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Abstract. We prove that the spectral gap of the Kawasaki dynamics shrink at the
rate of 1/L? for cubes of size L provided that some mixing conditions are satisfied.
We also prove that the logarithmic Sobolev inequality for the Glauber dynamics in
standard cubes holds uniformly in the size of the cube if the Dobrushin-Shlosman
mixing condition holds for standard cubes.

Introduction

As the simplest model in statistical mechanics, Ising model has been studied
extensively. It is by far the most studied model in mathematical physics and its
phase structures were analyzed in great detail. The study of dynamical properties of
the Ising model, on the other hand, is in a much more primitive stage. Our main
concern is the hydrodynamical limit of the Ising model for which we shall provide
a basic estimate on the gap of Kawasaki dynamics. The hydrodynamical limit of
various models has been studied recently and several useful methods were developed,
see, e.g. [DP, S] for a review. A central assumption of these methods is the so-called
gradient condition. Roughly speaking, it means that the current of the dynamics is
by itself a gradient of some other quantity. For models with this property, a natural
summation by parts can be performed and the technical difficulty is greatly reduced.
The drawback of gradient models is that the diffusion coefficient, as given by the
Green-Kubo formula, is determined by the thermodynamical quantities rather than
depending on correlation functions as the nongradient model does. Therefore, it does
not manifest effects of fluctuations on the diffusion coefficient.

Another interesting aspect of the gradient condition is that, except in dimension
d = 1 or the infinite temperature case, no gradient model has been constructed for
any truly interacting, reversible models with discrete spin space. So a study of the
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nongradient model with discrete spin space is an essential step if any progress on the
hydrodynamical limit for the Ising model can be made. So far the only known result of
the nongradient system is Varadhan’s work [V, see also KLO, Q] on Ginzburg-Landau
type dynamics with product invariant measure. One of the key estimates needed is a
bound on the spectral gap which in the special case of product measure can be proved
rather straightforwardly. In this paper we shall prove such a gap is true for Ising type
models under certain mixing assumptions on the Gibbs state. Let us sketch our results
briefly here.

Let A be a cube in Z? of size L and let p1, denote a Gibbs state with boundary
condition w. Since our dynamics conserves the total number of particles, it is natural
to introduce the “canonical Gibbs state” v, ,; with the total number of particles (or up
spins) fixed. Let A denote the standard Kawasaki dynamics (with Dirichlet form given
by (1.23) below) with reversible measure v, ;. Our main result is that the spectral

gap of A cannot shrink faster than 1/L? if some mixing conditions are satisfied, see
assumptions A1-A3 in Sect. 1. An upper bound on the gap of the order 1/L? can
be easily obtained by considering a slowly varying test function. Thus this correctly
pins down the decay rate of the gap.

Our methods are based on the martingale approach. It also proves that there is
a positive spectral gap for the Glauber dynamics (with Dirichlet form given by
(1.21) below) uniformly with respect to the volume and boundary conditions if certain
mixing conditions are satisfied (see Assumption (A.1) in Sect. 1). With the method
almost unchanged, a logarithmic Sobolev inequality is also proved under the same
assumption. It should be emphasized that these results are general in the sense that
they applied to any models with finite range interactions (or summable interactions)
with discrete or continuous spins for which assumption A.1 holds. If one is interested
only in ferromagnetic Ising models, a useful tool known as attractiveness becomes
available and stronger results can be obtained. Recently Martinelli and Olivieri [MO1]
have proved the important result that exponential convergence holds for ferromagnetic
Ising models up to the critical temperature. For general models, they also obtained
results similar to ours (Theorem 1 and 3) independently with different arguments
[MO2] (see also the next paragraph for a comparison with [SZ]). Although the mixing
conditions (A.1) assumed here are equivalent to theirs [O, OP], their proof has the
advantage of being directly based on mixing conditions for only one cube. For the
Kawasaki dynamics, we are not aware of any result except in the case of independent
random variables (with the global constraint that the total magnetizations is fixed) [F,
KLO, Ql.

Let us pause to comment on some history of the spectral gap and logarithmic
Sobolev inequality for the Gibbs states. The importance of the logarithmic Sobolev
inequality and its connection to the hypercontractivity (for general measures) was first
proved by L. Gross in his 1976 paper [L]. (See e.g. [DGS] for a review.) Since then
it has been used as an important tool to understand the exponential convergence to
equilibrium. For Glauber dynamics, there are extensive literatures on this subject since
the late seventies by, e.g., Holley, Liggett, Stroock et al. Most of these results are one
dimensional or concern some general properties (e.g. [CS]). A higher dimensional
result was obtained by Aizenman and Holley [AH] which states that the spectral gap
for the infinite volume Glauber dynamics is strictly positive if the Dobrushin-Shlosman
uniqueness condition is satisfied. Later on Zegarlinski [Z2] proved the logarithmic
Sobolev inequality under the Dobrushin uniqueness condition. Recently Stroock and
Zegarlinski [SZ] proved that the logarithmic Sobolev inequality is equivalent to the
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“Dobrushin-Shlosman mixing conditions” (see also [S, Z3] for a review), which are
closely related to the mixing conditions considered in this paper. The alert reader
may have found the above mixing or uniqueness conditions confusing. Unfortunately,
a closer examination of the literature can only add to the confusion. We shall not
discuss the relations among these and other equivalent conditions in this paper except
the following remark concerning the comparison between our results in the Glauber
dynamics case and that of [SZ]. The interested reader is referred to the recent papers
by Martinelli and Olivieri [MO1, MO2] and references therein for a thorough study
and clear review of these mixing conditions.

Apart from the fact that we are using a different approach, our result differs from
[SZ] in the following way: In [SZ] the DS mixing condition is assumed for all
domains in Z? and the logarithmic Sobolev inequality is proved for all domains in Z
while we assume mixing conditions for standard cubes and prove that the logarithmic
Sobolev inequality holds uniformly for all standard cubes. (If one is interested in
infinite volume Gibbs states rather than finite volume Gibbs states, the approach of
[SZ] also requires only the DS mixing conditions for cubes [Z1].) It was emphasized
in [MO1, MO?2] that the DS mixing condition for general domains is not expected to
hold in low temperature with magnetic field. For example, a two dimensional “cube”
in R in low temperature with two boundaries consisting of translates of the two
dimensional “cube” will not satisfy the DS condition if the two boundary conditions,
say, take value plus one while the magnetic field is minus two so that the effect of
magnetic field is completely cancelled by the boundary condition. On the other hand,
we do not require the mixing condition for domains other than standard cubes of size
L x L x ---x L. The mixing conditions for cubes rather than for arbitrary domains
was emphasized by Olivieri [O] and Olivieri-Picco [OP] in their study of cluster
expansion for spin systems. We thank Martinelli and Olivieri for informing us of the
importance of assuming mixing conditions only for cubes, the previous comparison
between the mixing conditions of [SZ] and ours, and for providing us the previous
example.

Unfortunately, so far we are not able to prove the logarithmic Sobolev inequality
for the Kawasaki dynamics for the Ising model except for d = 1. If one replaces the
Ising model by Ginzburg-Landau models then the corresponding logarithmic Sobolev
inequality can be proved. It is interesting to note that for the hydrodynamical limit
the Ising model is by far the hardest. We shall delay the proof of the logarithmic
Sobolev inequality for Ginzburg-Landau models in a forthcoming paper in the hope
that the difficulty with the Ising model can be resolved.

Finally, we comment on the difference between the Kawasaki and Glauber
dynamics. In Glauber dynamics, the convergence to equilibrium is exponentially fast
and the influence of both the dynamics and the Ising measure itself exponentially
decays with the distance. The Kawasaki dynamics, however, does not converge to
equilibrium with exponential rate. Furthermore, due to the global condition that
the total number of particles is conserved, the canonical Gibbs state is negatively
correlated, in the sense that (1,;7,) ~ —1 /L¢ for |z — y| ~ L in a cube of size
L. (To see this, consider the special case that the canonical Gibbs state degenerates
into independent random variables with the constraint > 7, = const. Clearly one has

x

< N/ EDD nz> = 0 which implies that

<771;77y> = _<771’77m>/Ld ~ —I/Ld)
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While 1/L% is very small for L large, these negative correlations sum up to order one
and in some sense are responsible for the 1/L? decay of the spectral gap. In other
words, long range negative correlations play a very significant role in the Kawasaki
dynamics while exponential decay dominates in Glauber dynamics. One can easily
understand this by considering the infinite temperature case, i.e., the product measure
case. While the spectral gap is trivial for the Glauber dynamics, it already requires
nontrivial arguments for the Kawasaki dynamics [F, KLO, Q] especially when more
than one particle is allowed per lattice site [KLO].

