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Abstract. Two repellent particles are bound to occupy two among the kn 4-1 adjacent

sites 0 = £Qn) < x(jn) < . . . < x(^ — 1, say x^x^. Define the Hamiltonian

v(qlι — ̂ (

ρ

n)) and the partition function

0<q<kn

We discuss the behaviour of the function

cvm rF(β) = hm sup
In k

closely related to the free energy. We prove that the smallest real zero of F(β) is
equal to the fractal dimension of the system and that this number, when less than one,
is a critical value where F is not analytic.

1. Introduction and Description

In a previous article [2] which was purely number theoretical, we defined and
discussed a notion of dimension of a system of points in the unit interval and applied
it to the study of divisors. Our purpose here is to give a physical interpretation of our
results in the form of a simple one-dimensional model where a phenomenon of phase
transition occurs.

Consider two repelling particles which are bound to occupy adjacent sites among
k -f 1 sites 0 = x0 < xλ < ... < xk_} < xk = 1 on the unit interval.

Fίg. 1 X0 X1 X2 x/(-1 Xk
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It is clear that the equilibrium state is attained when the two particles occupy
the endpoints of one among the largest intervals (x j? xj+1). Let us now describe the
system in terms of statistical mechanics. A configuration σ is one of the k possible
states {x3,x3+l} and may well be represented by a finite sequence

σ = (0, 0, . . . , 0, 1 , 0, . . . , 0) = OM Ok'j+l ,

so that, in other words, σ = {σ^}^~0, where σq — δq . We define the potential energy
(or Hamiltonian) of a configuration σ by

k-l

3%(°) = ~ Σ σq ln(xg+ι - zς) = - ln(xj+1 - Xj) .
9=0

According to the axioms of physics, the system reaches its equilibrium when the
energy is minimal, i.e. when (xj+1 — Xj) is maximal - a fact which was obvious from
the beginning, as we already observed. This setting, however, enables us to develop
further the statistical mechanics formalism with the introduction of an order-disorder
parameter β which plays the role of an inverse temperature, say β = 1/T, where T
may be thought of as the vibrational energy. If there is no vibration, the equilibrium is
attained for minimal Hamiltonian; if however the vibrational energy tends to infinity,
the various states {x ,x3+]} cannot be differentiated by the two particles and disorder
prevails. Let us elaborate upon this statement.

One of the basic axioms in statistical mechanics is that the probability of a
configuration σ at temperature T = l / β is

where the normalizing factor, viz

is the partition function. It is then obvious that, in the generic case when there is only
one interval of maximal length, we have

_> . . ί 1 if J^Yσ) is minimal,
lim P0(σ) = <

β^+oo μ [ 0 otherwise.

Similarly, we have

β^Q β

Thus, we see that the system stays in its fundamental state at low temperature
(β —» +00) whereas at high temperature (β —» 0) all possible states become
equiprobable.

Following several authors (see e.g. [1 and 3], Chap. 6) we now allow negative
temperatures. We then obtain

Pβ(σ) =
r i i
\ 0

if 3@(σ) is minimal,

otherwise.

if we assume that only one interval has minimal length. Hence, equilibrium occurs
when the two particles are as close as possible. Thus, the system behaves as if the
Hamiltonian had changed sign, that is to say that the particles now attract each other!
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The reader may be somewhat puzzled by the specific form for the Hamiltonian of
our system. This choice originates in the fairly general observation that any evaluation
of a Hausdorff dimension amounts to determining a change of behaviour in a sum of
the type

Zk(β)= Σ <* (fc-++oo)
0<q<k

and may therefore be also interpreted as a computation of a phase transition for a
system with partition function Zk(β) - and hence with Hamiltonian — \ndq k for the

gth configuration. The above system consisting of two repelling particles is certainly
one of the simplest that yields a phase transition phenomenon. It is no doubt possible
to extend some of the results presented here to systems of several repulsive particles,
and we hope to develop this generalization in the future.

