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Abstract. We consider small random perturbations of expanding and piecewise
expanding maps and prove the robustness of their invariant densities and rates of
mixing. We do this by proving the robustness of the spectra of their Perron-Frobenius
operators.

Introduction

Let / : M - > M b e a dynamical system preserving some natural probability measure
μ0 with density ρ0. This paper is motivated by the following question: does exponential
mixing imply stochastic stability? Roughly speaking, exponential mixing of (/, μ0)
means that, for two observables φ and ψ on M, the correlation between φ o fn

and ψ decays exponentially fast with n. Stochastic stability means that, if we add a
small amount of random noise to /, obtaining at noise level ε a Markov process with
invariant density ρε, then ρε tends to ρ0 as ε tends to zero.

The following heuristic argument suggests an affirmative answer to this question.
Consider the Perron-Frobenius operator So associated with / acting on a suitable
class of functions. The exponential mixing property is equivalent to the presence of
a gap in the spectrum of S% between the eigenvalue equal to unity and the "next
largest eigenvalue." Corresponding to the noisy situation is a noisy Perron-Frobenius
operator S%ε, which should not be too different from SZ for small ε. By standard
perturbation arguments for linear operators, the eigenfunction corresponding to the
eigenvalue 1 for 3§ε should be near that for J^, proving stochastic stability.

Also, since the "second largest" eigenvalue of 5§ determines the rate of decay of
correlations, if there is a gap between the "second largest" and the "third largest"
eigenvalue, then a similar reasoning will show that the presence of small amounts of
noise should not affect significantly the rate of mixing of the system. When further
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gaps exist, this reasoning can be extended to some other eigenvalues of S% (the
"resonances" of Ruelle [1986]).

One obvious way to make this heuristic argument rigorous would be to show that
2%ε converges to S% in the topology of operator norms. That, unfortunately, is almost
never true. In general, the relation between SZε and S% depends on the dynamics as
well as the function space in question. The purpose of this paper is to examine the
nature of this perturbation for the following three models:

Our first model consists of expanding maps of the circle, which we perturb by
taking convolutions with a fixed kernel. The function space on which our Perron-
Frobenius operators act is the space of Wr functions. Our second model is a slight
generalization of the first: we consider expanding maps of Riemannian manifolds
followed by stochastic flows. Our third model consists of piece wise expanding maps
of the interval, which we assume to be mixing. The perturbations are the same as
those in the first model, but our test functions are only of bounded variation. All three
models, when unperturbed, have the exponential mixing property.

For the first two models we prove that 5££ converges to J ^ in a strong enough
sense to guarantee the convergence of the spectrum on certain regions of the complex
plane. (There is a disk containing the essential spectrum of 2ϊ on which we have little
control.) The situation in the third model is somewhat more delicate. We have the
same results provided we further restrict the domain of convergence. As explained
earlier, these convergence results allow us to read off immediately properties such as
stochastic stability, robustness of the rate of mixing, etc.

Not all of our results are new. Stochastic stability, particularly in the sense of
weak convergence of measures, has been proved for various dynamical systems. See
e.g. Kifer [1988a]. Stability in the bounded variation case is first proved in Keller
[1982]. Kifer has a result in the opposite direction [1988a]. He proves the collapse of
the spectrum of a related unitary operator for hyperbolic toral automorphisms. (This
operator has continuous spectrum.) More references will be given later on.

This paper is organized as follows. In Sect. 2 we prove some simple perturbation
lemmas for abstract operators. We deal with our three models in Sect. 3, 4, and 5,
proving some dynamical lemmas that relate S§£ to 5§. We then obtain our desired
conclusions by appealing to the results in Sect. 2. We hope that this method of proof
goes beyond the situations considered in the present article.

In a forthcoming paper by the first named author some of the results here will be
brought to greater generality. Transfer operators with more general weights will be
considered, and the Fredholm determinants of the perturbed operators will be shown
to converge to that of S§ on certain regions of the complex plane.

We express our thanks to Pierre Collet and Franςois Ledrappier for very useful
conversations. V. Baladi acknowledges the hospitality and financial support of the
U.C.L.A., the I.H.E.S., and the Niels Bohr Institute. L.-S. Young is grateful to the
Mittag-Leffler Institute for its hospitality and support.

1. Background, Definitions, and Notations

Let f:M —> M be a differentiate or piecewise differentiable transformation of a
compact Riemannian manifold. Assume that / preserves a Borel probability measure
μ0 of the form μ0 — ρodm, where m denotes Riemannian volume. Our aim in this
work is to study the invariant density and rate of mixing of (/, μ0) under small random
perturbations, and we do that by studying the spectral properties of the perturbed
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Perron-Frobenius operators associated with /. The purpose of this section is to give
precise definitions for all of these terms.

Let .38 denote the σ-algebra of Borel sets of M and 3? the space of Borel probability
measures on M. Recall that a random perturbation of / is a family of Markov
chains Jΐε (with small ε > 0) defined on the measure space (M, J?), with transition
probabilities {Pε(x, •)} in ^ , i.e., P { J ^ + 1 e E:Jζf = x] = Pε(X)E). We assume
that the following conditions are satisfied:
(1) The map x H-> Pε(x, •) is continuous for each ε.
(2) Each P ε(x, •) is absolutely continuous with respect to Lebesgue measure m.
(3) For any continuous test function g: M —> R,

g(y)Pε(x, dy) - g(fx) \-0.

I
If M is compact, it follows from (1) and (2) that each Markov chain :&ε admits

an absolutely continuous invariant probability measure με, i.e., a probability measure
με = Qε dm such that

= / c,E)dμε(x), VEe,

(For more details, see e.g. Kifer [1988a]. Note that the assumption that Pε(x, •) has
a density with respect to Lebesgue is not essential for most of the results below.)

We say that (/, μ0) is stochastically stable under the perturbation ,5Γε if μ£ tends to
μ0 weakly as ε —> 0. Various dynamical systems have been shown to be stochastically
stable in this sense (see e.g. Kifer [1974] and the results and references in [1988a],
Benedicks-Young [1992] etc.). Sometimes, one has a stronger notion of stochastic
stability. If (.^, || ||) is a Banach space of functions ρ:M —> R containing ρ0 and
ρε, then we say that (/, μ0) is stochastically stable in (J?Ί \\ ||) if | |^ ε — ̂ 0 | | tends to
zero as ε -^ 0. (See e.g. Keller [1982] and Collet [1984] for certain interval maps,
with.5f = U (dm).)

We are also going to consider the convergence of the rate of mixing. Recall that
one says that τ0 is the rate of decay of correlations of(f, μ0) for functions in (.^, || ||)
if r0 is the smallest number such that the following holds: for each τ > r0 and each
pair φ,ψ <E .ί^, there exists C = C(τ, \\φ\\, \\^\\) such that

(φofn).ψdμ{ - φdμ0 ψ dμ0 <Cτn, Vn > 1.

We are mostly interested in the case where τ 0 < 1.
Consider now the Markov chain (.i^'ε, με), and let P^(x, •) be the n-step transition

probability. We say that τε is the rate of decay of correlations of'(J>ε, με) for functions
in (.^, || ||) if τ ε is the smallest number such that the following holds: for each r > τε

and each pair φ, φ G β~, there exists C = C(r, ||(p||,||'0l|) s u c n t n a t

/(/•
φ(y)Pε(x,dy) φ(x)dμε(x) - φdμε ψdμε <Cτn , Vn > 1.

We say that the rate of mixing of (/, μ0) in & is robust if τε tends to τ 0 as ε goes
to zero. (The relation between τε and τ0 has been considered in e.g. Ruelle [1986],
for mixing Anosov flows.)
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Next we define the Perron-Frobenius operator associated with /. For this, we fix
a suitable Banach space of functions ( ^ , || ||) as above, and for φ G ̂ ", we define

φ(y)

Or, equivalently, if φ G 3? is the density of a signed measure μ on M, then S%φ is the
density of f*μ, where f*μ is the push-forward of μ by /, i.e., (f*μ) (E) = μ(f~ιE),
for all E G J3. We assume that Sg-.ΰ? —> ̂  is a well-defined bounded operator,
and that £0 G i ^ Then 1 is an eigenvalue of 2§, and our invariant density ρ0 is an
eigenfunction for the eigenvalue 1.

In our models, as in virtually all situations where the spectrum of the Perron-
Frobenius operator is understood, the operator S§ is quasi-compact, i.e., its essential
spectral radius ess sp(J2ί) is strictly less than its spectral radius. In particular, for every
τ > ess sp(J^), the set σ(S%) Π {z: \z\ > τ} consists of a finite number of eigenvalues
with finite dimensional eigenspaces. If we further assume that (/, μ0) is exact - which
is the case for the models considered in this paper - then it has been shown that the
spectrum of 3§ can be written as σ{3S) — σ0U{l}, where 1 is a simple eigenvalue (i.e.
it has a one-dimensional generalized eigenspace) and |σ o | : = sup{|z|:z G σ0} < 1
(see Hofbauer-Keller [1982], Ruelle [1989]).