This paper is organized as follows: Chapter 1 is the statement of main results;
in Chapter 2 we prove the spectral gap for Glauber dynamics; Chapters 3 and 4
contain the main technical estimates of the paper and the spectral gap of the Kawasaki
dynamics is proved in Chapter 4; Chapter 5 provides some details on the equivalence
of ensembles needed in Chapters 3 and 4; finally we prove the logarithmic Sobolev
inequality for Glauber dynamics in Chapter 6. For readers interested only in Glauber
dynamics, Chapters 3 to 5 can be omitted.

1. Statement of Main Results

Let A be a domain in Z? and let 9/ denote its boundary
A = {y € 2%\ A | dist(y, A) = 1}, (1.1)
where the distance function is defined by
dist(y, 4) = Inf |z — yl,

|z —y| = max [|z%—y%|. (1.2)
a=l,...,d
Let w be a configuration on 04 where w, belongs to some state space X for all
x € AA. For simplicity, we shall restrict the state space to be Z, = {0, 1}. All results
in this paper hold if one replaces Z, by

Z,=1{0,1,2,...,p—1}, 2<peN. (1.3)

We shall consider the spectral gap problem in a class of domains which we shall
call generalized cubes. Recall the standard cube in Z¢ is characterized by its size L
with

Ay ={z=(" ...,z |z' €2 1<a' <L} (1.4)

By definition, a simple cube is a translation of the standard cube. The boundary 04,
of a simple cube is a union of faces which are cubes in Z?~!. Denote the faces by
oA, 8%A;,...,0%A;. We now define the notion of generalized cubes. Choose a
lexicographic order in Z*. Let F* C 8°/A; be a subset of '/, defined by

Fl={zed'Ay|z >z €A inZ"}, (1.5)

where z; is some fixed point in 9°A;. A generalized cube of size L + 1 is the union
A, UF'U - U F?4, We shall call a generalized cube simply a cube.

The Hamiltonian we are interested in is the class consisting of translationally
invariant, finite range interactions. For simplicity of notation, we shall restrict
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ourselves to nearest neighbor interactions. Thus a Hamiltonian is characterized by
an interaction J(7,,, ny) with

HA: Z '](nzany)

z,yeA
|z—y|=1

More generally,

Hy = Y Jagn)+ Y. Jo,w)+Ad 1, (1.6)

z,y€A, yEIA, zEA, z€eA
lz—yl|=1 lz—yl|=1

The standard Gibbs state with chemical potential A and boundary condition w is
characterized by the density

App () = expl—H(M1/Z, , » - (1.7)

Here the partition function Z , , is the normalization factor to make dy, , 5 into a

probability density. We shall denote by E*#4«* or E, , y or( ), , \ the expectation
with respect to dpi, , 5. Recall the pressure defined by

PaoN) =14 0gZ,, \. (1.8)

The infinite volume limit of p AM()\) exists and is independent of w, i.e.
lim py () = pOV).
We need the concept of canonical Gibbs states. Let IV be a fixed positive integer.

Then a canonical Gibbs state with total number of particles N and the boundary
condition w is characterized by the density

dl/A,w,N = d:u/l,w |'77:N . (19)
Here 7 = ) n,. Note that the right side of (1.9) is independent of A since 7 is fixed.
€A
Define the canonical partition function
Z5on= > expl—H, ), (1.10)
7=N

where H, , = H, , \_o- We shall follow the convention to omit the subindex in case
it is zero, understood, or unimportant. Recall the free energy

Fawn = =141 og Z3 , v - (1.11)

The infinite volume limit of f exists if N/|A] — o in the limit. Furthermore it is
related to the pressure by the Legendre transform

flo) = sgp(AQ —p(\)). (1.12)

For any function g of the configuration space, define two operators

o,9(n) = glo,n — g(n), (1.13)
Ty, 9() = g(T,,m — g(m). (1.14)
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Here o,n and T, n are defined by

©@am), = %), = 6, (1= 1)+ (1 = 6,1, , (1.15)
(Ta:yn)z = (nzy)z = 6mzny + 5yz771 +(1 - 6:1:z - 6yz)772 : (1.16)

To state our main result, we need the following assumptions. Define first the set
Ay, = {7 € 04w (@) # wy (@)}

Assumption Al. Let g be a function depending only on the configuration of a subset
U in a cube A. Then

|EA,w1,)\[g] - EA,wz,,\[QH

< const. [o(1 — 9)]'/?|A ||U|exp[—const. dist(4,, ,,, )] l9]lo - (1.17)

wi,wy

Here E, , \ denote the expectation with respect to du, , , and the constants are
independent of A and w,.

Assumption A2. There exists a summable function t(s) < const.s™% so that for
any local functions f and g with f (g resp.) depending only on configurations in U
(V resp.) we have

[E¥ANe(f; g]| < C(@{L™* + tdistU, V) }HI fll oo 19l oo 1T [V, (1.18)
where C(9) — 0 as o — 0. Here A is a cube of size L.
Assumption A3. Let f = [A|7' Y f,, g = |A|7'Y g, and h = h, with f,, g, and

T
h,, being bounded local functions at x and y. Then :
E"aNwf;g;h] < const. L™ fllog gl oo 1l - (1.19)

Here (f;g;h) = ((f = (fN(g — {(g)(h — (),
of size L.

Note that in principle the volumes of the supports of f,, g, and h., should appear in
(1.19) as in (1.17) and (1.18). We neglect them because all local functions considered
in this paper depend only on configurations in cubes of uniformly bounded volumes.
We shall adopt the convention that, by “local functions,” we mean functions depending
only on configurations on a cube of size less than 4dR 4 1 with R denoting the range
of the interactions in the Hamiltonian. In particular R = 1 for the Ising model.

We shall assume that the domain A in Assumption A2 is of the form

A=0\T

with 2 and I" being generalized cubes and that |I'| < |§2|° for some € > 0, say
€ = 1/100. We have assumed Assumption Al for all cubes. In fact, it can be proved
that if (1.17) holds for a fixed cube then it holds for all cubes, [O, OP]. Furthermore,
the exponential decay assumption for that fixed cube can be considerably weakened
[O, OP]. In any event, we do not exponential decay for Theorem 1 or 3. A power
law decay faster than summable will be enough, for example.

Assumption A.1 is a standard assumption in the study of Glauber dynamics and has
been studied and reviewed extensively [MO1, St, SZ]. Assumptions A.2 and A.3 are
not as familiar and we are not aware of any results in the literature, though in principle
they should follow easily from the high temperature expansion. In a forthcoming paper

flloo = supl|| f,llo and A is a cube
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we shall prove that Assumptions A.2 and A.3 follow from Assumption A.1 and some
other very mild assumptions.

Theorem 1. Suppose Assumption Al holds. Let (L) be defined by

O(L) = fsgp (55 nwn/ Zawa () (1.20)
Dy () = < Z(ozf)2> : (1.21)
€A Aw,\

Here ( )4\ = Epu (40) = (wv) — (u)(v) and Ais any generalized cube of size
less than or equal to L. Then there is a constant k independent of A, w and X\ such
that O(L) < ko(1 — p) with p denoting the density of the Gibbs state | Awhs namely

o= (A7 n,

Theorem 2. Suppose that Assumptions A2 and A3 hold and that Assumption Al holds
for all \. Let

>A,w,)\.

wL)=L7% sup (fi f)pwn/Dawn), (1.22)
fiAw,N
DA,w,N(f):< > (szf)2> : (1.23)
|z—yl=1 Aw,N

Here ) aw N = Epu - Then there exists a constant k independent of A, w, and N
such that w(L) < k.

The following Theorem 3 concerns the logarithmic Sobolev inequality for the
Glauber dynamics (1.21). We first recall the definition of entropy. Let o and (3 be
two probability measures. Then the entropy S(a/f) of « relative to 3 is defined by

S(a/B) = / [10g <Z—g>] do. (1.24)

In the case we are interested in, (1.24) is well defined since both « and 3 will be
discrete. In general one can define entropy by a variational principle.

Theorem 3. Suppose Assumption (A.1) holds. Let u(L) be defined by

U(L) = fSUPA S(fﬂ'/l,w,A/MA,w,A)/gA,w,A(\/})’
w,
where the sup is taken over all cubes with size less than or equal to L and all probability
density (with respect to pi, , 3) f. Then there is a constant k independent of A, w and
A such that w(L) < k.

II. Proof of Theorem 1.

We shall prove Theorem 1 only for d = 2. The general case follows from similar
arguments.

