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Abstract. Several classical problems of mechanics are shown to be integrable for
the special systems of coupled rigid bodies, introduced in this work and called
Cfc-central configurations. It is proven that dynamics of an arbitrary Ck-central
configuration in a Newtonian gravitational field with an arbitrary quadratic
potential is integrable in the Liouville sense and in the theta-functions of Riemann
surfaces. Hidden symmetry of the inertial dynamics of these configurations is
disclosed and reductions of the Lagrange equations to the Euler equations on Lie
coalgebras are obtained. Reductions and integrable cases of a heavy Ck-central
configuration rotation around a fixed point are indicated. Separation of rotations
of a space station type orbiting system, being a C^-central configuration of rigid
bodies, is proven. This result leads to the possibility of the independent stabiliza-
tion of rotations of the rigid bodies in such orbiting configurations.
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1. Introduction and Summary

Recently Sreenath, Oh, Krishnaprasad and Marsden [25] investigated equilibria
and stability of coupled rigid bodies by the energy-Casimir method and applied the
Poincare-Melnikov method to prove the stochastization of dynamics under small
perturbations of homoclinic orbits. In the work [25] also the integrability of the
inertial dynamics of two coupled planar (two-dimensional) rigid bodies is proven
after indicating a reduction to a Hamiltonian system with one degree of freedom.
Reductions, symmetry and phases in general problems of coupled rigid bodies
dynamics were studied by Marsden, Montgomery and Ratiu [16]. The energy-
momentum method and block diagonalization method were developed by
Marsden, Simo, Lewis and Posbergh [15] and by Lewis, Marsden, Ratiu and Simo
[14]. Applications of these methods to the coupled rigid bodies dynamics were
considered by Krishnaprasad and Marsden [11], Krishnaprasad [12] and Patrick
[21, 22]. Equilibrium rotations of planar kinematic chains of (two-dimensional)
rigid bodies were studied by Baillieul [3]. Integrable cases of rotations of two
multi-dimensional interacting (but not coupled) rigid bodies were constructed by
Bobenko, Reyman and Semenov-Tian-Shansky [4]. Dynamics of orbiting multi-
body configurations, including rigid and flexible bodies was studied by Modi and
Suleman [17] and by Modi, Ng, Suleman and Morita [18]. General problems of
coupled rigid bodies dynamics were considered in monographs by Routh [23],
Leimanis [13] and Wittenburg [26].

The present work is devoted to the construction and investigation of integrable
cases of three-dimensional coupled rigid bodies dynamics. We introduce the
Cfe-central configurations of rigid bodies, coupled by the ideal spherical ball-
in-socket or hinge joints or by the Cardan suspensions without torque and friction.
These configurations have tree structures with the main rigid body TOk chosen,
which is coupled with many branchy chains of rigid bodies, having lengths not
greater than /c, and without closed chains.

The rigid bodies in the Cfc-central configurations are arbitrary, with arbitrary
distributions of masses and inertia tensors. The spherical joints are placed in such
a way, that the following mechanical property is fulfilled: If we fix the main rigid
body TOk and rotate all other rigid bodies independently around their spherical
joints, then the mass center of the whole configuration does not move. The
mechanical property is equivalent to the constructive definition of Cfc-central
configuration, presented in Sects. 2 and 3.

If one chooses an arbitrary system S of coupled rigid bodies, having tree
structure without closed chains, then after appropriate shifts of spherical joints one
obtains the Cfc-central configuration. Therefore the dynamics of an arbitrary
system S of coupled rigid bodies can be studied as perturbation of dynamics of an
appropriate Cfc-central configuration.

Our main theorem, proven in Sects. 2 and 3 states that dynamics of an arbitrary
C^-central configuration in the Newtonian gravitational field with an arbitrary
quadratic potential is integrable in the Liouville sense and in the theta-functions of
Riemann surfaces. This theorem holds also for dynamics of coupled n-dimensional
rigid bodies (n = 2, 3, 4,. . .) in n-dimensional Euclidean space and has the same
proof of all n ^ 2. Here we have infinitely many arbitrary parameters, connected
with the inertia tensors of the rigid bodies and concrete choice of graph of the tree
structure and arbitrary form of the Newtonian quadratic potential. Therefore our
main theorem describes the general integrable problems of classical mechanics.
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The integrability of the problem considered is based on the fundamental
physical law of the identity of the inertial and gravitational masses. Gravitational
force, acting on a material point in the Newtonian gravitational field, is propor-
tional to its mass. Therefore the kinetic energy and the potential energy of the
Cfc-central configuration depend on the same parameters, which are the entries of
the inertia tensors of the coupled rigid bodies. Equations of rotation of even
a single electrically charged rigid body in the electrostatic field with an arbitrary
quadratic potential are not integrable.

In Sect. 4 a hidden symmetry of the inertial dynamics of an arbitrary Cfc-central
configuration is disclosed and reductions of the Lagrange equations to the Euler
equations on the direct sums of Lie coalgebras are pointed out. In Sect. 5 reduc-
tions and integrable cases of rotation of a Ck-central configuration around a fixed
point in Newtonian gravitational fields with quadratic and linear potentials are
found. Multibody integrable generalization of the classical Neumann problem is
presented in Sect. 6.