In our previous work [2], the study of sums of type Zk(β) was intended to exhibit
the fractal nature of the set of divisors of a random integer and to determine its
dimension. Thus negative β had no significance, inasmuch as negative dimensions
seem somewhat artificial. Here, on the contrary, β appears as an inverse temperature
and, since it is well known that negative temperatures do have a meaning in
some systems [1,3], the consideration of negative values is inevitable. Actually, the
extension of our previous results to negative values of β happens to be also interesting
from the mathematical point of view.

2. Thermodynamic Limit

Here, we investigate the limiting behaviour of the system as the number of sites tends
to infinity. Given an unbounded sequence of integers {kn}^L{, we let the system
evolve as "time" n increases. In the nth level of the system, the sites are

a configuration is a sequence σ^ of kn — 1 zeros and ones, and the corresponding
energy is

^γ/j(nh — _ V^ <τ(n) In r/ (d ' — r^ — r(nh^c/v^ y / ^ ^q 111U;q,n ^q^n' q+\ q '*

0<q<kn

The partition function then becomes

Z(β,n): =

In the thermodynamic limit, the free energy \P(β) is given by the formula

.
In kn

Our main goal in this article is to describe the behaviour of F(β) as β varies from
—oo to +00.

We summarize below some elementary facts concerning F(β). This function is
certainly bounded by 1 for β > 0 and we denote by β* < 0 the infimum of the set
of real numbers β such that F(β) is finite.
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Proposition 1. For β > β*, the function F(β) is finite, non-increasing and convex. It
satisfies

F(0) = 1, F(l) = 0, F(β) >-β (β> β*) , F(β) < max(0, 1 - β) (β > 0) .

(1)
In particular, it is continuous, except perhaps at β — /?*.

Proof. Let F(/3,n): = (lnZ(/3,n))/lnfcn. Then F(β,ri) is a decreasing function of
/? which satisfies F(0,n) = 1, F(l,n) = 0. This plainly implies that F(β) is non-
increasing as well as the first two relations in (1). To prove the third, let d±(ri)
denote respectively the maximal and the minimal value of dq n (0 < q < kn)9 so that

d_(n) < \/kn < d+(n). Then

k~β < max(d_(n)^ , d+(nf) < Z(β, n) (β G R) ,

and, on letting n — » +00, we obtain the required inequality. For the last relation in
(1), we may plainly restrict to the case 0 < β < 1 because F is non-increasing. The
result is then implied by Holder's inequality in the form

<„< Σ OV Σ
/ \0<q<kn

It remains to show that F(β) is convex for β > β*. This follows immediately from
a new application of Holder's inequality, namely

0<q<kn

f Σ
valid for all /?, 7 in (/3*,+cx)) and all non-negative real numbers r, s such that
r + s = 1. This evidently yields F(rβ + 57) < rF(/3) -f sF(7), which is all we
need.

3. Critical Temperatures

It is clear from Proposition 1 that the set of real solutions β to the equation F(β) = 0
is an interval [/3_,/3+], possibly reduced to a single point, and with the convention
that β+ may be equal to +00. Since F(0) = 1, F(l) = 0, we certainly have

0</3_ < 1 </V (2)

Moreover, as F is non-increasing and convex, the condition β_ < 1 implies
β+ = -hoo. Actually, it is easy to note that β+ can only take the values 1 or +oc.
Indeed, if β+ is finite, then F(β) — 0 for β_ < β < β+9 and this is compatible with
the convexity of F solely if β_ = β+ = 1.

It is interesting to note that, if β+ — +00, then F(β) cannot be analytic in the
neighbourhood of β_ - and indeed, as we shall see in Sect. 5, F(β) is not differentiable
at β_ in most natural examples. Thus β_ appears in this case as a critical value, and
we can say that our system has a phase transition at β = β_. The following result
gives a simple sufficient condition for the occurrence of a phase transition, in terms
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of the geometry of the system. We recall the definition of d+(ri) from the proof of
Proposition 1.