Step 1. Let A be the union of a generalized cube {2, with its translation 7, 7 (2,
namely
A= Uro S
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Define an order z = (z!,2%) <y = (y',9?) if 2> < 3? or 2> = 3? and 2' < y'. Let
zy = (0,0), z; = (0,1) etc. and let 7; = N, - For any j nonnegative define

fj(nj, Nit+1s - ) =E![f ’ MisMygr1 -+ J=E[f ' Z] 2.1
Here 9? is the o-algebra generated by 7;,7,,;, . ... Then one has the identity
Bl f1= (f; ]) =E{ Z<f;fg>j+E[f;f|%]}. 2.2)
7=0
Here (f; f) = (f*) — (f) and
<fj;f]>j = E[sz I'Z-H] - E[fj

Note that the summation in (2.2) has only a finite number of terms.

Tl 2.3)

Step 2. By definition f, is the expectation of f with respect to the Gibbs measure
with boundary condition w and 7,,7,,, - ... Let %’ denote such a measure. Let v
denote the modified measure with boundary condition the same as u) except n; 18

set to be 0. Let ‘ A A
d,u(])/dl/(ﬁ = p, (2.4)
Then (h = h¥)
f= [ = [ 1@+ (fit) = T+ il @)

Hence o
(£ 15, <2f5 1)), +2BUF )5y | - (2.6)

Step 3. Given the o-field Z +1» 11 1s distributed according to some Bernoulli measure.
Let p be the probability of having n; = 1. Hence

i) = =) (f,tn; = D) - Fm; = 0)°. @7
It is straightforward to compute
2
(fj(nj =1 - fj(n] = 0))2 = (/[f(n] =1 - f("?j =0)] de)
< / (1, = D) — f(, = ),

Clearly, there is a constant u so that 0 < u~! < (p/0)+(1—p)/(1—p) < u < oo with
o denoting the density defined in Theorem 1 and with u depending on the Hamiltonian
but independent of A. Together with (2.7) we have

B{f3i 1)y < E{p(l —p)/(o—jf)2 du]}

< (1 - g)E{ Y dvj}
< const. o(1 — Q)E[(a;)’]. (2.8)



Spectral Gap and Sobolev Inequality for Kawasaki and Glauber Dynamics 407

Here we have used the fact that b = h") in (2.4) is bounded by a constant independent
of .

Step 4. Let £ be a fixed large number and let Ea be the cube (with j fixed and
a=0,1,2,...)
o = {z € 2% | dist(z, z;) < £}, (2.10)

where z; is the 4™ site according to our ordering in Step 1. Let gz be the o-algebra
generated by {1, | z ¢ B,} and let &, = &, N.7;. Define hYY by

Y = ERY | 2], AP =hD. (2.11)
Hence

2
<f h(),,(J <f Z h(J) hg‘)f-l >

v(3)
< const. Z(f; hY — B )2+ 17 (2.12)
a=0
Note that by definition £*@[r) — hY, | %, ,,] = 0. Hence

)IZJ(J) — {EV(J)EV(J)[f h(J) | +1 }2

< EV(]){EV(])[f;f | a+1]E”U)[hfj);h§{) | %+l]}'

<f§ hg) hgjrl

(2.13)

Since h"Y is a local function at x,, by Definition (2.11) and Assumption (A1) for any
two configurations 7 and ¢

KD () — RP(()] < const. £ exp[—CE*], (2.14)
we have that
(f; R < Z EYDEYD[f; f | %, 1exp[—CL¥](a + 1)*¢*

< const. Y EMOEMf; f | G,y 1expl—CE* (o + 1)*E. (2.15)

Here we have used the fact that |dv'9) /du)| < const. with the constant independent
of \.

Step 5. Let a; > « be chosen so that exp[—C/¢*1] < L~¢ and af¢®0 exp[—C/{*0]
< ¢ for some € small to be chosen later. Note that /*1 < const.log L. Divide the
summation in (2.15) into three regions: o > o > o, o < ¢y and a > «. In the
first region we use induction to have

B f | %11 < O(const. logL)E“[ 3 (0,07 QH]
:ceBa
For the second region, since «, is just a fixed constant, there is a C'(c,) such that

ERG) Z EFLf; f 1 9.1 < Clag)o( — Q)E"(j){ Z (Uxf)z}'

a<ao T—T
0 7 SZQO
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In the last region, one simply uses the trivial bound that EFOEH[f; f | a1+1] <
EHO[f; f1. Hence we can bound (f; h@)Z ) by

<f; h(j)>i(j) < H(const. log L< Z [ Z (a$f)2]> (o 4 1)2* exp[—C1*]
w(g)

a>o>00 Lgep,
+ Claga(l - g)< 3 <azf)2>
|z—z,|<L%0 [26)]
+ L7 ey - 2.17)
Step 6. By induction,
Elf: f1 7] < O(L)E[ NCA f)2}. 2.18)
x<mzg

We now collect (2.2), (2.6), (2.8), (2.17) and choose € small to have

(f; fha < 0(L>< > (o, f)2>

z<z(
+ [ﬁﬂ(const. log L) + C(ap)o(1 — g)J < zm:(% f)2>/1

+ L7 F)a- 2.19)

Since we have a similar inequality if one reverses the order in Step 1 by reflection,
we have the averaged inequality

(fsfra< [ 6(L) + mﬂ(const log L) + C(agp)o(1 — Q)] < ;(amf)2>/‘

+ IS ) (220

Step 7. Let A= AU T 1.0/l be a cube of size 2L x 2L. Repeat the above procedure
once more; we then conclude that

L) < O(L) + m@(const log L) + constant o(1 — o)

< Z6’(L) + constant o(1 — ).

The above inequality implies that 6(L) is bounded for all L and concludes Theo-
rem 1. O

II1. Proof of Theorem 2, Part I

Our basic procedure for proving Theorem 2 is similar to that for proving Theorem 1.
There are additional complications due to the conservation law and the slow decay
of correlation functions (i.e., the 1/ L% term in Assumption A2). In this section, we
shall bound (f; (17] =1)- f 5, = 0))? (see (2.1) for definition of f ) by Dirichlet
forms and covariances (cf. Steps 2 and 3 for Theorem 1). In the next sectlon we shall
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bound the covariance by Dirichlet forms again (cf. Step 4 for Theorem 1) and thus
conclude Theorem 2.

Let vy be a canonical Gibbs state on A with some fixed boundary condition and
total number of particles V. For each z € A define

F,=0—-nyexp{—H(o,n) + Hn}. 3.1

Here H is the Hamiltonian for v,. Also define

Fy = (4] - N)™! Z F,. (3.2)
z€A

By particle-hole duality, we can assume without loss of generality that the density
oy = N/|A] is bounded by

oy <2/3. (3.3)

Assumption (3.3) will be enforced throughout the rest of this paper without further
explanation.

Most results in this section hold trivially in the case of continuous dynamics, e.g.
Ginzburg-Landau dynamics. Without going into the details of the Ginzburg-Landau
dynamics, let us remark that the two basic operators o, (1.13) and Tmy (1.14) for the
discrete dynamics will be replaced by

o, f =0f/0n,,

in the Ginzburg-Landau dynamics. Certainly in this case 7, is a continuous variable.
As can be easily checked, the following Lemmas 3.1, 3.2, 3.4 and 3.5 are just
simple consequences of chain rules for differentiation if it were the Ginzburg-Landau
dynamics.

The reader should bear in mind that the discrete dynamics has to be treated carefully
when the density o, = N/|A| becomes very close to one or very close to zero. One
certainly does not expect new phenomena occurred in this case; it nevertheless requires
careful arguments to treat the discrete nature of our dynamics. More significantly,
there are nontrivial differences between these two dynamics as we shall explain more
carefully in Lemma 3.6.

Lemma 3.1. With the above notation, for any function f
EN+{f] — E"N[f]
=N+ DY ENH[—(0, fin,] + [E"NENTT'EVNIf; Fyl. (34)
In particular, if f is a local function and (3.3) holds then
I[E¥N+1 — EYN][f]| < const.|A| ™, (3.5)

provided that Assumption A2 holds. Here o, is defined in (1.13).
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Proof. By definition,
EYN4I[f] = (N + 1) BN+ [Z%f(n)]
= (W + )7 BN [Z N, (f () - f(%n))}

+ (N + )" lEv~NH [anf(oxn)}.