The problem of rotation around the mass center of a space station type orbiting
system, being a Cfc-central configuration of rigid bodies, is studied in Sect. 7.
Separation of rotations of the rigid bodies in such a configuration is proven. The
corresponding Lagrange equations are embedded into the Euler equations on the
direct sums of the Lie coalgebras, which are autonomous in the case of the circular
orbit and nonautonomous for the general elliptic orbit of the mass center.

Dynamics of more general CR"-central configurations of coupled gyrostats,
having all possible joints of rigid bodies: spherical or ball-in-socket joints, pin joints
and universal joints, is studied in Sect. 8. Separation of rotations of an orbiting
space station type C#"-central configuration is obtained and integrability of
inertial dynamics is proven.

2. Complete Integrability of Dynamics of a C^-Central Configuration

I. Let us consider dynamics of a system S of n + 1 rigid bodies, consisting of the
main rigid body 7̂  and n rigid bodies Ta (α = 1,. . ., n). Rigid body To is coupled
with each rigid body 7̂  in its (7^) mass center Pα by the ideal spherical ball-
in-socket or hinge joint or by the Cardan suspension, so they are free to rotate
relative to each other. Particles of rigid body To have Lagrange coordinates rl

0.
Particles of rigid body Ta have Lagrange coordinates r£; its mass center Pα is in the
origin (0, 0, 0) of coordinate system r«. The center of the spherical joint Pα in the
rigid body 7̂  has Lagrange coordinates roα, which are arbitrary. Euler coordinates
of the points Pα are ql{t\ <fi(t\ qβ(t).

Let T denote an effective rigid body, which is obtained from the rigid body
To by putting into the points Pα masses mα, equal to the masses of the rigid bodies
Ta. Lagrange coordinates rl

0 are also used for the effective rigid body T; we choose
them in such a way that the mass center P of the effective rigid body T has
Lagrange coordinates TQ = 0. Euler coordinates of the mass center P are q^t). Let
Po(ro> ro> ro) a n d Pa(rL rl^l) be the mass densities of the rigid bodies To and Ta.

We shall call such system S, composed of the main rigid body Tθ9 coupled with
n rigid bodies Tί9. . ., Tn in their mass centers Pα as the C1-central configuration.
The main mechanical property of the C1-central configuration is the following: if
we fix the main rigid body To and rotate independently and arbitrarily all rigid
bodies 7j,. . ., 7̂  around their spherical joints (which coincide with their mass
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centers Pα) then the mass center P of the whole configuration does not move. The
proof obviously consists in verifying that the mass center of the system S coincides
with the mass center of the effective rigid body Γ, which is fixed.

The configuration space M of the system S is the direct product of Lie groups

M = R3xf\ SO(3)β. (2.1)
α = 0

Position of the mass center P is determined by the vector q(t)eR3, rotation of
the effective rigid body T around its mass center P is determined by the orthogonal
matrix Qlj(t)εSO(3)θ9 rotation of the rigid body Ta around its mass center Pα is
determined by the orthogonal matrix Q^(i)e5O(3)a.

Euler coordinates of particles of the rigid body To are determined by the
formulae

x* = Σ QWo + <l\t) . (2.2)

Euler coordinates of particles of the rigid body Ta are determined by the
expressions

4 = Σ β£/(0r« + qL(t), (2.3)
7 = 1

where ql(t)9 ql{t\ ql(t) are Euler coordinates of the center of the spherical joint Pα,
which belongs also to the rigid body To. In view of (2.2) we have

q») = Σ QWo* + ql(t) .

II.

Theorem 1. Dynamics of an arbitrary C1-central configuration S1 in the Newtonian
gravitational field with an arbitrary quadratic potential

φ(x\x\x3) = \ Σ (αyxV + M ' ) (2.4)

is described by a Hamiltonian system which is completely integrable in the Liouville
sense. Dynamics of the mass center P is integrable in terms of elementary functions.
Rotations of the rigid bodies T9Tl9. . .9Tn around their mass centers P, P l 9 . . ., Pπ

take place independently and are integrable in terms of the theta-functions ofRiemann
surfaces.

Proof. The Lagrangian of the C1-central configuration S1 in the fixed system of
reference F is equal to the integral with respect to the volumes of all rigid bodies
Tθ9 Tu . . ., Tn of Lagrange functions of their particles:

Ls = Lo + Σ K , (2.5)
α = l

Lo = - J po(ro)(*o>*o)d3ro - J po(ro)φ(xo)d3ro , (2.6)
zτ0 τ0
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2 τa \ί = i \j=i
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Lagrange coordinates r« are chosen in such a way that mass center Pα has zero
coordinates, so the equalities hold

Spa(τΛ)Hd3τa = 0. (2.8)
τa

In view of the definition of the inertia tensor laik we have

= Λy (2.9)

Expression (2.7) after substituting formulae (2.4) and integrating with respect to
the volume of the rigid body Ta takes the form

Lα = Lla + L 2 α , (2.10)

Li* = -mα(qα? qα) - mαφ(qα) , (2.11)

1 3 1 3

^2α = X Σ QajJaijkQak ~~ ̂  Σ aijQcιkQ<xmJakm
^ ί,j,k=l ^ i,j,k,m=l

= - ^ T r ί J . β - ^ . β " 1 ^ ) + ^Tr(β;αββ/α) , (2.12)

where additive constants are omitted. In this calculation we used essentially the
quadratic forms of the kinetic energy and of the Newtonian potential (2.4). In
Lagrangian (2.7) all linear with respect to r\ summands are equal to zero after the
integration in view of the equalities (2.8).

