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Abstract. We consider the spectral problem resulting from the Schrόdinger equa-
tion for a quantum system of n ̂  2 indistinguishable, spinless, hard-core particles
on a domain in two dimensional Euclidian space. For particles obeying fractional
statistics, and interacting via a repulsive hard core potential, we provide a rigorous
framework for analysing the spectral problem with its multi-valued wave functions.

1. Introduction

Let M be a bounded domain in 1R2, with boundary ΰJt which we assume to be
smooth. The standard choice for the configuration space for a system of n indistin-
guishable particles constrained to the surface M> and satisfying fractional statistics
is the manifold

Qn = (Mn - δn)/Sn . (1.1)

Here Jίn denotes the rc-fold cartesian product oίίM with itself, δn denotes the subset
of points where two or more particle coordinates coincide (the diagonal) and Sn

denotes the group of permutations on n symbols. The fundamental group of βn,
πι(δn) is the n-braid group Bn(Jί} of M.

Now let χ: π^QJ -> U(l) be a finite, one dimensional, irreducible representa-
tion; clearly such a representation is a homomorphism onto the cyclic group of the
roots of unity, Um = (exp(2πί/c/m), k = 0,1, . . . (m — 1)}, for some m ̂  1. Let
βίm3 be the m-fold covering space of Qn associated with the representation l/m, with
Bn(Jί) acting as deck transformations, and let π: QίΓ1 -> gn, be the natural projec-
tion. It has been proposed, [10], that the space of admissible wave functions be
a complex Hubert space obtained from the class of smooth equivariant functions

C[m](β!,ml) = {Φ' β!Γ] -> C: <A(yz,7z*) = χ(?)^,z*), for all yeBn(Jf)} . (1.2)
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Here we let z = (zl9 . . . , zn) denote a generic point of C", with z* = (zl9 . . . , zn)
denoting its conjugate. A map in C^ (QlΓ3) is obviously multivalued on Qn but
single valued on β^m]. This setting is an example of what has been dubbed
"quantization on multiply connected spaces," a general exposition of which is given
by Dowker [4]. The "statistics" of the system is embodied in the choice of
a representation, wherein the phenomenon of phase changes of the wave function
on interchanging particle positions is the χ-equi variance (1.2). m = 1 corresponds
to bosons, particles obeying Bose-Einstein statistics, m = 2 to fermions, particles
obeying Fermi-Dirac statistics and m ̂  3 corresponds to fractional statistics.

The phenomenon of fractional statistics has been explicitly demonstrated for
the quasi-particles associated with the Fractional Quantum Hall Effect, [13, 21],
and such systems are also conjectured to explain high temperature superconductiv-
ity, [2, 21].

A theory of particles obeying fractional statistics in two dimensions was first
proposed by Leinaas and Myrheim [14]. The essence of the quantization proced-
ure they adopt rests on the fact that the configuration space (1.1) has nontrivial
topology due to the exclusion of the diagonal.

Prior to this, Laidlaw and DeWitt [12], following ideas of Schulman [17] had
developed a conceptually similar quantization procedure, however applied to three
dimensional space. In this case, the topology of the configuration space leads to the
possibility of only two types of statistics, bosons or fermions. They did not consider
however the two-dimensional case, which is the only case where fractional statistics
is possible, as seen now via standard arguments, [10, 21,22]. Fractional statistics
was also discovered independently by Glodin, Menikoff and Sharp [6, 7], and by
Wilczek, who actually coined the term "anyons" [19, 20]. In all the above funda-
mental works, obtaining fractional statistics rests on the α-priori exclusion of δn

from the configuration space, (1.1). Although initially the exclusion of δn by Leinass
and Myrheim seemed somewhat arbitrary, Goldin, Menikoff and Sharp in their
framework, [6, 7], put forward a theoretical justification. In [8, 9], they also
introduced the use of the braid group in the theory, a device also extensively
analysed by Wu [22].

We are interested in analysing the spectral problem resulting from the
Schrόdinger theory for these particle systems. We assume that Jί is equipped with,
for simplicity, the Euclidian metric. The Laplacian, A9 acting on C°°(CW) is given by

Af=4 Σ dkdkf, (1.3)

where dkf= --9 and dkf= -. A lifts naturally to give a Laplacian A: C°°(β^m]) ->
dzk dzk

C°°(β!Γ]) Also let KeC°°(βn) be a given real valued^ function, which will play the
role of an invariant potential. V also lifts to give V: Q[™} -> R. The Schrδdinger
theory for the quantization procedure, with the classical Hamiltonian leads to
procuring wave functions \j/\ Ql™] -» C, and eigenvalues λ e C which satisfy

-Δ$+V$ = λ$ on Q™ , (1.4)

