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Abstract. We study the finiteness of total scattering cross sections from an arbit-
rary channel to a two-cluster channel and establish the high energy asymptotics for
total scattering cross sections with initial two-cluster channel and those from an
arbitrary channel to a two-cluster channel.

1. Introduction

The total scattering cross sections are usually defined, within a normalization in
energy, as the square integral over all outgoing directions of the scattering ampli-
tude ([1,2, 10]). To study total scattering cross sections through this definition,
one needs to know a priori some information on scattering amplitudes. In [5], Enss
and Simon introduced another method to define total cross sections. Let S be the
scattering operator for the pair { — Δ, — Δ + V(x)) in L2(Rd). For any #eCo )(R + ),
put

Then the total cross section, σ(λ, ω), with the incident direction ω is defined
through the relation ([5]):

\σ{λ,ώ)\g{λ)\2dλ=\\{S-l)gω\\2 , (1.1)

so long as the right-hand side of (1.1) makes sense. It is clear that gωφL2(Rd\ if
d > 1. By considering \\(S — ΐ)gω\\ as the limit of a family of appropriate cut-off
functions, Enss and Simon proved that if V(x) decays like 0(<x>~p) with
p > (d + l)/2, the total cross section is finite when averaged over any energy
interval. They also established similar results for total scattering cross sections with
initial two-cluster scattering channel in many-body problems ([5]). In [14], using
Enss and Simon's approach and studying the spectral representation for two-
cluster scattering matrices, Robert and the author proved the pointwise finiteness
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of the total cross sections with two-cluster initial channel. The purpose of this work
is to study the finiteness of total cross sections with an arbitrary initial channel and
establish high energy asymptotics for total scattering cross sections. We find the
approach of [5] particularly useful in handling total cross sections with arbitrary
initial scattering channel. In fact, the definition (1.1) allows to study the total cross
sections for each fixed incident direction ω and making use of microlocal resolvent
estimates established in [19], we shall prove that the total scattering cross sections
from an arbitrary initial channel to a two-cluster channel are finite for some
distinguished directions ω and may be infinite for the other directions. See The-
orem 3.1 and the remark following its statement.

Let us now introduce some notations. Let A be the Laplacian on the Euclidean
space X = Rd. Let $/ be the set of all cluster decompositions of an Λ/-body system
labelled by {1, 2, . . . , N}. The iV-body Schrodinger operator to be studied in this
work is of the form:

P = - A + Σ Va(xa) .

Here xa = πax with πa the orthogonal projection from X onto some subspace Xa.
Assume the following conventions on the collection {Xa, aestf\. (i). si is partially
ordered by the relation: a c b iff Xa ^ Xb; (ii). There are elements amax and αm i n in
si such that Xα m a x = X and Xαmin = {0}; (iii). For any α.besi, the union αu bis
defined in si with the property that Xα u b = Xα + Xb. Since xαmin = 0, F f l m i n is
a constant. To fix the idea, we take Vαmin = 0.

For each α e ^ , w e denote by Xα the orthogonal complement (with respect to
the Euclidean structure on X) of Xα in X: X = Xα © Xα. Accordingly, a generic
point xeX can be decomposed as: x = xα + xα. We denote — Aα ( — Aα9 resp.) the
Laplacian in xα-variables (xβ-variables, resp.) and Dα = — id/dxα, Dα = — ίd/dxα.
Put

b c α

iα(χ) = Σ vb{χb).
b£α

Then for any αesi, one has: P = Pα + /α(x). Let «̂~ denote the set of all thresholds
(including the eigenvalues) of P:

r = U σPP(n
α

Sα will denote the unit sphere in Xα. Put

Σα = Sα\ U X, . (1.2)

Due to the geometry of an Λ/-body system, one can check that Σα = Sαiϊ#α = 2
(Φα being the number of clusters in α). The norm and the scalar product in L2(Xα)
will be denoted by || ||β and <•>•>«> while those in L2(X) will be denoted by || ||
and <•,•>, respectively.

Let α be a non-trivial cluster decomposition (i.e., αestf with # α ^ 2). A scatter-
ing channel α stands for a collection of data: α = (α, £ α , φα), where £ α e σpp(Pα) and
<̂)α is an associated normalized eigenfunction:
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When a = amin, one uses the convention that Pa = 0, Pa = — Δ and in this case, the
only scattering channel is the free one: α = (αmin,0,1). We shall say that α is
a scattering channel with non-threshold energy, if

Eaeσpp(Pa)\ (J σpp(Pb).
b cz a

Let / α : L2(Xa) -• L2(X) be the channel identification:

(fJ)(x) = Φ«(xa)f(xa).

To be simple, we assume that Vα e J / , Fα is smooth on Xα and

^ | β | , (1.3)

for any α G N"α (rcα = dim Xa). Here p > 0 will be precised later. Let us indicate that
in the main part of this work, local singularities of Coulomb type can be included.
See Remark 4.1. Under the assumption (1.3) with p > 1, it is well known that the
wave operators

W\=s- lim U(t)*Ua(t)/a
t~> ±00

exist for any scattering channel α and are complete ([15]). Here U(t) and Ua(t) are
unitary groups generated by P and Pa9 respectively.

Now let α = (α, £ α , φΛ) and β = (b, E^, φ^) be two given scattering channels. Let

be the scattering operator from an initial channel α to a final channel jβ. As in
[5, 14], we define the total scattering cross section σβa(λ9 ω) with incident direction
ωeSa, from an initial channel α to a final channel β by

J ^ « α ω)|flf(λ)|2dA = IKS,. - δβa)gω\\i . (1.4)

Here || ||fc is the norm in L2(Xb), geC${la) with Iα = ] £ α , oo[ and

where nα(A) = ̂ /A — Ea and xα ω denotes the scalar product of xa and ω. The
right-hand side of (1.4) should be understood as follows: Let χR(') = χ( /R) be
a family of cut-off functions in y = xa — (xβ ω)ω variables with χ(0) = 1. For
example, we can take χ(y) = e~y2 ([5]). If the limit

lim \\(Sβa-δPa)χRgω\\b
R->oo

exists, we put

\\(Sβ* ~ δβa)gω\\b = lim \\(Sβa - δβa)χRgω\h.

Equation (1.4) means that if the above limit exists for all g e C Q ^ I J , the total cross
section σβΛ(λ, ώ) is defined as a positive distribution for λela.

Remark 1.1. Actually, our definition differs from that of [5] by the scale of energy:
They took λ2 as the energy, while here we take λ as the energy. For further
discussions about the equivalence between this definition and the usual one for
total scattering cross sections, we refer to [5, 14].