From the formulae (2.5) and (2.10) we receive

Ls = Lτ + Σ ^2α , (2.13)
α = l

where Lagrangian Lτ in view of (2.6) and (2.11) has the form

n

LT = LO+ X Lβl
α = l

in n

+ ~ Σ »M4« 4.) - Σ »iα<p(qα) (2.14)
Z α = l α = l

Vector qα(ί) describes the dynamics of the center of the spherical joint Pα, which
by definition of the C1-central configuration S1 belongs to the rigid body To (and
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Ta also). Therefore the function Lτ is the Lagrangian of the effective rigid body T,
having masses mα in the points P α . The mass density p(r0) of the effective rigid body
T is determined by the formula

P(ro) = Po(ro) + Σ >M( ro - Pα) . (2.15)
α = l

So Lagrangian (2.14) takes the form

Lτ = x ί p(ro)(*o, Xo)d3Γo - J P(ro)φ(xo)^3Γo (2.16)

Substituting here the formulae (2.2), we get

Σ ^ + 4'
; = i

- ί P(*o)φ( Σ β><5 + ί1, Σ β N + <Z2, Σ Qjrί + q3)d3r0 . (2.17)

In view of the definitions of the inertia tensor Iik and mass center of the effective
rigid body T the formulae are valid

= -Tr(/)<5fj - / y = J o ,

(2.18)

Expression (2.17) after substituting the formula (2.4) and integrating with
respect to the volume of the rigid body T in view of (2.18) takes the form

Lτ = Lλ + L2, (2.19)

L^-m&iΰ-mφiq), (2.20)

L2=-\ττ(JQ-1QQ-1Q) + ̂ Ίr(QtaQI). (2.21)

Here m is the mass of the effective rigid body T, or total mass of all rigid bodies
To, 7i,. . ., Tn.

Thus, in view of (2.13) we receive the resulting formula for the Lagrangian Ls* of
the C1-central configuration S 1 :

LS> = M q , q) + L 2 (β, β) + Σ W β * , QΛ) (2.22)
α = l

Time evolution of vector q and n + 1 orthogonal matrices β, β α (α = 1,. . ., ή)
describes completely the dynamics on the configuration manifold M (2.1), that is
dynamics of the system of coupled rigid bodies S1. The basic formula (2.22) shows
that variables q, β, β α are separated and there is no interaction between dynamics
of the mass center P and rotation of the rigid bodies Γ, Ta around their mass centers
P and P..
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The Lagrangian Lx (2.20) in view of (2.4) is the Lagrangian of a harmonic
oscillator. So the dynamics of the mass center P of the system S 1 is integrable in
terms of elementary functions.

The Lagrangians L2 (2.21) and L 2 α (2.12) describe rotation of a rigid body
around a fixed point in the gravitational field with the homogeneous quadratic
potential (without linear terms). This problem is studied in detail by Bogoyavlen-
skij [6, 7], where it is proven that the corresponding Hamiltonian system is
integrable in the Liouville sense and dynamics is integrable in terms of the
theta-functions of the Riemann surfaces. (History of this problem, its generaliz-
ations and bibliography are presented in survey [10]). Therefore dynamics of the
C1-central configuration S 1 also is integrable in the Liouville sense and in the
Riemann theta-functions. Theorem 1 is proven.

Remark 1. In Bogoyavlenskij [8, 9, 10] the integrability of dynamics of one
arbitrary rigid body (without a fixed point) in a Newtonian gravitational field with
an arbitrary quadratic potential is proven. This is the special case of Theorem 1.

3. General Integrable Problems of Classical Mechanics

The main consequence of the Theorem 1 is that the Lagrangian of an arbitrary
C1-central configuration S 1 in the Newtonian gravitational field with an arbitrary
quadratic potential (2.4) is split into the sum (2.22), where the vector q(ί) stays for
the mass center of all system S1.

We consider m C1-central configurations denoted as S{,. . . 9Sm and let
qi(ί)>. . ., qm(ί) be vectors of their mass centers. We call the C2-central configura-
tion a system of rigid bodies, obtained by the spherical coupling of the main rigid
body T02 with m C1-central configurations Si , . . ., S^ in their mass centers
qί , . . ., q^ The effective rigid body T2 is obtained from the rigid body T02 by
putting masses ml (the mass of the system Si) into the points ql.

