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Abstract. This paper suggests a direct approach to define the Laplacian, the spectral
dimension of nested fractals and the pre-Sierpinski carpet conductivity. We find a
geometric construction of the harmonic functions on the gasket and therefore can
describe effectively the dense set of functions having finite energy. The paper is
mostly aimed at the homogenization on the pre-Sierpinski gasket, whose horizontal
and nonhorizontal bonds have different conductivities: α and b respectively. We prove
the Γ-convergence of the rescaled energies on the pre-Sierpinski gasket to σ(α, 6)ε,
where ε is the standard energy on the gasket with uniform conductivities. We also
find an explicit expression for the effective conductivity σ(α, b) and deduce that its
set of singularities turns out to be the Julia set of a certain rational function. A
special section is devoted to the problem of the pre-Sierpinski carpet conductivity
asymptotic behavior; for this problem a new proof of Barlow-Bass inequalities with
sharper constants is given.

1. Introduction

The fractals, the first example of which was given by Sierpinski [1] at the beginning
of the century as an example of the set with the bizzare geometrical properties, were
proposed more recently as models for different physical phenomena by Mandelbrot
[2]. Then the Laplacian on the fractals and their spectral dimension which first
appeared in the physical literature [2,3], see review [4]) as the tools of the
investigation of the percolation effects and various transport processes, in classical
as well as in quantum mechanics became the subject of intensive mathematical
research [5-9]. Even in the case of fractals with uniform properties, and all the
quoted papers devoted to that case, this subject is related to the theory of certain
inhomogeneous media and has something in common with homogenization theory.
At the same time the main assumption of that theory (which is in the most general
case statistical translation invariance) is violated in the fractal case. In this paper we
go further and, probably, for the first time, at least in the mathematical literature,
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discuss also the fractals with locally nonuniform properties. Fractal inhomogeneous
geometry discussed here presents a new very interesting type of geometry where even
the simplest disorder does not have the translation invariance property. However, this
research was based on homogenization theory. Here we use such notions of this theory
as Γ-convergence, harmonic coordinates and interchange duality [10-16]. Physically
this approach means that we consider the pre-Sierpinski gasket as a resistor network
of equal (Sect. 2) or two different types (Sect. 3) of resistors.

The purpose of Sect. 2 is to present a new, direct construction of the Laplacian
on the Sierpinski gasket and a simple definition of its spectral dimension. It is a
difficult task to describe the harmonic functions on the gasket . To that end in this
section we also introduce a harmonic mapping of the Sierpinski gasket. This mapping
allows us to give the geometric interpretation of the harmonic functions. The image
of the Sierpinski gasket under this transformation is also a fractal; its geometrical
construction is very simple, but involves two rescaling parameters. On that new
fractal harmonic functions are simply linear functions, so we call the procedure
harmonization of the fractal. After that the wellknown rescaling property of the
energies on the pre-gaskets become a theorem from the elementary geometry. It
should be pointed out that for the particular case of the Sierpinski gasket one can
find the spectrum explicitly (see [3]) but in Sect. 2 an approach is presented which
is applicable to all the objects of that nature. They are the so-called finitely ramified
fractals. The difference is that instead of the natural resistor network and the explicit
rescaling factor 5/3 for the Sierpinski gasket one should admit connections with some
conductivities between all the vertices of the elementary cell of such a gasket, provided
selfsimilarity for the energy with a certain rescaling parameter ρ. Generically those
conductivities cannot be found explicitly, but the existence of this distribution of
conductivities of the elementary cell of such a type of gasket was proved in [8].
We remark that the uniqueness of such a distribution of the conductivities is not
established but that the number ρ is obviously uniquely defined thanks to uniform
ellipticity arguments (this assertion is missing in [8]).