336 X.P. Wang

Now let α be a two-cluster scattering channel with non-threshold energy
and β be an arbitrary scattering channel. Assume the condition (1.3) with
P > (na + l)/2, na = dim Xa. In [14], it is proved that the total cross section for the
initial channel α

σα(/l, ω) = £ σβa(λ, ω)
all β

is a well defined continuous function for (λ, ω)e(Ia\$~) x Sa. Assume (1.3) for
P > (nab + l)/2 with nαb = max{nα, n&}. We shall show in Sect. 3 that for an
arbitrary j8, the total cross section, σaβ(λ, ω), from β to α is a continuous function in
(λ, ω) for any ωeΣb and λ > \Eβ\ctg2θω (θω being the opening angle between ω and
Sb\Σb). See Theorem 3.1. We believe that σaβ(λ9 ω) should be finite for all
(λ,ω)e(laβ\3r)xΣa. Here

Iα^ = ]max{£α,£ / ?}, + o o [ .

So far with the results on microlocal resolvent estimates of [19], we are only able to
prove this conjecture for any iV-body Schrδdinger operator P having the spectral
structure of a three-body operator. See Remark 3.1.

Admitting the result on the finiteness of total cross sections, our results on the
high energy asymptotics can be stated in the following two theorems.

Theorem 1.1. Let a = (α, £ α , φa) be a two-cluster channel with non-threshold energy.
Assume the condition (1.3) with p > (na + l)/2. Put

+ 3

(1.5)

for any ε > 0. Then one has:

σα(Λ,ω) = - ί J \φa(xa)\2 J ($ Ia(x\y + sω)ds)2dydx* + OiX-1-""), (1.6)
4 / t X* Πω\R /

as λ -> oo, uniformly in ωeSa. Here y = xa — (xa ω)ω and Πω = {xa; xa ω = 0}.

Remark 1.2. (i) The high energy asymptotics of total scattering cross sections in
two body scattering can be studied by Born approximation, which is essentially
a perturbation theory around the free hamiltonian. See [10]. This, however, does
not apply to many-body problems, because in the later case, the intercluster
interactions do not decay on the whole configuration space X. To overcome this
difficulty, we shall use microlocal resolvent estimates obtained in [19] (see Sect. 2).
For rigorous results on total cross sections at high energies in two-body scattering,
see [6, 9,17, 21] and the references therein.

(ii) The semiclassical asymptotics of total cross sections, σa(λ, ω, h) (h -• 0), with
an initial two-cluster scattering channel is established in [14]. Seeing the relation
p - χ = λ{ - h2A + h2ΣVa{xa) - 1) with h = λ'1/2, the reader may ask if one can
directly apply the result (or the methods) of [14] in the semiclassical limit to obtain
high energy asymptotics for σ(λ, ω). To answer this question, we just indicate that
in the semiclassical limit, the contribution from small impact parameter j ; (com-
pared with O ^ " 1 ) ) is negligible, while in high energy asymptotics, this contribu-
tion gives the leading term in (1.6). In addition, the final result in [14] is written
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down in terms of /α(0, xa\ while the substitution of Ia(xa

i xa) by /α(0, xa) in (1.6)
gives an error of the order ^(/Γ 1 ). Our viewpoint is that high energy asymptotics
for total cross sections should be simpler than the semiclassical ones and with
microlocal resolvent estimates established in [19], we can obtain better remainder
estimates. Note that microlocal resolvent estimates are not needed in [14].

Theorem 1.2. Let <x = (α, Ea9 φa) be a two-cluster channel with non-threshold energy
and β = (b9 Eβ9 φβ) be an arbitrary channel Assume the condition (1.3) with
P > {nab + l)/2, nab = max{nα, nb}. Then the following results hold.

(i)

-Ai4λ πω

J J Ia(xa

9y + sω)φβ(xa)φΰί(xa)dxads
R Xa

(1.7)

as λ -> oo , for each ωeΣb.

(ii) / / α φ l ,

-2^l A - o o . (1.8)

Here ηb is defined as ηa with a replaced by b and the estimates (1.7) and (1.8) are
locally uniform in ωeΣb.

Note that in (i) of Theorem 1.2, β may be a two-cluster channel with threshold
energy. The result of (ii) of Theorem 1.2 shows that in high energy scattering, the
probability for the particles to change clusters is small if the potentials are
bounded.

Remark 13. (i) Equations (1.6) and (1.7) can be rewritten as follows. Define

Then, (1.6) and (1.7) become

σβ(λ,ω) = - ί J \\Iω{ 9y)φΛ\\hiXa)dy + O(λ-1-'*)9 (1.9)
4 / L

= ± f KIω(-,y)φa,Φβ>L2(χa)\
2dy + OiX-1-*"). (1.10)

Roughly speaking, this shows that when a = b9 the leading term of σβa(λ, ω) as
λ -> oo is determined by the ^-channel projection of the effective potential

(ii) If the potentials have local singularities, the methods of the proof for
Theorems 1.1 and 1.2 still allow to give the leading term in high energy asymptotics
for σα(λ, ω) and σaβ(λ, ω). See the remark at the end of Sect. 4.

(iii) One can also study the asymptotics of total cross sections for iV-body
Schrodinger operators with a coupling constant g ^ 1: P(g) = — A + gV in the
regime g/λί/2 -> 0. See[10] and [21] for two-body problems. To do this, we need to
establish microlocal resolvent estimates as in [19] for P(g) with g = o(^fλ) as
λ -• oo . This is possible at least for bounded potentials, because for the conjugate
operator constructed in [19], we have an explicit lower bound for the commutator.
But we shall not go into details in this direction.
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The main ideas in the proofs of Theorems 1.1 and 1.2 consist in using eikonal
approximation (see also [10,13,17,21] in the two-body case and [8,14] in semi-
classical asymptotics in the many-body case) to obtain the leading term and
applying the microlocal resolvent estimates of [19] to establish precise remainder
estimates. While we believe that the remainder estimates in (1.6) and (1.7) are
optimal at least for p > (na + 3)/2 or p > (nab + 3)/2, it is still unknown in (ii) of
Theorem 1.2 whether one can prove σaβ(λ, ω) = O(λ~°°) or one can find a non-
vanishing leading term at a finite order of A"1. The method of eikonal approxima-
tion used in this work does not allow us to answer this question.

The plan of this work is as follows: In Sect. 2, we recall from [19] some results
on microlocal resolvent estimates. Section 3 is devoted to studying the finiteness of
σΛβ(λ9ω) when ωeΣb and to establishing a representation formula for σaβ(λ9ω)
when λ is large. In Sect. 4, we prove Theorem 1.1 and in Sect. 5, we give a general
upper bound for σaβ(λ, ω). The proof of Theorem 1.2 is completed in Sect. 6.

The results of this work are announced in [20].

2. Microlocal Resolvent Estimates

In this section, we recall some results on microlocal resolvent estimates on AΓ-body
Schrόdinger operators which will play an important role in this work. We refer to
[18,19] for the proofs of these results.