By induction we call Cfc-central configuration a system of rigid bodies, obtained
by coupling the main rigid body TOk with n Ck~ ^central configurations
S\ ~x,. . ., Sk ~* in their mass centers qk ~ *,. . ., qk ~ *. The effective rigid body Tk is
obtained from the rigid body TOk by putting masses mk ~1 (mass of the system Sk ~1)
into the points qf"1. The mass center Fk of Cfe-central configuration Sk coincides
with the mass center of the effective rigid body Tk. Therefore the mass center
Pk does not move if all rigid bodies in this configuration (except TOk) arbitrarily
rotate around their spherical joints.

Theorem 2. Dynamics of an arbitrary Ck-central configurations Sk ofn coupled rigid
bodies in the Newtonian gravitational field with an arbitrary quadratic potential (2.4)
is described by the Hamiltonian system which is completely integrable in the Liouville
sense. The Lagrangian L$k of the Ck-central configuration Sk is split into the sum

Ls* = L,(q, q) + £ L2«(Qa, &) , (3.1)
α = l

£i(q,q) = ̂ m(q,q)-mφ(q), (3-2)

L2a{QΛ, QJ = - ^TψM^QzQ^Q*) + ^ T r ( β α β β / β ) , (3.3)
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where vector q(ί) stays for the mass center of the configuration Sk (with the whole mass
m) and the orthogonal matrix Qa describes rotation of the (x-th effective rigid body
around its mass center. Dynamics of mass center q(ί) is integrable in terms of
elementary functions. Rotation of each rigid body Ta is integrable in terms of the
Riemann theta-functions.

Proof Theorem 2 for the C1-central configurations is proven in Sect. 2. Therefore
let us suppose by induction the theorem is proven for Ck~ ^central configurations
S Ϊ " 1 , . . ., Sn'1. That means their Lagrangians Ls*-i have the form:

L s r = Lυ(qj9 qj) + Σ L 2 α (β α , β . ) , (3.4)

where vector q7 (ί) stays for the mass center of the configuration S)~ι (with the
whole mass πij). The Cfe-central configuration Sk is obtained by the spherical
coupling of the main rigid body TOk in the points P,- with the Ck~x-central
configurations S T 1 (j = 1,. . ., n) in their mass centers q7. The Lagrangian Ls* of
the configuration Sk has the form

The Lagrangian LTok is given by the formula

a = \ f Po(ro) Σ ( Σ 2>o +
z τ0k ί=i \j=i

- J
1

\

' 3

Σ<2jri + q

3

' .Σ
7 = 1

3

+ q\ I
j =

d + q3)d3r0 . (3.6)
\j=i j=ι j=i J

Here (ro, ΓQ, ΓQ) are Lagrange coordinates of particles of the rigid body Tok, Po(ro)
is its mass density. Vector (q1, q2, q3) stays for the mass center of the effective rigid
body Tk and coincides with the mass center of the whole configuration Sk. The
effective rigid body Tk is obtained from the rigid body TOk by putting masses m7- into
the coupling points P7-(q, ). Its mass density has the form

P(i o) = Po(i o) + Σ mΆ*o ~ Pj) . (3.7)

Orthogonal matrix Qo describes rotation of the effective rigid body Tk around its
mass center q.

Formula (3.5) after substituting the expressions (3.4), (3.6) and using the formula
(3.7) is transformed into

Σ Σ= LTk + Σ Σ L2ΛQ0, Qo) (3.8)
j=lα=l
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Here the Lagrangian LTk of the effective rigid body Tk has the form

ί P(ro)<p(
τk

 y

ί 3

Σ<2}ri + q\
3

Σ e ^j= 1
o + <?:

3
2, £ β;

\

/
Γo

ί = l \ j = l

3 3 \

(3.9)

This Lagrangian coincides with (2.17), so it is transformed also into the form
(2.19)—(2.21). Therefore Theorem 2 is proven by the induction.

The integrability of the dynamics of the mass center q(ί) in terms of elementary
functions and the integrability of rotations of all rigid bodies Ta in terms of the
Riemann theta-functions obviously follow from the separation of variables in the
Lagrangian L5* (3.1) and from the results of works [6, 7], see also the next section.

Remark 2. Let some C^-central configuration Sk with the main rigid body TOk be
coupled with another system of rigid bodies S by one spherical joint, belonging to
the rigid body TOk. Then the Lagrangian of the whole system SKJ Sk has the form

J V - l

^ u S t = ^S"l" Lgt Tk + Σ ^2α(δα? δα) (3.10)
α = l

Here Ls is the Lagrangian of the system S, function Z^ Tk describes interaction
between system S and the effective rigid body Tk. The Lagrangians L2a(Qlx, βα) of
all other N — 1 rigid bodies of the Ck-central configuration Sk are separated (in the
Newtonian gravitational field with quadratic potential). Rotations of these N — 1
rigid bodies around their spherical joints are described by the independent Lag-
range system with the Lagrangians of the form (3.3).

Remark 3. The construction used for the effective rigid bodies Tt does not coincide
with that of the augmented rigid bodies, introduced by Wittenburg [26]. For
example, all the augmented rigid bodies have equal masses, but effective rigid
bodies 3] have different masses.