£ = 0 on/;, (1.5)
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where fn is the lift of the boundary Γn = ΰMn, and the fractional statistics,

z*), for all γeBΛ(J() . (1.6)

As emphasized above, the non-trivial topology of Qn allows for fractional statistics.
However, excluding δn also makes Qn noncompact and non-complete, a fact which
obviously renders the spectral problem for the twisted Laplacian on Qn (1.4)-(1.6),
quite intricate. The problem is further complicated by the fact that the action of the
braid group has fixed points on δn. We approach these problems by analysing an
equivalent spectral problem on Qn itself. To this end let Q)n — Jίn — j5n. Let
φ: ®n -> C, be the function, given by φ(z) = Πί<j(zi — z, ), and let φm: Q[™] -> C
denote any one of the m roots oH he discriminant according to φm(z) = [φ(z)]2/m.

Since φ2 never vanishes on βjj"1, given any i/ΈC^QίΓ1) we may consider the
map/ <2ίΓ] -> (C given by/(z, z*) = ί̂ (z, z*)/φm(z). Clearly /is an invariant function,
/(σz, σz*) =/(z, z*) for all σeBn(Jί\ for ze<2ίΓ], and thus corresponds to an
invariant function F: Qn -> C,/(z, z*) = (F ° π)(z, z*). Thus we see that (1.2) may be
written

CftίβE"3) = {<A: eίΓ] ̂  C: ιA = (φm)(F°π), for some FeC»(Qn)} . (1.7)

Now setting^ α = 2/m, a simple computation using (1.3) shows that
ψ = (φm)(F°π): QίΓ1 -> C is an eigenfunction with eigenvalue /leC, satisfying
(1.4)-(1.6), if and only if F: &„->€ satisfies the eigen problem:

_AF_toj.*P.π + yp = λF o n^n ; (L8)
φ kf ! Szk dzk

F = 0 onΓn. (1.9)

F(σz, σz*) = F(z, z*), for all σeSn . (1.10)

We are able to provide a set of sufficient conditions on the potential V which
guarantee that (1.4)-(1.6) possesses a pure point spectrum of real positive eigen-
values, and a corresponding set of eigenfunctions contained in the space (1.2), and
which form an orthonormal and complete set in an appropriate Hubert space;
Theorem 3.11.

Our strategy is to first establish that the equivalent problem (1.8)-(1.10) has
a pure point spectrum of complex eigenvalues; Theorem 2.46. We obtain this result
by working on weighted Sobolev spaces on ®Π, to handle simultaneously the fact
that Q)n is noncompact and non-complete, and the fact that coefficients of the
elliptic operator occurring in (1.8) have singularities on δn, becoming unbounded
on neighborhoods of δn. This latter fact is a consequence, in analytical terms, of
Bn(Jί) having fixed points on δn. In Sect. 3 we then proceed to lift the results of
Theorem 2.46 to the cover <2Ϊ,m], to obtain Theorem 3.11, the main result of the
paper.

Indeed, what Theorem 3.11 demonstrates is that the lift of the Laplacian from
the configuration space to the m-fold covering space β^m] is a self-adjoint operator
acting on an appropriate Hubert space of functions, equivariant with respect to the
action of the braid group, and which decay sufficiently rapidly to zero or neighbor-
hoods of the lift of the diagonal. Our program obtains the results indirectly by
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carrying out the analysis on ££„, and then lifting results to the cover. An explicit
estimate for the rate of decay of the eigenfunctions is given in (3.18).

We also derive a lower bound, (3.22), for the first eigenvalue, the energy of the
ground state for the system of anyons in terms of four basic parameters: α, n, the
diameter of the surface, and the strength of the virtual force derived from the
exclusion principle of the hard core potential.

One could naturally propose analysing the spectral problem for systems of
anyons on more general surfaces and with more sophisticated statistics, i.e. higher
dimensional and non-abelian representations of the braid group. It is known [10]
that if the surface is compact with genus g ^ 1, the particles must be either bosons
or fermions; thus on compact surfaces, anyons can only occur if the surface is
simply connected. We are thus led to considering simply connected compact
surfaces, or non-compact surfaces. Our work considers the simplest case in the
latter category, as a point of departure.

We note that it has been claimed by Loss and Fu [15], that without employing
a repulsive hard core potential, inconsistencies arise in the theory of anyons,
concerning virial coefficients. We obtain here sufficient conditions on such a poten-
tial to obtain a pure point spectrum for the classical Hamiltonian.