Let P be a generalized ΛΓ-body Schrδdinger operator: P = —A + £ a 6 i i / Va(xa).
We write formally V°a{xa) = Va(xa) and V{{xa) = (xa Vfl) V{~1 (xfl), for
7 = 1 , 2 , . . . . T o simplify the statement of our results, assume that the following
conditions are satisfied for some p > 0, R > 0:

Vα e J / , j e N, V{( ) is relatively compact in

L2(Xa) with respect to - Δa and

I W 3 θ l ^ C β < y > - > - W VαeN"α (2.1)

for \y\>R.

Note that for physical iV-body systems, Coulombic singularities are allowed in
(2.1). Let d(λ) denote the distance between λ and ^ n ] — oo, λ]. Under the
assumption (2.1), positive thresholds of P are absent: F a ] — oo, 0]. See Theorem
4.19 in [4]. So one has for λ > 0, d(λ) = λ.

For aejtf with a Φ α m a x and μ e R, we denote by S + (μ) the class of μ-dependent
bounded symbols, α+, on Γ*Xα satisfying

suppα+ c {(χβ, ξa); ±xa ξa^ ± μ(xa>} ,

l - ^ { ξ a } - ^ 9 (2.2)

uniformly in μ e R.
In the following, we denote by a(x, D) the pseudo-differential operator with

symbol a defined by

a(x, D)u(x) = ^ ίί e«χ-ΛMx, ξ)u(y)dydξ

and by R(z) = (P - z ) " 1 the resolvent of P.
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Let si' — {aes/; a φ αm a x}. For aesi' and η > 0, we define:

Ωa(η) = {x; \xa\ < η\x\ and Vfo£α, | x > | > η*\x\}

When a = αm i n, we shall write: Ωa(η) = Ω0(η) to indicate the free cluster regions.
Due to the geometrical structure of iV-body systems, {Ωa(η); aestf'} is a covering of
the configuration space X, if η > 0 is small enough: \JaΩa(η) = X.

Theorem 2.1. Assume the condition (2.1). For ε > 0, denote by ZΓZ an ε-neίghbour-
hood of £Γ. Then for any ε > 0, the following results hold uniformly in ?ce]0, 1].

(i) For any ZeN and s > I — 1/2, ί/zere exists C > 0 swc/z

. (2.3)

(ii) For any aestf\ ZeN, s > Z — 1/2, J a a bounded function with support con-
tained in Ωa(η) and b\ eSa±(μ±), there exists C > 0 such that

\\(xy-ιJa(x)b%(xa,Da)(R(λ ± iκ))ι<xy->\\ ^ C<A>- ί/2, \fλφ^ε, (2.4)

uniformly in + μ± < (1 — ε)(d(/l))1/2.
(iii) For any a, a' e sί\ Ja and Ja> bounded functions supported in Ωa(η) and Ωa>(η\

respectively, and for any ZeN, s, r e R and fo+ eS±(μ±) wzί/z μ+ > μ_ + ε(ίZ(/l))1/2

/or c = a or a\ there exists C > 0, swc/z ί/iaί

± ^ ) y ^ ( ) ΐ ( ^ , a o < > Ί I ^ a > , ^
(2.5)

uniformly in ± μτ < (1 - 1 / 2

In Theorem 2.1, we control the support of symbols in terms of the energy. In
some cases, this allows to replace the microlocalizations with symbols in S±(μ+)
by those with support in a largest possible outgoing or incoming region. For this
purpose, let us introduce another class of symbols on Γ * I f l . Let Sa± be the class of
all smooth bounded symbols on Γ*Xα with the following support property:
b± e S + iff there exist ε > 0 and d > 0 such that

suppb±cz{(xa9ξa); ±xa-ξa> - ( 1 - ε)\xa\\ξa\ and \ξa\ ^d} .

Introduce two subclasses of cluster decompositions in $t\

and
stfϊ = {aestf; φa = 2 and σe s s(Pα) = [0, + oo [} .

The following theorem shows that i f α e j / + u j a / ^ , w e can replace the symbols
b%eS'±(μ) by b\eS\.

Theorem 2.2. Assume the condition (2.1).

(i) For aes/, let Ja be a bounded function supported in Ωa(η)for some η > 0. Let
ba

±eSa

±, if aesrf+ KjstfU and ba

±eSa

±(μ±) with ± μ± > - (1 - ε)d(λ)1/\ if
+ u j&2- For any ZeN, ε > 0 and s > I — 1/2, there exists C > 0 such that

\\(xy-ιJa(x)b%(xa,Da)(R(λ ± ίκ))ι(xys\\ S C(λyι/2, VλφϊΓε, (2.6)

uniformly in 0 < K < 1.
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(ii) For any α, a' e «s/, let Jc and bc+ be taken as in (i) according to ce<stf+ U J / 2

+

or cφjtf + u s/2 for c = a or d. Assume in addition that (ba-, bai) and (ba+, bal) are
pairs of symbols with the property of disjoint support. Then, for any ZeN, ε > 0,
s, r e R, ί/zere exists C > 0, swc/2 ί/iαί

Kx}sJa(x)ba

τ(xa9Da)(R(λ ± ίκ))ιba

±(xa,,Da,)Ja,(xKxy\\ ^ C<λ>""2,

(2.7)

uniformly inO <κ < 1.

We refer to Sect. 2 in [19] for the definition of the notion of pairs of symbols
with the property of disjoint support.

Remark 2.1. If an ΛΓ-body Schrodinger operator has the spectral structure of
three-body Schrodinger operators (i.e., there is no negative eigenvalue for any
sub-Hamiltonian Pa with # a ^ 3), then, stf+ u s$2 = «s/. In this case Theorem 2.2
gives complete sharp microlocal resolvent estimates. In general case, our results are
almost optimal in high energy estimates.

Theorem 2.3. Assume the condition (2.1).

(i) For any ε > 0, there exists λ0 > 0 such that for any aes/9 ba+ eSa

± with

supp b\ cz { + Xa. ξa g (1 - ε)\xa\\ξa\} , (2.8)

estimates (2.4) hold for λ ^ λ0.
(ii) For any ε > 0, there exists λ0 > 0 SMC/I ί/zaί /or any a, a' e stf and for any

bc± eS +, c = β, a', swc/z ίftaί (ί?±, b%.) are pairs of symbols with the property of
disjoint support and that (2.8) is satisfied for supp bc±,c = a, a'. Then estimates (2.5)
hold for λ^. λ0.

Theorems 2.1-2.3 are proved in [19] under less restrictive conditions on the
regularity and the decay of potentials.

3. Finiteness of Total Cross Sections σaβ(λ, ω)

Let α = (α, £α, φa) be a two-cluster channel with non-threshold energy. Let
β = (b,Eβiφβ) be an arbitrary scattering channel. The finiteness of total cross
section with initial two-cluster scattering channel a,σa{λ,ω) = Yuβσβ(X(λ,ω\ is
studied in [2, 3, 5,14]. In [2, 3], an average was taken over all incident directions,
while in [5] an average was taken over any energy interval. In [14], the pointwise
finiteness of σa(λ, ω) is proved for each (λ, ω)e(Iα\^ r) x Sα. Here we want to give
a pointwise meaning to the total scattering cross sections σaβ(λ, ω) from an
arbitrary initial channel to a two-cluster channel with non-threshold energy de-
fined through (1.4).

