as

f=(A,...,fnlfi . . , f ή ) , (12.12)
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where ft refers to the first simple algebra and the f to the second. For example, for
the case of Sl(m\n) superalgebras, the contribution of a representation is:

J + yJ -1 + y> - - > -i + * o, . . . , o j - - + y,

1 1

j + y,j-ι+y,.. , -j + y , o , . . , 0 ) .

The other cases are analogous.

13. W Superalgebras from Lie Superalgebras of Rank up to 4

In the following tables, we present an exhaustive classification of super W algebras
arising from super Toda models based on classical superalgebras of rank up to 4.
The classification is listed in Tables 10 to 17.

For the infinite series Ή = A(m, n) = Sl(m + l\n + 1) with m Φ n, A(n, n)
= Sl(n + l|n + l)/l/(l), 5(m, n) = OSp(2m + l|2n), C(n + 1) = OSp(2\2n) and

D(m, n) = OSp(2m\2n\ We give the decomposition of the fundamental representa-
tion of ̂  with respect to OSp(l\2) © (7(1), the minimal (i.e. the lowest dimensional)
regular SSAs containing the OSp(l\2) or (for the irregular cases) the corresponding

Table 10. A(m, n) superalgebras up to rank 4

SSA Decomposition of the
in ^ fundamental of ̂

Superconformal spin
of the W superfields
(Hypercharge)

4(0, 2)

4(1, 1)

4(0, 3)

4(1, 2)

4(0, 1)

4(0, 1)

4(1, 2)

4(0, 1)

4(1, 0)

i i, i', i7, 2
(0, 0, 2y, - 2y, 0)

!, 1, 1, 1

f, i, 4*r, 44
3v 3v — 3v — 3v

> 0, ̂ -, —, -, -, 0,0,0,0
2 2 2 2

f,2,|,l

v — v v — v

°'°'2' 2 '2' 2 '0'°'0'0

1,5*1, 44

I
V V — V — V

0,0,-,-,—±—±,0,0,0,0,0
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Table 11.

*

5(0,2)

5(1, 1)

5(0, 3)

5(2, 1)

B(m, ή) superalgebras of rank 2 and 3

SSA Decomposition of the
in ^ fundamental of ̂

£(0, 1) #J/2 ® 2^S

5(1, 1) Λ!

C(2) 1v ί3?π fT\ ύ& ( in fP\ £ί? 1
Λ t^l/2 vt' *^0\y/ vΓ/ «^0\

5(0, 1) j

5(0, 1) #J/2 ® 4^S

5(1,2) ΛJ/2

5(1, 1) #! ® 2^J

C(2) | &ιi2@&o(y)®&o(-)
£(0,1) j ®2^5

C(2) 05(0, 1)1

,4(0, 1) J 1/2

Sj;>} .,βίw,) «-Λ
C(2) 1

n / n n f ^Ϊ/2Θ4^05(0, 1)J

^4(1, 0) 2^1/2 0 ^o

L. Frappat, E. Ragoucy, and

Superconformal spin
of the W superfields
(Hypercharge)

2 i ' i / l l l
2» X > A J 2? 2? 2

2,1

i i, i, i
30 (0, y, -y, 0)

f, r, r, r, r, 104
!,2,f

2, i f ', f ', i, i i

μ) f,ι,ι,r,r,44,44'
(0,y, — y, 6*0, y,y, —y,

Uiι,ι,ι,i
0 (2j, -2y, 0, j, -y,

9 1 1 2 1
A 2? 2? 2> 2

(0,2y, -2y,0, 0)

f, 4*1, 6*i

P. Sorba

-y)

0, 0)

Table 12. £(w, n) superalgebras of rank 4

^ SSA Decomposition of the Superconformal spin
in ^ fundamental of ̂  of the J^ superfields

(Hypercharge)