The relationship between r 0 and σ0 is as follows: since

J(φofn).ψdμ0= [

we have

ί f ί \ f \ ( f \ 1
(φofn)ψdμ0- / φdμ0 / φ dμ0 =\ / φ \^n(ψρ0)-l / φρodm)ρo\dm

J J J I » ^ L \ J / J

If J \φ\ dm < const -\\φ\\ - and this is certainly true in our models - the last expression
above is

<C\\^n(ψρ0)-π(<ψρ0)\\

<C r n ,

where r is any number strictly larger than |σo |, the constants C and C depend only
on ||<p||, 11-011 and r, and π is the projection onto the eigenspace of 1. Thus we have
ro = kol

If |σo | > ess sp(^), then r 0 = |σo | will be referred to as an isolated rate of decay.
Corresponding to the perturbation JΓ ε of /, we define the Perron-Frobenius

operator S?ε as follows: if φ G & is the density of μ, then 2§εφ is the density
of &ξμ, where ^μ(E) = J Pε(x, E)dμ(x). Moreover, if ρε G J^, if 1 is the only
point of σ(<2?ε) on the unit circle, and if it is a simple eigenvalue, then we can write
σ(J£ε) = { l }Uσ o (^ ε ) and the interpretation of τε as |σo(J^ ε)| carries over as before.

In the next three sections, we will consider for each of our models the following
questions:
(1) D o e s | | £ ε - £ 0 | | - > 0 ?
(2) Does τ ε —• τ 0 (assuming that τ 0 is an isolated rate of decay)?

If the answers to (1) and (2) are affirmative then we may also ask:
(3) How does | |^ ε — ρo | | or \τε — τQ\ scale with ε as ε —> 0?
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2. Perturbation Lemmas for Abstract Operators

Let (X, || ||) be a complex Banach space, and let {Tε, ε > 0} be a family of bounded
linear operators on X. We make the following assumption about To:

There exist two real numbers 0 < κ,λ < κ0 < 1 such that the spectrum of To

decomposes as Σo U Σx, where

κ0 = M{\z\:z e Σo} , κγ = swp{\z\:z e Σλ} . (A.I)

Let Xi be the eigenspace corresponding to Σi9 and let πx :X0 0 Xλ —> Xi be the
associated projection. Let σ( ) denote the spectrum of an operator. Our first result is

Lemma 1. Assume that there exists K, < κ0 such that for each sufficiently large
n e Z + , there exists ε(n) such that for all 0 < ε < ε(n),

| | 7 Γ - T O 1 < ^ . (A.2)

Then, for each sufficiently small ε > 0, there exists a decomposition of σ{Tε) into

σ(T£) = Σε

0 U Σ\

such that if

κ!~: = sup{|2|:z e Σf} and κ§: = inf{|z|:z G ΣQ} ,

then κ\ < KQ.

It will become clear later on that (A.2) agrees with the nature of our perturbations.
Note that we do not assume that T™x converges to T$x as ε —> 0 for fixed n and/or
x, nor do we assume that for fixed ε we know anything about \\T™ — T^\\ for all
large n.

Proof of Lemma 1. Fix κ\, K! near ^ 1 ? K, and K^ K'Q near κ0 such that

Let iV be large enough for all the purpose below, in particular, we require that

xeXo=ϊ\\To

Nx\\>(κZ)N\\x\\,

Let ε < ε(N), and let λ satisfy K! < |λ| < KL We will show that λ ^ σ(Tε).
It suffices to prove that the resolvent R(Tε , XN) exists as a bounded operator. We

write down what it must be if it exists:

R(Tε

N, λN) = [(XNI - T0

N) - (Te

N -

T0,λ)(If - T0= [(XNI - T0

N) • (I - R(T0

N,λN)(If - T0

N))Γι

) (Tε

N - T0

N))n • R(T£, \N). (2.1)

n=0

Assuming \\Tε

N - T0

N\\ < κN, it is enough to show HJSCΓ^.λ*)!! < (l/κ)N.
Since R(T^,XN)Xi = Xifoτi = 0,l, we have for x e X, \\x\\ = 1,

\\R(T0

N,λN)\\ < Hi^To^.λ^πoa ll +

< \\R(T0

N,λN)\X()\\ | |π o | | + \\R(T0

N,λN)\Xι\
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so that it suffices to bound \\R(T^, λN)\Xι ||, % = 0,1.
For x G Xo, we have

K)N) \\x\\
>C (κβ)N\\x\\,

where C is a constant depending only on κ'o and K'Q . This gives

Similarly, for x e Xl9 we have

\\TQ

Nx-λNx\\>((κ')N-(κ'ι)
N)\\x\\,

proving

Hence, for large enough N9

Λ / V N Π . const . ( | |π f t | | -HITΓJI) . 1

W ^ V ( 2 2 )

Define

Γo

ε: = { 2 r G σ ( Γ ε ) : | 2 r | > ^ } , i7f: = {z e σ(T£):\z\ < κ1} . D

Note that κ\ < κf, which can be made arbitrarily near max(«, «j) by choosing ε
small.

Let TΓQ'.XQ Θ Xf -^ XQ b e the projection associated with the spectral decom-
position of Tε. For Γ C C write ΓN: = {zN :z e Γ}. We also use the notation
Br:={\z\ = r}.

Lemma 2. If Assumptions (A.I) and (A.2) /zo/d then | |π 0 — TΓQ || —» 0 as ε —• 0.

Proof of Lemma 2. Note that τr0 can be regarded as the projection associated with
(TN\(Σ0)

N) for any TV, and similarly for πξ. We will again consider Â  large and
ε < ε(N).

Let C: = B^N U BTN for some K! < k < κ,'o with k < (κ')2/κ, and r 0 > |σ(T0)|.

Then ΣQ1 and (ΣQ)N are contained in the annular region bounded by C, and we have

c c

We will estimate ||τr0 — πg| | by

\\Rίτf,λ) - R(τε

N,λ)\\d\

c

i i(SftN) max \\R(T0

N, λ) - ^(Tf, λ)||
Δ7Γ λ t -D - jv
+ the corresponding term for

rN

= :(!) +(2). (2.3)
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Using (2.1) we have

", λ) -
71=1

Since l(BkN) = 2πkN, and \\R(T0

N,\)\\ < const/{κ')N for λ G BkN [by (2.2)],
we obtain

E ( ^ ) («V < const . ^ . ^ - 0 asiV^oo.

For (2), we use l(BrN) = 2πr^\ to get

(2) < const r ^ - ^ -> Oas TV -> oo . ϋ
r.o

For n > 1 define

C n(ε): = sup
\\x\\

[By (A.I), Cn(ε) < κ n for large enough n and small enough ε.]

Lemma 3. Assume that (A.1)-(A.2) hold, that \\Tε\\ is uniformly bounded, and that

dimX0 < oo . (A.3)

Let d denote the maximum algebraic multiplicity of z G σ(T0\χ ) and let K' and

KQ < κ0 be given from Lemma 1. Then for fixed large N and ε < ε(N):

ί \l/d

(1) Hausdorff-distance (σ(TQ\x ), σ(Tε\χe)) < const CΛέ) + ^W
o o y κo J

(2) If XQ G XQ is an eigenvector for To with Toxo = VQXQ, then Tε has an eigenvector

ί C (p\\ ^^
XQ G XQ with eigenvalue VQ which is const ί Cx{ε) -\ ^ — I -near VQ such that

/ C (,
ll̂ o - f ol l < const- C1(ε)+ - ^

The assumption that | |T ε | | is uniformly bounded is not essential since for some
large iterate {{T^W < \\T^\\ + κN for all small enough ε.

Proof of Lemma 3. First we show that XQ = graph(Sί

ε) for some linear Sε :X0 —> X1

with | | 5 ε | | —> 0 as ε —» 0. To see this, consider ε small and let x G XQ. Since
\\x — τrox|| < || 7ΓQ — 7r0(I ||x||, it follows that if x = (XQ,XX) G XQ Θ Xγ, then
ilxi II ^ Ikoll ^ m s inequality implies in particular that if x, x1 G XQ a n c^ π o x = πox'
then x — x1.