Fix an incident direction ωeΣb. Define θω by

θω = inf J0e]O, π/2]; 3ω'eSb n ( (J xΛ with cosfl = |ω ω'| 1. (3.1)

Since ωeΣb, θω > 0 and for any ε > 0, the intersection between {Jc^bXc and the
cone {x; |x ω| > cos(0ω — ε)} is void.
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For a given initial channel β = (fc, Eβ9 φβ) and ωeΣb, we construct microlocal-
izations in the following way. Let τβί ω = \ Eβ \ | ctg θω | 2. For λo> — Eβ + τβt ω , take
δ > 0 so small that

[(1 - 2δ)λ09 (1 + 2<5μ0] c ]τ, f ω - £ „ + oo [.

Let / = [(1 - δ)λθ9 (1 + δ)λ0']. For ε > 0 sufficiently small, take χbeCξ(Xt) with

1, for \ξb\
2el and \ξb/\ξb\ - ω\ < ε

Xb{ξb) \0, for | ^ | 2 ^ [ ( l - 2 ^ o , ( l + 2 ^ o ] or \ξb/\ξb\ - ω\ > 2ε .

Let;eC?(R) with (ί) = 0 if f < 1/2 andj(ί) = 1 if t ^ 1. Put:

and

{i-K\χ\)). (3.2)

On the support of VJb = VJxj + (J± — l)Vj, there exists at least one c <£ b with
\xc\ ^ δ\x\. Recall that by the choice of θω,

min {|πcx|; \x ω\ ^ cos(θω - ε)} > 0 .

Here x = x/|x|. Taking

0<δ< min
x cgb

sufficiently small, the support of VJb is disjoint from the cone {x;|x ω|
^ cos(θω — ε)}. Consequently, for xesupp VJb and < ,̂esupp χb, one has

\ξh-\ξb\ω\<2ε\ξb\,

\xb-ξb\ < (2ε\xb\ + \xb-ω\)\ξb\ ^ (2ε + cos(θω - ε))\xb\y/(l + 2δ)λ0 .

Now let Ax = λ0 + E^. It can be checked that

/ π \ i/2
(ε + cos(0ω - ε))(l + 2δ)^2l 1 - ^ J g (1 - ε),

for Ax > (1 — 2(5)~ 1τ j 5 > ω , if ε, (5 > 0 are chosen sufficiently small. This proves that on
the support of VJb(x)χb(ξb),

\xb ξb\ S (1 - εμ{/2 |xb | ^ (1 - ε')d(λ)1/2\xb\, ε' > 0 , (3.3)

for λelί = [(1 — δ)Al9 (1 + δ)λ{] if (3 > 0 is small. Choosing appropriately χb9 we
can verify that

VJb(-)χb( )eSb

+(μ+) n 5b_(μ_),

Here μ± = + (1 — ̂ )d(>l)1/2. Therefore, we can apply the results in Theorem 2.1 to
this microlocalization and obtain, for instance, for any s > 1/2,

KxyWJb(x)χb(Db)R(λ ± ίOKx}-s\\ ̂  C(λ)~\ λell9 (3.4)
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for all λ1 > τβ>ω. Remark that iϊbe^+ u si 2, (3.4) is true for all λφ£~ε, because

VJb(-)χb(.)ESb

+nSl, \fλ .

Our result on the finiteness of σaβ(λ, ω) is following

Theorem 3.1. Assume the condition (2.1) with p > (nab + l)/2. Let σaβ(λ, ω) denote
the total cross section from an arbitrary channel β to a two-cluster channel α with
non-threshold energy. For each ωeΣb9 let λγ > τβt(O. Construct Jb, χb, Iχ as above.
Then the total scattering cross section from β'to α is finite on lx and one has, for any

gecwά
\σaβ(λ,ω)\g(λ)\2dλ

= J π ||Fa{λ)/* {1 - IaR(λ + iθ)}Qbeβ(λ, ω)\\h{Sa)

 lflf(ff' dλ . (3.5)
(A — tβ)

Here Fa(λ) is the spectral representation for — Δa + Ea (see (3.9)),

and Qb is defined by

Qb = Ib(x)Jb(x)χb(Db) + 1-Δ, Jb(x)lχb(Db) . (3.6)

In particular, the total cross section σaβ(λ, ω) defined by (1.4) extends to a continuous
function in (λ, ω) for (λ,ω)e{(μ,θ)eRx Sb; θeΣb,μ> τPtθ}:

π \\Fa(λ)Γ*{l - IaR(λ + ίO)}Qbeβ(λ, ω)| |£ 2 ( S α ) . (3.7)
(λ — hβ)

Remark 3.1. (a) Under the condition of Theorem 3.1, we expect that for any initial
channel β, σaβ(λ, ω) is finite for any (λ, ω)e(laβ\^~) x Σb. The result of Theorem 3.1
implies that this is true if β is a scattering channel with energy 0: Eβ = 0. More
generally, if bejtf+ u si2 , (3.4) is true for any λφ£~ε. We can then apply the
method of the proof for Theorem 3.1 to prove that for any be stf+ u si 2 > σ«/?(^ ω)
is finite for (λ, ω) e (Iaβ\^~) x Σb and is given by (3.7). In particular, this shows that if
P is an JV-body Schrόdinger operator with a three-body spectral structure, then
Vβ,σaβ(λ,ω) is finite for any (1, ω)e(Iaβ\<&~)xΣb. Our conjecture may be com-
pared with that on the smoothness of scattering amplitudes raised in [16]. The
methods of the present work show that to study total cross sections, one can avoid
studying the properties of scattering amplitudes.

(b) For ωeSb\Σb = Sbn([jc^bXc), the finiteness of σaβ(λ, ω) is a subtle ques-
tion. To see this, let us recall that the structure of the scattering amplitude,
SOa(λ; ω, ω'), from a two-cluster channel with non-threshold energy to the free
channel in three-body scattering was studied in [7]. Since Sa0 is formally equal to
5§α with a reverse of the time, one can apply the same method of [7] to verify that
Sa0(λ; ω', ω) has the same structure as -SΌα(ω, ω'). As a consequence of Theorem 1.1
in [7], we see that Sa0(λ; ω, ω') is continuous for (ω, ω') eSaxΣb with b = αm i n and
when ω' eΣb, ω' -> Sbn Xc for some cesi with # c = 2, Sa0(λ; ω, ω') has a singu-
larity of the form:

Sa0(λ; ω, ω') = l ω ' T 1 ^ - ! + Ao, as ω'c = πcω' - 0 , (3.8)
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where A-x and Λo are continuous functions and Λ-χ = 0 if 0 is neither eigenvalue
nor resonance of Pc. Therefore, we can conclude that if 0 is neither eigenvalue nor
resonance of Pc, the total scattering cross section σaβ(λ, ώ) (β being the free
channel) extends to a continuous function near Sb n Xc and if 0 is an eigenvalue or
a resonance of P\ σaβ(λ, ω) tends to infinity when ωc -> 0.