5(0, 4) 5(0, 1) #f/2 0 6^

5(1, 3) 5(1, 2) #;/2 0 2 ί̂

5(1 1) ^?ι ® 4^π

C(2) 0 5(0, 1) 1 ^ΐ/2(y) 0

^4(0,1) j ®^0®2«

C(2) | ^ϊ/2®4^

5(0, 1)J Φ^oWS

5(2, 2) 5(2, 2) ^2

Z)(2,2)l

5(1,2)} ^2@^C

?; f, 6*r, 214

?S ί, 2, 2', 2', f, i i, i

2, f, f, f ', f ', f ', 104

^ϊ/2(-J>) 3*f 1

?S 1,2*1

B)^o(-y) (0,y,

4,ί,2

/ N ^ / Λ 2 ? ?

,(Λ®Λo(-y) (

2

0jyj

,r,rι, r,r, ι,4*i,2
-2j;, 0, 3*y, 3* -j;;

, 4*r, n*i, 94
— y, 15*0, 4*3;, 4* —

!,!

9 ^ 2- y, 0, 0, 0)

4'
, 7*0)

y,o)

5(1,1) (0, 2y, -2y,0,6*0,y,y, -y, - y)
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Table 12. (continued)
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^ SSA Decomposition of the
in ^ fundamental of ̂

D(2, 1) Θ B(0, in

5(1,1)0C(2) J lθ 1/2@ °

C(2) 0 C(2) 1 #ϊ/2( ?) θ #1/2 ( ~ J>)

4(0, 1) j 0 3 0̂

Superconformal spin
of the W superfields
(Hypercharge)

2, 2, f, f, |, |, 1, 1

i i, i, 7*1, i i i i
(2y, — 2};, 0, 3*y, 3* — y, 0, 4*0)

£(3,1)

,4(1,0)

l, 0)

1,4*1,2*1', 94, 84

1, 7*1, 1', 1', 64, 24

2, 5*i 64

f, 6*1, 154

f, 3*1, 6*1', 64

Table 13. D(m, ή) superalgebras up to rank 4

^ SSA Decomposition of the
in ^ fundamental of ̂

D(2, 1) Z)(2, 1) ^i 0 ^o

C(2) ^ϊ/2 0 3^o

A(l, 0) 2^1/2

D(2, 2) D(2, 2) ΛJ/2 0 ^o
Γ)/Ό 1 \ Ŝ> /τ\ (̂ S) /T\ O<ί2>7t
i'̂ ^, I/ t>71 j vj7 <!>*0 ^v ^«^Q

/^C^\ ύύ^ (Ύ\ ^ΰfi f\\ 0<3?π

\*s\£) ^*l/2 MX -^ΐχ* 0 MX ^«χ*o

C(2)0C(2)|
.4(0, 1) j 1/2 + o 3̂  + o y

B(l, 1) 0 5(0, 1) #! 0 ^ϊ/2

/d ^ 1 Π^ ^ ίi? (Φ> *7 &d π

/i^ij \J^ jί,yι ^i2 MX ^ext-o

D(3, 1) D(2, 1) #! 0 3^o

C*ί2^ ^?π ffi 5^

^(1,0) 2^1/2Φ2^0

Superconformal spin
of the W superfields
(Hypercharge)

2, i f

i 1, l, 1, i i i
i 1, 1, 1, i, i έ

i 2, 2, f

2, f, i f, 2, 5*2
I, i, i, i, i', r, 6*i e*i'
i i i, 5*ι, i i
(3*0, y, -j;, 5*0)

2, 2, f , f , f, 1

!, 7*1, 64

2, 4*|, i i i

|, 5*1, 104

f, 1,1, 1,4*1', 44

singular embedding. Then, we give the superspin content with the same convention
as for the bosonic tables. We recall that to a Ws superfield correspond two fields
ws and w s+1/2. When the superspin is marked with a prime ('), the corresponding
superfield Ws has the "wrong" statistics (commuting fermions and anticommuting
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Table 14. C(n + 1) superalgebras up to rank 4

SSA Decomposition of the
in <§ fundamental of ̂

Superconformal spin of the
W superfields (Hypercharge)

c(3)

C(4)

A(o,

C(2)

Λ(0,

C(2)

/2 ( - y) |, f, f, i, i
(0, 2y, - 2y, 0, 0)

i 1, 1', 1', i i i i', ̂

3*|, 1, 4*1', 4*i

(0,2j>, -2jί,0,y,y, - y, -y,4*Q)

i 1, 4*1', 10*i 4*f

Table 15. The exceptional superalgebra G(3)

SSA OSp(l|2) decomposition of G(3) Superconformal spin
of the W superfields

B(0,1)

B(l, 1)

D(2,1; 3)

3/2 0 Λ!

