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Abstract. In this paper a class of conformal field theories with nonabelian and discrete
group of symmetry is investigated. These theories are realized in terms of free scalar
fields starting from the simple b- c systems and scalar fields on algebraic curves. The
Knizhnik-Zamolodchikov equations for the conformal blocks can be explicitly solved.
Besides the fact that one obtains in this way an entire class of theories in which the
operators obey nonstandard statistics, these systems are interesting in exploring the
connection between statistics and curved space-times, at least in the two dimensional
case.

1. Introduction

In this paper we investigate the connections between conformal field theories on the
complex plane and field theories on algebraic curves. These connections were first
explored in [1] in the case of hyperelliptic curves and then in [2-4] in the more
general case of curves with an abelian group of monodromy. Other examples of these
techniques, in which the monodromy group is abelian, are given in [5,6].

Here we study the simplest class of curves with a nonabelian group of monodromy.
They can be viewed as multivalued mappings from the complex sphere to a Riemann
surface having a discrete group of automorphisms Dm. Alternatively they can be
viewed as cyclic coverings of hyperelliptic curves. The case ra = 3 was briefly
treated in [7].

In general, the construction of the amplitudes of a theory with nontrivial mon-
odromy properties requires the solution of a Riemann monodromy problem (RMP)
and of the related Schlesinger equations [8,9]. Even if we are able to solve the RMP,
the problem still remains of determining what combinations of the solutions enter in
the amplitudes, in such a way that the physical properties of locality, associativity
and so on are preserved [10]. In the case in which the monodromy group coincides
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with the monodromy group G of a known algebraic curve, there is the possibility of
simplifications, since the most general function exchanging its branches according to
G can be constructed using the techniques of algebraic geometry [11].

This is the case for example in which the monodromy group G describes the
class of algebraic curves with discrete group of symmetry Dm. For these curves we
can in fact construct a finite set of functions (and more in geneal λ-differentials)
Fk(z), k = 0 , . . . ,2m — 1, characterized by all possible monodromy properties that
are compatible with the monodromy group G. We show that the elements of this
set are rationally independent, i.e. the ratio of two of them is not a singlevalued
function and that all the other multivalued functions are linear combinations of the
Fk(z)'s. Moreover, our set of functions satisfies partial differential equations similar
to the equations of parallel transport for the conformal blocks of [12,13]. Finally,
following [8], we show that it is possible to express the multivalued functions Fk(z)
in terms of free fields and twist fields. Therefore, starting from the Fk(z)'s, we are
able to construct conformal blocks, whose monodromy properties correspond to the
monodromy group G.

It is difficult to associate a conformal field theory defined on the complex plane to
these conformal blocks. However they are surely tightly related to the b — c systems
on the algebraic curve Σg with Dm group of symmetry, as we will see.

The method presented here is interesting because it allows the construction of
conformal blocks with nontrivial monodromy properties, provided the underlying
monodromy group is that of a known algebraic curve. Moreover, the twist fields turn
out to be anyons, exchanged in the conformal blocks according to a non-abelian braid
group statistics. Unlike the usual anyons realized starting from a nonabelian Chern-
Simons field theory [14], the exchange relations between the twist fields become
nonabelian due to the presence of the group of automorphisms Dm of the algebraic
curve. The statistics of the twist fields has been studied in a separate publication [15].
Finally we provide a nice interpretation of the twist fields as electrostatic charges
induced by the topology of the algebraic curve.

The disadvantage of our approach is that we are not able to prove that the conformal
blocks satisfy a Riemann monodromy problem. However, they obey a simplified
system of equations given by Plemelj, which is strictly related to the Riemann
monodromy problem (see [15]). Moreover, our method can surely be extended to
the other classes of curves but not, we believe, to the most general cases where,
apparently, there seems to be obstructions in the construction of some of the functions
Fk(z) which satisfy the requirements given in Sect. 2.