The proof of Theorem 3.1 is divided into three steps.
(a) As the first step, we study the spectral representation of the scattering

matrices for Taβ.
Let Fβ: L2(Xb) ^Hβ = L2(lβ; L2(Sb)) be defined by:

(Fβf)(λ, θ) = cb(λ) J e ~ K / ί ^ ' V(**)<fr> > (3.9)

where
cb(λ) = (2πynb/2(λ - Eβ)^-2)IA

with nb = dimX b . Then we can verify that \\Fβf\\Hβ = \\f\\b. Put &β = Fβ/$.
Then !FβPbtF% acts as the multiplication by λ in H^. By Sobolev's lemma, Fβ

defines a family of maps, Fβ(λ),λelβ, from L2>s{Xb\ s > 1/2, to L2(Sb):

(Fβ(λ)f)(θ) = (Fβf)(λ, θ).

Here L 2 ' s is the weighted L2 space L2iS(Xb) = L2(Xb, (xb}
2sdxb). Similarly, we can

construct a spectral representation 3FΛ for Pa. Then F^T^F^ can be represented by
a family of operators {Taβ(λ) = Fa(λ)TaβFβ(λ)*; λelaβ} mapping L2{Sb) to L2(Sa).
Note that Taβ(λ) is a priori only defined a.e. in λ.

Proposition 3.2. Assume the condition (2.1) for some p > 1. For ωeΣb, let χ, Jb and
I x be constructed as before. For any fceSf(Xc) with c = a or b, we denote:
fb(K θ) = (Fβfb)(λ, θ) andfa(λ, θ') = (FJa)(λ, ff). Assume thatfe(λ> ) = Ofor λ outside
I x . Then one has:

<Taβχ(Db)fbJa}a = j <T*β(λ)fb(λr)Ja(λ, •) W ) < t t , (3.10)
Ii

where

T*β(λ) = - 2πiFa{λ)/t {Qt ~ IaR(λ + iO)Qb} fβFβ(λ)* , (3.11)

for λφ&~. Here Qb is defined by (3.6). In particular, the localized scattering matrix
T*β(λ) = Fa(λ)Taβχ(Db)Fβ(λ)* is continuous for λel±.

Proof Notice that Jb is supported in Ωb = {x; Vc φ fc, |xc | > b\x\\ for some suit-
able η,δ>0, such that Jb(x) = 1 for \xb ξb\ > (1 - εo)\xb\\ξb\? V^esupp χ. Mak-
ing use of microlocal propagation estimates for Ub(t)/β = e~

ιt(-Ab+Eβ)β^ w e c a n

verify:
s-lim (l-Jb)χ(Db)Vb(t)/β = 0.

t-* ± oo

Therefore,
Wfχ(Db) = s- lim U{t)*Jbχ(Db)Ub{t)/β ,

ί-»-±oo

where U(t) = e~itP. We denote B = Jbχ(Db). Then

TΛβχ(Db)fb =

= -Sw;*U(t)*iQbUb(t)φβfbdt
R
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where
Qb = PB- BPb = IbB + t-A, Jb-\χ{Dh) .

Since supp Jb a Ωb, it is clear IbB = 0(<x>~p). Put

T h e symbol of Bx is s u p p o r t e d in

Ωbn{\xb.ξb\S(l-So)\xb\\ξb\}, (3.12)

and is of the order O^x}'1). Introducing a convergent factor and making use of
the intertwining property of the wave operator W*, we can verify that

<Taβχ(Db)fbJa}a

= -limf < / l/β(ίfjl-i ί e-εsUa(s)*IaU(s)ds\ίQbUb(t)φβfbJa}adt
* - 0 R I R+ J

= - 2πlim J<Fβ(A)/J{l - IaR(λ + m)
ε->0

(3.13)

Applying (3.4), one sees that the last limit in the above equations exists. This proves
(3.10). Let s = p/2 > 1/2. Then

λ - SβFβ(λ)* G <?(L2(Sb); L2> -°(X))

is continuous. Since φa is rapidly decreasing in xfl, we can see that f«.Qb(xy =
>" s) Therefore,

is continuous for λel α j ϊ . By (a) of Theorem 2.1 and (3.4) with s = p/2, it is easy to
see that

λ -> Fa(λ)/VaR(λ + iε)QbfβFβ(λ)*

is continuous for Aeli . From this it follows that λ -• T*β(λ)e&(L2(Sb); L2(Sa)) is
continuous for λel1. D

(b) The second step of the proof of Theorem 3.1 is to insert a localization by
χ(Db) in the definition (1.4), if supp g c I 1 #

We shall work locally in λelί. Let

εβ eL2' ~s(Xb) for any s > nb/2. Since χ(Db) is continuous on L2'r{Xb\ for any r eR,
and since χ(w/j(Λ)ω) = 1 for λelχ (by the choice of χ), one can verify that for λelί9

χ(Db)sβ = sίh inL2>-s(Xb), (3.14)

for any s > nb/2. In the rest of this work, we shall freely use this relation.

Lemma 3.3. Let hR be the family of cut-off functions defined by:

U — 0-(xb-(xb,(o)<o)2/R
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Then one has:

lim (χ(Db)hRgω - hRgω) = 0, in L2{Xb), (3.15)
R-κχ)

for any ge 0^

Proof. We assume that ω is pointed at the xx direction and write xb = (xί9x').
Let/denote the Fourier transform off. Then the Fourier transform of χ(Db)hRgω is
equal to χ(£b)M<Γ)#ω(£i) We can compute:

Uω(ξi) = c( ί i)0«? + Eβ),

where c(ξι) is some bounded function which we do not need to compute explicitly.
By the choice of χ, χ(ξb) = 1 for ξ1 in the support of g(ξ2 + Eβ) and \ξ'\ < ε with
ε > 0 small enough. If \ξ'\ > ε, \hR(ξf)\ ^ CRNoe~εR, for some No > 0. Therefore,
l i m ^ ||(1 - χ(Db))hRgω\\b = 0 for any geCZfo). D

By Lemma 3.3, (1.4) is equivalent with the definition:

j σaβ(λ, ω)\g(λ)\2dλ = \\ Taβχ(Db)gω\\2 , (3.16)

for any geCo(Iι)- The right-hand side of (3.16) is again taken as the limit:

lim \\Taβχ(Db)hRgω\\2 ,

if it does exist.
(c) Finally, we can finish the proof of Theorem 3.1 by studying the right-hand

side of (3.16) by means of the time-dependent method.