4. Hidden Symmetry of the Inertial Dynamics

I. The inertial dynamics of a Cfc-central configuration Sk is described in view of
Theorem 2 by the Lagrange system with the Lagrangian

Ls> = \m(q9q)-\ Σ Tr(Jβe«"1β«β«"1β«) , (4.1)
Z L α = l

coinciding with the kinetic energy. The rotational part of the Lagrangian (4.1) has
a large group of hidden symmetries G = Y[^= ί SO(3)a9 acting by the left multiplica-
tions

Qa^RaQa, RaeSO(3)a. (4.2)

In view of the explicit form of the Lagrangian (4.1) all rigid bodies of the
Cfc-central configurations Sk rotate around their spherical joints independently.
For example there are stable regimes of dynamics in which certain K effective rigid
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bodies inertially rotate and other N — K rigid bodies do not rotate and move in
space remaining parallel to themselves.

The Lagrangian (4.1) determines the left-invariant metric on the configuration
space M, which is the direct product of Lie groups

M ^ 3 x f ] SO(3)α (4.3)
α = l

and has symmetry group E3 x G, where E3 is the group of all Euclidean motions of
the space R3. The corresponding momentum map, see Abraham and Marsden [1],
has the form

(«, 4, β*> QΛ) - (P = mq, M* = δ«Mαβα-') . (4.4)

The vector p and TV skew-symmetric matrices Mα are first integrals of the Lagrange
system. Skew-symmetric matrices of angular velocity ωα and angular momentum
mα in the rotating frames of reference, connected with the α th effective rigid body,
are determined by the formulae

Ma = Jαωα + ωαJα , (4.5)

Here IΛij are entries of the inertia tensor of the αth effective rigid body.
Lagrangian equations with the Lagrangian L$k (4.1) admit the reduction to the
Euler equations on the Lie coalgebra s/3N = (J)f=i SO(3)a:

Mα = [ M α , ω α ] , α = l , . . . , J V . (4.6)

These equations have IN independent and involutive first integrals

J l α = ^Tr(Mα

2), / 2 α = i τ r ( M α ω α ) . (4.7)

The total kinetic energy of the inertial dynamics of the Cfe-central configuration has
the form

T=l:m(q,q)-ί- £ Tr(Mαωα) .
L Z α = l

Inertial dynamics of all rigid bodies in the Ck-central configuration is integrable in
terms of the elliptic functions.

Remark 4. The momentum map (4.4) determines 3AT + 3 adiabatic invariants of
the inertial dynamics of system S of N coupled rigid bodies which is a small
perturbation of some Cfc-central configuration. Inertial dynamics of such systems,
which is described by dynamics of geodesies of certain metrics on the configuration
space M (4.3) can be studied by the methods of the Kolmogorov-Arnold-Moser
theory.

II. Dynamics of a Ck-central configuration in a Newtonian gravitational field with
an arbitrary quadratic potential φ(q) (2.4) is described by the Lagrange system with
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the Lagrangian (3.1). This system is equivalent to the split system of matrix
equations

Mα = [Mα, ωα] + [ua, J α ] , ύa = [uα, ω β ] , (4.8)

where ua = QaaQa and the Lagrange equations for the dynamics of the mass center
q(ί) with the Lagrangian L1 = im(q, q) — mφ(q).

Equations (4.8), as shown by Bogoyavlenskij [6, 7] are the Euler equations on
the dual space to the Lie algebra A9 and have the Hamiltonian

ifα = ^Tr(Mαωα) + Tr(J α W α ) . (4.9)

Vectors a of the Lie algebra A9 have the form a = M + u, where M is a skew-
symmetric 3 x 3 matrix and u is a symmetric 3 x 3 matrix. Commutators of these
matrices are determined by the formulae

ίMuM2-]=M1M2-M2M1 ,

[M,w] = Mu-uM , (4.10)

[«i,u2] = 0 .

Thus the Lie algebra Λ9 is the semidirect sum SO(3) ® R6.
Therefore the discussed Lagrange system has the reduction to the Euler equa-

tions on the Lie coalgebra s/*N9 where s/9N = (+)^=i ^9
Systems (4.8) are equivalent to the Lax equations with spectral parameter E:

Lα = J α

2 £ 2 + M α £ + u α , (4.11)

Λa = JaE + ωα .

Therefore N Riemann surfaces Γa, determined by equations

Ra(w, E) = det(Jα

2£ 2 + MaE + ua - w 1) = 0 (4.12)

are associated with trajectories of the systems (4.8). All coefficients of Eq. (4.12) are
involutive first integrals of (4.8), for example, 3N independent first integrals

ha = Ha , I2a = Tr(Mα

2 + 2J*ua), J 3 β = Tr(M 2 u α + J 2 w 2 ) . (4.13)

Trajectories of systems (4.8) are integrable in terms of the theta-functions of
Riemann surface Γα, see works [6, 7].

Three-dimensional dynamics of each rigid body, belonging to the C^-central
configuration Sk, is integrable in terms of the theta-functions of several Riemann
surfaces Γα, the number of which is equal to the number of rigid bodies, coupling
the chosen rigid body with the main rigid body TOk.