Next, we estimate | | 5 e | | . We know by (A.3) that there exists xQ G Xo, \\xo\\ = 1,
such that

no I K IKΓf(so,ggso)||
l lDell - 11 T N ( Q τ \\\'
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This is

- —(ttV-lk 11 (1 + 115 11)-^ ' (2*4)

from which we see that

| |SJ < const jjψ

Define fε:X0 -> Xo by

Then for x G Xo with ||x|| = 1, we have

< const

There is a similar bound for \\π{ o Tε(x, Sεx) — πxTox\\ with x e Xo. The assertions
of Lemma 3 follow immediately (see e.g. Wilkinson [1965]). D

3. The Simplest Model:
Expanding Maps of the Circle and Perturbations by Convolutions

A. The Unperturbed Model

Assume first that our manifold M is equal to the circle Sι. Let / be a Wr

transformation of Sι (2 < r < oo) which is expanding, i.e., | / ' | > λ > 1. The
expanding constant of / is the largest λ such that this inequality holds. This implies
the existence of a unique absolutely continuous invariant probability measure μ0 with
respect to which / is mixing (in fact, exact).

We set & = Wr~\Sx) and let || || be the usual g ^ - n o r m . Let S%\.9' -> <?
be the Perron-Frobenius operator associated with /:

It is proved in Ruelle [1989] (see also Collet-Isola [1991]) that 5§ is quasi-compact
with essential spectral radius bounded above by ( l / λ ) r - 1 .

We remark that if the map / is £f °° or Wω, we can let 5§ act on the Frechet space
W°°(Sι) of W°° functions, respectively the Banach space Wω(Sγ) of real analytic
functions endowed with the supremum norm. Using the fact (Ruelle [1989]) that,
for a Wr map, the eigenfunctions of S§ acting on Wr for 1 < r' < r — 1 are all
elements of <%?r~ι(Sι), it makes sense to speak of the eigenvalues of % when acting
on W°°{Sι), even though W°°(Sι) is not a Banach space. In particular, one can view
7^\ W°°(Sι) -> W°°(Sι) as a "compact" operator. lfr = ω, the operator 5% is (truly)

compact, and much is known about it (Ruelle [1976], Mayer [1976], etc.). We will
not discuss further the cases r = oo,cυ>, but our results clearly hold there too.

We remark also that τ 0 = |σo | is not always an isolated rate of decay. Consider
for instance the map z —> z1 on Sι and its the transfer operator acting on real
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analytic functions. By following the computation in Ruelle [1986], one checks that
the relevant Fredholm determinant is equal to (1 - z), so that the only eigenvalue
is 1. This implies (Ruelle [1976, 1989, 1990]) that the transfer operator acting on
Wr(Sx), with 1 < r < oo has no eigenvalue besides 1 whose modulus is bigger than
the essential spectral radius. The other "algebraic" maps z ι—> zk, for integers k > 3,
have the same property. However, as pointed out to us by Mark Pollicott, the above
examples do not seem to be generic: a necessary condition for the lack of nontrivial
eigenvalues in the spectrum of the operator acting on analytic functions is the fact that
the trace of the Fredholm operator is equal to 1. By considering analytic perturbations
of the algebraic examples, one can arrange that the value of this trace changes. For
example, the projection on the circle of the periodic map x \-± 2x(mod 1) + δ sin2τrx
only has one fixed point (if δ > 0 is not too large), and the trace of its Perron-
Frobenius operator can easily be computed to be 1/(1 — δ) > 1, so that there is at
least one eigenvalue besides 1 whose real part is strictly positive.

B. Type of Perturbation: Convolutions

For ε > 0, let θε :R —• R be a function in Lι(dm) satisfying

<9 ε >0, s u p p 0 e c [ - ε , ε ] , and [Θε = 1.

Consider the random perturbation JΓ ε , where the transition probabilities Pε(x, dy)
have densities θε(y—fx). (Note that the density depends only on the difference y—fx.)
Equivalently, using Fubini's Theorem, one can describe this process as given by /
followed by a random translation by ω, where ω is distributed according to θε. We
call such a perturbation a random perturbation by convolution (see Kifer [1988a,
Chap. IV]).

The perturbed Perron-Frobenius operator ^£\Wr~l{Sl) -> Wr~\Sx) can be
written as follows: for φ e Wr~x(Sx),

(&εφ) (x) = / (&φ) (x - ω)θε(ω)dω

= / φ(y)θε(x - fy)dm(y).

Analogous operators have been used by Keller [1982, Sect. 5] and Collet [1984]
among others. The operator 2?ε is clearly linear and bounded on Wr~x(Sx). Also, it
is quasi-compact and the density ρε is in Wr~x (Ruelle [1990]).

If we had made the additional assumption that θε is Wr~x, then S%e would be a
compact operator on Wr~x(Sx). This follows from the fact that a kernel operator

φ(x) -+ f K(x, y)φ(y)dm(y), φ G W°(SX),

with £T° kernel K(-, •) is compact (see e.g. Yosida [1980, p. 277]).
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C. Statement of our Results

We now state our main results, which give partial answers to the questions posed in
Sect. 1 for this simplest model:

Theorem 1. Let f :Sι —• Sx be a Wr expanding map (r > 2) of the circle as defined
in Sect. 3 A, with expanding constant λ, and let μ0 = ρ0 dm be its unique absolutely
continuous invariant probability measure. Let &ε be a small random perturbation of
f of the type described in Sect. 3.B, with invariant measure με = ρε dm. Then:
(1) The dynamical system (/, μ0) is stochastically stable under 3&ε in the space
of Wr~x functions, i.e., \qε — £ollr-i tends to 0 as ε —> 0. Moreover, we have
\ \ \

Let τ 0 and τε be the rates of decay of correlations for f and &E respectively, in
the space of Wτ~x functions.

(2) If r0 > A~(r~1}, then the rate of mixing is robust, i.e., τε —• r 0 as ε —> 0.

Furthermore, ifr0 > λ~^r~2) then \τε — rQ\ = O{ειld) for some integer d > 1.
We show in fact that

(3) For each δ > 0, the spectrum of S%ε restricted to \\z\ > λ~ ( r - 1 ) + δ}, converges
to that of S% (restricted to the same domain) as ε —> 0.

The proofs below yield the same results for small deterministic perturbations by
translations (i.e., maps f6 — f + t with \t\ < ε), as well as for perturbations of Wr

expanding transformations of higher-dimensional tori.

D. Dynamical Lemmas

In this section we prove the dynamical lemmas which will allow us to reduce
Theorem 1 to an abstract statement about linear operators acting on Banach spaces
(see Sect. 2). The setting and notations are as in Sect. 3.A and 3.B.

Lemma 4. (1) For a fixed n elΛ and φ e Wτ~x,

II^JV-i^VH ^ 0 as ε->0.

(2) For a fixed n G Z + and φ G Wr~x, we have in the Wr~2 norm || | | r _ 2 ,

ε -> 0 .

Proof of Lemma 4. It suffices to show the lemma for n — 1, the inductive step follows
from the triangle inequality

\\ \\ \ V) " 3ξ^n~ V)||

v ^n~ V)iι + \\%(^n-v - ̂ n~ V)iι + \\%ε(^n- V) - M
(The induction hypothesis need only be applied to φ and S"n^xφ.)
(1) Since J£εφ = θε * φ, each derivative satisfies Dk(J&εφ) — θε * Dk(J^φ). It hence
suffices to consider £T°-norms. But if ψ is continuous the convolution θε * ^ converges
uniformly to ψ.
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(2) To show the claimed asymptotic scaling in the Wτ~1 norm, it again suffices to
consider the case r = 2. Observe that for any ψ e Wx the Mean Value Theorem
implies

\θε * ψ(x) - φ(x)\ < ί θε{t) \(ψ(x - t ) - <ψ(x))\ at

< sup | ^ ( O | fθε(t)-\t\dt

< sup 1^(01 2ε. •

We want to emphasize that in general 5S'ε does not converge to 56 in the operator
topology when ε —» 0. (For example, if θ is Wr~x, the operators 5Sε are all compact
and convergence in norm would imply that S? is compact too - but this is well-known
to be false: see the explicit construction of essential spectral values in Collet-Isola
[1991].)

The key lemma follows:

Lemma 5. Let A > A~(r~1} be given. Then there exists No e Z + such that for each
n > -Wo> there exists ε(n) > 0 such that for each ε < ε(n), one has

||J%n - J ^ n | | <An.

Proof of Lemma 5. We use the following notations: C represents a constant indepen-
dent of n and ε; c n ε represents a constant depending only on n and ε (and not on
test functions), and tending to zero as ε —> 0 for each fixed n. We also write g for
l/l/'l. Recall that

— V^ (¥?n }
/ J ' y

y:fn=x

where the second equality defines {5£nφy). Writing, for t = (tu ... , t n ) ,

/^(z) = /(... (f(f(z) + ̂ ) + ί2)...) + tn ,

we have

d ί 1 . . . d ί n θ e ( ί , ) . . . 0 e ( ί n )

ί... ίdti... dtnθε(t})... θε(tn)
yr-ψvΐ^x

J ... J dtx... dtjε(tx)... θε(tn) (5η?φ) (x),

where the last two equalities define (Z^φ) and (W^φ)y^.