Proposition 2. Letδ: = limsup(lnd+(n))/ln kn. Then, either
π-^+oo

(i) fj = 0, and then β+ — -f oo,
or
(ii) δ < 0, and then β_ = β+ = 1.

Proof. We plainly have, for all positive integers n and all real numbers β > 1,

= < - 1 = ~ld+(nf<Z(β,ri)= d^n<d+(nf-1 dς>n = d+(n
0<ςr<fcn 0<q<kn

Hence
βδ < F(β) < <β - l)δ ( β > l ) .

If 5 = 0, it follows that F(/3) = 0 for all /3 > 1, whence /3+ - -hoc. If <5 < 0, then
< 0 for all β > 1, so β+ < 1, and therefore /3+ = 1 by (2).

We note that in case (i) the quantity β_ need not be less than 1. Examples with
= 0, β_ = 1, β+ = Ί-oo are indeed easy to construct, e.g. dq n = \/(nln2ri)

<q<n\ dn^n = 1 - l/ ln2n.

4. The Box Dimension Revisited

In this section, we seek a characterization of the quantity β_ in terms of a natural
notion of dimension that can be associated to systems of the type described above.

The dimension of a linear set E is often defined in terms of coverings. If N(έ)
intervals are necessary to cover E, then

A- π rdim E : = lim sup
ε_o

For our present purpose, we shall modify this definition. Given a system X with
levels Xn: = {x^:0 < q < kn}, we cover each site x^ by an interval of length

fc~α, centered at x(^ and put

r /^λ. _ Γ^(n) 1 -L. — CX (n) i 1 JL — α] p, (Γ\ i \
1q,n(a)' - [Xq ~2^n ^Xq + 2 ^n J « HU, 1) .

Let
μn: -meas

The number of intervals Iq n(ά) necessary to cover the set Xn is approximately μnl
We then define

da(X)\ = limsup
n—^ + oc

This plays the role of a dimension attached to the exponent α. Since μnk% does
not exceed the total number, fc , of sites of X , we have

0 <dn(X) < m i n ( l , l / α ) . (3)
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We define
άimX: = supda(X). (4)

α>0

This reflects in a fairly sensitive way the geometry of the system, taking into account,
in principle, all values of a - indeed, the function a ι-» da(X) is not necessarily non-
increasing, see Example 2, Sect. 5. In fact, we have the following characterization.

Theorem. For any system X, we have

β_=άimX. (5)

In particular, we see that if β+ is infinite then the critical temperature is the inverse
of the box dimension of the system.

The above theorem follows immediately from our previous work [2]. Indeed, we
had defined there the dimension of X by the formula

inf ίβ: lim sup F(/3, n) = 0\ ,
\ n^+oo /

and formula (4) was our Theoreme 1.
Of course, (5) gives a sufficient condition for the occurrence of a phase transition,

namely that dim X < 1. But this is weaker than the condition δ = 0 of Proposition 2.
This is a consequence of implication (ii) of this statement. An alternative, direct proof
rests on the following inequality, valid for all β < 1,

0<q<kn

whence
F(β) >(β- l)δ 03 < 1) . (6)

If dim X — β_ < 1 , it follows on selecting β = β_ in (6) that δ > 0, and hence
δ = 0.

In this context, it is worthwhile to observe that the box dimension is invariant
under a simple transformation such as replacing Xn by \Xn U {!}, whereas the
existence of a phase transition is certainly not, inasmuch as we must have δ = 0 for
the transformed system.

5. Examples

We give here a number of representative examples of simple systems and discuss the
occurrence of a phase transition.