3/2

2', 2', f, 1, 1, 1, i, i ^

i 6*1, 84

2, 2', 2', !, i i i i',

Table 16. The exceptional superalgebra F(4)

SSA OSp(l|2) decomposition of F(4) Superconformal spin
of the W superfields

4(0,1)

C(2)

D(2,1; 2)
1/2

0 2 !̂ 0

1, 7*1, 144
!, 3*1,6*1', 6*ii',i'

5*f,3*l,64

2, 2', 2', f , f, 1', 1', i

Table 17. The exceptional superalgebra D(2, 1; α)

SSA Decomposition of the
fundamental of D(2, 1; α)

Superconformal spin
of the fF superfields

0(2, 1)
C(2)

A(l, 0) 1/2

2, it

i i, i, i, i i
i, i, i, i, i i

bosons). In the same column, we give under the superspin 5 the hyρercharge(s)
y when they exist.

For the two exceptional superalgebras ̂  = G(3) and F(4), we give the minimal
regular SSA containing the OSp(l\2) embedding, the decomposition of the adjoint
representation of @, and the superspin content.
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14. Quadratic-, Quasi- and ΊL2 x Z2-Superconformal Algebras
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We have a natural framework to study superconformal algebras. Let us first recall
that a quadratic-superconformal algebra is a Zamolodchikov superalgebra made
of one spin 2 field corresponding to T(x) (and forming a Virasoro algebra),
N fermionic supersymmetry charges Gα(x) which are spin f primary fields with
respect to Γ(x), and a Kac-Moody (KM) algebra (i.e. spin 1 primary fields). The
spin f generators are required to form a representation of the KM algebra, but the
quadratic-superconformal superalgebra is not (in general) a Lie superalgebra in the
sense that the PB (Gα(x), G^(x')}PB contains quadratic terms in the KM currents
[16, 19].

The "usual" superconformal algebras, i.e. the Ademollo et al. algebras [20] and
the one parameter algebra found in [21], are the only closed Lie superconformal
algebras we know. We will refer to them as Lie superconformal algebras and call
the corresponding supersymmetries "true" supersymmetries.

The same definition holds for a quasi-superconformal algebra [16], except that
its spin f fields Gα(x) are bosonic ("wrong" statistics). As an example, the algebra
made explicit in Sect. 7.3, possessing two spin-f and one spin-1 fields, is quasi-
superconformal.

An algebra with both bosonic and fermionic spin f currents is called Z2

 x ^2
superconformal algebra. In that case, spin 1 fermions may also appear.

It should be clear to the reader that Part I contains all the tools necessary for
the determination of the quasi-superconformal algebras, whereas the quadratic and
Z2 x TL2 superconformal algebras can be obtained from Part II. Note however, that
the supersymmetric treatment we have used (and which naturally makes appear
a N = 1 Lie superconformal algebra) leads to the emergence of spin % fields. As it is
now well-known, to avoid these fermions, one can factorize them [22]. These
algebras (without spin J fermions) have already been classified at the quantum level
in [16]. We show hereafter that all the algebras of [16] can be realized at the

Table 18. Classification of quasi-superconformal algebras

Algebra Decomposition of
# the fundamental of #

Conformal spin
of the W7 generators

Residual Kac-Moody
algebra

Sl(n)

S0(n)

Sp(2n)

G2

F4

E6

EΊ

E8

n = 01/2 @(n — 2)^o

n = 201/2 + (n — 4)^o

2n = 01/2 + (2n - 2)