Proof of Theorem 3.1. To prove the finiteness of || Taβχ(Db)gω ||, we use the equality

\\Taβχ(Db)gω\\2 = J \\Tlβ{λ){Fβgω){λr)\\lHSa)dλ
U

and the properties of localized scattering matrices.
By the microlocal resolvent estimate (3.4) and the decay assumption (2.1) on the

potentials, one sees that T*β(λ): L2(Sb)-^ L2(Sa) given by (3.11) extends to
a bounded operator from H ~p+s{Sb) to L2(βa\ for some s > 1/2. Here Hr(Sb) is the
Sobolev space on Sb of order reR. By a direct computation, one can verify that Fβ(λ)gω

is a distribution in H~p\Sb\ for any p' > (nb — l)/2 and lim^^^ Fβ(λ)(hRgω) =
Fβ(λ)gω in H~p'(Sb) for any p' > (nb - l)/2. This shows that the right-hand side of
(3.16) is finite.

To prove (3.5), we proceed to calculate

J \\T*p{λ)Fp{λ)gω\\hiSa)dλ,

by the time-dependent method which is easier to justify. Let χ1 be a cut-off function
on R so that χι(ξb + Eβ)χ(ξb) = χ(ξb). Using the intertwining properties of wave
operators, we have:

T*βX{Db)hRgω

j i X l ( P ) - J Ua(triaXl(P)U(t)dt\QbUb(s){φβhRgω)ds.
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Note that Fβ(λ)/*Ua(t) = e~itλFx(λ)f* and that for any p' > nb/2,

lim <xby-p'Ub(t)(φβhRgω) = J e-iλ\xhy'eβ(λ,ω) g f f l

 Adλ .
R-*OO R z(π) ' [λ — hβ) '

Making use of microlocal resolvent estimates established in [19] (see Sect. 2), we
can compute,

lim Fa(λ)Taβχ(Db)hRgω
R^

i \ i χ ι ( P ) - J eiλ'Iaχi(P)U(t)dt
R I R +

x Qb J e-»g(μ)eβ(μ, ω)
2(π) 1 / 2(μ - Epf'

= (π)1l2Fa(λ)f*\-iχ1(P)- I eaΊaχ1U(t)dt\Qbg(λ)eβ(λ,ω)- j — ^
(. R+ J \λ- Lβ)

= (π)1'2F.(λ)Si {-i + UaRβ + iO)}Qbeβ(λ, ω)g{λ) [ .

In the last equality, we used the fact that χ^λ) = 1 on suppg. We indicate in
particular that the last expression is well defined. In fact, by the definition of Qb (see
(3.6)), we can verify that

where Bί = [ - ^ Λ l z W Recall that α is a two-cluster channel with non-
threshold energy. Iϊa£b, one has |xα | ^ c\x\ on supp Jb.lϊa ^b, then, b = a, since
Φa = 2. On the support of VJb, there exists a cφb = a with

By the geometry of AΓ-body systems, there exists c0 > 0 such that \xa\ + \xc\
^ Co|x|. This shows that on the range of Bu one always has: \xa\^ c1\x\,c1> 0,iϊ

δ > 0 is chosen small enough. Consequently, Fa(λ)f*Qbeβ eL2(Sa) and is con-
tinuous in λ. Applying the microlocal resolvent estimates (3.4) with nb/2 — 1 < s
< p - 1 - 1/2, we can also derive that /*/ f l#(Λ, + iO)Qbeβ(λ, ω) e L2>r(Xa) for

some r > 1/2 and is continuous in λ. This proves Theorem 3.1. D

4. High Energy Asymptotics of σα(Λ, G>)

In this section, we assume that (1.3) is satisfied for some p > (na + l)/2. Let
α = (a, Ea9 φa) be a two-cluster scattering channel with non-threshold energy. Let
us first recall a result from [14] on the pointwise finiteness of σα(/l, ω) = Σβσaβ(λ9 ω)
formally defined through (1.4). The finiteness of σα(A, ω) when integrated over the
energy was proved in [5]. Let geCo(Ia) with suppg n ZΓ = 0. Then one has:

f σα(A, ω)\g(λ)\2dλ = J - L 3<Λ(λ + *>)/.*., /βββ>| f f(A)|2dλ . (4.1)
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Here R(λ ± ίO) are the boundary values of the resolvent (P — z ) " 1 and eα is defined
by:

ea{x,λ,ω) = φ«{xa)eίn'Wχ° ω .

with nx(λ) = (λ — £ c t )
1 / 2 . In particular, σa{λ, ω) is a continuous function in (λ, ω):

σx{λ, ω) = J-3(R(λ + iO, h)Iae., Iaea} , (4.2)
na{λ)

for (λ9 a))e(Ia\«^") x Sa. The study of high energy asymptotics for σa(λ, ω) is based
on the formula (4.2). In the two-body case, this formula is reduced to the following:

σ(λ, ω) = ^=3<<R(λ + ίO) Ve(λ9 ω), Ve(λ9 ω)> . (4.3)
'A

where now V is a two-body potential and e(λ9ω) = eι^λω'x. The high energy
asymptotics (or Born approximation) for σ(λ, ώ) is usually carried out by a per-
turbation around the free Hamiltonian — A. In fact, one can write, for short range
potential V9

VR(λ + iO)V= VR0(λ + ίO)V+ (VR0(λ + iO))2V+ .

Here Ro(*) = ( — ̂  — ZY ί The leading term of σ(λ9 ω) can be derived by inserting
this expression into (4.2). See [9, 10, 21]. However, this argument does not apply to
many-body problems, since Ia(x) = Ylb^a Vb(xb) does not decay on the whole
configuration space X. We shall construct an eikonal approximation for the
outgoing wave function R(λ + iϋ)IaeΛ(λ9 ώ) and use microlocal resolvent estimates
in Sect. 2 to estimate remainders.

Notice first that φa is rapidly decreasing in xa. Under the assumption (1.3) for
P > (wβ + l)/2, we have for any 1/2 < s < p — na/2

uniformly in λ, ω. Therefore as a consequence of Theorem 2.1,

Lemma 4.1. Let Xi(xa9 λ) = Θ(xa/λ1/2% where Θ is a smooth function with
supp Θ cz {|χα| ^ 1} and Θ = 1 for \xa\ ^ 1/2. Then

σa(K ώ) = -±- 3(R(λ + iO)XlIaea9 Iaea} + o μ - 1 - ^ " ^ - ^ ^ - ^ 2 ) , (4.4)
na{A)

for any ε > 0.