In Sect. 3 we consider the inhomogeneous pre-Sierpinski gasket. Now its bonds are
equipped with two different conductivities: horizontal with α, others with b. In contrast
with the previous case (α = b) there is no reasonable pointwise (with respect to a set of
admissible potentials) convergence of the pre-gasket energies. However, we relax the
definition of the convergence and prove /^-convergence of the energies, rescaled in the
same manner as above. (See [11] for the general definition of Γ-convergence; in Sect.
3 it is given in our particular case.) We show that the Γ-limit is equal to σ(α, 6)ε, where
ε is the standard energy, as in Sect. 2, and σ(α, 6) is some number. We call σ(α, 6)
the effective conductivity of the inhomogeneous gasket, according to its physical
sense. The main theorem includes explicit representation of σ(α, b) in terms of the
successive iterations of a given rational function. This representation shows that σ(α, b)
is invariant under a certain algebraic transformation, and enables us to investigate the
analytic properties of the effective conductivity, as well as its asymptotics. We remark,
for instance, that the set of σ(α, b) essential singular points coincides with the Julia
set [17] of that rational function mentioned above. That set is known to be the set
on the line of some fractional Haussdorff dimension. It is reasonable to compare the
structure of the singularities of σ(α, 6) with the analytic properties of the effective
conductivity of two phase composites typical for homogenization theory geometry.
In standard homogenisation theory the poles of such effective conductivity σ(α, 6),
which are physically the electric resonances, are identical with the eigenvalues of the
Bergman's spectral problem [14] (see [15] and also [16] for the explicit formulation
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of that problem). So in the case of the inhomogeneous Sierpinski gasket Bergman's
problem has Kantor spectra. In standard homogenisation theory only discrete (e.g.
dispersive periodic inclusions) and absolutely continuous (e.g. checkerboard structure)
types of spectra were observed.

Another consequence of this invariance discussed above of σ(α, b) under rational
transformation is the logarithmic asymptotics of σ(α, b) as b/a — * oo, and both the
gasket dimensions appear in that limit. We find in that limit

loe-
σ(a,b) ~ axbl~x ,

(compare with x = 1/2 for the case of statistically equivalent phases in the
homogenization theory).

We conclude the paper with a new proof of the Barlow-Bass [18] inequalities with
the improved values of the constants concerning the limiting behavior of the pre-
Sierpinski carpet conductivity. This structure is obtained according to the following
recurrent procedure: we take the unit square and paint it white, then we divide it into
nine equal squares and paint the middle square black. We proceed making the same
division and painting with all the rest eight white squares. Assume that the white
set on the nth stage of this construction is filled with a conductor of conductivity
one and the black set is dielectric. Then for the effective conductivity Cn of this
inhomogeneous structure for any n the estimate holds true:

c~V <Cn <cρn

for some fixed ρ, 0 < ρ < 1 with c = 4 (see [18]). We remark that the explicit
value of Cj was found in [19]. Here it will be shown that those inequalities are true
for c = 3/2. This improvement was mainly achieved thanks to the application of
2D interchange duality, and to the introduction of the relevant auxiliary networks,
which better take into account inhomogeneity of this structure and in particular the
singularities of the solution at the corners of each black square. The proof cannot
be immediately generalized to the 3D Sierpinski carpet and we do not know if the
constant 3/2 is optimal or not.

2. Laplacian and Spectral Dimension of Gaskets

Here we explain how to construct the Laplacian and define the spectral dimension of
the Sierpinski gasket.

Let us first recall the definition of the Sierpinski gasket. Pose aλ = (0,0),

α2 = (1,0), and α3 — (1/2, A/3/2), let V0 = {aQ,al,a2} be the vertices of an
equilateral triangle of side one. Define inductively

Vn+ι = VnU(2~na2 + Vn)U(2-na3 + Vn) .

(Here, and throughout the paper we use the notation x + A = {x + y,y G ̂ 4}). Now
let

n=0

and V = V* (closure of V^) be the Sierpinski gasket.
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Let μn denote the measure which assigns mass 3~n to each point in Vn. It is

wellknown that {μn} converges in vague topology to the Hausdorff xdf -measure μ
on V and dj = log 3/ log 2. Thus V has Hausdorff dimension dj and μ(Tn) = 3~n

for any equilateral triangle Tn whose vertices are one of the possible translations of
2-"%.