Example 1. Smooth systems. Let 7 > 0. Define a system X by Xn = {(ρ/n)7:0 <
q < n} for all positive integers n. We call X "smooth" because the sites are
evenly distributed in (0,1). As can be expected, a smooth system has dimension 1.
Nevertheless, there is generically a critical temperature. More precisely, we have

1-0 if ( 7 - ! )/?+1>0,

-7/3 if (7 _!)/?+ i < o ,

where, here and in the sequel, / x g means that we have simultaneously / = O(g)
and g = O(f). From the above estimate, we readily deduce that
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1 -a

l 'ig. 2

a> 1

In particular, we see that dimJί = 1 and that there is a critical point at
β = l/(l - <γ) whenever 77^ 1. It is remarkable that this critical point is never

at/3_.
Finally, we note that a routine computation yields that for any smooth system we

have

Thus, in view of (3), the function a ̂  dα(^0 is maximal for a smooth system.

Example 2. On the variations of a ι— > dα(X). In most natural examples, c C X ) is a
non-increasing function of a and hence dim X = lim d (X). This is however by

a—>0+

no means necessary, and we provide here an easy counter-example. Let c > 0, and
define X by Xn = {q/nc+l :0 < q < n} U {!}. Then the number Tn(a) of intervals
of length n~α which are necessary to cover Xn satisfies

1 if 0 < a < c,

na-c if c < α < c + 1 ^

if a > c -f 1 .

Thus we obtain

ί
O if 0 < α < c,

1 - C/OL if c < a < c + 1 ,

I/a if a > c-\- 1 .

In this case, dimX = l/(c+ 1) corresponds to the unique maximum of da(X) at
a = c + 1. Since dim X < 1, there is a critical point at β_ — l / ( c + 1); actually, it
is easy to see that

F(β) = max(0,1 - (c +

Example 3. The Cantor system. Let 0 > 2. At level one, we consider the two intervals
[0,1/0] and [1 - 1/0,1] obtained by withdrawing from [0,1] the middle interval of
length 1 — 2/0. At level two, we form four intervals by withdrawing from each of
our two previous intervals the middle open interval of length 0~*(1 — 2/0). We then
carry on this procedure inductively. The Cantor system is defined as the system X
for which Xn consists in the 2n+1 endpoints of the intervals constructed at level n.
It can be shown (see [2]) that we then have

dα(X) = min|^|,l} (α>0),

F(β) = max <Q,l-β
, m 0
Ϊή2

(β e M).
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Fig. 3

Hence, for the Cantor system, β_ — In 2/ In θ is a critical point.

Example 4. The divisor system. Let n be a positive integer and 1 = dλ < d2 <
dr = n denote the increasing sequence of its divisors. Put

We have shown in [2] that there exists a subset M C N of asymptotic density one
such that the system X — {^m}m(ΞM satisfies

da(X) = min{ ln2,I/a} (a > 0),

F(β) = max{0,1 - β/ In 2} (/? e R).

Thus β_ = In 2 is a critical point.

Example 5. A critical point where F(β) is once but not twice differenύable. Define a
system by selecting the differences dq n (0 < q < kn = 2n — 1) in such a way that
for every j, 1 < j < n we have

dq,n=jn/f(n)

for exactly 2n~J values of g, where

l<j<n

Put βl = β/ln2. For given n, the function t ι-» ί/3n2n~t (t > 1) is decreasing if
β < 0 and is otherwise unimodal, with a unique maximum at t0 = β^n. Defining

ί 0 if β < 0,
β2: = J β{ if 0 < / 3 < l n 2 ,

{ 1 if /?> In2,

we hence have
Σ jβn2n~j = (1 + /32n)/3n2n(1~^)nθ(i) ^

This yields

7/3 _α ~~ ί V ^?n
2^ J L

\\<j<n

= [ + Λ
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With the notation Q(x): = xlnx - x 4- 1 (x > 0), we obtain

4- 'f /? 0 < 0 ,

In particular, we see that β_ = In 2 is a critical point where F is differentiable exactly
once.
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