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Abstract. Let A" < ./ be von-Neumann-Algebras on a Hilbert space #, Q2 a com-
mon cyclic and separating vector. Denote 4 ,, 4, resp. J,,J, the associated
modular operators and conjugations. Assume 4" A A}" = 4 for t = 0. We call
such an inclusion half-sided modular. Then we prove the existence of a one-

. . 1
parameter unitary group U(a) on 5, a€ R, with generator o (Ind, —Indy) =0

and relations

1. A% U(a)4,"* = A% U(a)4,"* = U(e~*™a) for all a,te R,
3. A% = U)A%U(— 1) for all te R
4 N =UQ)MU(-1).

If A is a factor and Q is also cyclic for /' N ., we show that .# has to be of type
I,.

1. Introduction

In Algebraic Quantum Field Theory it is a long outstanding question, what
physical meaning the Tomita-Takesaki modular objecfs have. The algbebraic
approach of quantum field theory, as proposed by Haag and Kastler, see [6], is
formulated in terms of nets of von-Neumann-algebras indexed by special open sets
of the Minkowski space, forming the algebras of local observables. The Poincaré
group acts covariantly on this net. One assumes a unique Poincaré invariant state
o on this net, the vacuum state, with the additional property: the spectrum of the
representation of the translation subgroup in the associated GNS-Hilbert space
(vacuum sector) lies in the forward light cone. Denote s the GNS Hilbert space,
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Q the vector state of w. The Reeh—Schlieder property guarantees that Q is a com-
mon cyclic and separating vector for local algebras, see [6, 16]. Therefore one can
apply the Tomita—Takesaki-Theory. A first result concerning the physical content
of the objects was obtained by Bisognano and Wichmann [1], who were able to
identify under physically reasonable assumptions the modular group of the local
algebra to a wedge region

W={x=x%x"...,x*eR"3/|x*| > |x°| with arbitrary x?, x3} .

In this special case the modular group acts like the representation of special
Lorentz-boosts

cosh(s) sinh(s) O O
sinh(s) cosh(s) 0 O
A(s) = ; 4]
0 0 10
0 0 0 1

i.e. as geometrical transformations on the net. The modular conjugation is found to
be up to a rotation the physical PCT-conjugation.

In a conformal invariant field theory a similar result was obtained by Hislop
and Longo, see [7], for regions

ky = {xe RM3/x0] + (], x2, x%)| < 1} .

It was this circle of ideas which lead Borchers [2] to consider the following setting:

Let . be a von-Neumann-algebra on #, Q cyclic and separating w.r.t. 4. One
might think of .# as a local algebra to a wedge region in Minkowski space, # the
vacuum sector and Q the vacuum state. Assume U (a), ae R, to be a continuous
unitary group on # with positive generator, leaving Q fixed. This unitary group
might be interpreted as a time-like translation group. Denote J, 4 the modular
conjugation and operator to this setting. Then in a remarkable paper Borchers
proved (see [2]).

Theorem 1 (Borchers). If U(@)MU(— a) = M for a = 0 we get:

1. AitU(a)A_it = U(e‘z’"a)for all t, ae R
2. JU(@)J = U(— a).

This theorem generalizes the results of Bisognano and Wichmann resp. Hislop and
Longo considerably. Looking carefully at the proof a stronger version of the
theorem can be seen to be true:

Theorem 2 (Borchers). Let U(a),ac R be a family of unitary operators leaving
Q fixed with the following properties:

1. U(a) can be analytically continued to {ze C/0 < Im z < n} with |U(a)| < 1 for
ae{ze C/0 < Imz < n}.

2. U*¥(@)=U(a+in) VaeR.

3. Ua@MU(—a)cM VaeR.

Then one gets

a) 4'U(@4™" = U(e™*"a) ¥r,ac R.
b) JU(@J = U(@)* ae R.
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Borchers’ proof is rather difficult. He looks at matrix products
(o, 4"U@4™™)> o, yeDA)nDA™).

Using the Tube Theorem he can enlarge the region of holomorphy in ¢ and a. The
Edge-of-the Wedge Theorem together with the assumptions on U(a) and the
modular properties of A™ are the other inputs in order to get a complex line in
the domain of holomorphy. The estimates on U (a) lead to a bounded holomorphic
function on a line, i.e. a constant function, from which he concludes the result.
For the proof the interested reader is referred to the beautiful original work of
Borchers [2].

2. The Basic Result

The idea is to apply Borchers result to special inclusions. Let A" < .# be von-
Neumann-Algebras on a Hilbert space #, Q a common cyclic and separating
vector in #. Denote 4 ,, 4 4, resp. J,, J,» the associated modular operators and
conjugations. Assume 4 F N A} < A for t = 0.