Let's assign conductivity one to each nearest neighbor bond in Vm, and consider
pre-Sierpinski gasket as the resistor network. Then for the Joule heat we have the
expression

where f : V % — » R is any function (given the potential of the vertices Vm). Suppose
we fix potentials only on VQ, then the energy is

4(yO = inf{4(/):/:Vm -» RJ\VQ = φ} , φ = (φ^φ^φj. (2.2)

Simple calculation based on the symmetries and the similarity shows that

4ιM = (I Γ((Ψι - Ψ2? + (Ψ2 ~ Ψi? + (Ψι ~ <ft)2) (2-3)

Indeed, thanks to 120° -rotation symmetry and obvious independence of the energy on
the simultaneous shift of the potentials to the same constant, the energy is proportional
to the energy of the initial triangle with unit conductivities, which is given by the
expression (2.1) for m = 1. We call that factor of proportionality the effective
conductivity of the standard pre-Sierpinski gasket. By induction it suffices to prove
(2.3) for m = 1. In that case we consider antisymmetric distribution of the potential:
(0, 1, —1), which leads to one equation for one unknown variable on Vj. Solving this
equation and computing the energy of Vl9 we get (2.3). So this means that effective
conductivity of the Vm -resistor network is equal to (3/5)m, and we have to introduce
the rescaled energy

εm(/) = (f )"Vm(/) (2.4)

in order to have something finite in the limit.

Proposition 1. For any f :V* — > R the energy εn(/) is nondecreasing on n.

Proof. Let's denote by /^+1 harmonic continuation of /m — f\Vm to Vm+l, which
can be defined as a solution of the variational problem

> R,g\Vrn = fm}. (2.5)

Then by definition of /^+1 and rescaling property we get

as required.
We also need the following.

Proposition 2. For any f : V*

where a = (log 5/3) / log 4.
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We skip the proof which is a bit long but follows directly from the definition of
the energy (compare with the much more delicate result from [6]).

According to Proposition 1 we can introduce for given f'.V* —* R the limiting
energy as, probably infinite limit

ε(/) = lim εn(/) . (2.7)
n— κx>

Pose now
Hl = {f:V*^R:ε(f)«x>}.

Then thanks to Proposition 2 each / e if1 has continuation to V, which belongs to
a standard Holder space with the norm given by l.h.s. of (2.6) - Ca(V). Let's define
CQ(V) = {/ € C(V):f\Vo = 0}, and introduce the norm

The functional space CQ(V) Π Hl is then a Hubert space, and we denote it if1.
o

Obviously the space L2 = L2(V, dμ) contains if1, which is dense in L2 (see Lemma
1 below). In that case for given v E L2 we have the linear functional

(v,u) = I vudμ

V

o

which is continuous on if1. Then the expression

defines the pre-norm on L2, and we denote by if"1 the closure of L2 with respect to
o

this pre-norm. Now we have three Hubert spaces if"1, L2> Hl and the embeddings

Hl C L2 C H~l .

o

Denote ε(/, g) the scalar product of /, g e if l.
Then relation

( Δ f , g ) = ε ( f , g )

defines uniquely the isomoφhism

and we call this operator the Laplacian. We also use the same name and notation for
o

the unbounded operator Δ : L2 — » L2, which has the domain D(Δ) = {/ G if 1 : Δf e
L2}.

Remark that this way of introduction of the Laplacian permits us to prove in the
usual manner, via the Hubert space formulation the existence and uniqueness of the
solution to the problem Δu = 0, u = φ on VQ. So here the role of the boundary
is played by three points of the initial triangle, consequently the dimension of the
space of the harmonic functions is equal to three. Thanks to Proposition 1 harmonic
functions are of the class Ca and take limiting values in the classical sense. Explicit
expression for the Laplacian of an arbitrary function is not known, but for a function
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gn which is harmonic inside each triangle Tn the image of the Laplacian over 5n is
the function, which is identically zero on V\Vn and at the point x G Vn equals to the
arithmetic mean of the nearest neighbors values minus gn(x).