For each z fixed, change the variable 7 — o_7. Thus

(N + )7 BN [Z mf(aw)] = 23 Zy (N + D)TIEN [Z F,af)

| I

=CNE"N[Fyf]
= CNEVN[FN§ f] + CNEVN[FN]EVN [f]

The constant C'y; can be determined easily by putting f = 1:
1 =CyE"N[Fyl

This proves (3.4). Using (3.4), Assumption A2 and (3.8) (to be proved in Lemma
3.3) we have (3.5) immediately. O

Lemma 3.2 Let vy = vy, and vy = vy, be two canonical Gibbs states with
boundary condition w, and w, for which the only difference is that (w,), = 0 while
(wy), = 1 for some z € OA. Then for any function f

EY[f] = E™[f] = E*°[f;Al,
where h = dv, /dv,. In particular if f is a local function at x then

B — E™[f]] < const. [L~% + t(@ — )] || f] o (3.6)

1
provided that Assumption A2 holds. Furthermore if f = 7l > fp with f, being a
local function at x then 4]

[LE" — E*[f]| < const. L™ £l oo @7

where || f|l oo = sup || f,]l oo-

Proof. The identity before (3.6) is simply the definition of h. Inequality (3.6) follows
from this identity and Assumption A2. Finally (3.7) follows from (3.6) and the fact
t is summable. [J
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Lemma 3.3. For any x € A one has the bounds

const. oy < E¥N[n,] < const. g5, = const. N/|A|, 3.8)

1 —const. (1 — op) < E¥N[n,]1 <1 —const.(1 — gp). (3.9)
Furthermore, for any set {x,...,x,} C A with z, # x, whenever i # j one has

(const. QN)k < E¥N [, ...nxk] < (const. QN)k, (3.10)

[1 — const. (1 — QN)]k < E”N[nm1 oMy, 1 < [1—const. (1 — QN)]k. 3.11)
Also for Fy; defined in (3.2) one has
const. < E¥N[Fy] < const. (3.12)

with the constant depending only on the Hamiltonian.

Proof. First of all let us assume that (3.8) holds. Clearly by particle-hole duality one
has that

const. (1 — gp) < E¥N[1 —n,] < const. (1 — gy).

It is elementary to check that this inequality is nothing but (3.9). Next we prove (3.10)
for k = 2 assuming (3.8). The general case follows by induction.

EDN[nxln:cz] = E”N[TIIJE”N[%Z | Ny = 1]
< const. pN - const. (N — 1)(|]A] — D!

< (const. g )*.

Similarly, one can prove (3.11) based on (3.9). So it remains to prove (3.8). For this
purpose, it suffices to prove that for any two sites = and y,

E¥"[n,] < const. E¥N [m,1-

This is because one can average (3.13) with respect to y to obtain (3.8). But this is
a simple consequence of the fact that exchanging spins at x and y affects the Gibbs
factor by at most some bounded factor. We have thus concluded Lemma 3.3. [

Let z be a point in /A and denote configurations in A by n = (n,,&). Let
Hy(&) =H(n,=0,¥%.

Denote by v, the canonical Gibbs state with Hamiltonian H, and number of particles
N. Let H' be the difference

H'®1,,& = Hn,,&) — Hy(©),

and let g, be defined by

g, = expl—H'(1,, )1/ Elexpl—H'(., 1 | n,] = dvy |,,, /dvy |, . (3.13)
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Lemma 3.4. Recall the definition of o, and T, in Sect. 1. Then with the above
notations,

{0, E"N[f | n,1}* <4E™[f;g, |n, =01 +4E™[f:g, | n, = 1]
+ N> BT, f | n, = 0P

+ const. E®[f; Fy_, | n, = 11%. (3.14)

Note that the left side of (3.14) is independent of n,,.

Remark. By definition E[- | n,]*> = {E[- | n,]}>. We shall follow this convention for
the rest of this paper.

Proof. By definition of g, and v,
EN[f | n,]1=E"[fg, |n]=E"[f;g,|n]+E"[f]|n,]
So by the Schwartz inequality
{0, B"NIf | 1,1Y* = {E™[f;g, | n, = 0] = E®[f3g, |n, = 1]
+E"[f | n, = 01— E[f | n, = 1]}°
<4E™[fig, |1, = 0P +4E™[f;g, |1, =11’
+2{a, E"[f | n,1}*.

Note that v, depends on 7, only through the constraint E=N-— 7,. S0 we can apply
Lemma 3.1 to o, E*[f | n,]. Therefore,

{o,BY[f | 0,1} <2N7' Y BT, f)n,(1 —n,) | n, = OF

+2E"[Fy_ | n, = 117°E"[f; Fy_y | n, = 11%.

Note that we have changed o to T, since the total number of particles is fixed. By
(3.12), E®[Fy_, | n, = 1] > const. This concludes Lemma 3.4.

Lemma 3.5. With the same notation as in Lemma 3 4,

E“N[EN(f |0, BYNIf [ n,]] < 4B*N{E"[f;g, | n, I}
+ const. Z N—IEVO [7793(1 - nz)Tzwf]2

+ConSt'EUN{anVO[f;FN—1 | nz}7 (315)

provided that (3.3) holds.
Proof. Let p denote E¥N{n, = 1} = E¥N[n,]. Since the marginal of v, on 7, is
just a Bernoulli measure, we have
EYNIE*N[f | n.); E*NLf | n,]]
=p(1 —p){EN[f |n, = 11— E*N[f |n, = 0]}*. (3.16)
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By Lemma 3.4,
E'N[E"N(f |n,1; EYN{f | n,]]
= 4p(1 — pE"NE™[f;g, | n, = O]
+4p(1 — pPE'NE™[fig, |1, = 1]
+4p(1 —pN~' > EYNE"[n, T, f | n, = 0

+ const. p(1 — p)E"N E0[f; Fy_, | n, = 117
< 4EN{E"(f;g, | n,1*}
+H4EN (1 = )N Y E"[,T,,f | n, = 0F}

+ const. EYN {n_E"°[f; Fy_, | n,1*}. (3.17)
By definition of conditional expectation and (3.3)
EYn, T, f [n, =01 = E”n, (1 = )T, f{E™[1 = 7,1}
< const. EX[n_ (1 —n,)T,, f].
Hence the middle term of (3.17) is bounded by

const. Z N EYn, (1 —n,)T,, f1-
x

This concludes Lemma 3.5. O

Lemma 3.6. Let vy be a canonical Gibbs state with total number of particles N in
a cube A. Let v be a path from x to z with x,z € A and with v, = © and Vi1 = 2

Fori=1,...,|y| let b; = (7,,7,,,) be the bound connecting vy, and vy, ., and let
@, H =T, . f) = f(T,, . m— fm). (3.18)

Then there is a constant C' depending only on the Hamiltonian such that

V41

el
((F(Tom) = FoDIN,(1 = 1.))3,, < Chl < Z(Tbif)2> : (3.19)
VN

1=1

provided that the density of particle o = N/|A| is strictly bounded away from one, say
o satisfies (3.3).

Remark. If one considers continuous spins with continuous dynamics (e.g. Ginzburg-
Landau models), the bound (3.19) is just a simple consequence of the Schwartz
inequality. The difficulty in Lemma 3.6 is completely due to the discrete nature of the
dynamics. Should more than one species of particles per site be allowed (e.g., each
site may have one black particle and one white particle), Lemma 3.6 still holds with
only a slight modification of the arguments required.

Proof. Step 1. For any configuration n with 7, = 1 and n, = O define a path

) = {02(17)}L1l() connecting 7 to T, 7 as follows.
Let A(n) be the set of zeros for 7, i.e. A(n) = {1 <i < |y|+1|n, = 0}. Suppose
|A| = 1. Then 6, is defined by

0 =T st yr1— =17, Gyn=mn.
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Here T, y+1—; denote the operator exchanging particles at 7., ; and ¥ ,i—;-
Now assume that we have defined © for |A| < k and 7 is a configuration with
|A(m)| = k + 1. Let j be the smallest index in A(n). Define

On="T,;_n, if 1<y

For i > j, let ( = T;n and let 6 denote the path from v; to 7, ;. Clearly, for the
path 6 the configuration ¢ has only k£ zeros. Hence we can define 6, for ¢ > j by
using induction, namely

0,(m) = 0.2.(Ty;m),
where the super index ¢ denote the dependence of § on the path ¢ which has so far
been omitted for the path . Note that €| 41 = T,,n and for each ¢ there is a u(7) so

that
0;(n) = Tbu@ 0;_1(m

with T}, defined in (3.18). Furthermore, u is a bijection from {1,...,|y|} to itself.
Hence we have

vl

F@pem) = f) = Y _[f(T,, , 0y () = [ ()]
=1

[l

= [F (T, 01 ) — FOaqiy- )], (3.20)

i=1
where o = u~!. Denote the right side of (3.20) by

[v]

38, f = F(Tm) — f@. 3.21)
=1

Let £; = £,(n) denote the distance between ¢ + 1 and the second zero after 7 + 1. By
Schwartz’ inequality and (3.21),

[yl

((FT0) = FaM, (L =) < |7 D _((Sp, /7€) (1= )8,).

i=1

For each ¢ fixed change the variable by 8_,_;n7 = £. Note that £ differs from 7
by at most four sites. So the change of normalization and Boltzmann factor e~ # is
bounded by some fixed constant. On the other hand, the mapping n — 8,_,(n) = § is
not one to one. For each £ there may be more than one n with 8,,_,(n) = £. We now
give an upper bound of the possible number of 7 with 8,_,(n) = £. For simplicity
we consider only ¢ = 1. Let j be the position of second zero after 2. By construction,
n and £ agree after 7 — 1. The only source of confusion is that 7 has a zero between
2 and j and the position of this zero is arbitrary. Clearly the choice is bounded by
(j —2). This proves the maximum number of 77 mapped into & is at most ¢;. Therefore

((Sy, NETY) < CUT, ).
Step 2. To conclude Lemma 3.6, it remains to prove that

(n,¢;) < const.
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Again for simplicity we assume that ¢ = 1 and n; = 1. Clearly we only have to prove
that
Eneny --- (1 —n;)---ng] < const. s72.