/ It suffices to apply (a) of Theorem 2.1 and the estimate || <x>s(l — Xi(xa))Iae<x I

= o(λ-(p-na/2-s-ε/2)/2) for s = (1 + ε)/2. D

Let/= χi/α. Define:

—̂ f Ia(xa, x a - ( t - s)ω)ds

tω)e "iWί
7T Λ (4.5)

with ria(λ) = 2nα(λ). gf( ) is a well defined smooth function, since the integration is
just taken over a finite interval in t. We can verify that

<(λ)(ω-Va)g + Uag=f. (4.6)
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Put χ2(xa,λ) = Θ(xa/(Mλ1/2)) with M > 1 to be chosen later. Since χ2 = 1 on
supp/ one has:

(P - λ){iχ2gea) =fea + i[ - Aa, χ2~\gea - iχ2 {eaAg + 2Vag - Waea}

^fea-rγ-r2. (4.7)

This shows R(λ + iθ){fea) = iχ2gea + R(λ + ίΌ)^ + r2).

Lemma 4.2. Wiί/i ί/ie above notations, one has

for j = 1, 2. if ere ?/α is defined in Theorem 1.1.

Proo/ Since xα ω = 0, φα# is rapidly decreasing in xa. Let y = xα — (ξa ω)ω. We
can also check that

I4>α(θ0(x)| ^ C^- 1 / 2 <x*>-"<j ;>- ' + 1, for any N > 0. (4.8)

Let {0!, θ2 } be a partition of unity in xa ω e R with supp 0a c {xα ω e ] - oo, 1 -
ε/2[} and supp θ2 a {xα ω e ] l — ε, oo [}. On the support of θί9 \xa — tω\ ^
cβ(|xΛ| + t) for t > 0. Consequently we can verify that on the support of θl9

\φa{xa)dίag{x)\ S CNβλ-^\xa}^-^ + \xay-N, V/feN"- . (4.9)

Let us first estimate the remainder related to r2.

\(R(λ + iO)r 2,/βOI ^ C | | < x > ^ +

Here χ is supported near ξa = na(λ)ω and we used the fact χ(Da)ea = ^α in L2(Xa) x
L2 ' ~Π α / 2" ε(Jία) and that the terms related to the commutators between χ(Da) and
the derivatives of g can be bounded by O(λ"1/2"ηa). On the support of Θ2(xa)χ(ξa),
we have: xa £α ^ 0. Applying (b) of Theorem 2.1 with s = p — nα/2 — ε, we obtain

\\<χ)-f>+n°'2+εR(λ + ίO)θ2χ(Da)r2\\ ^ Cλ-ί

The desired estimate for r2 follows.
For rx, we write it as

Γi = - 2nα(A)ω Vaχ2gea + 2

The pieces corresponding to the last two terms can be treated as above, while for
the piece corresponding to the first term, we need a new argument since there is an
additional factor na(λ). Note that supp Vχ2 cz {Mi1 / 2/2 ^ \xa\ ^ Mλ1/2} and
s u PPχ α /( χ V ~~ tω) i s contained in {\xa — tω\ ^ λ1/2}. Consequently, for xa in the
support of ω Vaχ2g, one has for some t ^ 0,

(4.10)

(4.11)
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Writing xa = (xί9y) with χx = xβ ω, (4.11) implies \y\ ^ λ1J2 and \x1 - t\ ^ λ1/2.
Equation (4.10) gives

\x,\ ^ Mλ1/2/2 - \y\ ^ (M/2 - i μ 1 / 2 .

Taking M > 4, it follows from the estimates |x x | ^ (M/2 - 1)Λ1/2 > λ1/2 and
|xj - t\ ^ Λ1/2 (ί ^ 0) that Xi > 0 and therefore, q ^ A1/2 ^ |xJ/M. Let *(&,) be
chosen as in the first part of the proof. The support of ω V ^ W ^ M z K J is
contained in an outgoing region. Since Vaχ2 = O(λ~1/2\ we can apply (b) of
Theorem 2.1 and the arguments already used to treat r2 to finish the proof of
Lemma 4.2. D

From Lemmas 4.1 and 4.2, we obtain

σα(λ, ω) = - 4 - 3 < * χ 2 ^ α μ , ω), Iaea(λ, ω)> + O(A" x " ' -) . (4.12)

Proof of Theorem 1.1. It remains to calculate the asymptotics of

as A-• oo . Decompose Xa as I f l = Rx77 ω with Πω = {xa; xα ω = 0}. Write
xα = (s, y) G R x Πω and let xα be fixed (the indication of xa variables is omitted in
the following formulas). Making use of (4.5), we can compute the integral

5R J
Xa

f ί^a)(y + ) \ } (χja)(y + tω)e^lIΛy + tω)dtdtldsdy
ΠωR ί -oo J

ί ί fe/α)(^ + sω) j J (Zl/fl)(j; + tω)dt\dsdy
Πa R I - oo J

= ^72 ί f ί.(y + sω)j J Uy + tGή
Zλ Πω R I - oo

uniformly in xfl. Here we used the fact that Xj{xa) = l , j = 1, 2, for |xα | g A1/2/2 and
that for any bestf with b <£ α, one has |x&| ^ ^|xβ | for some δ > 0. From (4.12), it
follows that

σαμ, ω) = - ί f |0α(x f l)|2 f ( J / . ( ^ , y
4 / t Xα 77ω \ R

as λ -> oo. D

Remark 4.1. The smoothness assumption on potentials is more than necessary. In
fact, if each potential has only a local singularity at the origin so that the
assumption (2.1) (with p > (na + l)/2) is satisfied outside 0 and for each bφa,

(Xnb)> (4.13)
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we can still establish the high energy asymptotics for σα(/l, ω):

σα(A, ω) = 1 f Iφa(xa)\2 J ( J Ja(x*, y + sω)ώ Y dydx" + o(λ~'),

as λ -» oo. (4.14)

To see this, let χε be a cut-off function for the set { l y l ^ ε } and let
I8

a(x) = Σ (1 - χβ(x*)) Kfc(x*). By Theorem 2.1, one has:

λ, ω) =

Here o(l) -• 0 uniformly in A, as ε -> 0. Now /«is smooth, Repeating the proof of
Theorem 1.1, we obtain:

= 7? ί l*«(^)l2 ί

Equation (4.14) follows from the fact

lim J \φa(xa)\2 f (

= f \ΦΛ*a)\2 (
Xa Πω\R

Note that according to (4.13), the last integral is finite. D

5. Upper Bounds on σaβ(λ, ω)

From now on, we assume that the condition (1.3) is satisfied for p > (nab + l)/2. Let
α be a two-cluster channel with non-threshold energy and β be an arbitrary
channel. With the notations of Theorem 3.1, one has

σaβ(λ, ω) = I \\Fa(λ)/ί {1 " hR(λ + ίO)}Qbeβ(λ, ω)\\h(Sa),
(A — Lβ)

forλeli =](1 -δ)λl9(ί +δ)λ1[>λ1 >τβtj{\ - δ). To study σaβ(λ, ω) in the limit
λ -•oo, we replace Jb by J^(x) = Λ(x/i ί / 2 ) and denote by β^1 the operator
defined by (3.6) with Jb replaced by Jb\ It is clear from the proof of Theorem 3.1
that (3.9) still holds for Aeli . Setting λ = λί9 we obtain