From A" < .# we conclude

A4, < 27, )

in the sense to quadratic forms, see [3] or the proof of Theorem 3 below. The

log-function is operator monotone, see [12, p. 317 Ex. 51], and we get
In(4,)—1n(4,) 20 ©)

in the sense of quadratic forms. Assume now that In(4 ) — In(4_,) is essentially

selfadjoint on D(In(4 ,))~ D(In(4 ,)), i.e. we can apply the Trotter product for-
mula, see [4]. We get

explit(in(4,,) — In(4,)) = s — lim (47 4 )" 4

n— oo
from which we read off

Ad(exp(it(In(4 ) — In(4. )W) N fort=0. )

(Ad 47,(A") = A by modular theory, Ad 4 (A) = A for t = 0 by assumption.)

We can apply Borchers result (Theorem 1) to A", 2 and U (a) = exp(ia(ln(4,)
—In(4,))). Using a slightly different method we can avoid the assumption on
essentially selfadjointness of In(4_,) — In(4.,).

Theorem 3. Let /" = M be von-Neumann-Algebras acting on a Hilbert space #,
Q a common cyclic and separating vector. Denote 4 ,, A, resp. J,, J, the related
modular operators and conjugations. If

AL N A e N forallt =0 (6)
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we get:
a) In(4,) — In(4_,) is essentially selfadjoint of D(In(4.,)) n D(In(4 ,)).

1 .
Denote p the selfadjoint closure of o (In(4) — In(4.4)), U(a) .= €'°?. Then

b) A% U(a)A," = A% U(a)4,"* = U(e *™a) for t,ac R, (7

Proof. First notice that
T(z)i= 44745 ©)

can be analytically continued to {ze C/0 < Imz < %} with | 7(z)|| < 1, see [3]. For
the reader’s convenience we will sketch this proof:
Let Ae A be entire analytic w.r.t. the modular group of A4". Then

T(0)AQ = AQ,
TG)AQ = A ATAQ = T AT AL T,

From this one concludes
IT@) = 114%TO) 45" =1,

i AN
r(5+1) =|A§,T<§>A”‘

for te R, and by the Hadamard—Three-Line theorem, see [13], the final assertion
follows. Define

=1 8Y)

V(t)= A% 455 A% = T(t)*T(t), teR. (12)

V(t) is a unitary family which can analytically be continued to {ze C/
0 < Im¢ < 1}. Notice that

Vo) =V(-1) (13)

and | V(t)|| £ 1forte {ze C/0 <Imz < 1}.
Furthermore by assumption we have

AdV(i)AN)e AN, fort=0.

In order to apply Borchers result we make a variable transformation. The sinh-
function maps {ze C/0 < Imz < =} biholomorphically onto the upper half plane
{ze C/Imz > 0}. The log-function maps this domain biholomorphically onto
{ze C/0 < Imz < n}. Therefore

Z > (% arcsinh exp(z)> (15)
maps {ze C/0 < Imz < n} biholomorphically onto {ze C/0 <Imz < 1}.

Furthermore the real line is mapped onto the positive part of the real line, the
elements with imaginary part iz onto the negative part.
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~ 1
Let U(a)= V<E arcsinh(exp(a))),ae R. We can apply Borchers result, ie.
Theorem 2, to U (a), &, Q getting
A8 U@@)4;" = U(e~*™a) fort,acR. (16)

Rewriting this in terms of the modular operators we get

A‘i/g—%‘l'iz—a)AiZ=Aiz‘2’"ﬁAig+§—rT“)’ (17)

. 1 . ) S .
with @ = — arcsinh(exp(a)). This proves that 4%, 4%, t,se R generate a two di-
7

mensional unitary group. Instead of trying to identify the group by working out the
above commutation relation directly we will use the following property: In the case
of a unitary representation of a Lie group G on a Hilbert space, we always have
a common core for the representation operators of the Lie algebra of G, see [8].
From this we get

a) In(4 ) — In(4_,) is essentially self adjoint on D(In(4_,)) n D(In(4 ). There-
fore we can apply Borchers theorem for exp( — iap) as indicated above to get b) and
). The group generated by 4%, A% is now easily recognized to be the two-
dimensional Poincaré-group. O

Exploiting the group structure of the 2-dimensional Poincaré group we get

Corollary 4. 1. A% A" =~ 17" teR.
2. Alt - etpAtt —lp
3. J‘/(J/V=e—i2p.