But this follows from (3.11). We have thus concluded Lemma 3.6. [

For any two points z = (z!,2%) and y = (y',%?) in A define the canonical path
from x to y by first connecting  to (z!,y?) by a straight line and then connecting
(', 9 to (y',y?) again by a straight line. From now on =, will always denote the
canonical path between x and y. We can now combine Lemmas 3.5 and 3.6 to have

Lemma 3.7. With the same notations and assumptions as Lemmas 3.5 and 3.6,

EN[E"N(f | n,J; E'NIf | n,]] < 4E*N{E"[f;g, | n,)}
el

> (@, )7

=1

+ const. L|A| ™! ZE”N

+const. E¥N {n_E"[f; Fy_, | n,1*}, (3.22)

where vy =y,

Proof. Apply Lemma 3.6 with vy replaced by v; we have (3.22) with the middle
term on the right side replaced by E*0. But switching v, to v, costs at most some
constant depending on the Hamiltonian. We have thus concluded (3.22). O

Remark. Lemmas 3.3-3.7 are independent of Assumption A.2.
Corollary 3.8. If, in addition, Assumption A.2 holds then

EN[E"N[f [ n,]; EYNIf | n,]]1 <4E"N{E"[f;g, | n,1’}
vl

Z(sz 7

i=1

—|—const.L|A[_IZE”N + C()|A|T'E*N[f; f1, (3.23)

where vy = v,, and C(¢) — 0 and ¢ — 0.

Proof. Use the Schwartz inequality and Assumption A.2 to bound the last term of
(3.22). O

IV. Proof of Theorem 2, Part II

Our goal in this section is to control the first and the last terms on the right side of
(3.22). We then follow the same strategy as in the proof of Theorem 1 to conclude
Theorem 2. The last term of (3.22) will be bounded in Lemma 4.4 while the first
term will be bounded in Lemma 4.6. Lemmas 4.1-4.3 are preparations for Lemma
4.4. Lemma 4.4 (and its preparations Lemma 4.1-4.3) is the only place we need the
assumption on three point functions, i.e., Assumption A3.

Let A be a cube of size L and I" C A be a subcube of size ¢. Define the boundary
OI' and 0~ I by

Or={z e A\T ||z —I| =1}, @.1)
o ={zel||lzt—A\D)|=1). “.2)
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Let g be a function depending only on the configurations in I" and let v, be a
canonical Gibbs state on A. Define the function

gr(8g,wp) = E*N[g | w = wy, &= 6y, 4.3)
where w denotes the configuration on 9~ I" and § denotes the density in I

Lemma 4.1. Let g be either a local function at x € I or of the form

g=1r"> g, (4.4)

xzel”

with g, a local function at x. Assume that g depends on the configurations inside I"
only. Then
E"N[gp;gp] < const. |7}, 4.5)

provided that ¢ < L' and Assumptions A.2 and A.3 hold.

Proof. Let v be the marginal of v on I". By Corollary 5.6, U has a spectral gap. Hence
we only have to prove that

l049rlle < const. || 7.
But this follows from (3.5) and (3.7). O

Lemma 4.2. Let vy , be the canonical Gibbs state in a cube A with boundary
condition w and density o)y, = N/|A| < 2/3. Fix z € 0A, let g = |[A]7' Y. g,,
x

VN1 = VN |wz=1 and vy o=V, |wz=0~ Then
[{(B+1 — (BYN+10) — (BYN — EYNO)Y[g]| < CJAIT'NTY, (4.6)
provided that Assumptions A.2 and A.3 hold. Also with the same assumption
[[EvN+1% — 22BN 4 E¥N-1w][g]| < C|A|7'N~L 4.7

Proof. By Lemma 3.1,
{Bet = B} — {B*Ma0 — B} [g)
= (N + D)7 (BN [—(0,9)n,] — B¥N410[— (0,90, 1}
+ {E"N1FN] T EVN gy Fyy] — [EYNOFy ] EVNO[g; Fy 1}
=0, + 82,
Step 1. We can rewrite {2, as
2, = ~{E"NI[FN]E"NO[FN1} [{EYN1 [Fy] — EYNO[Fy 1} E"N0(g; Fyy]
— EYNO[Fy [{E"N [g: Fyy] — BYVolg; Fyl}].

Since E¥N[Fy] is bounded from above and below (3.12), §2, is bounded by C|A|~2
if one can prove that

2y = |EYN1[Fy] — EYNO[Fy ]| |E¥NO[g; Fyl| < C|A| 72,
02, = |E"N\[g; Fy] — E¥No[g; Fy | < C|A] 72
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The bound on §2; follows from (3.7) and Assumption A2. To bound (2,, let us
assume without loss of generality that E¥N.0[Fy ] = 0. Denote the Radon-Nikodym
derivative of dvy | /dvy o by hy. We can rewrite (2, as

2, = ENigw, = DFy] = BN [g(w, = DIE"™[Fy]
— E"NO[g(w, = 0) Fy]
= E"Nolg(w, = DFyhy] — E“No[g(w, = DFy]
- EVN,O[g(wZ = 1)hN]EVN’0[FNh/N]
+ ENO[{gw, = 1) — g(w, = O)} Fy].
Denote g(w, = 1) = g; and g(w, = 0) = g,. Then (2, is just
02, ={E"NO[g,Fy;hyl — EYNO[g,]E"NO[Fy s hyl}
— E"NOlg; hyIEY VO Fys hyyl + BVOl{g, — g} Fyl,  (4.8)
since E¥N.0[Fy ] = 0. The first term is equal to
E"NOLgy; Fys iyl

By Assumption A.3, it is bounded by C|A|~2. By Assumption A.2 and definition of g
the second and the third terms of (4.8) are bounded by C|A|~2. We have thus proved
that 2, < C|A|72

Step 2. It remains to bound §2; by C|A|~!N~!. By similar arguments and notations
as in Step 1,

0, = (N + 17" Y E"N40[(0,90m,] — E“N+11[(0,9,)n,]
= (N+ 17" Y {E"N+10[(0,9,)m,] — E"N+10[(0,9,)n, by 411}
+ (N + 17BN [{(0,90) — (0,9)},]
= —(N+ 17" E"N10[(0,9)n,: hy 1]
+ W+ DT BN, 0,09 — 9)]. (4.9)

By Assumption A.2 and the form of g, the two terms on the right side of (4.9) are
bounded by const.|A| "' N~!. Hence |2,| < C|A|7!N~!. Together with the bound on
{2, in Step 1, we have proved (4.7). The proof of (4.6) is similar and we omit it. [J

Lemma 4.3. Let I' C A be a subcube with £ < L'/'%. Denote by p, the infinite

volume Gibbs state with chemical potential \. Let g be a function of the form

g = |I'I"' Y g,. Denote the density on I' by op. Let v, be a canonical Gibbs
el

state with number of particles N = |A|o and with ¢ = p'(\). Recall the definition of

gr in (4.3). Then for any € > 0, v > 0 and ¢ large enough

Eve [gp(W, Q[‘) - kQ[';g['(wa Q[‘) - kQ[‘] < EIF[_la (4.10)

provided that
dist(I", A¢) > L'/? (4.11)
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and the density o is bounded by
0<vy<op<2/3. (4.12)
Here k is a constant given by
k= |IE*G,9rw,op)], x€I'\0™ T (4.13)
with &, defined by
[0, 1) = [f(ozm) — fMIA = ng) — [f(o,m) — f(]n, -
Note that the definition of k is independent of the choice of x € '\ 0~ I

Proof. Step 1. Clearly by definition, E[(7, f)*] = El(o,f)*]. Note that we have the
identity
G.or =7

By Corollary 5.6, the marginal of v,; on I" has a spectral gap. Hence
E"NlgrWw,or) — kor; gr(w, 0r) — kor]