Remark 5. Three-dimensional dynamics of a system S of N coupled rigid bodies,
which is a small perturbation of a Cfc-central configuration Sfc, in the Newtonian
gravitational field with quadratic potential φ(q) (2.4), possesses 3ΛΓ adiabatic
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invariants / l α , 72α, / 3 α (4.13). Dynamics of such a system S can be studied by the
methods of the Kolmogorov-Arnold-Moser theory.

5. Reductions and Integrable Cases of C*-Central Configuration Rotation Around
a Fixed Point in the Newtonian Gravitational Fields with Quadratic and Linear
Potentials

In this section we consider rotation of some Cfc-central configuration Sk with the
main rigid body Tok around a fixed point Po, belonging to TOk. Let the origin of the
Lagrange coordinates ΓQ, r2,, ΓQ (for particles of the rigid body TOk) and the origin of
the Euler coordinates x1, x2, x 3 coincide with the fixed point P o , so the corres-
ponding vector q(ί) has coordinates (0, 0, 0).

The Lagrangian of the Cfe-central configuration Sk in the Newtonian gravi-
tational field with quadratic potential (2.4) has the form (3.8), where Lagrangian
LTk is calculated by the formula (3.9) with q\t) = 0. The mass center of the effective
rigid body Tk has Lagrange coordinates

Rι = J p ( r o ) r ^ 3 r o . (5.1)
τk

The inertia tensor Ikij is calculated with respect to the fixed point P o :

= J p(royor
J

od\o . (5.2)

In these notations the Lagrangian LTk (3.9) has the form

LTk= -\τr(JkQ-1QQ'1Q) + \τΐ(Q'aQIk)-~(b,QR). (5.3)

Corollary 1. In the considered problem all N effective rigid bodies of the Ck-central
configuration Sk rotate around their spherical joints independently. Rotation of each
of the N — 1 rigid bodies, except the effective rigid body Tk, is described by the
integrable Lagrange systems with Lagrangians L2a(Qa,Q(X) of the form (3.3). Dy-
namics of the configuration Sk possesses 3(N — 1) involutive first integrals (4.13),
where α = 1,. . . , N — 1.

Corollary 2. Rotation of the effective rigid body Tk is integrable in the following cases:

1) Fixed point Po coincides with the mass center of the effective rigid body Tk, that
means Rι = 0.

2) Fixed point Po is arbitrary, but potential p(xS x2, x 3 ) is pure quadratic, that
means bt = 0.

In both these cases the Lagrangian (5.3) coincides with the integrable Lagran-
gian (3.5) and dynamics of all configuration Sk possesses 3N involutive first
integrals (4.13), where α = 1,. . ., N.

Corollary 3. Dynamics of an arbitrary Ck-central configuration Sk around a fixed
point in the Newtonian gravitational field with linear potential φ{x1,x2,x3\ atj = 0,



General Integrable Problems of Classical Mechanics 35

possesses a large group of hidden symmetries, Gλ = Π£=^ SO(3)α9 acting as in (3.10).
The momentum map has the form (4.4), where p = 0, α = 1,. . ., N — 1. Rotation of
each of the N — 1 effective rigid bodies is pure inertial and is described by geodesies of
the left-invariant metrics on the Lie group SO(3)a with the Lagrangian

L = - ^ T r ( J β β - 1 β β β - 1 β β ) . (5.4)

Rotation of the effective rigid body Tk is described by the Lagrangian

L=- ^TriJQ-'QQ-'Q) - ±(b, βR) . (5.5)

The corresponding Lagrange equations are reduced to the Euler-Poisson equations
which are integrable only in three cases, discovered by Euler (Rι = 0), Lagrange
(/1 = J 2 J R

1 = R2 = 0) and Kovalevskaya (^ =I2 = 2/3, R
3 = 0).

The previous considerations lead to the consequence.

Corollary 4. The problem of rotation of an arbitrary Ck-central configuration Sk of
N coupled rigid bodies around a fixed point in the Newtonian gravitational field with
quadratic or linear potential φ(xλ

9 x2, x3) is reduced to the classical problem of
rotation of only one effective rigid body Tk around a fixed point. Dynamics of the whole
Ck-central configuration Sk is integrable if and only if rotation of the effective rigid
body Tk is integrable.

6. Multibody Integrable Generalization of the Neumann Problem

The classical Neumann problem is concerned with the dynamics of a material point
on the surface of a sphere

(q1)2 + (q2)2 + (qΎ = #o (6.1)

in a field with homogeneous quadratic potential

The Neumann problem is completely integrable by the Hamilton-Jacobi
method of separation of variables, see Neumann [20], Moser [19].

The following theorem describes generalization of the Neumann problem.

Theorem 3. Dynamics of an arbitrary Ck-central configuration Sk in the Newtonian
gravitational field with the homogeneous quadratic potential (6.2) under constraint
that the mass center P of the whole configuration Sk moves on the sphere (6.1) is
completely integrable. Rotations of all rigid bodies around their spherical joints and
dynamics of the mass center P are described by the separated integrable Lagrange
systems.