Proof. Let g,, gm> gn, m denote the Lie algebra elements belonging to the generators
In(4), In(4_,) resp. p. From Theorem 3a) we know their commutation relations.
Applying a Baker—-Campbell-Hausdorff formula one gets a). The last statement is

L . . . —i
a specialization of a). Analytic continuation of a) to t = - leads to

e 20 = £ AT =T, 0, (18)
Therefore we get the announced relations. O

Remark. It is not difficult to see the following: let 4, A", Q2 be as in Theorem 3 but
(6) replaced by

BNA e N forallt=0. (19)
Then we get instead of b),
b) A% U(@)4," = 4% U(a)4,;" = U(e™*™a) fort,aeR. (20)
Similarly in Corollary 4 1) has to be changed to
1) At A7 =el(=1+¢P (e R,
The theorem suggests to give special names to such type of inclusions.

Definition 5. Let A" < .# be von-Neumann-algebras on a Hilbert space # . Let Q be
a common cyclic and separating vector. Denote o', the modular group associated to
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(M, Q). If 6/ (NN for all t 20 or t £0, we call (N < M, Q) a half-sided
modular inclusion.

In the next section we want to draw some conclusions from the result.

3. Some Conclusions

As a simple corollary we get the symmetry in the conditions in A4 < .# and
M = N

Corollary 6. Let (N < M, Q) be a half-sided modular inclusion, 4,, A, be the

associated modular operators. Assume A N A%, < N for t = 0.
Then

Ut)#U(—t)c M fort=0 (21)
and

A MA <M fort 20, (22)
where U (t) = exp(it(In(4 ) — In(4 ,))).
Proof. By Theorem 3 we know

UQMU(=2) = JydylIydy = N < M . 23)
Using 4% U ((2)4," = U(2e™ ™) we immediately get (21). Applying the relation
B =A%U(— e 2™ + 1) from Corollary 4, a) leads to (22). O

Corollary 4 b) suggests A" = U(1).#U( — 1). That this is really the case is the
content of

Corollary 7. Let A, M be as in Corollary 6.
Then &/ = UQ)AU(— 1) with U(a) = exp(ia(In(4) — In(4_,))).

Proof. Let Ae 4. Then 4,"A4}"e A for all t and thereby

A% AT AAY A e M for all te R. (24)
By Corollary 4 we get

U(e ™ — 1)AU(1 — e*™)e M VteR. (25)

Therefore
U(-1y/uvi)c 4, (26)

1e.

N acUN)AU(—-1). 27)
Q is a cyclic and separating vector for both algebras and their modular groups
agree. From this follows equality, see [15]. O

For the next result we need some preparatory lemmatas. The aim is to show
that in the case of factors 4" and .# have to be of type I1I,. It will be enough to
prove the uniqueness of Q as an invariant vector under U (a), ae R.

First let me recall a result of R. Longo see [9, 10].!

! The author thanks R. Longo for pointing out an error in an earlier version of this work



Half-Sided Modular Inclusions of von-Neumann-Algebras 89

Theorem 8. Let N < ./ be factors, Q be a common cyclic and separating vector.
Denote y:= Ad J, J, : M — M the canonical endomorphism to this situation, J -, J ,
the modular conjugations to (N, Q), resp. (M, Q). If Q is also cyclic for /"' n M, it
follows that

o — hm y"(A) =<{Q, AQ) Ae # neN. (28)
Proof. See [10, Chap. 4].
From this result we immediately conclude O

Corollary 9. Let NV < M,Q as in Theorem 3 and also cyclic for N/ M, M
a factor. Assume € A invariant under U(a), ae R. Then

Y, AP = AQ YY) for Ae M . (29)
Proof. From Corollary 4 we get J,,J, = U(2). Then
Y, APy = (U(—2n)y, AU(2n)*y) for all ne N
= lim <y, (Ad J Lo )"(A)Y

=Y, Y ><Q, AQ) (30)
by the result of Longo, see Theorem 8. O

To prove the uniqueness of the vector we will exploit the natural order structure
of modular theory.

Denote P*(A) == {Aif AQ/Ae &}~ the standard cone to (A, Q), see [15].
We get

Lemma 10. For t > 0 U(it) is positive w.r.t. P*(A"), i.e.
U(it)P*(N) < P (N). (31
Proof. By the positivity of the generator we can analytically continue U (a) to the
upper half plane. Let 4, Be A4, we get
1 1 1 it 11 _1 it 1
(A% Aw, U(it) 4% BQY = <AQ, A%, U(%)Aﬂuwj U<%>A}BQ> NEY))

From the commutation relations of Theorem 3 we conclude

t\ 4 t
=<AQ,U<—§>AMU<§)BQ>. (33)

t .
— —>e N7 e

With Ae #* we also have U<%>AU< 5

<A’EVAQ, U(it)AiBQ) =0. (34)
This proves the statement. O
As a simple application we can show

Corollary 11. Let . be a factor, y € S be U (a)-invariant. Then s is a multiple of Q.
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Proof. From U (a)y =y for all ae R we get

U@y =JyU(=a)y =Jpi, (35)
that is, J,- also U (a) invariant. Denote
Yi=y+ L, Y=y —il, Y. (36)

Both vectors are U (a)-invariant and by construction J,-invariant. We can there-
fore uniquely decompose i,,, into

Vi =&l — i
with £547 € PY(A), €12 LET)2, see [15]. For ¢ 2 0 we can estimate
LT+ ) UG (&2 + E1ja)> = &2 — &1, U)(ET 2 — E712))
+ 2(812, Uit)E 112> + &2 Uit)E112)
Z (Y2, Ui)1)2> 37

by the positivity of U (it) w.r.t. P*(A4"), Lemma 10. But from the positivity of the
generator of U (a) we know |U(it)|| £ 1fort = 0, i.e.