We have used the fact that all orbits are strongly shadowable: that is, if ε is small
enough, then for a fixed x and a fixed r?-tuple (t{,... , t n ) with \tt\ < ε, there is
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a natural bijection between the set {y:fn(y) = x} and the set {yf.f^(y^) — x}.
Moreover, for each pair (y, y^) corresponding to a choice of an inverse branch of fn

at x we have

g(y) - g(fy) . g(fn~ιy) = g(y?) </(/*•%-) < K / Γ ^ ) ± cn,e (3-D

We first show the lemma in the case r = 2. Let us compare 3% and 3§ε in the
° noting |<p| = sup |(/?| and \φ'\ = sup |<//|,

?φ)v = (φ(y) ± c n > ' | ) ( Π g(J>y) ± cn>ε ]

= ( ^ » y ± c n ) £ ( | ^ | + | ^ | ) . (3.2)

Hence, summing over inverse branches, and integrating over the tt,

{&?φ)(x) = (%nφ){x) ± cnj\ψ\\χ . (3.3)

We now consider first derivatives, using the Leibnitz Theorem and decomposing

into a first part A which is a sum of terms where some g factor is differentiated and
a second part B where φ is differentiated. For the first part we have

n-l

A = X) vίytMvt) WU^y^dU^yt) giydMf^yd g(f?~lyd
j=0

= ^2(φ(y) ± cnε\φ'\)(g(y)... [g'(fJ(y))...]. ..g(fn~ly) ± cn>e)

j

= ί the corresponding part for — (^nφ)y ) ± cn^ε(\φ\ + \φ;\). (3.4)

For the second part, we get

n-l n-l

B = φ'(yr) JJ g(flyξ) J J g(fίyξ)
j=0 j=0

- ' ±2 ' Γfr ^ ± c ^ frr ^ ± c 1
I I X n,ε I I 1 1 n,ε I
\ j=0 / \j=0 /

/n-l \ 2 n-l

V 3=0 I j=0

Summing over inverse branches, and integrating over the ti9 we obtain

( j W = CSf»'±cnie|M|! ±211̂ 11̂ - ^ Π ^ ^ ) ) - (3-6)
y:fn(y)=χ

Since the sum in the last term of the right-hand side is equal to Jϊ?n(l) (x), we know
that it is uniformly bounded since 5§n{\) converges.
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For arbitrary differentiability r, note that for k < r — 2, the terms of the kth

derivative {5ξnφ){ζ) involve only the /th derivative of φ for I < k so that

< cnjψ\\k+1 <

The only potentially troublesome term is part B of {^φfr~ι\x), i.e.,

j...Jdtγ... dtjε(tl)... θε(tn) Σ Ψ(r-ι\yt) ί Π aiφr)) *"•
3

but the same argument as above yields an additional error term of the type

cn,elMlr-i + C λ~ n ( r ~ 1 ) | | (^ | | r _ 1 . D (3.7)

In fact, we have not used the expanding condition as stated but only a slightly
weaker condition:

3λ > 1 such that lim (M\fn\x)\ι/n\ > λ.

E. Proof of Theorem 1

Unless otherwise stated we will use the results in Sect. 2 with X the space of Wr~x

functions on S\ || || the Wr~x norm, To = S§ and T£ = ^ ε .
To prove (1), we let Σo = {1}. Lemma 5 together with the fact that (/, μ0) is exact

tell us that conditions (A.I) to (A.3) in Sect. 2 are met. We also know that \\J£ε\\ is
uniformly bounded, that 1 is always an eigenvalue of 56ε and ρε is an eigenfunction
for 1. We conclude from Lemma 1 that XQ must be the linear span of ρε. Lemma 3

( / r^ ( \\ ^I^b\

ί Cx (ε) + N

fN ) ] which tends
to zero as ε —> 0 by Lemma4(1), proving stochastic stability in (Wr~λ{Sι), || | |).
Since CN(ε)\ = | | S ^ ρ § — £ 0 | | , the speed with which CN(ε) tends to 0 depends on
the modulus of continuity of Dr~ιρ0. In particular, if we rewrite everything with
X = Wr~2(Sλ) and || || the Wr'2 norm, then Dr~2ρ0 is Lipschitz and we have by
Lemma 4 (2) CN(ε) = O(ε). This completes the proof of (1).

To prove (2), we let Σo = σ(J%)Π{\z\ > τ 0}. Note that conditions (A.I) and (A.2)
in Sect. 2 are guaranteed by our assumption that τ 0 > λ~(r~1} > esssp(iΓ). Since
σ{3>ε) C (σ(^ε\Xε)Uσ(^ε\Xε)), we know that rε = sup{|z|:^ G σ(S£ε\Xe),zφ 1}.l/d

0, |r0 - τε\ = O^iε) + ^ J
CN(ε)Y

Lemma 3 then tells us that for any TQ < r0, |τ 0 — τε\ — O

proving the robustness of τ 0.
To see how \τε - ro\ scales with ε, we let 56 act on {Wr~2(Sι)1 \\ | | r _ 2 ) instead

of (Wr~λ(Sx), || | | r _ 1 ) . Since the eigenfunctions of 5£ are always Wr~λ the rates of
decay of correlations are the same in both cases provided that τ 0 > λ~(r~2) (note that
this implies in particular r > 2). So even as we change the space on which 2> acts,
the definition of Σo remains unchanged. In fact, Xo stays the same (Ruelle [1989]).
In the definition of CN(ε), we are now dealing with Wr~2 norms for functions in Xo,
a finite dimensional subspace of Wr~γ{Sx). By Lemma 4 (2), we have CN(ε) — O(ε).
Hence \τε - τo\ = O(εχ/d).

To prove (3), let Σo = σ(5Z) Π {\z\ > λ~(r~l) + δ}. D
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4. Expanding Maps of Manifolds Followed by Stochastic Flows

This is a generalization of Sect. 3.

A. The Unperturbed Model

Here, M is a W°° compact, connected Riemannian manifold without boundary, and
f:M —> M is a Wτ map for some 2 < r < oo. We assume that / is expanding, i.e.,
there exists λ > 1 such that for all x in M and all v in TXM, we have \Dfxv\ > λ\v .
The largest such λ is called the expanding constant of /. It is well-known that an
expanding map / admits a unique absolutely continuous invariant probability measure
μ0 — ρQ dm with respect to which / is exact (see e.g. Mane [1987]).

Let .9 = {φ:M -> R: φ is Wr~x}. For φ e &*, we define \\φ\\ to be the Wr~x

norm of φ, defined using a set of charts that will remain fixed throughout. The Perron-
Frobenius operator J ? : i ^ -^ J ^ is defined as usual. Ruelle's results stated in the last
section are in fact proved in this more general setting. In particular, we have the
inequality

e s s s p ( i T ) < λ - ( r - 1 ) .

B. Type of Perturbation: Time-ε-Maps of Stochastic Flows

Let X0,Xι,.. .,Xm be W°° vector fields on M, and consider the stochastic
differential equation of Stratonovich type

where {β\} is the standard m-dimensional Brownian motion. We define S/ε, our
ε-perturbation of /, to be ξε o /, i.e., JΓ ε is the Markov chain whose transition
probabilities are given by

Pε(x, E) - Prob{(ξε o /) (x) G E} .

If the vector fields Xo,..., Xm span the tangent space of M, then condition (2) from
Sect. 1 is satisfied.

As in the last section, we wish to view JΓ ε as the composition of random maps.
To do that we realize the solution of (4.1) as a stochastic process

where (Ω,P) is a probability space and {ξt} satisfies
(i) ξ0 — id, the identity map,

(ii) for t0 < tι < ... < tn, the increments ξt o ξjΓ1

1 are independent,

(iii) for s < t, the composition ξt o ξ~ι depends only on t — s,
(iv) with probability 1, the stochastic flow ξt has continuous sample paths.