Proof In view of Theorem 2 dynamics of the Cfc-central configuration Sk is
described by the Lagrangian Z#* (3.1), which is split into the sum of the separated
Lagrangians Lx(q, q) and L 2 α (β α , gα). The Lagrangians L 2 α (β α , βα) (3.3) describe
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integrable rotation of the α t h effective rigid body around the corresponding spheri-
cal joint. The Lagrangian L1 (3.2) describes dynamics of the mass center P, which is
supposed to move on the sphere (6.1). The Lagrangian Lγ coincides with the
Lagrangian of the integrable Neumann problem. Therefore the dynamics of the
mass center P is integrable by the Hamilton-Jacobi method, and rotation of α t h

rigid body is integrable in terms of the theta-functions of Riemann surface Γα,
determined by Eq. (4.11).

7. Separation of Rotations of an Orbiting Space Station Type C*-Central
Configuration

I. Let us consider the problem of rotation of an artificial satellite of the Earth
around its mass center. We suppose the gravitational field of the Earth is spheri-
cally-symmetric with the potential φ = — Gm0|r|~1, where G is the gravity con-
stant and m0 is the mass of the Earth. It is known that the orbit of the satellite mass
center is an ellipse with high accuracy and the Earth is in one of its focuses. We
suppose that the origin of the fixed frame of references Xo,Xo,Xo coincides
with the center of the Earth, the satellite orbit lies in the plane x3 = 0, and
<l(t) = (q1(i)9q

2(t),q3(t) = 0) is the vector of the satellite mass center P and

Let x1, x2, x 3 be local Cartesian coordinates with the origin in the mass center
P: x1 = Xo — qι(ή. The potential energy of the satellite in the gravitational field of
the Earth, having potential φ = — Gm0Irl"1, is equal

3 r 0 , (7.1)

where r 0 are Lagrange coordinates of particles of the satellite T. We assume that
the scales / of the satellite are much smaller than the distance to the Earth: / <̂  |q|.
For the function |r | we have

(7.2)

where (x, y) is the scalar product. The Taylor expansion of— in the neighbourhood

of the point qx{t\ q2(t\ q3(t) has the form

1 1 1 1 / .„ 1. Λ 1

Substituting this expression into (7.1) and integrating with respect to the
Lagrange coordinates r 0 we get

Gmm0 G m O c _ J ^ , 2 1 , Λ , 3.
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Here we use that in view of the definition of the mass center the equality holds

) d 3 r o = 0 . (7.5)

Expression (7.4) for the potential energy is used often, see for example Beletskij
[5], Modi and Suleman [17], Saruchev [24].

In view of the formula (7.4) the Lagrangian L of the satellite in the gravitational
field of the Earth in the main approximation has the form

L = U + L2 . (7.6)

Here L1 is the Lagrangian of the Kepler problem for dynamics of the satellite
mass center q(ί) around the Earth

Lagrangian L2 describes rotation of the satellite around its mass center in the
nonstationary gravitational field with homogeneous quadratic potential

φ(x\ x\ x3) = - - ^ _ £ (V(t)?'(t) - UιλxιxJ • (7.8)

II. Assume now the artificial satellite is a space station type Cfc-central configura-
tion Sk of N coupled rigid bodies. The mass center of such configuration does not
move if all iV — 1 rigid bodies rotate arbitrarily around their spherical joints and
the main effective rigid body Tk rotates around its mass center. The method of
investigation of the Lagrangian Ls^ of the Cfe-central configuration Sk developed for
the proof of Theorems 1 and 2 in Sects. 2 and 3 is applicable also when the
quadratic gravitational potential (2.4) is a nonstationary one and has the form (7.8),
for example. Therefore we prove by the same method the following result.

Theorem 4. The Lagrangian L$*, describing rotation of a Ck-central configuration Sk

around its mass center, moving around the Earth on the orbit q(ί), is split into the sum

Ls> = Σ L« • (7-9)
α = l

Lagrangians La have the form

La = T r ( J α β ~ 1 Q α β ~ 1 β α ) + -Tr(β£αβ α J α ) > (710)

where matrix a is nonstationary with the entries

In view of the separation of rotations in Lagrangian Ls* (7.9) each effective rigid
body Ta from the Cfe-central configuration Sk rotate around its spherical joint
independently, as well as the main effective rigid body Tk rotates around its mass
center. Therefore we obtain the following consequence.
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Corollary 5. The problem of stabilization of rotations may be solved independently
for each rigid body Tafrom the orbiting space station type Ck-central configuration Sk.

III. Let Ω = φ = μ|q(ί)|~2 be the angular velocity of the mass center q(ί), μ is its
orbital angular momentum. By definition we have

γ1(t) = cosφ(t),

(7.12)

ξ = -Ωyxn,
at

where n is the constant unit vector, orthogonal to the orbit q(ί).
For the matrix a^ = y^j we have

a =

Qi =

where

( cos φ — sin φ 0

sin φ cos φ 0

0 0 1

Hence the matrices

e =

1

0

0

0

0

0
4
0

n0 =

1

f
f

lo

- 1

0

0

0

0

0

satisfy the equations (Qa = βαωα)

ύa = [μa9 ωα - ΩnJ , ήΛ = [nα, ωα] .