< const. Z E"N[{G (9w, op) — kop)}*]
zel’

= const. Z E"N[{G,9rw,or) — k/|T|}*.

cel
Let us denote the contribution for x € 97 I" by 2, while z € I'\ 7 I" by §2,. By
(3.7) £2, is bounded by
0, < const, |[|72+d=-D/d (4.14)
where the factor |I'|*~1/¢ comes from the summation of  over I
Step 2. We can write {2, as
2, = const. [ || — |0~ I'| 1|7 72E"N [G(w, 0,) — kI,
where g is defined by
Irw,0) =I'o,9pw,0), zel\dT.
Let a = E¥N[g(w, 0-)]. Then
02, < const. || 'EYN [{Gp(w, 0p) — a}*] + const. | I'| 7 (k — a)*. (4.15)

The first term is the variance of g,- and we can bound it again by using spectral gap
as

const. ||~ E¥N [E (0,3 (w, gp)}zJ < C(\I™ 4.16)
zel’

Here we have used (4.6) in the last inequality. For the second term in (4.15), let A
denote a subcube of size L'/?° with the same center as |I'| and let 7, , denote the
Gibbs state on A with boundary condition w. By the mixing Assumption A.1,

|E™w[f]— E™/[f]] < const. L™V2 £,

if f depends only on configurations on I". Also, by the equivalence of ensembles
Lemma 5.2,

la — k| = |E"N [Gp(w, 07)] — E* G (w, 0p)]] < const. L™/, 4.17)
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Note that in order to apply Lemma 5.2 we have to change the expectation with
respect to a Gibbs state in A by the infinite volume Gibbs state. The error we made
is smaller than the right side of (4.17) by Assumption A.1. Lemma 4.3 follows from
“4.14)-¢4.17. O

Lemma 4.4. Let A be a cube of size L or a cube of size L less a subcube of size
smaller than L' Let {g .}  , be a family of translationally covariant functions
in the sense that 7,_, g, = g, unless x orland y are close to the boundary. Assume
that Assumption Al holds for all \. Then for any 0 < £ < L there exists an £({) with
e(f) — 0 as £ — oo so that

2
BN [f; Ay gz} < const. (DI~ Du(H) + @A f5 f)s @18)
zeA

provided that L is large enough. Furthermore, const.({) < exp(const.(¥) for some
constant. In the application we shall choose ¢ to be a fixed large constant independent
of L.

Proof. First of all we can assume the density g is strictly away from zero, i.e.
% > o > v > 0. For otherwise,

BN {f: A7y gxr < BN [l/ll_1 gAYy gx] EN[f; f]

zeA z€A €A
< CIAI M |gllZ EVNLf; £1.

Here we have used Assumption A.2. Since C(g) — 0 as o — 0, (4.18) holds if p is
sufficiently small. Hence we shall assume p is bounded by

2>o0>q>0.

Step 1. Divide A into cubes of size ¢ with ¢ large but independent of L. Let «, 3
index such cubes and denote the typical cube by B,. Let g, denote

9a=0"">" g,
zEBa

Hence

BN {f; A~ Zgzr = BN [f;fdlfll‘1 Zgar

z€A
=0+ 0,,
2
91=2E”N[f;€‘7l|/1|‘1 > ga],
la—Ae|<LI/4
2
92=2E”N[f;€d|/l|_1 3 ga]. 4.19)
la—Ac|>L1/4

By the Schwartz inequality and Assumption A.2,

2, < ZE”N[f; A, (4.20)
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if L is large enough. Hence (2, is negligible for the purpose of (4.19). Let us redefine
9o bY
ga = e_d Z gz :
|z—Bg|>el/4

The error term is again negligible by a similar argument. From now on, we shall not
be very careful about the boundary terms as they are negligible in this lemma.

Step 2. Recall the definition of gp_ in (4.3), i.e.
Ga =9, = EUN[ga | Wa» Qa]7

where w,, denotes the configurations on 0~ B, and g, denotes the density at B,,. By
the Schwartz inequality (2, < {2, + {2, with

2, =4Av, 5 = 4€d|/1|_l Z EN[f;9, — Ga]Z’

2
0, = 4E"N [f; 441! ZGQ} :
We can bound (25 by

‘Q? = {EVNEUN[f; 9o — Ga | Was Qa]}Z
S EN{E"N(f; | Wa» 0B 90 9o | Wa» 001}

By Assumption (A2), the second factor is bounded by C|B,|~!. The first factor can
be bounded by

25 < const.(9)D(f), D,(f)=E"N [Z(be)z},

bea
for some const.(¢) depending only on £. Hence {2; is bounded by
2, < const. (O)|A| "' D ,(f). 4.21)
Step 3. Finally we have to bound £2,. Let G, = G’ + G?, where
Gy = e,

with § a constant to be chosen later. Note that, thanks to the constraint ».7, =
constant, > G is a constant. Hence we can replace G, by G with arbitrary

choice of 5)‘ Hence
2, <4(f; HGP;GP), 4.22)

where G® = ¢4|A|71 3> GP. Note that by definition (G®; G?) = (G?; G) with
G = 04A|7'3° G, Again by definition (g = Av,g,),
67

<G(2); G(2)> — <G(2); G) — (G(z);g>. (4.23)
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For each « fixed, let

hy = BN [IAI“ > ol Ba]-

z€A\T
Then we can rewrite (4.22) as

(GP;G?) = Av, (GP; h,)

o’ Pa

< A0, (G262 i)

By Lemmas 3.1 and 3.2, |o,h,| < const.|A|~!. Together with the spectral gap
Corollary 5.3 we have

(hy; h)'/* < const. |A| 7142
The first factor (G@; G?)) can be bounded by
(GD:GP) < er™/2,
provided 6 is chosen according to Lemma 4.3. Hence for ¢ large
(G5 @) < §|A| ! (4.24)
Together with (4.22) we have
Eiq-1
2 < ZlAl (fs )

Combining this bound with (4.21), we conclude Lemma 4.4. [J

Corollary 4.5. With assumptions and notation of Lemma 4.4. and Corollary 3.7,

EYNIEYNIf | n, i EYNLSf [ 0,11 < |A|7'LD 4(f) + €| A7 E*N [ f]

[7yz=|
+ const. EVN {Ll/ll—1 Z Z(Tb,f)z}

yEA 1=1
+4E"N{E™[f; g, | n,1*}. (4.25)

Lemma 4.6. Let h be a local function at z € A of size L. Then

EN[f;h)? < const.w(L' ) N "[1 + dist(b, )] EYN (T, f)’]

beA
|’sz|
+const. [A|7'LY T (A + Jy — 24! Z E*N[(T, f]
yeEAzEA
+ el AT BN 1. (4.26)

Here w is defined in (1.22).
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Proof. Let éa denote a cube of size /> centered at z and let B, = Ea N A. Define
(cf. 4.3)
ha(wa? Qa) = hBa = EVN [h ’ wa? :Qa]

We can bound the variance of h, by Lemma 3.2, as
E"N[h ; h,]< const.f %,
Step 1. By the argument as in Step 2 of Lemma 4.4,
EYN[fih)? <2BUN[fih — by + 2BV [fi by )
< const. w()Dp, (f) + 2E"N[f3 )] 4.27)
To bound the last term let £V denote
fO=ENIf | B
Then by Assumption A.2,
EN[fih = BV [ hy]’
' < BV [ fO1 BN hys by
< const. £74EVN [fO; fO]. (4.28)
By Corollary 5.6 (0 = o, = N/|A)),

EVN [fO; fO] < const. QE”N[ 3 (%f(l))ZJ.