2. A-Priori Estimates on Weighted Sobolev Spaces

In this section we establish certain a-priori inequalities on weighted Sobolev spaces
which allow us to establish the existence of a Green's operator for the elliptic
operator occurring in (1.8),

4α n

3>=-A--Σ δkφdk+V. (2.1)

We show that the Green's operator on certain spaces is compact, which yields the
result that 3? has a pure point spectrum, Theorem 2.46.

In general, for a subdomain N c Mn we shall let CCO(N) denote the complex
linear space of complex valued functions on N, which together with their partial
derivatives of all orders, are continuous on N. CS)(N) will denote the subspace of
CCO(N) whose members have compact support in N.

We define the functions, ζk: &n-+ R,

ζk(z, z*) = Σ\zk- zjΓ2', k = 1, . . . , n , (2.2)

where p satisfies 2p ^ 1, and is to be chosen specifically below. Let ζ: Q)n -> R, be

cfe**)=4 Σ £*(*»**)• (2 3)
Z f c = l

We set for any real β,

(2.4)
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It is obvious that

r!
ίί ^ γr ™β, for all β > 0, for all integers r ̂  0 .

We also define q: @)n -> R, by

n

q(z,z*)= Σ
7=1

281

(2.5)

(2.6)

Obviously \zk — Zj\ ^ /, where / is the diameter of M, from which it follows that

q(z,z*)^nl(n-l)Γ(2p+1Ύ, ze^n, (2.7)

and via Schwarz's inequality,

fc=l

V I

J = l

(2.8)

for all ( £ ! , . . . , & , ) e <C , and all ze®,,.
We make a further assumption on the potential FeC°°(®B), in addition to its

invariance with respect to the action of Sn on 2/n. For constants τ > 0 and τ < oo,

τήi(z, z*) g K(z, z*)^τq(z, z*), for all ze2> n . (2.9)

It will also be required that in relation to the other constants α, p and /, τ is such
that

τ > 1 + (3al2")2 . (2.10)

The assumption (2.9) may be viewed as requiring the particles to exist under the
influence of a hard-core potential, which dictates a type of exclusion principle with
the parameter τ prescribing the strength of the virtual force resulting from the
exclusion principle.

On Co°(^π) we may define for each β > 0, the norm

k=l

(2.11)

where dvn denotes the volume element on 2n. Hβ(@n) is defined to be the comple-
tion of Co°(^π) with respect to the norm || ||H . Hβ(@n) is a Hubert space with
respect to the obvious inner product yielding (2.11).

Similarly on C°°(^π) we may define, for β > 0 the norm

\dkg\
k=l

(2.12)

n ) is defined to be the completion of C**(9!n) with respect to the norm || |
Also Kβ(@n) is a Hubert space with the obvious inner product giving (2.12).
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We write (2.1) more explicitly as

k=ί
Σ (zk-*jΓl

.7=1
dk + V (2.13)

and define the sesquilinear form B: CQ°(^W) x C°°(^M) -> <C, given by

C n n
c \ f ) ' Λ \ ~ l r ' 3 y 5 " - i 5 " y ί 3 —i A \~->Q)= ^2 > \ d k j o k q - \ - d k f d k q \ — 4 c ( , )j i .̂̂  ι_ u u */ is -i f_

+ Vfg dvn for/eCo00^) and ^eC°°(^n) . (2.14)

Simply integrating by parts gives from (2.13) and (2.14),

j (Xf)gdvn = B(f, g\ for all/EQ00^), geC"(@n) . (2.15)

Henceforth we shall for brevity write Hβ(^n) simply as Hβ, and Kβ(@n) as Kβ. We
now focus on some basic a-priori inequalities on the form B( , •); namely that it is
continuous on Hβ x Kβ for all /?, and coercive for the parameter β sufficiently small,
but positive.

Proposition 2.16. Let β* be the constant given by

β*=±. (2.17)

(i) Under the conditions (2.9), there exists a constant C1 , depending only on α, τ, and
/, such that for all β > 0,

\B(f,g)\ ^ C, \\f\\Ht\\g\\Kβ, for allfεHβ, geKβ . (2.18)

(ii) Under conditions (2.9) and (2.10), there exists a constant C* > ^ depending only
on α, τ and /, SMC/I that for all 0 < β ̂  /?*, and for allfeHβ,

sup{\B(f9g)\: gεKβ9 \\g\\Kβ ^ 1} ̂  C*||/||H, . (2.19)

(iii) Under conditions (2.9) and (2.10), there exists a constant C** > f, depending
only on α, / and τ, SMC/Z that for all 0 < j? ̂  /?*, and for all gεKβ,

s u p { \ B ( f , g ) \ : f ε H β ί \ \ f \ \ H β ^ 1} ̂  C** ||^||^ . D (2.20)

Proofs of the inequalities (2.18)-(2.20) are given in Appendix A and B.