The material contained in this paper is organized as follows. In Sect. 2 we find the
conditions for which a λ differential on a general algebraic curve can be represented
as a ratio of conformal blocks containing free fields and twist fields. The general
form of the twist fields is given. Starting from Sect. 3 we restrict ourselves to the
class of Dm symmetric curves. We construct a basis of λ differentials satisfying
the conditions of Sect. 2. They are rationally independent and exhibit all possible
monodromy behaviors at the branch points compatible with the monodromy group
of the algebraic curve. Moreover, all other meromorphic λ differentials are linear
combinations of them. In Sect. 4 the full n-point functions of the b - c systems
on the Dm symmetric curves are computed. The n-point functions turn out to be
superpositions of the solutions of the conformal blocks defined in Sect. 3. In Sect. 5
it is shown that the b — c systems on an algebraic curve with Dm group of symmetry
contain multivalued operators with fractional ghost charges. These twist fields simulate
the presence of the branch points in the amplitudes and are primary fields. The
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appearance of primary fields in the amplitudes of the 6 — c systems is explained
in terms of electrostatics in Sect. 6. In Sect. 7 the form of the twist fields is explicitly
given in terms of free fields using bosonization and the method introduced in Sect. 2.
We prove that, apart from zero modes, the two-point function of the b — c systems
on an algebraic curve can be seen as conformal field theories. Each conformal field
theory is characterized by particular monodromy properties at the branch points of
the algebraic curve. The conformal blocks satisfy differential equations of the kind of
the Knizhnik-Zamolodchikov equations [16, 12, 13]. Finally the exchange relations
between the twist fields are derived showing that they satisfy a nonabelian braid group
statistics [17,18].

2. Monodromy Properties and Twist Fields

Let us consider a classical field B(z)dzχ, X integer or half-integer, satisfying a Fermi
statistics, analytic in z and taking its values on an affine algebraic curve Σg defined
by the vanishing of a Weierstrass polynomial F(z, y):

F(z, y) = Pn(z)yn + ... + P0(z) = 0 . (2.1)

Each affine algebraic curve is equivalent, apart from conformal transformations, to a
closed and orientable Riemann surface. The genus g of the Riemann surface is given
by the Riemann-Hurwitz formula [19], which we will not discuss here. The P^(z)'s,
i = 0, . . . , n, are polynomials in the complex variable z G CPj, CPl denoting the
Riemann sphere. Here it is useful to regard the sphere as a compactified complex
plane C U {oo}, covered by the two open sets U{ and U2 which contain the points 0
and oo respectively, z is the local coordinate in Uγ and z' in ί72 At the intersections
of these two sets z' — \/z. Solving Eq. (2.1) in y, we get a multivalued function y(z)
with n branches, denoted here by y(l\z), Z = 0, . . . ,n — 1. As a consequence, the
complex field B(z)dzχ becomes multivalued when transported along a closed small
path encircling the branch points of y(z):

B(l\z)dzλ = B(z, y(l\z})dzχ . (2.2)

On an algebraic curve, dzχ represents a true λ differential with zero and poles [11].
The degree of its divisor is 2λ(#- 1). Therefore we can consider B(l\z) in Eq. (2.2) as
a function multiplied by the λ differential dzχ. Let us suppose that B(l\z) has zeros
zi and poles p , i,j = 1, . . . , TV of multiplicities ZΛ(/J and μ3(l3) respectively. The

zeros and poles occur only for certain values of the branch / of B^l\z) and therefore
the multiplicities v(lz) and μ3(l3) should also depend on the branch index. Now we

associate to B^l\z)dzx another 1 — λ differential defined as follows:

At this point we investigate the conditions under which the tensor

dzχdw[~χ

G(z,w)dzχdwl-χ = B(l\z)C(l'\w) -
z — w

in the two independent complex variables z and w can be written in terms of conformal
blocks. To this purpose, we introduce free fields b(z)dzχ anάc(z)dzl~χ on Σ , which
are however singlevalued in the variable z. Since they do not depend on y(z), their
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expansion is the usual Laurent series of the genus zero case. The fields b(z) and
c(z) are fermions or ghosts according to the values of λ. Moreover we introduce
multivalued "twist fields" V(zi) and V(PJ) with the following multivalued operator
product expansions (OPE):

(2.4)

y + .