€ By
We now apply Lemma 3.4 to o f)). Hence for z € 9~ B,
E'N (0, )] < EN{E"N=f1g, [ 1, = 0, B\ + E"™N=([fig, | n, = 1,B))°

+(N = Ng, =D~ > ENey, T, f|n, =0,BT
yEA\B,
+ const. E”N»ﬂc[f;Fl\,_NBl_1 | n, = 11*}.
Here Ny denote the number of particles in B, and vy , denotes the measure with
the Hamiltonian having 1, = O (cf. definition of v, in Lemma 3.4). Similarly, we
have the same bound for z € B, — 0~ B, except the first two terms disappeared.
We can now proceed as in Lemmas 3.5-3.7 and Corollary 4.5. Note that the factor

p in (3.16) which is essential for (3.17) to hold is supplied here by the factor g. To
summarize, we have

BN [fO; fO] < 02y + e AT EVNIS; f]
|’Yya:|
+const.[A|_1LE”N{ o> N w, f)z}, (4.29)
yEB)| z€A\B i=1

where 2, is given by

2, =const.€_dE”N{ 3 Evelfig, | 31]2}. (4.30)

€0~ By
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Together with (4.27) we have
E"N{f;h] < 02, + €| A7 EYNIf; f1+ const. Cw(O) Dy (f) + U, (4.31)
where U, is defined by

I’Yy:c|
U, = const. IAI_ILE"dE”N{ Z Z Z(Tbif)z}. (4.32)

YEB| z€A\B, i=1

Step 2. Repeat Step 1 with A replaced by A\ B, and B, replaced by B,. We can
bound {2, by

2, < 2, +const. ¢~ A\ B,|T'E"NE"N[f; f | B,]

|"/yz|
+ const. £ 1A\ B,|"'LE"N { DY (Tblf)z}

YyEBy z€A\ B,y 1=1
+ const. 2>~ w()Dp, (f), (4.33)
where {2, is given by
2, = const. L7 EYN N EUNa[fih, | B (4.34)
€0 By

One can replace the covariance in the middle term E¥N E¥N(f; f | B,]1 by E¥N[f; f]
to have an upper bound. Also choose ¢ so large that 2const. < ¢!/2. Hence we can
now rewrite (4.33) as

Q, <, + el AITEVN £ £

[z
+£“2d’1/2|AI“ILE”N{Z > Z(Tbif)2}

yEBy z€ A\ B, =1

+ 27 2w Dy, (), (4.35)
where (2, satisfies
Q, <N N EYNe[fih, | By (4.36)
z€0™ By

. . -1
We now repeat the same argument until we reach o, with £20 = L% Hence we
have

E"N(f;g] < 02, +2¢|A|T BN ]

[ryel
+ LA Izé—da (1/2)(14+2++a—1) Z Z E”N{ %(Tb ) }

YyEBa z€A\ By

+ w(£) Zgza—(l/z)(1+2+~.+a—1>DBa(f)J (4.37)

a=l1
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with
D4y < ¢~ 0d= (/1424 +ag—1) prn Z E"Nz(f; g, | Ba0]2
zE@'BaO
< const. £~ %0d=(@0=Dao/4  paod=Dpvn . £]. (4.38)
Here we have used the Schwartz inequality in the last inequality. Since (%0 =

L0%0D™" for [, large the last factor £~220—(@0—Dao/4 < =24 Sq we can absorb
an into the second term on the right side of (4.37). For the third term note that for

eachye B, \ B the numerical factor is
0
E ==/ +a=l) < congt, (£)[1 4 (@~ D741, (4.39)

a=a

a—1°

So we can bound the second term as

|’Yyac|
const. (OLIA ™' Y " (4 |y — a4 DY ENT, £ (4.40)
yeEAz€eAN i=1
By similar arguments, the last term is bounded by
const. (Qw(L/1%%) Y " BN [(1 + dist(b, 2)) (T, £)*1. (4.41)

beA
Combining (4.37)—(4.41), we have concluded Lemma 4.6. [
We can now use Lemma 4.6 in Corollary 4.5 to obtain the following corollary.

Corollary 4.7.
E"N{EYNLf [ ) EYNLS [ .1}

< const. {|A|_1LDA(f) + el AT EMNIf; £

l’sz|
+ E“N{IAI“L DD Uly—ah ! Z(Tb,f>2}

yeAzeA i=1

+w()Y [+ [b— zlrd'lE"N[(T,,f)z]}.

beA

Proof of Theorem 2. Step 1. Assume that (1.22) holds for cubes of size not bigger
than L. Let A = 2, Ut 1,82, = 2' + 2% (cf. Step 1 in the proof of Theorem 1).
We shall prove that

EA[f: f1 < (3w(L) + const.) LDy, (f). (4.42)

As in the Step 7 of the proof of Theorem 1, we repeat the argument for A=
AU T(_L,O)A. Hence

wL) < %w(L) + const.
Therefore w(L) is uniformly bounded. We now prove (4.42).
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Step 2. Recall (2.1)~(2.3). We now apply Corollary 4.7 to bound E[f,; fi | 1]
and the sum over £ to have

(fs f)a < ELfs £ | Z1+ [ew(L) + const. 12D 4(f) + (f; f) 4
< w(L)L2D 1 (f) + [ew(L) + const. 1L>D ,(f) + &(f; ) 4-

Switch the role of 2! and 22 and average,
(A =2e)(f; )4 < [(% + e)w(L) + const.] LD 4(f).

This proves (4.42) and concludes Theorem 2. [

V. Equivalence of Ensemble

In this section, we shall prove a strong version of equivalence of ensemble based on
the mixing Assumption A.2. The equivalence of ensemble is an old subject and has
been studied extensively in the literature, see e.g. [R]. But most classical results are
too weak for our purpose. We are able to obtain stronger estimates because of the
mixing Assumption A.2.

Lemma 5.1 Let A € R be a chemical potential. Then the pressure p, ,(\) in a cube
A of size L satisfies

P4\ —pN)| <C/L 5.1)

with C independent of L or A or the boundary condition w. Similarly, let o be the
density of particles defined by o = N/|A|, then with the same constant C the free

energy f, ,, satisfies
Frw(@ > f(0)+C/L. (5.2)

Proof. The proof for the pressure is obvious and we omit it. The free energy bound
is also obvious since

Taw(0) 2 sgp(/\g —PawN)

> sx;p()\g —-pM)+C/L=fle)+C/L. O

Lemma 5.2. Let AbeacubeinZ® and I' C A be a subcube. Denote the configurations
on A by 8 = (n,() with ) denoting configurations on A\ I" and { configurations on I.
Let U, (Q) (V,(C)) denote the marginal density of ¢ with respect to the (canonical) Gibbs

state with the boundary condition w and chemical potential \ (density o = p'(\)). Then
there is a constant C independent of o, \ or w so that

V,(O) = Uy < CL™'UL(©), (5.3)
provided that Assumption (A2) holds and

|l < LY, L71V8 < p<9/10. (5.4)
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Proof. Step 1. By definition (7) = # of n particles)

Vo (O =21 > expl—Hm, Q6@+ =n+1)

n
=Z;> n+1-07"
n
x Y expl—H(n, Q16 + ¢ =n+1). (5.5)
z€A\T

Here we have abused the notation and use V., for V, .,/ 4. For each z fixed, let
I, be defined by
I(0)=(1-6,)exp[-H(c,0)+ H()], (5.6)

where o, is defined in (1.15). For each x fixed, change the variable by n = o £.
Thus

Y n,expl—HO@+{=n+1) =Y LO)expl-HOISE+ =n), (5.7)
n ¢

where 6 = (n, ¢) on the left side of (5.7) and 8 = (£, {) on the right side. Denote by 1

I[O=n+1-0"" ) LO). (5.8)

z€A\I
We can summarize Step 1 by
Vo1 =V, (02, 2, BT | ). (5.9)
Step 2. Rewrite (5.9) as
Vo) =V () =V, 12,2, L E" [ | (] - 11. (5.10)

Also let I' = () we have
Zpy1 = Z, BG4 (5.11)

Here G, is defined by

G =(n+ 17" 1T,

zeN
Using (5.11) in (5.10) we have that
Vo1 (Q) = Vo(Q) = Vo[BG, I7HE™ T | (] = E™ (G 41} (5.12)
Step 3. By definition of I, there is a constant k£ such that
E~N1—-6,) <1, <k(-6,). (5.13)
Together with (5.4), we can bound E""[G,, ] by

E|Aln~' > E™(G, 1 > k7' (A = n)(n + 171 > const. £ Aln ™! (5.14)
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We are now ready to bound E**[I|(]—E**[G,, ] in (5.12). Let us first decompose
the summation into z € I" and x ¢ I", namely,

B [I|¢] = B (G = —(n+ 1)7' Y B[]

zel
++1=C)7 Y {E™ILL | Gl = UL}
agl
+ln+1-C) ' =+ DD B (5.15)
xgl
By (5.13), (5.14) and (5.4) the first and the third term together are bounded by
const.{||n~" + |I'| |Ajn=2} < const. |I'| |[Ajn 2. (5.16)
Combining (5.12)—(5.16) and (5.4) one has the following bound:
Vi1 (Go) = Va(Go)l < comst. LAV, G){| T n ™" + ]}, (5.17)
y =AY BT, | Gl - B (5.18)
agl

Certainly || is bounded by
EfAIT Y L 1 Gl = B AT YL 1G]

zgl’ zgl’

)

6 = sup
¢1,%2

where the sup is taken over any two configurations on I". Note that E**[- | ¢;] and
E¥n[- | ¢,] are canonical Gibbs measures on A\ I". We can now apply Lemma 3.2
to have

|v| <6 < const. || |A]~".