Proposition 3. The operator Δ:L2 — > L2 is self adjoint and has discrete spectra {\k}
0 < A! < λ2 < . . . < \k < . . . -» oc.

Proof. Δ is selfadjoint in L2 by definition and the rest of the required statement
follows immediately from Proposition 2, as far as imbedding L2 D Ca is compact
for a > 0.

Now we are ready to define the spectral dimension of the Sierpinski gasket. Denote

fc < λ} ,

the Weyl distribution function of the Laplacian's spectrum.

Lemma 1. There exist Cl,C2 > 0 such that

c2Λ^/2 (2,8)

for λ > 0. In (1.8) ds = log 9/ log 5 and is called spectral dimension.

Proof. In order to obtain estimate (2.8) below we get the upper bound of the pre-
gasket energy. Let's denote by Hn the subspace of L2 whose elements are harmonic
inside each triangle Tn and equal to zero on V0. Then by simple calculation of the
number of the points in Vn dim.£fn = 3(3n — l)/2 and

o c ̂  c . . . c ffn C . . . UHn = L2 .

By definition of L2 the set of the continuous functions is dense in L2 and according
to Proposition 1 each continuous function can be approximated uniformly on V by
the function from Hn for sufficiently large n.

Now for any / £ Hn we have

ε(f) = εn(f) = ( ) (/(z)-/(2/))2<16 5l/ | | 2 . (2.9)

Let us define the operator Λv in L2 by its invariant subspaces {Hn} and eigenvalues
16 5n. (Each such eigenvalue is taken with the multiplicity equal to the dimension
of the orthogonal complement to Hn in Hn+l.) Estimate (2.9) now means Δ < Δl

in the operator sense, hence N(λ) > N l ( X ) , where N l ( X ) is a Δ1 Weyl distribution
function. Then (2.8) and the lower bound can be handled by explicit evaluation of
the Δ1 spectrum distribution.

To get (2.8) upper bound, we consider the same sequence of spaces {Hn} but in
o o

the Hubert space Hl. Denote H^ the orthogonal complement to Hn in H[. Then for
any / £ H^ΠHn+l we get by direct calculation f\Vn =0 thanks to the orthogonality
to H and
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*Henceforth, posing / = Δ~l//2g, from the last inequality we obtain

Now we define operator Δ2

l in L2 by its eigenspaces {Δl/2(H^- Π Hn+l)}^Ll and
eigenvalues 5~n. The previous estimate yields the operator inequality Δ > Δ2. The
upper bound (2.8) follows as above.

Now we are going to construct the harmonic functions on the Sierpinski gasket
geometrically. There are three linearly independent harmonic functions on V and one
of them is identically constant. That means we can choose three vectors yλ , y2, y3 G R2

such that triangle G with vertices (y\,y2, 2/3) is nontrivial, and pose vector boundary
conditions for the harmonic vector function Z

where i = 1, 2, 3. Denote y = (y1? y2, y3), and introduce the new triple of .R2 -vectors
as follows

g(y) = (2(yι + y2) + y3,2(yl + j/3) + y2, 2(% + %) + ̂ ) . (2.10)
That new triple has the sense of the values of Z on Vj\yo, and that is easy to check
solving the equations for Z. Let us define three triangles Gi9 i — 1,2,3 with the
vertices (yl,gl(y),g2(y)\ (y »92(y)ι9ι(y)\ (y^9ι(y)>9\(y)) respectively (see Fig. 1).
Now we describe the map g geometrically. Starting from the triangle Ty(yl,y2,y3)
triangle Tg(g^(y)^g2(y)^g^(y)) can be found via the following simple procedure. We
divide each side of Ty onto five equal segments, then join the respective points of
the adjacent sides and find Tg as the central of that triangulation (see Fig. 2). Energy
of the potential distribution Z, which dissipates on the bond of the initial pre-gasket
now is nothing else but the squared length of the bond of the new pre-gasket obtained
via transformation g. So the energy rescaling property now means the following.