Apart from zero modes, which we ignore for the moment, we express the tensor
G(z,w)dzχdwl~χ in the form:

ft V(zj fί (̂P, )

Z — W
„ „N N

Π *W Π
(2.5)

(0| being the usual vacuum at genus zero. For the twist fields V(zτ) and V(PJ) we
can try the simple ansatz of [7]:

= exp

exp

i (> dtdt \og[C(l\t)]φ(t)

dtdt\og[B(l\t)]φ(t)

(2.6)

after using bosonization:

b(z) - e~iφ(z), c(z) (2.7)

(2.8)

The multivaluedness of the twist fields, caused by the fact that the zeros and poles
of β(l\z) and C(l\z) occur only for certain values of the branches, implies that they
are nonlocal operators in the most general case, as Eq. (2.6) shows. Moreover, since
the OPE's with the free fields turns out to be multivalued, the right-hand side (rhs)
in (2.5) is also multivalued in z and w. Consistently with the left hand side (Ihs), the
branches in z and w of the rhs should be / and I' respectively. We remember here
another similar example in which the presence of nonabelian groups of symmetries
introduce nonlocal fields in the amplitudes, namely the solitonic sectors of scalar field
theories with discrete group of symmetries discussed in [17,20]. Exploiting Eq. (2.8),
we evaluate the OPE's between the twist fields and the free fields as in the genus
zero case. More OPE's are not needed to evaluate Eq. (2.5). Proceeding as in [7] we
can compute the rhs of (2.5) obtaining the following result:

B(l\z)C(l'\w) = exp 0tlogC(ί)log
t — w

t - z ,
. (2.9)
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Here we have used the fact that, by definition, logB(z) = — logC(z). Equation (2.9)
can be rewritten as follows:

B(l\z)C(l'\w)dzχ dwl~χ = exp (2.10)

C being a contour surrounding all the poles and zeros of C(z). Unfortunately it is
impossible to apply the theorem of residues in (2.10). The function in the integrand is
in fact multivalued inside the contour C and, in general, also on the contour itself. For
this reason we additionally require that all the branch points of B(l\z) are included
in the set of points zi and p^ . This is a reasonable request in view of our applications,
since in conformal field theories on an algebraic curve the physical zeros and poles
in the amplitudes are given by the branch points of the algebraic curve (see Sect. 4).
Under the above requirement the integrand in (2.10) becomes one-valued on the
contour C because it surrounds all the branch points of B(l\t) and C(l\t). Moreover,
since we are on the compact sphere CP1? we can deform the contour C in such a way
that only the other two singularities of the integrand are included, namely the points
t = z and t = w. The integration by parts in the exponent of Eq. (2.10) is then made
possible and yields:

(2.11)

I (*^ Z

t-w t-w

Cw + Cz describes a simple contour equivalent to C containing the points w and z.
The integrand of the Ihs of Eqs. (2.11) is now one-valued inside and on the contour
Cw + Cz, so that we can easily compute its residue:

— ΊJϋ
(2.12)

Substituting Eq. (2.12) in the rhs of Eq. (2.10) we obtain an identity, proving that
Eq. (2.5) makes sense if all the ramification points of B(l\z) are included in the set
zτ andp^ .