To define the Green's operator for £?, we make use of a theorem of Necas [16]
which is a generalization of the Lax-Milgram lemma, [5].

Lemma 2.21. ([16], p. 318) Let H and K be complex Hilbert spaces with norms \\ ||H
and \\ \\κ respectively, and let B: H x K -> C be a sesquilinear form which satisfies, for
constants C1 < oo, C2 > 0 and C3 > 0,

(i) |5α<7)I^Cι 11/11*11011*, forallfeH,geK,

(ii) s u p { \ B ( f , g ) \ : g e K 9 \\g\\κ ^ 1} ̂  C2 ||/||H, forallfeH,

(iii) s u p { \ B ( f , g ) \ : f e H 9 \ \ f \ \ H £ l } ^ C 3 \ \ g \ \ κ , forallgeK .
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Then for each linear functional U e(K)*> where (K)* is the dual ofK, there exists
a unique fv£H such that

B ( f v , g ) = U ( g ) , forallgeK, (2.22)

and moreover \\fv\\H ^ Of1 II U\\(K)*- Π

Let 0 < β ̂  β* be fixed. We define Lβ to be the completion of C?(@n) with
respect to the norm

11/112,= ί vv"!/]2^ . (2.23)

Lβ is a Hubert space with respect to the obvious inner product yielding (2.23), and
because of (2.11) we have Hβ c Lβ.

For ueLβ, we define the linear functional U: Kβ^>(C by U(g) = §@ngύdvn.
From (2.7) and (2.12),

— --

1 r -, -β- β

J 4 2 |w 2ί

H 0 l k l | κ | l L , . (2.24)

Hence with (Kβ)* denoting the dual of Kβ9 from (2.24),

\\U\\κf ^ [n(n - \)2Y*l2*+ι\\u\\Lf = CnJ,p\\u\\Lβ . (2.25)

Applying Lemma 2.21, to the results of (2.17)-(2.20), together with (2.25) we obtain
the following result.

Proposition 2.26. For 0 < β ^ β* there exists a linear operator Gβ: Lβ -> Hβ which
satisfies

B(Gβu, g) = J ugdυn for all geKβ,uεLβ , (2.27)
@n

and IIG^IlH^EC*]-1^,^^!!^. D (2.28)

Gβ\ Lβ ~> jFί^ obtained above is our Green's operator for (2.1). We now establish
some regularity results concerning the elliptic equation formulated weakly by
(2.27).

Let Wk'2(Jtn) denote the Sobolev space, [1], of complex valued functions on
Jίn. For 1 ̂  k < oo, Wk'2(Jtn) is the closure of C°°(^π) with respect to the norm

k 2μn= ί \ Σ |d v > μ/l f *>„, where

= (vi) ? v^ μ = (μ^ ? ̂  are muiti-indi-
ces, with |v| = v t + + vn, |μ| = μ, + + μn. Clearly W*>2(Jtn) = L2(Jίn\

We let Wlt2(Jΐn) denote the closure of C0°°(^M) with respect to the norm,

); it is a standard fact [1], that if/e W^2(Mn\ then/= 0 a.e. on dJίn.
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Since the subset δn of Jtn is of real codimension 2, it follows that

J fdvn = J fdvn for every/measurable on J f n . (2.29)
9n Jίn

Also since €$*(<£>„) may be identified with aosubspace of C§(Jin} in the obvious
manner, it follows that Hβ is a subspace of W1' (Jtn\ and Lβ is a subspace of
L2(Jin\ We define for β > 0, W k β 2 ( J ί n ) to be the proper linear subspace of Lβ,

W$>2(Jίn) = {feLβ: ||/||^MP) < co}, where

}.H* > = ί j Σ wβ\d* *f\2}dvm. (2.30)

Now let ueLβ and set h = Gβu. Since obviously C*(Jin) c K^, by (2.27), using
(2.18) and (2.29) it follows that hεHβ^ W^2(Jtn) satisfies the weak elliptic
equation:

f .
f 12 Y [dkhdkq + dkhdkq~\ — 4αJ > L-i L κ κ*^ ' K κ» j — — „

k = l k = l j=ί

(2.31)

for all ̂ eC°°(^n). Integration by parts in (2.31) shows that A e W^t2(Jln) satisfies
in a distributional sense

^fA = u in^ w , (2.32)

A = 0 on <9^w , (2.33)

where JSf is the operator (2.1).
Now (2.32) may be written in the convenient form

— Δh = p in Jίn, where (2.34)

n n

p(z, z*) - 4α Σ Σ (zk ~ Z j Γ l d k h - Vh + u , (2.35)

allowing us to derive the following regularity result concerning solutions of (2.32),
(2.33).