(See e.g. Kunita [1990] for more information.) Our perturbed process JΓ ε can then
be viewed as the random map

• °fω2 °fωι '

where ωx, ω2,..., e Ω are independent and fω.: = ξε(ω.)o f.
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Using this representation of JΓ ε , we can write the perturbed Perron-Frobenius
operator 5§ε: W

r~\M) -> Wr~{(M) as

{&εφ) (x) = ί P(dω) (&ωφ) (x),

where

y jωy—

In fact, 5Zε is still in the framework studied by Ruelle [1990] and in particular is
quasicompact. Again, S$ε has 1 as an eigenvalue, with eigenfunction ρ£ e Wr~x

equal to the density of the invariant measure for JΓ ε .
In the remainder of this subsection we summarize a few technical estimates about

the ^ r-norms of ξε that will be needed later on. For ζ e DifF(M), we define the
r

Wr-novm \\ξ\\r to be | |£ | | r = ]Γ l ^ ί l * where \Dιξ\ is computed using a fixed system
2=0

of charts, and let |||f|||: = max( | | ξ | | r , \\ξ~ι\\r). We assume that | | | I d | | | = 1. For
δ > 0, we define the sets

and the random variable τn(δ): = inf{5:ξs ^ ^ }
It is proved in Baxendale [1984] and Kifer [1988b] that for all ε > 0,

Also, using a formula in Franks [1979, Lemma 3.2], we obtain inductively that for
all ξ in 2ό%,

where the constant C only depends on r. From these estimates, we easily derive the
following sublemmas:

Sublemma 1 (Baxendale [1984], Kifer [1988b]). Fix k > 0. Then for all sufficiently
small ε > 0, ίΛe expectation

Proof of Sublemma 1. Fix an arbitrary <5 > 0 and choose ε such that P{τx(δ) < ε} is
sufficiently small. Let r 0 = 0, and define An: = {rn_1(^) < ε < τn(δ)}. Then

oo

\kE\\\ξε\\\k < Σ(sup{| | |ξ | | | :ξ e 8#})fc

\\ + δ) ((1 + δ)r + I) 7 1" 1]* (P{r^) < ε})n~ι < oo D

n=l
oo

n=l

The proof of Sublemma 1 also gives the uniform integrability of | | |ξ ε | | |
f c as ε

varies. We state that as Sublemma 2.

Sublemma 2. Fix k > 0 and assume ε is small. Then given a > 0, there exists β > 0
(independent of ε) such that for all A C Ω with P(A) < β9

E(\\\ξε\\\-χA)
k<a.
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Sublemma3. (Essentially in Baxendale [1984].) Fix k > 0. Then

E\\\ξε-Id\\\k ->0 as ε - > 0 .

Proof of Sublemma 3. Write

n=l

First let ε —• 0 for fixed <$ to get

ε-+0

The quantity on the right clearly tends to zero as δ —• 0. Π

C. Statement of our Results

Theorem 2. Let f :M —> M be a Wr expanding map as described in Sect. 4A, with
expanding constant \, and let μ0 = ρ0 dm be its unique absolutely continuous invariant
probability measure. Let {&ε, ε > 0} be a small random perturbation off of the type
described in Sect. 4.B, with invariant probability measure μ£ = ρ£ dm. Then:
(1) The dynamical system (/, μ0) is stochastically stable under JΓ ε in the space of
Wr~x functions, i.e., the Wr~ι-norm of ρε — ρ0 tends to zero as ε —> 0.

Let r 0 and rε be the rates of decay of correlations for f and 3&ε respectively, in
the space of Wr~x functions. If, in addition, τ 0 > λ"^"1^, then:
(2) The rate of mixing for f is robust, i.e., τε —> τ 0 as ε —> 0.

We show in fact that
(3) For each δ > 0, outside of {\z\ < λ~ ( r - 1 ) + δ}, the spectrum of 5%ε converges to
that of ^ as ε -> 0.

Remark. We conjecture that the correct scaling in ε for this kind of perturbation is

D. Dynamical Lemmas

The setting and all notations are as in Sects. 4.A and B, and except for the scaling
statement the two lemmas needed are identical to those in Sect. 3. Once again, they
are:

Lemma 6. For fixed n e Z + and φ G Wr~λ,

0 as ε-> 0.

Lemma 7. Let A > A~(r~1} be given. Then there exists No E Z + such that for all
n> No there exists ε(n) > 0 such that for each ε < ε(n),

\\J&ε -J& || < A .

We will use the proof of Lemma 7, with r = 2, to illustrate how the analysis in
Sect. 3.D can be adapted to the present setting. The other proofs are handled similarly.
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Using the random maps representation of JΓ ε and the notation in Sect. 3.D, we
have fS = fωn o . . . o fωι if ω = (ωu ... ,ωn) e Ωn, and

(&?φ) (x)

where

=[...[ Pidω,)... P{dωn) ( J ί ί » (x),

ψiy)'

Let n be fixed for now. For local considerations we will assume that we are in
Euclidean space.

Sublemma 4.

e V J '"J — ^ " - ^™"'dx%

Proof of Sublemma 4. We fix x e M, and write

where

Φt(ω) = \{(&£φ) (x + tuτ) - (&Sφ) (x)} = -±- (2%φ) (xt) ,

for some xv where ui is the unit vector in the ith direction. Our assertion amounts
to exchanging the order of the limit and integrals. To do that, we will produce
Φ e Lι(Ωn,Pn) with \Φt\ < \Φ\. Differentiating the expression for SZ%φ above,

we observe that - — (^^φ) (xt) is the sum of finitely many terms, each one of which

is bounded in absolute value by a product of the form

where C is a constant depending on / and n, and kx,..., kn depend on n and
the dimension of M. We set Φ(ω) to be the corresponding sum. It follows from
Sublemma 1 that Φ is integrable. Hence the Dominated Convergence Theorem applies.
D

Consider first ω = (cϋ l 5 . . . , ωn), where /S is ^ 2 very near fk for 1 < k < n, say
11/5 ~ fk\\2 < ^ f° r s o m e δ > 0. We assume δ is small enough so that the inverse
branches of f£ are easily identified with those of / n . Then the same argument as in
Sect. 3.D, line by line, gives

and

The strategy of our proof is as follows: first we choose n and then δ = δ(n) so
that for all ω with the properties above, we have
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for some λ~(r~1} < M < A. We then choose ε < δ such that if Ωo: =
{ω:\\fω ~ /112 ^ }̂» m e n P(ΩO) is very small, small enough that these "bad" ω
do not contribute significantly to ||=SζJV ~ 2?nφ\\. More precisely, let

First we consider the ^°-norm:

and Ω?: = {(ωι,...,ωn):ωj e Ωo} .

< J \.%Sφ -

The ̂ -term has been shown to be bounded above by c
n
 Wφ^, and

the last factor of which can be made small as ε —> 0. It remains to estimate / \$y~φ\.
Note that Sp$φ is a sum of finitely many terms of the form β™

Ψ(-)

This expression is bounded above by

Its integral over Ω™ is therefore bounded above by

By Sublemma 2, the last factor can again be arranged to be arbitrarily small by
choosing ε small. This proves

A similar argument (see Sublemma 4) gives

<i d

dx0

 ε dxη

. D

E. Proof of Theorem 2

Use Sect. 2 and proceed as in Sect. 3.E.
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5. Piecewise Expanding Maps of the Interval

A. The Unperturbed Model

We consider here / : / —>• /, where I — [0,1] and / is a continuous piecewise W1,
piecewise expanding map. More precisely, we assume that there exists a partition
0 = α0 < a{ < ... < aM = 1 of / such that for each i, the restriction f\[a a ] can

be extended to a W1 map with min | / ' | > λ > 1. The ai are called the turning points
of /. The continuity assumption on / is imposed only for simplicity of exposition.
One could replace it by piecewise continuity and consider left-hand and right-hand
limits of the turning points.

Recall that for φ:I —» M, the total variation of φ on an interval [α,6] is defined
to be

var^ = sup< V | ^ ί + 1 ) - ^ ) | : r i > 1, a < x0 < xx < ... < xn < b
[aM {75 J

We use l^lj: = J \φ\ to denote the ί^-norm of φ with respect to Lebesgue measure.

Let BV: = {φ:

( W , || II), where

Let BV: = {φ:I -^ C:var(/? < oo}. One often considers the Banach space

\\φ\\ =varφ+\φ\ι.

Let 9% be the Perron-Frobenius operator associated with / acting on (BV, \\ | |).
The spectrum of Sg in this setting has been studied by many people (Wong [1978],

Hofbauer-Keller [1982], Rychlik [1983]). It has been shown that 3% is quasi-compact,
its spectral radius is equal to one, it has unity as an eigenvalue, and its essential spectral
radius is equal to

θ = \ i γ /
n-^oo

[The derivative of / is not well-defined at the turning points, but both limits
f+(βi) — l i m f'(χ) a n d fL(cii) = ϋm f\x) exist; we replace implicitly each

occurrence of f'ia^ by the maximum of these two limits.]
Let £>0 be an eigenfunction for the eigenvalue 1, with l ^ ^ = 1. Then £0 is the

density of an invariant probability measure μ0 for /. We assume that / has no other
absolutely continuous invariant probability measure, and that / is weak mixing with
respect to μ0. Under these assumptions, it has been shown that 1 is the only point
of σ($Z) on the unit circle, its generalized eigenspace is one-dimensional, and that
τ 0 : = sup{|z|:z G σ(Jg),z Φ 1} < 1 measures the exponential rate of decay of
correlations for functions in BV (Hofbauer-Keller [1982], Keller [1984]).