3. Conformal Blocks for the b — c Systems on an Algebraic Curve

At this point we specify a class of Riemann surfaces Σg of genus g associated to the
Weiers trass polynomial

- 2q(z)ym + q\z) - p(z) = 0 (3.1)

q(z) and p(z) are polynomials in the variable z. The genus g is given in Appendix A
in terms of the degrees πir and 2rf of q(z) and p(z) respectively. The algebraic curve
y(z) has 2m branches denoted by y(l\z), I — 0, . . . ,2m — 1, that are exchanged at
the branch points aτ and βj as shown in Appendix A. i and j label the number of
the independent roots of the equations

q2(z)-p(z) = 0, p(z) = 0 (3.2)

respectively. The first equation has Na = max(2mr, 2r') solutions ai while the second
equation has Nβ = 2rf solutions β3. The integers r and r' are fixed in such a way
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that the point at infinity is not a branch point. This is not an essential limitation and
it is introduced only in order to keep the notations as simple as possible.

Equation (3.1) is invariant under a Dm group of symmetry, generated by the
transformations:

(z,y)^(z,εy) and ym - q(z) -> -ym + q(z) , (3.3)

where εm = 1. The local monodromy group contains Dm as a subgroup. It is possible
to view Σg as a Zm cyclic of an hyperelliptic curve Hg of genus g' = r' + 1 and
branch points β . The multivaluedness at the branch points ai is then related to the
Zm branched covering of Hg.

We start constructing a basis Bk(z), 0 < k < 2m— 1, of 2m rationally independent
functions on Σg such that all other functions are linear combinations of them, the
coefficients entering the linear combination being at most singlevalued functions of z.
Two functions are said to be rationally independent if their ratio is not a singlevalued
function on CPj. A basis of that kind is for example given by Bk(z) = [y(z)]k,
0 < k < 2m — 1. However, the elements of this basis do not satisfy in general the
requirement to have all their ramification points included in their divisor. Therefore
we seek for a basis Bk (z) with the following leading order expansions at the branch
points:

4°(z) ~ (z - α,Γ9W° + . . . ,

^-(z-βf'^ + . .. (3*4)

Transporting the functions Bk\z) around a branch point on a closed path, one obtains
the phases exp(— 2πiqk a . ( l ) ) 9 exp(—2πίqk ^.(0) that depend on the initial branch / of

the function and on the index k characterizing the rationally independent functions.
The qk a.(l) and qk β.(ΐ) must be rational numbers for some values of /, otherwise

there is no multivaluedness at all. In principle, in order to find the Bk\z), one
needs to solve a Riemann monodromy problem and the related Schlesinger equations
[8-10]. However, this is not so simple and the boundary conditions of the Schlesinger
equations are not known. Fortunately we can rely on a theorem of algebraic geometry
stating that a general function on an algebraic curve, therefore also a function
satisfying Eqs. (3.4), should be a rational function in y(z) and z. The construction
of a function with a nontrivial behavior at the branch points of the kind (3.4) can be
done using techniques of algebraic geometry. The parameters qk (I) and qk β.(l),

however, are still defined only up to integers. For example one can multiply B(

k(z)
with singlevalued functions whose zeros lie at the branch points. This freedom is
fixed by the physical properties that the correlation functions of the conformal field
theories should satisfy, for example associativity, locality and statistics of the fields.

In this paper we choose a particularly simple conformal field theory, the b — c
systems [21] with spin λ and action:

= / (3.5)

b(z)dzx and c(z)dzl~z are now fields on Σg and consequently they are multivalued
fields in z in the sense of Eq. (2.2). For each value of λ, the physical requirements
mentioned above are dictated by the fermionic statistics of the b — c systems. In other
words, their correlation functions should have simple poles whenever the coordinates
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of one field b and one field c coincide and simple zeros in the case in which the
coordinates of two fields b or two fields c coincide [22,23]. It is easy to check that, as
a consequence, the parameters qkj0ί (I) and qk^.(ΐ) must depend also on λ. Therefore

it is convenient to introduce two different basis Bk(z) and Ck (z) for the fields b
and c respectively. Finally, the freedom of multiplying the basis with a singlevalued
function with zeros and poles at the branch points will be exploited in such a way that
the correlation functions of the b — c systems on Σg can be expanded in the simplest
way in the elements of the basis.