Proposition 2.36. Let 0 < θ < 1 be any real number. Suppose that for some r ^ 0 and
β > 0, Ae Wfi>2(Jln) n J^1'2^") sαίis^βs (2.32), (2.33), wiίA we W'β

 2(Jln). Then

h£Wβ>
+2'2(J?n)cΛ Wl'2(Jln\ where (2.37)

/»' = β(ί - θ) . (2.38)

Furthermore, there exists a constant CβtΛtr such that

» ) + I I ttll^^}. D (2.39)
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A proof of Proposition 2.36 is given in Appendix D. We also have:

Lemma 2.40. The embedding Hβ q; Lβ is compact, for each β > 0. D

A proof of Lemma 2.40 is given in Appendix C.

From Proposition 2.36, and Lemma 2.40, it follows that the operator
Gβ: Lβ -> Lβ defined by (2.27) is compact. It follows from standard spectral theory
for compact non-selfadjoint operators, [11], that Gβ has a pure point spectrum
consisting of complex eigenvalues. We list the nonzero eigenvalues of Gβ assumed
ordered by decreasing magnitude, taking account of algebraic multiplicities:
{μl9μ2, . . .} ciC i.e., \μ^\ ^ \μ2\ ^ -> 0 and

GβUj = μjUJ9 j = 1, 2, . . . (2.41)

for eigenfunctions HJ e Hβ .
Using (2.41) in (2.31), setting λj = μ] 1 , we obtain via (2.32), (2.33) for the system

of eigenfunctions {H,-: j = 1, 2, . . .} c Hβ9

&Uj = λjUj in Jί", with Uj = 0 on dJf", j = 1, 2, . . . . (2.42)

Iterating the regularity results of Proposition 2.36 in (2.42) shows that the
eigenfunctions M/ are smooth; one obtains easily from (2.39), MJ eC00(^M)nH/s*.

For clarity we write the operator & of (2.1) as Jδf = j£f ( z, z*9 — , ̂ r— 1 . It is
\ dz oz* J

clear from (2.1) that & is invariant under the action of Sn9 i.e.,

JS? (σz, σz*, σ |-, σ -M = <? (z, z*, f , /Λ for all σ e Sπ . (2.43)
\ £7Z ^Z*/ \ ^Z 5z*/

It is easily seen from (2.42) and (2.43) that

y r z*? έ έ) Mj(σZ) σz* ) = ljUj'(σz? σz* } for a11 σ e Sn ' (2<44)

Thus, via (2.44), if we define the symmetrized eigenfunctions

Fj(z, z*) = Σ uj(σz, σz*\ j = 1, 2, . . . , (2.45)
σeSn

we obtain the following result, which is the primary objective of this section.

Theorem 2.46. The operator 5£\ W2'2(Jίn) n Hβ* -> Lβ*, (2.1), possesses a pure point
spectrum of (possibly complex) eigenvalues λl9 λ2, . . . , listed in increasing order of
magnitude \λ1\ ^ \λ2\ ^ * * * -> oo, according to algebraic multiplicities, and a set of
corresponding eigenfunctions {Ff. j = 1, 2, . . .} defined by (2.45), (2.42) which satisfy:

λjFj on M n , (2.47)

Fj = 0 onΓn, (2.48)

Fj(σz, σz*) = F7 (z,z*),/or all σeSn, and FjeC*(Jΐn)nHβ* . D (2.49)

We note that (2.47)-(2.49) correspond to (1.8)-(1.10) respectively. We now
proceed to lift the result of Theorem 2.46 to the covering space Q[,ml, to resolve the
spectral problem (1.4)-(1.6).
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3. Analysis on the Covering Space

Via (1.7) λ e <C is an eigenvalue of 3? with corresponding eigenfunction F e C °° (Qn)
satisfying (1.8)-(1.10), if and only if λ is an eigenvalue of the Schrδdinger operator

— A + V on <2ίΓ], with corresponding eigenfunction ψ = (φa)(F°π), satisfying
(1 4)-(1 6). _ „

Thus if we define the functions ψy. Q[™] -> <C by

ψj(z9 z*) = [<p(z)]αF/z, z*), zeβ™ , (3.1)

where Fj satisfies (2.47)-(2.49) it follows that ψj is an eigenfunction of the
Schrόdinger operator on the cover <2!,m], satisfying (1.4)-(1.6) with λ — λj.