σaβ(λ, ω) = I | |Fβ(A)/J{1 - IaR(λ + ίO)}Qλ

beβ(λ, ω)\\h(Sa), (5.1)
(λ - Lβ)

for all λ > τβtj(ί - δ). Define

μ, ω). (5.2)
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By microlocal resolvent estimates (Theorem 2.1), fxβeL2's(Xa) for some s > 1/2.
Applying Stone's formula (see for example [12]), we see that

(Sa)

= ί^z(Raβ + ίθ) - Ra(λ - ii

_ 1

π

Here Ra(z) denotes the resolvent for — A + Ea. This proves

σ«β{λ, ω) = - L 3(Ra(λ + «S)faβJaβ\ . (5.3)

The formula (5.3) looks similar with (4.2), but the dependence oίfaβ on λ is rather
complicated. We decompose

faβ = 9«β + raβ, with 9afi = f*Qλ

beβ(λ, ω) . (5.4)

Lemma 5.1. Let 1/2 < s < p — na/2.

(i) If a = b, || (XaYQciβ L = C uniformly in λ > τβ ω/(l — (3).
(ii) //α Φ ft, ίΛβn/or αnj; M > 0, | | < x α > s ^ L ^ CMA~M,/or λ > τβtj(l - δ).

Proof Recall that 0α( ) is rapidly decreasing in xa and

where Qb = ί — A, JbΛlΦb) + hJbXΦb)- As in the proof of Theorem 3.1, we can
show that on suppVJ£, |xα | ^ c|x|, c > 0, and |x| > λll2/2, due to the dilation in
λ. Consequently,

f C - l̂, Jέ]

In the case α = ft, |/b(x)(/>α(xα)| ^ C M <x a >- p <x f l >" M , VM > 1. It follows that

Xa

uniformly in λ. This proves (i).

In the case a Φ b, we have α^Z?, because φa = 2. This means that

ω * = π α ω φ 0 , for ω e Σb . (5.5)

Writing ω xb = ω x = ωα xa + ωfl xa9 we have in this case

f IbJλ

hχΦb)eβφadxa = e^'M*-'*- f ^ ^ ^ " / ^ έ φ ^ ^ ^ ί x - ) ^ . (4.6)

Since ωα φ 0, we have an oscillatory integral with non-stationary phase. Making
use of the relation

(Da D

nβ(λ)\ω
— , c ... •»• = e'V^- ^, VMeN,



352 X.P. Wang

we obtain by integration by parts that

for any M > 1. Here we used the smoothness of the potentials and the eigen-
functions. (ii) is proved. D

Lemma 5.2. Let ηb be defined as in Theorem 1.2 and 1/2 < s < p — na/2. One has:

\\<Xa>Sraβ\\aύCλ-»».

Proof. By the decay assumption on the potentials, one has:

ll<Xα>srβ,||β ύ C\\(xyo+sR(λ + ίO)Qλ

beβ(λ, ω)\\ (5.7)

and

Qλ

b = O«x>- ' ) + 7,(1 - J1(x))(l -j(\x\/λ^2)χ(Dh) + Bx

The contribution from the term 0(<x> p) can be estimated by O(λ 1 / 2 ) , using
(a) of Theorem 2.1. (1 — Ji)(l —j( /λί/2))χ(Db) is a pseudo-differential operator
with symbol in Sb+( - (1 - ε)λ1/2). We can apply (b) of Theorem 2.1 to show that
the contribution from this term is bounded by

Cλ-^2\\{xyp+s+1(l -j(\x\/λll2))Ibeβ\\ g Cλ-*» .

Here we have used the fact that supp (1 — j( /λ1/2)) is contained in {|x| ^ λ1/2} to
estimate

{ j : ; : *^
The term || (x}s~pR(λ + iO)Bίeβ \\ can be estimated by applying (b) of Theorem

2.1 and the estimate VJb = O(λ~1'2). The details are omitted. D

As a consequence of Lemmas 5.1 and 5.2, we obtain an upper bound on
σaβ(λ9 ω) which implies (ii) of Theorem 1.2.

Corollary 5.3. Assume the condition (13) for p > (nab + l)/2. For any ωeΣb, one
has:

forλ>(ί+δ)τβyω.

6. High Energy Asymptotics of σttβ(λ, ώ) with a = b

led in the preceding sectioi

3 (Ra{λ + iθ)gaβ, gaβ)a + O(λ~1 -<•>), if a = b ,

From the results established in the preceding section, one sees that

1

σxβ{λ, ω) =
nβ(λ)

Ό S. -»V/7\Λ "T" tVyI' αβ> ' αj?/fl ι" '- ' I " /5 11 U —|— 1/

Wβ(A)

(6.1)
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Note that by the method of non-stationary phase used in the proof of Lemma 5.1,
the leading term in the eikonal approximation to σaβ(λ, ω) with a + b gives
a contribution of the order O(/L~°°), while the remainder terms are only of finite
order in A"1. This suggests that one should use other methods to obtain the high
energy asymptotics of σaβ(λ, ω) with a φ b.

To study the high energy asymptotics of σaβ(λ, ώ) when a = b, we only need to
look at 3<k β (λ + ίθ)gaβ, gaβ}a. By the argument used in the proof of Lemma 5.1,
we see that

= J Qie,φa(xa)dxf

= I IaJ
λ

aeβΦΛxa)dxa +
xa

= eίn»(λ)ω χ°l(xa) + O((xay
nλ-W), (6.2)

where

l(xa)= \ Ia{x)φβ{xa)φa{x")dxa .
xa

In the last equality in (6.2), we have used the fact that on the support of
l-Ji = (l - J i ) j ( /A 1 / 2 ) , | x β | tc\x\ for some c > 0 and |x | > λ1/2/2. This gives

4̂
nβ{λ)

ίθ)εβ(λ9 ω)l, εβ(λ, ω)l\ + O ^ " 1 " ^ ) . (6.3)

Proof of (ϊ) of Theorem 1.2. Since l(xa) = 0(<x β >" p ), we can apply the method of
the proof of Theorem 1.1 to construct an eikonal approximation for

1 - 3<jRβ(A
nβ(λ)

In fact, it is now easier since Ra(λ + ίO) is a free resolvent. Define

g(xa) = ] l(xa ~ 2nβ(λ)tω)e ~ *E- ~ E^at.
o

Following the line of the proof given in Sect. 4, we can estimate:

σβ,μ, ω) = ^

j ί
RxiJω I - oo

' Πω

+ sω)ds
R

2

The details are omitted. D

Note added in proof. After the submission of this paper, the author received a preprint from
H. Ito: "High energy behavior of total scattering cross sections for 3-body quantum systems", in
which he proved Theorem 1.1 in the three-body case under the assumption that 0 is not eigenvalue
of any two-body subhamiltonίans.
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