First of all we consider the case λ = 0. The following 2m functions Fk(z) are an
example of a basis satisfying the above requirements and those of Sect. 2:

Fk(z) = yk(z) 0 < & < m - 1,

m<k<2m-l.

It is easy to check that the functions Fk(z) are rationally independent and that they
have the behavior (3.4) at the branch points with nontrivial rational values of qk a . ( ΐ )
andqkίβi(l).

Now we will prove that any rational function R(z, y(z)) of z and y(z) is a linear
combination of the functions Fk(z) of the kind:

R(z, y(l\z)) = ]Γ ck(z)Ff(z), (3.7)
k

where the coefficients ck(z) are singlevalued in z. Equation (3.7) is certainly true if
R(z,y(z)) is a sum of monomials of z and y(z). In fact, from Eq. (3.1) we have
yrn(z) = q(z) ± \/p(z). Therefore monomials containing powers in y(z) greater than
m — 1 are still expressible in terms of the basis (3.7). At this point we have only to
consider the rational functions of the kind

™v" Σcfcω^ω
k

A simple consequence of Eq. (3.1) is the following equation:

ra-l

1 I / \ ^ „ f^\^klck(z)εklFk(z) [R(z, y(z))Γl = Q(z)^/^ + P(z) , (3.8)
1=0 \ k )

Q(z) and P(z) being singlevalued in z. Therefore

' n2/ ^ m/ ^ " 'Q2(z)p(z) - P\z)

which is again of the kind (3.7). Thus we have shown that the functions Fk(z) are
2m multivalued, rationally independent functions and that all other functions, the
solutions of the RMP included, are linear superpositions of them.

The case of general λ is solved as follows. As can be seen from the divisors
written in Appendix A, the λ-differential

dzχ

B0(z)dzχ = (3.10)
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has neither poles nor zeros at the branch points. Therefore, multiplying BQ(z)dzx

with the functions Fk(z) of Eq. (3.6), we get 2m λ-differentials Bk(z)dzχ with all
the possible independent behaviors at the branch points. The final result is:

dzl~x ,

(3.12)

dzx ,

))~q

where the "charges" qk and qk β . are defined by:

. « ill

and

- t ,= — ̂ — , fc = m, . . . , 2m - 1 .

The significance of charges of the parameters qkίQti and gfc ^ will be clarified below
(see also [7, 24]). It is easy to show that the elements in the basis (3.11) are rationally
independent and that the functions Bk(z), Ck(z) are linear combinations with rational

coefficients of the Fk(z)9s. The leading order behavior of B^k(z) and Ck^ at the
branch points is again of the form given in Eq. (3.4). The parameters qk a.(l) and
qkβ.(l) are given by:

= %,«., m < Z < 2 m - l ,

and
^ ^ " 0 < i < 2 m - l . (3.15)

4. The n-Point Functions of Free Field Theories
on a Dm Symmetric Algebraic Curve

In this section we derive the correlation functions of the b — c systems showing that
they are superpositions of the basis given in Eq. (3.11). The Nb = (2Λ — l)(g — 1)
zero modes Ωl^x(z)dzx,..., ΩNb^x(z)dzx are computed in Appendix A in terms of
the basis (3.11). In the Appendix we have however exploited a different notation to
number the zero modes introducing a double index ik, k. The index k labels the sector
of zero modes having the same behavior at the branch points of the λ-differential
Bk(z)dzx, while ik labels the zero modes inside a given sector. This notation stresses
the fact that the zero modes are constructed in terms of the basis (3.11). Here, however,
it complicates the expressions of the correlation functions and therefore will not be
used.

When A > 1, the following meromorphic tensor with a single pole in z = w will
be necessary:

K«l'\z,w)dzxdwl-χ = — dzXdwl'X2yB^(z)(^\w). (4.1)Λ 2m z -w ^-^ * *