Now let C^(ρ^]) be the subspace of C& (βfe"1) (defined J?y (1.2) and (1.7))
consisting of functions compactly supported in β£"]. On C^ίβίΓ1) we may define
the inner product:

(3.2)g))v = f J2 Σ SJAflf* + d~ /A0* + F/0* j dυn ,
M I k=ί )

where gf* denotes the complex conjugate of g, and dvn is the volume element on

β!Γ]. . . „
We let H^'2(6«m]) be the completion of C^ίQf11) with respect to the norm

resulting from (3.2); H^'2(β!,m]) is thus a Hubert space with inner product (3.2).
Let ^(λj) denote the eigenspace of J? corresponding to λj in (2.47)-(2.49).

Clearly for the Schrόdinger operator the eigenspace of λJ9 E(λj\ is given
by E(λj) = {(φΛ)(Fon):Fe^(λj)}. Since &(λj)cHβ* it follows that E(λj)

c= Wγ>2($™\i = 1, 2, . . . . Now using Stokes' theorem, taking into account the
orientation of each sheet of the cover βj,m], we obtain for

- f g*Aψjdvn= J J2 t
M M ( k=l

(3.3)

where g* is the conjugate of g.
Thus from (3.3), (1.4) and (1.5), we obtain

ί 2 Σ [5*^a*flί* + δk^δ^*] + Vψj§*dvΛ = λj J ψjg*dvn . (3.4)

Now let {^s,r: r = 1, 2, . . .} c Cftίeί1"1) be such that lim^ ||φ fΓ - ^lln^^
= 0. If we replace g by ^S>Γ in (3.4), then by completion by continuity we obtain

ί J2 Σ tfdjW? + WAΨfl + VψjΨ?\dΰH = λj j f j f c d ΰ n . (3.5)
βlΓ1 l fe=1 J &*

A similar argument as that used to derive (3.5) gives also

ί J2 Σ {.^sW + dk^A^fλ+V^s^f\dvn = λs ί ̂  dS,,. (3.6)
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Hence from (3.5) and (3.6),

(λj-λ.) J fjf*dΰm = 0. (3.7)

Qϊ*

Choosing j = s in (3.7) and (3.5) yields the fact that λj is real and positive for all
j ^ 1: (3.7) in turn yields that the eigenspaces corresponding to distinct eigenvalues
are mutually orthogonal in £2(<2ίΓ]) and by (3.6) hence mutually orthogonal in
Wϊ 2(&*).

We now assume that the eigenfunctions have been normalized, so that

f φ8$Tdυn = δ8j. (3.8)

&"
Now a standard argument shows that the system of eigenspaces (E(λj):

j = 1, 2, . . .} is complete in W$'2(Q™): i.e.,

(3.9)

where the closure is with respect to the norm topology of Wγt2(&^\

Indeed if W$'2(Q™) Φ 0/*ι£(4/), then there exists a ue W$*2(Q™)9 u % 0,
such that u is orthogonal to E(λj) for all j with respect to the inner product on
^κ'2(δnw]X (3.2). Without loss of generality we may choose ((u,u))v = 1. Using
(3.2), standard variational arguments give the characterization:

λk = inf j(α/))F:/e W^2(Q™\fe( 0 E(λj)\9 Il/H^g*.) = lj . (3.10)
I \ 7 = 1 / J

From (3.10) we obtain immediately

((u, ύ))v ^ λk for all k ,

which yields a contradiction, and hence proves (3.9).
We summarize the above results in the following.

Theorem 3.11. There exists a sequence of real positive eigenvalues
0 < λι ^ λ2 ^ . . -> oo, with no finite accumulation point, listed according to
multiplicities, oand ^ corresponding eigenfunctions {t/^ : j =1,2, . . . }
c C°°(β^m])n ί^κ'2(6Lm]) satisfying the Schrδdίnger equation.

-Aψj+Vψj^λjψj onQ™, (3.12)

^ = 0 onΓΛ9 (3.13)

ψj(γz, 7z*) = χ(γ)ψj(z9 z*)9 for all yεBn(Jt\ zeQ™ . (3.14)

Furthermore the system of eigenfunctions forms a complete orthonormal set in
J^κ'2(6»m]) The eigenfunctions decay exponentially to zero on neighborhoods of the
lift of the diagonal, δn, on which set the eigenfunctions vanish.

Proof. Existence of the system of eigenfunctions with the stated properties follows
from the arguments above. J^Ve now simply make explicit the rate of decay of the
eigenfunctions to zero on δn. Equation (3.12) gives (2.47) via (3.1). Applying the
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estimate (2.39) to (2.47) with u = λjFj and h = Fj we obtain for any 0 < β < y ̂  β*9

and k ̂  0,

^ CM(1 + λj) \\Fj\\WΓ^n} . (3.15)

Hence iterating (3.15), we obtain for r ̂  2, and 0 < β < β*,

\\Fj\\wr,2(J,n} ^ crtβ(ί + λjY-1 \\Fj\\wίfi2M ^ C,.,(l + A/"1 \\FJ\\HΓ , (3.16)

where we have used (2.11), (2.30) and (2.9).
Now for ε > 0,. let Jft be the neighborhood of the diagonal δn in Jtn given by