NUG)ET 2 + Eq)ll = 1E82 + &1zl (38)

from which we conclude

Efa + ¢52 Ula)-inv., (39)
and therefore
&fh Ula)-inv. . (40)
But ¢4 € P*(A") by the very definition. From Corollary 9 we get that
L, ALY = CQ AQYETL &> (41)

Now the vector representation of states in P*(.4") is unique, see [15], from which
we conclude ¢4 is a multiple of Q and therefore the final proof.

Collecting the results we get

Theorem 12. Let (N < M, Q) be a half-sided modular inclusion of von-Neumann
algebras on a Hilbert space #. If N % M, M a factor, M has to be of type 111, .

Proof. Applying Theorem 3 and Corollary 11 we get a unitary group U(a),ae R
with a unique U-invariant vector Q and positive generator. Furthermore we have

U@AU(—a)c M fora=0. 42)
From A" % .4 we easily get that
U@AMdU(—a)E M fora<0. 43)

For such a situation Longo showed in [11] that .# has to be of type II1I;. U

Remark. Using Corollary 11 one can prove uniqueness of the vacuum for models
in Algebraic Quantum Field Theory. For example consider the von-Neumann-
Algebra 4 of observables localized in a wedge region. Assume .# to be a factor.
Let U(a), ae R be the unitary representation of timelike translations into the
wedge region, U(@)#U(—a)<= .M for a=0. U is assumed to have positive
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generator. If Q is a cyclic and separating vector for .#, U-invariant, we conclude
with the help of Corollary 11 that it is the unique U-invariant vector. Notice that
we do not use any localization property or asymptotic abelianness for this argu-
ment. To get the conclusion one applies Borchers result [2], see Theorem 1, to that
situation. Then define A/ := U(1).#U( — 1). It is easy to see that 4" < .# fulfills
the conditions of Corollary 11.

All these statements on the inclusion of 4" < .# depend on the state Q. The
natural question arises under what general conditions we can find to a given
inclusion 4" < .# a common cyclic and separating vector Q with ¢ ,}(A") = A for
all t = 0, o', the modular group of (#, Q). Let us restrict to the case of factors.

Next let me recall the following definitions:

An inclusion A" = ./ is called split iff there exists a type I factor N in between, i.e.
N = N < M. A vector Q is called standard iff Q is cyclic and separating for A", #
and A7 N M, see [5].

Assume now A" < . to be factors of type I11,. If /" < M is split it follows that
N M is too a type 111, factor, see [5]. We get as an easy application of the
above results

Lemma 13. Let & < M, N M be factors of type 111, Q a standard vector. If
64/ (N) e N forallt =0, ', the modular group of (M, Q), the inclusion cannot be
split.

Proof. Assume A" < . to be split. Denote J,~ ~ _» the modular conjugation of
(N M, Q). By the results of Doplicher and Longo [5, Th. 4.1.]

N=Jy n a M)y ~.g O M (44)

has to be of type I, 2 a cyclic and separating vector for this algebra N. By the very
assumption we get

04N )N fort=0 45)
and therefore
oL N N Myc N "M fort=<0. (46)
From this we conclude by Theorem 3 the existence of a unitary group
U(a) = exp(ia(In(4 4 ~ ) — In(4_,))) with the special properties listed there. Espe-
cially we get
Jrna=UQ2)Jy. 47)
We rewrite
N=Jynu()Iyinyr  =UR)MU(=2) M . (48)
Using the commutation relation we conclude
oc/(N)c N fort=<0. (49)

From Theorem 12 we get a contradiction to N being of type 1. O
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4. Final Remarks

We showed in this article that half-sided modular inclusions carry a strikingly rich
structure. In a sloppy way they lie between Jones inclusions and split inclusions. In
the former case one has a faithful conditional expectation from .# onto A4~ w.r.t.
a state w. By Takesaki’s theorem, see [11], this is equivalent to ¢',(A") = A" for all
te R, o', the modular group of (.#, ). On the other hand Lemma 13 shows that in
the standard case the position of A" in ./ is too narrow to ./ to be interpolated by
a type I factor.

We will continue our investigations on such types of inclusions in the near
future.
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