In our analysis to follow, it will be necessary for us to work with some other
norms in BV. For 0 < 7 < 1, we define

Note that for any 0 < 7 < 7' the norms || ||Λ and || \\ , are equivalent.
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B. Type of Perturbation: Convolutions

As in Sect. 3.B, we consider a small random perturbation JΓ ε of / by convolution.
Let us make the assumption that /(/) C [<S, 1 - 6], for some δ > 0, so that we can
avoid the problems at the boundary of / when / is perturbed. (There are other ways
to deal with this.) We obtain as before a perturbed transfer operator 3§ε acting on
(BV, || | |). As in the first two models, Sε has 1 as an eigenvalue with eigenfunction
ρε which is the density of an invariant probability measure με for JΓ ε (Lemma 19 in
Keller [1982]).

It is known that not all piecewise expanding maps are stochastically stable. A
major difference between the situation here and that in Sect. 3 is that we do not have
the kind of "shadowing" property used in the proof of Lemma 5. More precisely, let
t = ( ί 1 ? . . . , tn) and f? be as in Sect. 3.D. We count the smallest number of intervals
on which fn is monotone, for that measures in some way the number of "distinct
orbits" of /. In general fj} may have many more intervals of monotonicity than fn.
See Fig. 1 for an example in which a turning point fixed by / generates 2n — 2 extra
intervals of monotonicity for f%. This example is not stochastically stable, not even
in the sense of weak convergence of με (see Keller [1982, Sect. 6] and also Blank
[1992]).

We remark that the "shadowing" property used in our proof of Lemma 5 is not
the usual shadowing property: we deal only with orbits of finite length but require a
complete matching of backwards branches of the map. For more information on the
usual shadowing for interval maps see Coven-Kan-Yorke [1988].

C. Statement of our Results

From our discussion in the last subsection we see that our situation improves if the
turning points do not get mapped near themselves. We say that / has no periodic
turning point if fk(ai) φ ai for all k > 1. The kernel θε used in our convolutions is
called symmetric if θε(x) = θε(—x), \/x. The definition of θ is given in Sect. 5.A.

We first state our result assuming that / has no periodic turning points

1 iterate, epsilon = 0.04 4 iterates, epsilon = 0.04

0.8

Fig. 1. The fourth iterate of a map with a fixed turning point compared to the fourth iterate of a
perturbation
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Theorem3. Let f :I —> I be as described in Sect.5A, with a unique absolutely
continuous invariant probability measure μ0 = ρ0 dm, and let 3&ε be a small random
perturbation off of the type described in Sect. 5.B with invariant probability measure
ρε dm. We assume also that f has no periodic turning points. Then
(1) The dynamical system (/, μ0) is stochastically stable under Jjfε in Lι(dm), i.e.,
\ρε — QQ\X tends to 0 as ε —• 0.

Let τ 0 and r£ be the rates of decay of correlations for f and Jfe respectively for
test functions in BV.
(2) Ifτl > θ then τ£ -» r 0 as ε -» 0.

We show in fact that
(3) if we let r = min{\z\ :z G σ(J^0, \z\ > Vθ}, then there exists δ > 0 such that the
spectrum of 3Sε restricted to {\z\ > r — δ}, converges to that of 3? (restricted to the
same domain) as ε —> 0.

Theorem 3f. Let f and &ε be as in Theorem 3, except that we do not require that f
has no periodic turning points. Then
(1) is true if either θ < 1/2; or θ < 2/3 and θ£ is symmetric;

(2) and (3) are true if \fθ is replaced by \/2θ; or y/θ by >/(3/2)θ ifθe is symmetric.
The square roots arise from our use of balanced norms in the proofs of Lemmas 9

and 9'. We do not know to what extent they are needed. We do not know either if we
can weaken the replacement of θ by 2Θ [or (3/2)<9] in Theorem 3 ;. However, it is
clear that some hypothesis on / or on the nature of our perturbations is necessary to
give the type of results we want (see Sect. 5.B). We remark also that the hypothesis
we use for proving stochastic stability is slightly weaker than that in Keller [1982,
Sect. 6] or Kifer [1988a, Chap. IV] (in the latter reference, only weak convergence is
shown and the assumption that λ > 2 is implicitly used, see also Blank [1992]).

D. Dynamical Lemmas

The setting and notations are as in Sect. 5.A and 5.B. We have the obvious lemma:

L e m m a 8. For fixed n>\ and φ £ L 1 ,

^ f > l i ->0 as ε - > 0 .

It is not true in general that var(J?ε(^ — SZφ) —• 0 as ε —» 0 for a fixed φ G BV.
We will use the notations c n ε , g = 1/|/'|, and fς->S$ς of Sect. 3.D. We also write

<#(%-) = 9(vr) -

We let

and ^M = max Mi < M -j- 1. Note that / is without periodic turning points if and
only if yM < oo.

Denote by £&n the "partition" of / into (closed) intervals of monotonicity of fn,
and by £5n^ the "partition" of / into (closed) intervals of monotonicity for /^. Write
c^! = ηx U . . . U ηM. By definition an element η(j0,... ,jn_γ) of 3on is an interval
of the form

O> >Λ»-i) = vjo πΓ ι (η 3 ι )n . . . nΓ i n- ιXη J n_x),
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with nonempty interior; and an element τ / 0 0 , . . . , jn_\) of &n % is an interval of the
form

v'(jo, • • •, jn-ύ = vjϋ n / ( 7 X ) π... n f^jn_o(vjn^

with nonempty interior.
If yM = 0, it is not difficult to check that for fixed n > 1, there exists ε(n) such

that, for all ε < ε(ή)9 the elements of £on $ are in bijection with those of §&n. We
say that two such intervals η(j0,... , j n_ 1) G ^ n and η'(j0,... ,jn-ύ e ^n,t a r e

associated and that η1 is admissible. (Think of ε as being so small that two associated
intervals are virtually the same.)

Consider now the case yM > 1. We fix η and assume that ε is sufficiently small
for this value of n. Consider f%9 where each \t{\ < ε. We associate elements of £&n

with those in £ζn £ as before, but in general this will not account for all the elements
of £&n p An element of 3ίn £ without a counterpart in §&n is called nonadmissible.

Let us look at how nonadmissible elements are created. Let ai be a turning point,
and let q > 0 be the first time f^ a{ returns to the turning set. From the definition
of £ζq £, we see that the two intervals adjacent to a% in £& $ are admissible, but that
£&q+ι £ may have two nonadmissible intervals adjacent to a{. This is due to the fact
that fq(ai — δ, a^δ) lies on one side of some turning point aif9 while fί(ai — δ, aτ+δ)
may intersect both sides of a{,. We think of these two newly created nonadmissible
intervals as so short that their dynamics up to time n is tied to that of a{.

If there is no q'9 with q < q1 < n, such that fq ai is in the turning set again, then in
££n £ these two nonadmissible intervals will be the only ones between the admissible
intervals nearest to a{. If, however, such a qr exists, then the same mechanism as
before may create two new nonadmissible intervals for &q,+lj. In addition to that,
each one of the already existent nonadmissible intervals near a% may get divided
again, giving rise to a total of 22 + 2 = 6 nonadmissible intervals near ai in Mq/+ι p

Continuing this reasoning, if ai returns to the turning set L times before time n,
then the maximum number of nonadmissible intervals created near α2 is 2 ( L + 1 ) — 2.
Also, if fkx = ai for k < n, then an imprint of the picture at ai is made at x9 giving
rise to other nonadmissible intervals between admissible ones in & £. These are the
only ways in which nonadmissible intervals are created.

To sum up, we have the following estimates. If / has no periodic turning points,
i.e. if .yM < oo, then between any two admissible intervals in &nϊ there are at most
2^+i nonadmissible ones. If / has periodic turning points, then the maximum number
of contiguous nonadmissible intervals is at most 2 n — 2.

We now "trim" the intervals of £on and the admissible intervals of &n p

Assume first that ^M = 0 and ε is small enough. Let η e £όn and η' e &n t- be a
pair of associated intervals of monotonicity. We decompose η and ηr into two parts
as follows: set G(η,ηf) = fnη Π f$η' and ηG = (fn\ηΓ

ι(G), VG = (f?\vTl(G);
and let ηB — η\ηQ and η'B = τjr\ηf

G. We again say that the intervals ηG and ηf

G are
associated and that ηB and ηB are their respective co-respondents. We denote by B
the union of all co-respondents ηB and by B' the union of all co-respondents η'B.
Then, for fixed n the measures of B and B' both tend to zero as ε tends to zero.

In the case where yM > 1, we decompose associated intervals η e 3on and
η' G Mn £ into η' = ηG U ξB and η = ηG U ηB as described in the case ,/M = 0.
We again say that ηG and ηG are associated and that ηB is the co-respondent of
ηG. We define the co-respondents of ηG to be ξB together with half of the non-
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admissible intervals immediately to the left and half of those to the right of η''. Each
non-admissible interval is hence the co-respondent of a unique η'G. We denote by B
the union of all the "bad" intervals ηB, and by B' the union of all co-respondents.