Λς = {ze^n: |zf - z7.| < ε, 1 ̂  ί, j ^ n}. From (2.2)-(2.4) it follows that

, z*) ^ exp <yn(n - l ) ε ~ 2 / J , f o r z e j ς . (3.17)

Now let 0 < β < β*9 and set β = ±(β + β*). Using the Sobolev embedding
theorem [1], it follows from (3.16), with r = n + 1, that

^ CnMllrn+^M ^ Cn.β(l + ^ r i l f / l l f l ^ -

Combining (3.17) with this last inequality gives, for 0 < β < /?*,

|F, (z,z*)| ^ C(l + ̂ ri|ί}lln^exp - j ? n ( n - l)e-2' (3.18)

for all ze«yΓε, for a constant C depending only on n, ̂  and /. Inequality (3.18) now
implies the assertion on exponential decay. D

Finally, we give a rough lower bound for the energy of the ground state, as
measured by the first eigenvalue λ±.

Now λ1 satisfies (3.12)-(3.14), and hence equivalently (2.47)-(2.49). Using (2.17),
(2.7), (2.11) and (2.15), we obtain for any β > 0, and gfeC°°(®π),

Thus from (2.17) and (2.19) in (3.19), for all β^—9

(3.19)

. (3.20)

Now from (B.14), (B.13) and (B.12), we have C* = fminj l , | + α2/4^}. Hence
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Introducing the parameter d = nl 2 which measures the density of the particles on
the surface Jί, we may write (3.21) in the form

(3.22)

Choosing p = 1, (3.22) implies that if the density is kept constant, then the
ground state energy never falls below the constant τzd3. Inequality (3.22) is not
necessarily the best lower bound.

Appendix A. Proof of (2.18)

Let/eC0°°(^n), geC^^n). It is immediate from (2.14) that

\B(f,g)\ ^ 2
k=l

Wlδkf\

\Sj\\g\\ to, + I

dvn

(A.1)

Now from (2.8) and Schwarz's inequality

n

Σ
k=ί

n

Σ |
Zif Z j\ IV J

_ j ΐ ί

-1 \Skf\\g\ dvn ϊΞ I2" I \8kfl g\dvn

J w" Σ Iδ*/|2 J
B fc=l / \^B

Using the inequality immediately above and (2.9) in (A.I) we obtain

0)|^ J J2 Σ C

1
H,\\β\\κ, p (2 + τ + 4α/2")ll/| |HJl6r| |κ,,

for all/e C0°°(^n), gf e C °°(^π). The result, (2.18), now follows from this last inequal-
ity via completion by continuity. D

Appendix B. Proof of (2.19) and (2.20)

Let β > 0 and /ε H^ be given. We choose

g = w"f (B.i)
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Then from (2.4) and (B.I) we have

dkg = wβ(dkf+βfdkζ), and dkg = wβ(dj+ β f d k ζ ) . (B.2)

Also from (2.3) we have

dkζ(z, z*) = -p Σ (** - ZjΓ(p+1\zk ~ *jΓp, and (B.3)

(B.4)
7=1

Hence using Schwarz's inequality we obtain from (B.3), (B.4) and (2.2),

n

Σ π 3 y\2 i 13 r\2~\ ^ o».2 /r> c\L l t f f c U + l ^ k C I J = ^P Q (B'5)

Using (B.5) we obtain from (B.2),

n C n n "I

( n )̂

(B.6)

From (B.6) and (2.12) it follows that

110112, ^ J J2w" Σ [l^/l2 + l^/l2] + 4p2)52wM/|2 + w-'ί|w»/|2

(B.7)

Now, using (B.I), (B.2) in (2.14),

fc=l

-4α
fc=l

J φ f c

dvn

= J
k = l

k = l j=ι
dvn . (B.8)
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Again, from (B.5) we get:

^ 2/hvΊ/ι Σ [|3fc/ι2 + i

— o Z—i

+ ia*f i2]

From (2.8),

4α
n

Σ
fc=l

w

Σ is*-*/)"1

> = ι

1

[A/] v//

/ » _ \2 1 ]

|δt/|2
t=ι

Combining (B.9), (B.10) and (2.9) in (B.8) we obtain

B ( f , g ) * J {>/ Σ [l^/l 2-

Now under the conditions (2.10) and (2.17), for all 0 < β g 0*,

τ - 4β2p2 - 8α2/4^ > 1 + α2/4" - 4p2 [jS*]2 = - + α2 > - .