Theorem 1. Summing up squared sides of arbitrary triangle G we get five thirds times
the sum of squared sides of all the triangles G^G2,G4.

Geometrically map g is shown on Fig. 1. We can proceed in the same manner
applying the map g to each of the triangles G1,G2,G3 and this is also shown on
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Fig. 2

Fig. 1. That gives the values of Z on V2\Vl and so on. Doing this way we obtain
the map g: V* —» G. One can easily check that the continuation of g to all V gives a
homeomorphism g: V ~ GV, where GV is the closure of gV* in G.

Remark 1. We can induce the energy, the Laplacian, and the Hausdorff measure from
V. Then by definition linear functions will be harmonic and the spectral dimension
is equal to ds. Unfortunately, we are not able to calculate the Hausdorff dimension
of GV, but covering gVm primitive triangles by 3n balls of diameter 5~n we obtain
the estimate dH(GV) < ds. The natural hypothesis is: dH(GV) = ds. Geometric
construction of GV presented above involves obviously two rescaling parameters
1/5, 3/5 and that yields to the difficulties in the GV Hausdorff dimension evaluation.

Remark 2. With the help of harmonic coordinates we can describe explicitly the dense
set in Hl that is:

{f(Z):feCl(G)}.

Remark. The same results as here hold true for other nested fractals as far as
the rescaling property of the energy is fulfilled. Existence of the unique rescaling
parameter follows from [8] and standard ellipticity arguments, but one should consider
a more general type of energy (not only nearest neighbors are connected).

With respect to these observations it is natural to call any gasket on which linear
functions are harmonic, harmonic gasket, and call GV harmonization of the gasket
V. The next hypothesis is that the Laplacian on the harmonic gaskets is a second
order differential operator with the usual partial derivatives but with coefficients of
very special and irregular type.

3. Homogenization on the Sierpίnski Gasket

Here we consider inhomogeneous pre-gasket, which sides have two different con-
ductivities. Let's denote by Ϊ1 ? 12, l^ the sides of the triangle T0, joining the vertices
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{α1,α2}, {^2^3}' {α3>αιl respectively. For given α, b > 0 we introduce local con-
ductivity

!';1 e"/2 (3-D

(here || means being parallel) and e is any side of any triangle Tn. Let's define the
energy as

n

χ,y£Vn

\χ-y\=2~n

- y) (f(x) - f ( y ) ) 2 , (3.2)

where / e Hl.
We need an important notion of Γ-convergence (or equivalent epi-convergence)

from nonlinear analysis (see [11]). Let us recall it in the current situation. Sequence
{εn}^=1 of the functionals on Hl is said to be Γ-convergent on Hl to a functional ε
(notion Γ-lim εn = ε) iff
(i) for any weakly in Hl convergent sequence fn^fwe have

liminfεn(/n)>έ(/),
n— >oo

(iί) there exists a sequence {/^j^, f% G Hl such that /° —> f in Hl weakly and

We remark that the sequence of the energies {εn} from Sect. 2 /""-converges to
ε = || ( I f which follows from the definition, but generically G-convergence is weaker
than the pointwise convergence which we have in this example.

Now let's discuss the inhomogeneous case.

Theorem 2. For any α,6 > 0 sequence {εn(α,6; )} ι̂ defined in (3.1), (3.2) Γ-
converges

Γ- lim εn(α, b\ •) = σ(α, t) || - \\\\ t = b a

and for the number σ(α, t) we have the representation

.

- ί, ̂ (ί) = 4 6 , , -Rfc = Λι(Λfc'_ι(ί)), (3.4)

and the product in (3.3) converges for any t > 0.