7 = 201/2 + 3^o

26 = 601/2 + 14^o

27 = 601/2 + 15^o

56 = 1201/2 + 32^o

248 - 0j + 56^1/2 + 133ί

2, 2(n - 2)*f,

2, 2(n - 4)*f ,

Γ(π-4)(π-5) ΊL 2 +3r
2, (2n - 4)*|,

(w-2)(2n-3)*l

2 3 3 1 3 ^ | ̂

2, 14*f,21*l

2, 20*f, 35*1

2, 32*f, 66*1

20 2,56*1,133*1

5/(π - 2

S0(rc-

Sp(2n -

51(2)

Sp(6}

Sl(6)

S0(12)

EΊ

O Θ l / d )

4)ΘS/(2)

2)
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classical level as symmetries of Toda models. Moreover, two new (with respect to
[16]) TL2

 x ^2 superconformal algebras can be identified from the study of G(3) and
F(4).

14.1. Quasί-Superconformal Algebras. From the study of Part I, we can see that
such algebras, with only one spin 2 and no spin s > 2, are obtained when the
fundamental representation oϊSl(n) and Sp(2n) (resp. S0(n)) algebras contains only
one (resp. two) ®1/2 representation(s). This means that we are reducing these Lie
algebras with respect to a regular A^. Using the results of Part I and [17] for the
exceptional algebras £6,7,s> we obtain the classification of Table 18.

14.2. Quadratic-Superconformal Algebras. They are obtained from the reduction
of a superalgebra with respect to an OSp(l\2) SSA. Note that "wrong" statistic
superfields may appear and lead to %2

 x ^2 superconformal algebras. From the
rules given in Sect. 11.2.1, relating &' representations of the adjoint, to & and &π

representations of the fundamental, it is easy to compute the allowed reductions. As
an example, let us study the Sl(m\n) algebras: the reduction with respect to S/(l|2)
reads n + m = Λ J 2 + (m — 1)̂ 0 + (n — 2)^5 > so that we must set n = 2 to avoid
"wrong" statistics. Thus, only the Sl(n\2) (or Sl(2\n)) algebra leads to quadratic-
superconformal algebras. The same calculation leads to the list:

Sl(n\2\ OSp(4\2n), OSp(n\2), F(4), G(3) (14.1)

We summarize the results in Table 19. Note that the regular superalgebra
which characterizes the OSp(l|2), provides the number JV0 of "true" supersymmet-
ries of the W algebra: JV0 = 1 for a regular OSp(\\2\ N0 = 2 for the superprincipal
OSp(l\2) of S/(l|2) and OSp(2|2), JV0 = 3 if the previous S/(l|2) or OSp(2\2) can be

Table 19. Quadratic-superconformal algebras

^ Min. includ. N0

regular SSA

A(l, n)

D(in)

D(m, 1)

BM

G(3)

F(4)

A(l, 0)

A(l 0)

C(2)

C(2)

B(0, 1)

4(1,0)

2

4

4

f 3(ro = 1)

J4(m > 1)

1

2

Superconformal spin
of the ^generators

f ,(2»+l)*l ,w 2 *i

f,(4w - 1)*1, l(n - l)(2n - 1) + 3] 4

i(2m-l)*l,(m-l)(2m-l)4

f, 2m* 1, m(2m- 1)*J

1,6*1,84

1,7*1, 14*i

Super KM
algebra

^j,.! Θ U(l)

CB_ 1Θ3C7(1)

^m-l

Om

A2

G2

Table 20. ίZ2 x Z2 superconformal algebras (no superspin J bosonic superfield)

Min. includ. ΛΓ0

^ regular SSA

Z)(m, 1) ^

β(m, 1) A

β(0, n) I

1(1, 0)

1(1, 0)

HO, 1)

4

4

1

Superconformal spin
of the JF generators

i,
I,
i

3*1, 4(m- 2)*!',

3*1, 2(2m-3)*l'