B(f, g ' ) ^ C2 11/11 2

Hβ/\\g\\Kβ ^ C2(2
1 \\f\\Hβ = C*
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(B.9)

(B.10)

(B.11)

(B.12)

Using (B.12) in (B.ll) one gets

B ( f , g) ^ C2 1|/||^, where C2 = min{l, τ - 4)8 V - 8α2/4*} . (B.13)

Setting g' = g / \ \ g \ \ K p , we obtain from (B.13) and (B.7),

Since from (2.17) 2 + 4/?2[β*]2 - 1, the result (2.19) follows from (B.12), (B.13)
and (B.14). D

Although the form J5( , •), (2.14), is not symmetric, nonetheless, the proof of
(2.20) is so similar to that of (2.19) that we may omit the details.

Appendix C. Proof of Lemma 2.40

Let [fj\ j = 1, 2 . . .} be a bounded sequence in Hβ; i.e. ||/7 ||H/J ^ C, for all j, for
a constant C. Setting Uj = wβ/2fj> we have

/? \
(C.I)
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(C.2)

From (C.I), (C.2), (2.7) and (2.11), and (B.5)

Γ π r
ll^||^i,2 (^n ) = j <w^ £ dkfj

®n I fc=l L

ι f j + *fjdkζ j\2ldvn

2w«

fc=l

t έ
L/c=ι

g 2(1 +2p2 + CnJ,p)\\fj\\2

Hβ, where Q,,p= [2φ-

(C.3)

Thus (MJ : j = 1, 2, . . .} is a bounded sequence in Wl'2(2>n). By the
lemma, [1], this sequence possesses a subsequence converging in
Hence there exists a u€L2(2ιn) such that limk^ou\\ujk — u\\L23) = 0,

{ujk: k = 1, 2 . . .} denotes the subsequence. Define /= w~^u and fjk = w~ϊujk.
Then by (2.23)

Rellich
L2(2>n).

where

= I \ujk-u\2dvn= \\ujk - u\\L2(@n}, and similarly, (C.4)
^*

ll/lk,= ll«llj^(ej. (C.5)

The result of the lemma now follows from (C.4) and (C.5), since

Appendix D. Proof of Proposition 2.36

The result will be established by induction using the well known results on elliptic
regularity as found in [5] for example. First we assume that

for some r ^ 0 and some β > 0. We set ε = Θβ, and let 2y + ε = β, i.e.,

(D.I)

(D.2)

Our aim is thus to show that heWr

2y
2'2(Jtf"). We accomplish this by first

establishing the intermediate result that wyhe W+2'2(J?n).
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To this end, we observe that from (1.3),

A(wyh) = wM/i + ftj(wy) + 4 £ {dk(\vy)dkh + 3kft3k(wy)} . (D.3)
k=l

In a straightforward way we estimate the right-hand side of (D.3). Now from (2.3),
(2.4), (B.3) and (B.4) of Appendix B,

(zk - ZjΓ(p+l](zk - ZJ)~P ,

;**

(fk - ZjΓ(p+i)(zk - ZjΓ
p, and

(D.4)

(D.5)

fc=l J = l

(D.6)

From (D.4), (D.5), (2.3), (2.4) and (2.5) it follows that for 2p ^ 1 and any s > 0,

Σ
n n

/ = ι

L Σ \zk-zj\-4>
7=1

1s-1)2\v2'y+£ . (D.7)

Similarly from (D.6) we have

(D.8)

From (2.34), (D.3), (D.7) and (D.8), for any ε > 0, and constants C^ε), C2(ε),

(D.9)

Also from (2.35), (2.2), (2.3) and (2.5),

|p | 2 g48α 2

Σ
k=ί

Σ i^-

Σ \7 -7 I\zk- Zj\
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£ \dkh\2 + 48τ2/2(2p-1)

ε-
2wε |/z|2 + 3|w| 2 .

k = l

From (D.10), (D.9) together with the analagous estimates to (D.9), (D.10) for
derivatives of A(wΎh\ it follows that if we Wfr2, then for ε = Θβ, and y such that

A(wvh)eWr 2(Jln)9 and (D.ll)

It follows from the standard theory of elliptic regularity, [5], from (D.ll) and
(D.12), that wy/ιe Wr+2>2(Jtn)n W^\Jtn\ and

for a constant Cβfι^r.
Now it is easily established by induction that from (2.2)-(2.5),

n n
\rP^\Vl Γl *Ή <1 C* V V I

fc=l/=l

for constants Cμv, and hence that

_ n n

for constants C^ ) V j n.
Now with the use of Leibnitz's rule together with (D.15), the assumptions (D.I),

and (D.2) in (D.13), we obtain the bound (2.39) and hence the result (2.37),
(2.38). D
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