Lemma 9. Assume that f has no periodic turning points and let Θ < A2 < 1. Then,
there exist C > 0 and No G Z + such that for each n > No there exists ε(n) > 0 such
that for each ε < ε(n),

Recall that || \\Λn is the balanced norm with weight An (see Sect. 5.A).

Proof of Lemma 9. In the proof, θ denotes a generic constant slightly larger than θ.
(We will have to increase θ slightly a finite number of times in the argument.) There
exists an n 0 such that gn(x) < θn if n > n0.

We have

(5.1)
We start with the details of the proof for the first "bad" term \\^{φχB')h m e

second "bad" term is obtained by similar (more classical) bounds. The third term will
be considered in Eqs. (5.10) to (5.14) below.

For each η'B G B' and for x e f^+η'B, we have

η>B) 0*0 = φ(Vϊ) • 9(y?). • g(fn~ιyt),

where y^ is the unique element of η'B such that f^iy?) — x> It follows that

\ φ \ λ ) , (5.2)

where l(η'B) denotes the length of the interval η'B.
Summing (5.2) over all intervals η'B, we get

For the variation, we have for any interval η' e Mn ^

war^iφx ,) < var^ s u p ^ + sup \φ\ v a r ^ + 2 sup \φ\ s u p ^ . (5.4)

Were it not for the last term of (5.4), everything would be much easier! We will use
the following easily proved inequalities: if n is large enough, say n > nι, and ε is
sufficiently small, then for η' G Mn ^

suppp < θn

(5.5)
v a r ^ < θn.

η' f

(The first inequality is obvious, the second is proved by induction.)



378 V. Baladi and L.-S. Young

Set n2 = m a x ^ , ^ ) and assume first that n = n2. The interval η'B is a subset

of some η' e £&n$ and is a co-respondent of a unique good interval v[B. From (5.4)

and (5.5), denoting by η" the smallest interval containing η'G and η1', we obtain:

< vary? θn + (vary? + inf |cp|Λ fvar#p + 2 suprf
η' \ η" η" ) \ η' η,

< var φ 4 θ n + JD /(r/'7) inf \ψ\, (5.6)

where D = sup [var^ 2 + 2 sup^ 2 ]// n 2 , with /n2 equal to the infimum of the

lengths of admissible intervals in &n ξ. Note that when ε tends to zero, I tends to

infl(η), for η in £&n , and observe that l(η")'mί\φ\ < f \φ\.

Summing (5.6) over all intervals η'B, and using the fact that the good intervals
η'G are overcounted at most 2 M times, we get for n = n2,

var(=^ i(y?χβ/)) < 4 2"^ θn var(y?) + 2'^D \φ\x,

and, by increasing θ slightly and assuming n2 is large enough,

< ( 9 n var((^) + 2 ^ D |(^| 1 . (5.7)

If n > n2, write n = q n2 + r with r < n2. If a vector ί of length 2n2 is the
concatenation of two vectors u and v of length n2, and £, C are the unique intervals in
i£n2itf, respectively &n2jΰ such that a given ηf e £&nj is equal to ί/^ 2 ^)" 1 ^) Π C,
then'

In particular

Xς • Ψ)) + 2MD • J\ψ\.

C

A standard induction argument yields

var J ^ χ β / ) < θn vavφ + D' ^ ^ , (5.8)

where Df is essentially 2^D/{\ - θ) (see e.g. Rychlik [1983, Lemma 7, and
Proposition 1]).
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The problem we have to deal with now is that the term Df \φ\x in (5.8) is not
small. To do this, we follow the "balancing" idea suggested to us by Collet [1991].
Not knowing which 7 to choose for now, we rewrite (5.3) and (5.8) using our new
norm || | | 7 :

7 var(J2^(y>χβ,)) < 7 Θn vavφ + 7 D' \φ\{ .

Together, they give

| | ^ χ β , ) | | 7 < (cn > e + θn + Ί-D')- | M | γ < (θn + Ώf 7) | M | 7 . (5.9)

We now bound the difference \\^nφχ^\B) ~ ^(ΨX{I\B'))\\ We ^ r s t consider

the supremum norm to control the L1 part. Let us fix some point x in f^(I\Bf). By

assumption, there exist two nonempty sets of intervals η'G 3 c I\B\ and ηG j c I\B

0" = 1,..., fc(x)) such that x e fn(ηGjJ) = / ? ( ^ , * ) for j = 1,..., fc(x). Fixing

j and denoting by y, respectively ŷ , the unique n-preimage of x in η = ηG j ,

respectively 77' = 77^., we have d(y,y^) = c n ε and hence

var φ) (^n(τ/) + cn ε)
ηUη'

var y? + sup \φ\\. (5.10)
ηUηf J

We have an analogous lower bound. Summing over j , we get:

c^l^!. (5.11)

The "trimming" was not really needed for the bound (5.11) on the ZΛnorm since
fn(B)Uf^(Bf) has a measure tending to zero as ε tends to zero, but it will be crucial
for the next bound.

Consider an associated pair (77 ,̂ 77̂ ) which for simplicity of notation we write as
(τ7,77/). Defining the bijection ^ : 777 —> 77 by Ψ{y^) = y, we obtain

χηf - (gnφ) o Ψχηl)

o Ψ)<ψη/) + var(<?j% o Ψ)χη, - (gnφ) o Ψχηf)

-φoφ))+ var {φ(g$ o Ψ~ι - gn))

%φ -φoΦ)) + 2 sup(φ(g? o Γ 1 - gn))
Ύ]' η

< sup#p var((y9 — φ o Ψ) + varg^ sup \φ — φ o Ψ\

+ sup \φ\ var(#p - gn o Ψ) + var y? sup k™ - ^ n o Ψ\

p sup |y? - φ o ί̂ | + 2sup |<p| sup |pp - gn o !
7 77 /77

< 2 θ n var (φ) + θ n var y? + sup \φ\ c n + var y? 2(9n

+ 2<9n . var y? + 2sup \φ\ c n ε , (5.12)
77U77 r 77
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where we have used that / is W2 in the last inequality to get var(#p - gn o Ψ) < cn ε.

We have also used the fact that η' —• η as ε —> 0, so that 77 U 7/ is a connected
interval.

Summing the above inequalities over all elements of £&n, and noting that intervals
of the form 77 U 7/ intersect at most two of their neighbors, we get

< θn (var<p + \φ\{). (5.13)

From (5.11) and (5.13) we find:

1 \φ\γ)

(5.14)

Adding (5.9), the analogue of (5.9) for ^ n and (5.14), and integrating over t, we
obtain

II^Γ - ^ n | | 7 < 2(θn + D'Ί) + Ί-
χθn.

Remembering that Λ2 > (9, we see that if we let 7 = yln, then the right side
of the above inequality is bounded above by C - An. This completes the proof of
Lemma 9. D

Lemma 9'. Let A be such that θ < min(τl, 2Λ2). Then there exist C > 0 and No e Z +

such that for each n > No there exists ε(n) > 0 such that for each ε < ε(n),

\\^-^n\\Λn <C-(2Λ)n.

If each θε is symmetric, then for A such that θ < min(τl, (3/2) A2) we have the better
inequality

Proof of Lemma 9f. We shall follow the proof of Lemma 9, noting only the modifi-
cations which are necessary when y/6 '= 00.

We see that the only important change occurs when we sum (5.6) over the intervals

η'B. Since each good interval η'G has at most 2n~ι co-respondents, the sum yields
for n = n 2:

< 2 (2θ)n var(^) + 2n~lD \φ\x .

For general n — q n2 + r, the same induction argument as in the proof of Lemma 9
allows us to replace Inequality (5.8) by

v a r J 2 ^ χ β / ) < (2θ)n vavφ + 2n D' \φ\λ .

Inequality (5.9) hence becomes

\\^(ΨXBI)\\Ί < (cn,e + (2θ)n + 7 2" D>) • \\ψ\\Ί .

Inequality (5.14) does not have to be changed. Summing up, we have

< ((2ΘΓ + Ί~lθn + Ί2
nDf) \\φ\\Ί ,

and hence the inequality as claimed.
Assume now that each θε is symmetric. Again inequality (5.14) does not have

to be changed, and it suffices to get a bound replacing (5.9). Let ηr

G be a trimmed
admissible interval for f-ϊ which is associated with ηG C η G 3on, where a boundary
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point b of η is periodic. We claim that there exists a sequence S = {^}J=iv..,n of

signs sJ =e {+,—} such that η'G has at most 2k(<S) nonadmissible co-respondents

η'B, where 0 < k(S) < n is the numbers of coordinates ti of t such that the sign of
t. = Sj. Indeed, take s3 to be + or - , depending on whether the j t h iterate of b is
a local maximum or a local minimum respectively for fn. (For example, in the map
of Fig. 1, the sequence of signs is Sj = + for all j.)