(2n - 2)*!', (n-1

[(m - 2)(2m - 5) -

, [(m - 2)(2m - 3)

t)(2n - 1)4

f 3]4

+ 3]4

Super KM
algebra

A, Θ 317(1)

βm_ 2φ3C/(l)

S -l
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Table 21. Z2 x Z2 superalgebras (with superspin \ bosons)

^ Min. includ. N0 Superconformal spin
regular SSA of the W generators

[(m - I)2 + H2]4, 2(m - 1)«4

f, (2m- l)*l,(2n-2)*l',
, n) C(2) 4 [(m - l)(2m - 1) + (n - l)(2n - 1)]4,

(2m- l)(2n-2)4

f, (Φi- 1)*1, 4(m-2)*l',
,4(1,0) 4 [(m - 2)(2m - 5) + (n - l)(2n - 1) + 3] 4,

4(m-2)(n- 1)4'

f, 2m* 1, (2n-2)*l'

B(m, n) C(2) β™ = j j W2m - 1) + (n - l)(2n - 1)]4,

4m(«-l)4'
f, (4n- 1)*1, 2(2m-3)*l ;,

A(l, 0) 4 [(m - 2)(2m - 3) + (w - 1)(2« - 1) + 3>i,
2(2m - 3) (n - l)*i'

I, 1, (2π-2)*r
Cίπ-H 1) C(2) 2 2, , v

V ^ V ^ (π - l)(2π - 1)4, (2n - 2)4

G(3) X(l, 0) 4 f, 3*1, 4*1', 34,24'

F(4) X(0, 1) 4 f, 3*1, 6*1', 64, 24

embedded in an OSp(3|2) SSA, and JV0 = 4 if the Sί(2|l) or OSp(2|2) is contained in
OSp(4\2) or D(2, 1; α) SSAs.

Z2 x Z2 Superconformal Algebras. Their classification is easily deduced from
the previous section. We begin with the Z2

 x ^2 Superconformal algebras that do
not contain superspin \ bosons, so that we can define a (right statistic) super-KM
algebra). These algebras are listed in Table 20.

If now one introduces the superspin \ bosons, the number of allowed superal-
gebras is much larger. In fact, in accordance with [16], we find one (resp. two)
TL2

 x %2 Superconformal algebras from each A(m, n) and C(n + 1) (resp. B(m, n) and
D(m, n)) superalgebras. However, for F(4) and G(3), we find two new Z 2 x Z 2

Superconformal algebras, different from the two quadratic-superconformal alge-
bras of [16], already listed in Table 19. This seems to indicate that these two
algebras exist only at the classical level. The results are summarized in Table 21.

15. Conclusion

In the classification we have obtained, each ^(super)algebra is characterized by its
(super) conformal spin content and the couple (57(2), 0) if ̂  is a simple Lie algebra,
respectively (05^(1 12), )̂ if ̂  is a Lie superalgebra. The PB of the corresponding
W (super)algebra can then be determined via the general method recalled in Sect.
2.1. However, rather important simplifications occur when the £7(1) factor com-
muting with Sl(2\ resp. OSp(\\2\ exists: the admitted 7 values are also provided in
our tables.
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It has seemed to us necessary to reconsider in a first step the problem of the
Sl(2) subalgebras in a simple Lie algebra ^, in order to make explicit our results in
the algebraic case, and also to propose the generalization we have obtained for the
supersymmetric one. We hope that the tables in which our results are gathered are
presented in a convenient enough way to allow direct use. This has been at least the
case for us to easily recognize the superconformal algebras of [16].

Among the different problems one can immediately think of, an urgent one is of
course the quantum case. Some interesting works [19, 23-26] already exist, but
a general treatment would be necessary. Another question we wish could answer is
how large is the class of J^(super)algebras which are symmetries of Toda theories,
in the complete set of W algebras.

Acknowledgements. It is a pleasure to thank A. Deckmyn, F. Delduc, K. Hornfeck and A. Saveliev
for fruitful discussions.
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