Therefore, one has the bound
[V,,1(0) = Vo ()] < comst. L3V, ()| "jn" . (5.19)
By induction, for any n and m with 9|A|/10 > m > n > |A|L~'/% one has
[V, — V.| < const.|m —n|LV8|n"1V, . (5.20)

The restriction m > n can be removed provided that |m — n|L!'/8|I"| < n. Hence
(5.20) holds if

[m —n| < |[A|L7*3, 9|A|/10 > n > |A|L™V/8. (5.21)

Step 4. By definition,
U)\(C) - VQ(C) = (-Ql + Qz)VQ,

where {2, and {2, are defined by (o, = N/|A))

Q=Y ZyZINV,, V)V e,
len—el<L™2/3
Q= Y ZRZTNV,, — Vv e,

lony—o|>L~2/3
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By (5.20) and (5.14) {2, is bounded by

2| < const. |IILY 7 ZyZ7 e oy o
lon—ol<L™%/3
< const. |I'|L™3/% < const. L~/10, (5.22)

To bound f2,, note that by (5.1) and (5.2),
ZyZy e = expl|Al{den = Falen) = pa(V}]
< expl |A[{Xey ~ flon) — PV + CLTH}].
Since f is strictly convex in the sense that f”(z) > ¢ > 0, one has
Az — f(@) = p) < —ez — o).
So for pp with [0 — 0| > L™2/3 one has
ZnZ5 ' eM < exp{—const. L*"'}. (5.23)

Since V, . is a probability density on the configurations on I', it follows from (3.10)
and (3.11) that

IV, OV, (O] < [V, Q)] < const. [o~ ']
Together with (5.23) we have {2, < |A|~!. Lemma 5.2 follows from this bound and
(5.22). O

Corollary 5.3. Assume the notations and assumptions of Lemma 5.2. Suppose (i has
a spectral gap 6. Then 'V, has a gap at least 6, /2 (with respect to Glauber dynamics).

Proof. By definition
(fs Fhv, = DD _IFm) = FOPV,mV,()
n <

<L5Y N 1) = FOPUNMUAQ
n g

<156\ > (o, fPmULMm)
n

<28, Y [0, fFFmV,m).
n

This concludes Corollary 5.3. [

Corollary 5.3 gives a sufficient condition for which the marginal density V has a
spectral gap. But the result fails when the density p becomes very close to zero. On
the other hand, the spectral gap in the extremely low density case should be obvious
as it corresponds to Gibbs measure with very high magnetic field. The following
Lemmas 5.4 and 5.5 provide a simple sufficient condition to close this gap.
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Lemma 5.4. Suppose W is a probability density on I satisfying (7) = # of n particles)
W) <aW(o,m), oll|<1/4, (5.24)

jor some pOSiflVé’ constant . en as a spectra ap at least Q in the sense
fe j Then W h Y4 l gap at | 16/ in th
that

(fs Hw < a/16Z0(f). (5.25)

Here & (f) is defined by (1.21) with the underlying measure I

Proof. By definition and Schwartz inequality,

(f: Pw = DY 1) = FQOPWmW Q)
n <

<43 N 1) — JOFPWmWE)
n <

<4 1fo) — fFOPW (). (5.26)

n#£0

The last term can be bounded by

2
St — FOPWm <23 {f(n) — oy nmf(om] W)

n#0 n7£0
2

+2)° [w—‘ S, fom) - f<0>] W)

n#0 z
<231 n e - fle,mPWm)
70 T

+2> 17D nlfom) — FOPW ).

n#0 T

(5.27)
For each x fixed, change the variable o1 = (. Hence
> 1fm) — FOTPWm)
n#0

<2 A+ D (0,0,1f(0,0 = FOPW(,0)
¢ T
+23 (141D D 0,0,/ = fFOPW(©,0)
¢ T

< 2a }; > 10,0 — FOPWE) + 20T ;mo — FOPW ().
x ¢

Here we have used (5.24) in the last step. By assumption (5.24), o|'| < 1/4, so we
have

> If ) — FOTPW®) < 4aZp(f).

n#0

Together with (5.26) we have proved Lemma 5.4. [J
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Lemma 5.5. Let V() denote the marginal distribution of vy on I' as in Lemma 5.2.
Suppose that
Il < LV, o< L7Y8,

Then V, satisfies the assumption (5.24) with o. = const. ¢ and thus it has a spectral

gap at least const.o~!.

Proof. Lemma 5.5 is a simple corollary of Lemma 3.3. For example (5.24) asserts
that the probability to have 1, = 1 is smaller than the probability of having n, = 0

by a factor const. . Since the density o < L~1/% « | |“1, one can follow the same
argument as in proving (3.10). We omit the details. [J

Corollary 5.6 Suppose Assumptions A.l1 and A.2 hold. Then with the above notation
V has a spectral gap at least const. o~ provided that |I'| < L'/,

VI. Proof of Theorem 3

The proof of Theorem 3 is very similar to that of Theorem 1. We shall follow the
same notation and give details only to those requiring different arguments.

Proof of Theorem 3. Step 1. Instead of the identity (2.2) we use

S(f)y=Y_ EEIf;log(f;/f,11) | Fiil 6.1)

3=0

Steps 2 and 3. Clearly,
E[f;log fj/fj+] | Tl
2
< const. {—loglo(1 — @)1} o(1 = QE [(0;4/ ;)" | F11]- (6.2)

By definition of f, and f, in (2.5), one has

const.fj < fj < const.f;.
Together with (2.5),

|\/f‘3 - \/fTJI < const. |(f; h(J)>U(j)'fj_l/2.

ol = 9o\ /1)1
< 201 - 9E[(0y/7,)’]
+20(1 — OBI(f(n; = D; KP)2 7 my = 1)
+ (fn; = 05 kD)2 f m, = O)]
< const. o(1 — g)E[(crj \/f)z] + const. E[{ f; h(j)>i(j)]§_l]. (6.3)

Here Y9 and v9 are defined in (2.4), and we have used the bound

E[(o,7/ 7)) < const. E[(o,v/7)7].

Hence
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To prove the last inequality, let zo and zl denote f (n,=0) and f(n] = 1) respectively,
then it suffices to prove that

Ew [ - ¢ /- dﬂ] < come [ [ 0P

But this nothing but the triangular inequality applies to the L?-norm w.r.t. the measure
du.
Step 4. Equation (2.13) needs some modification. Consider the variational problem

U(ﬂ)=ff$gp=l{ / F(R9 —n9) da—,BSU}.

Here f fdo=E[f|¥,,,]and S, denote the entropy with respect to the measure
do. By Assumption (A1)

1R9 — h{) |l < exp[—CL*1{o(1 — o)}/ (6.4)
By the entropy inequality

/ X do < Blog / expld~' X1+ BS, (f),

we have that u(3) is bounded by
u(B) < Blog / exp [ (hY — A9 )] do. (6.5)

Suppose that 3~! < 1. Then (6.5) is bounded by expanding the exponential to the
second order. By definition the first order [(hY) — hfﬁl)da = 0. Hence u(pB) is
bounded by

u(B) < CB L exp[—CL1{o(1 — o)}/ (6.6)

If 371 > 1 then replacing hY’ — RY+D by its maximum exp[—C¢*]{o(1 — 0)}'/? we
have (6.6) holds trivially. Hence by optimizing 3

[ / F(hY — b)) do S[Cﬁ"eXP[—Cf"]{@(l—0)}1/2+550(f)12

< 4CS, (Hexpl-Ce*H{o(l — 0)}'/* ©6.7)
for all f normalized to [ f do = 1. We are now ready to bound (f; h"))2

(fs h>2u(j)
- . G) \2 2
< Z <f’ h(]) h(;t7+l>u(j)a
a=0

v(j)’

oo
=const. Y {E*VEO[f;hD — 19 | 7, 1]V @+ 1)
a=0

< const. Y {EDS, [f(F) ']/ F ) exp [— %Cea] {o(1 -0}, (6.8)
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where };(O‘) = EYO[f | &, ,,] and S, denote the entropy with respect to E)[|
Z,+1). Note that we divide f by f](.o‘) to have a normalized probability density.

Step 5. Again we divide the summation into three regions. We shall only consider the
region oy < a < ;. By induction

S, [F (7)™ < uClog D7, (VF) /1.

Here the Dirichlet form &7, is with respect to EY9[| &, 1. So we have
BB S, [£(F) 1 Y I
< const. u(C'log L)E{[E"PZ, (\/?) 1/2 (];}a)) 1/2] 2}?]_1 }
< const. u(C'log L)E[{ E"PZ, (\/f) } {E”(])f;o‘)}fj'l]

= const. u(C log L)E{ Z (0, \/?)2}

mEEa

Conclusion. We can now follow the remaining arguments in Steps 5, 6 and 7 in the
proof of Theorem 1 to conclude Theorem 3. [J
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