We first sum (5.6) over the bad intervals ηB for which k(ηB) is equal to some
fixed k and call this partial sum Ak. Since θε is symmetric, we have

Jθε(tι)...θe<ίn)Ak< ( ^ ) | Γ ( ^

hence, using jr ( U ) 2k = 3 n - 1,

fe=l \kJ

) < ^ f θ£(tx)... θε(tn)Ak < ((3/2) θ)n v a r ^ + (3/2)n£> \φ\λ .

We thus obtain

\\^{φχB,)\\Ί < (cn ι e + ((3/2) ΘΓ + 7 (3/2Γ 2?;

which yields the claim. D

We have implicitly used the following inequality in the proofs of Lemma 9 and
Lemma 9': assume that ψ(x,t) is a function of two variables such that the function
t ι—• θε(t)ψ(x, t) is in Lι(dm) for each fixed x, then

ί f
dtθJt)ψ( ,t) < / dtθJt)\ψ(Ίt)\x ,

J i J
dtθε(t)ψ(x,t)j < / dtθ£(t)varxψ(x,t).

As in the first two models, we have not used in the proofs the expanding condition
as stated, but only the slightly weaker assumption θ < 1.

E. Perturbation Lemmas for Abstract Operators: a Modified Version of Sect. 2

Because of the need to introduce the norms || | | 7 , we need a slightly refined version
of Sect. 2. Again, (X, || ||) is a complex Banach space, and {Tε,ε > 0} is a family
of bounded linear operators on X. We assume that To satisfies conditions (A.I) and
(A.3) in Sect. 2, i.e., σ(T0) = Σ0UΣι with

κx: = s u p { | ^ | : z e Σx) < inf{\z\:z G Σo} — :κ0 ,

and dimX0 < oo. We further assume that Σx can be written as the union of isolated
sets

y _ y I j y /A/ I \
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where Σι 0 could be empty and dimXj 0 is at most finite. (The notations π{ 0,π{ 1?

Xl0 and Xιx have the obvious meanings.) Let

We assume that there is another norm | | on X such that \x\ < \\x\\ for all x, and
a family of norms || | | 7 , with 0 < 7 < 1 with

HI 7 = 7lHI + (i-7)H-

(In particular 7|| || < || || < || || and | | < || |L.)

Condition (A.2) is replaced by the assumption that there exists K with (κn/κ0) <
hi < hi0 such that for each large enough N £ Z + there exists ε(N) such that for all
0 < ε < ε(JV),

| | T jV_ T JV | |^ <KN ( A /_ 2 )

We shall need two sublemmas:

Sublemma 5. Assume (A.I), (AM), and (A.3). Then for any hi'o < κ0, κ[ > κ{, there
exists No such that for all n > No, any 0 < 7 < 1, and any x £ Xo, y £ Xλ 0,

(1) \\TZx\\Ί>(^T\\x\\τ

(2) | | Γ 0 ^ | | 7 < « Γ | | 7 / | | 7 .

Proof of Sublemma 5'. We prove (1). Since Xo is finite dimensional, all norms are
equivalent. We choose No such that for all n > No and x £ Xo,

Tmo-I >̂ (w1' \ n T I ctrtr\ \\TnΎ>\\ "> (wf \n\\^\\
0 — \ 0/ Λ11LI -I. n ^ ^_ v ' l / 0/ *

The same inequality then holds for || || which is a weighted average of | | and

ll ll π
Sublemma 6. //(A.I), (AM), and (A.3) /zo/J, ί/ẑ n ^ r e ejcwί.y α constant C such that
for any 0 < 7 < 1, we have | |τro | |7 < C, ||7Γ1)O||7 < C, β/tJ | | ^ | | 7 < 2 C + 1.

Proof of Sublemma 6. For x £ X, we have

| |π o x | | 7 < ||7r0x|| < const |τro| \x\ < const |τro| | |x | | 7 ,

where we have used again the fact that the norms | | and || || are equivalent on
the finite-dimensional space Xo. We proceed in the same way for | |τr l j 0 | | 7 . To finish,
observe that π 0 + π10 + πx = / so that | | ^ | | 7 < | | π o | | 7 + | | π l j 0 | | 7 + l α

We can now prove:

Lemma 1'. Assume (A.I), (A.3), (AM), and (A;.2), then the conclusion of Lemma 1
from Sect. 2 is true.

Proof of Lemma 1'. Let

hiλΛ <. K ii <. K \ K ,
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Let N be large enough for various purposes. In particular, we require (see Sub-
lemma 5) that

We let ε < ε(N) and will show that λ φ σ(Tε) for λ with κf < |λ| < κ'o (if κf is
close enough to κ0).

We proceed as in Lemma 1, using || \\KN in the place of || || and estimating
\\R(T^,λN)\\κN by projecting onto Xo, Xl0, and Xλl. It follows from our choice
of constants that for x E I o , we have

\\T^ -\X\\KN > const- (K%)N\\X\\KN,

and for x G Xx 0, we have

\\T0

Nx-λx\\κN> const .{K')N\\X\\KN.

As for x G Xγ γ, we have

\\T?x\\κN < \\T0

Nx\\ < {κ'u)
N\\x\\ < ( ^ j \\x\\κN ,

from which it follows that

\\T^x - XX\\KN > const (K,')N\\X\\KN .

These estimates together with Sublemma 6 give

\\R(T0

N,λN)\\κN<-L. D
rv

Note that, unlike the situation in Sect. 2, K,' cannot be taken arbitrarily near K.
Lemma 2 from Sect. 2 holds in the present setting, with convergence in the sense

of the || ||KN-norm (i.e., for any δ > 0 there are TV G Z + and ε(N) such that, for
each ε < ε(N), ||τr0 - TΓQH^N < <5), and the same proof.

Define
^ * . x \ ε 0 \

C * ( ε ) : = sup ε °
χex0 \x\

and assume that
Cf(ε)->0 as ε - > 0 . (Af .4)

Lemma37. Λ^wm^ (A.I), (A.3), (AM), (A;.2), (Ar.4), and that \Tε\ is uniformly
bounded. Then

as ε —• 0.

Proof of Lemma 3''. As in Lemma 3, we show that Xξ = graph(5ε) for some linear
Sε:X0 -• Xγ with | |S e | |ΛN -> 0 as N -> oo and ε -> 0, ε < ε(7V).

Define T ε :X 0 —> Xo as before. To prove our claim, it suffices to show that

|fε-T0|->0asε^0.
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Now for x G x0, with \x\ = 1,

\fεx - Tox\ < |τro| (\Tex - Tox\ + \TεSεx\)

and it only remains to show that |5 e x| —• 0. This is true because

\seχ\<\\se\\κN\\χL*
< \\Sε\\κN(κN - const - κN) . D

Proof of Theorem 3. Obviously we wish to apply the results above to To = J^,
Tε = J^ε, X = 5 V etc. We will indicate how to prove assertion (3). Let
Θ < θ' < Θ" be such that θ" is arbitrarily near θ. We let

Σl0 = {ze σ θ"}

> Vθ"}.

and choose κ = A near Λ/Θ77 such that θf < κ2 < κ\fθ". The norm of Sε: Lι -> L1

is equal to 1, and it follows from Lemma 9 that 5§ε is quasi-compact so that ρε G BV
(see e.g. Keller [1982, p. 315]). Theorem 3 hence follows from Lemma 3' and the
results stated in Sect. 5.A and 5.B.

(The fact that the Z^-norm is strictly speaking only a norm when one quotients
out functions of bounded variation φ for which l ^ = 0 is not a problem, see
Proposition 1 in Baladi-Keller [1990].) D

Proof of Theorem 3''. Again we prove (3). We let κu < θr be as above. Here,
however, we consider only κ0 > \/ΐθ" and let K = A be very slightly smaller than
KQ/2. Then θ < 2κ2 < K which is the hypothesis of Lemma 9r. Lemma 9f does not
yield (A;.2) but only the weaker bound

\\rτΊj\J rpJN II ^

Uε ~ 20 \\κN ^
\N

However, since we can assume that the constant K' in the proof of Lemma V satisfies
κ n < K < 2κ < κf < κ0, we obtain an improved version of (5.15):

\\R(T0

N,λ N\ const(||π0 | | Λ N 1
\N N

The other requirement on n in (A;.2), namely that κn < κκ0, is also satisfied. The
conclusion of Lemma V is thus still valid. (The proof of Lemma 2 can be modified
in a similar fashion.) We finish as in Theorem 3.

If the functions θε are symmetric, we can replace each factor 2 by 3/2 in the above
choices. D
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