(7.13)

(7.14)

Therefore the Lagrange equations with the Lagrangian La (7.10) are embedded
into the matrix equations, generalizing (4.8):

α = [M α ,ω α ] -

(7.15)
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The Lagrange equations on the Lie group 50(3), determined by the Lagrangian
La (7.10) are embedded also into the system of vector equations

Mα = Mα x ωα + aoya x /αyα ,

yα = y α x ( ω α - ί 2 n α ) , (7.16)

ήα = nα x ωα .

Here all vectors Mα, ωα, yα, nα are considered in the rotating frame of reference,
connected with the effective rigid body Ta, its angular velocity is ωα, its angular
momentum is Mα = / α ω α .

Equations (7.15) and (7.16) for the circular orbits of the mass center are
autonomous, in this case a0 = 3Ω2.

IV. Let us consider the Lie algebra L 9 , which is the semi-direct sum of Lie algebras
SO(3) + R3 + R3 with basis Xh Y*, (ij = 1, 2, 3, β = 1, 2), and commutator rela-
tions

Vectors of the dual space L* are represented in the form M + γ + n, according to
the decomposition indicated. The Euler equations with the Hamiltonian H(M, y, n)
in the space L$ have the form

. ^ dH dH dH
x — + 7 x - + n x ,

> ( 7 1 7 )

dH
n = n x — -

dM

It is simple to check that Eqs. (7.16) have form (7.17) with the Hamiltonian

H(M, 7, n) = i (M, Γ'M) + ^ ( y , Iγ) - O(M, n) . (7.18)

Therefore Eqs. (7.17) are nonautonomous Euler equations on the Lie coalgebra L*.

The Euler equations (7.16), (7.17) in view of the general theory by Arnold [2] are
Hamiltonian with the Hamiltonian (7.18) on six-dimensional simplectic submani-
folds M6 = SO(3) x R3, determined in the space L* by three geometric constraints:

( y , y ) = l , ( n , n ) = l , (γ, n) = 0 . (7.19)

Thus we obtain the following consequence from Theorem 4.

Corollary 6. The equations of rotation of an arbitrary Ck-central configuration Sk

around its mass center q(ί) moving around the Earth are split into the direct sum of the
Euler equations on N Lie coalgebras L*. These Hamiltonian equations are auto-
nomous in the case of circular orbit q(ί) and nonautonomous for the general elliptic
orbit of the mass center.
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8. Separation of Rotations of CRn- Central Configuration of Coupled Gyrostats

I. In this section we study dynamics of more general configurations of coupled
rigid bodies, including gyrostats. As known, gyrostat T consists of a rigid body
carrier To and N rigid rotors Ta, rotating around axes tΛ9 fixed in the carrier To. It is
supposed that the mass center qα(ί) of the rotor Ta lies on the axis /α and its inertia
tensor Jα is invariant under rotations around axis /α. Thus position of the mass
center q(ί) of the gyrostat T and its inertia tensor / do not change when all rotors
Ta rotate and the carrier To is fixed.

We call the CRx-central configuration C 1 a system of rigid bodies obtained by
spherical ball-in-socket coupling of some rigid body fίθ9 carrying n1 rotors
fla (α = 1,. . ., ή)9 with s gyrostats Tu. . ., Ts (having masses mί9. . ., ms). It is
supposed that centers of joints coincide with mass centers of gyrostats Tl9. . ., Ts,
having coordinates qi(ί)> > Qs(0 Let us denote P 1 ? . . ., Ps the corresponding
coupling points of the rigid body f10 or rotors fίa. Effective rigid body T10 and
effective rotors Tla are obtained by putting masses mί9...9ms into points
P 1 ? . . ., P s . We suppose that the effective rigid body T10 with effective rotors Tίa is
a gyrostat, so the mass center of each effective rotor Tla lies on its axis of rotation
tΛ and its inertia tensor / l α is invariant under rotations around axis <fα.

By induction CR ^-central configuration Ck is obtained by ideal spherical
coupling of some rigid body fk0 carrying nk rotors fka (α = 1,. . ., n) with sk CRkl

central configurations C j " 1 , , C j " 1 in their mass centers qi(ί),. . ., q,sΛ(ί) It is
supposed that effective rigid body Tk0 with effective rotors Tko[ obtained by putting
masses of the corresponding CRfe~1 central configurations m l 5 . . ., m$k into coup-
ling points P i , . . ., ?5k is a gyrostat, as in the previous construction.

Remark 6. Dynamics of coupled gyrostats where all rotors are symmetric and all
spherical joints belong to carriers, but not to rotors, was studied by Wittenburg
and Lilov [27]. Equilibria of a spacecraft with rotors were studied by Krishna-
prasad and Berenstein [28]. The introduced CRM-central configurations include
more complicated systems of rigid bodies, where some rotors themselves play role
of carriers and are coupled through spherical joints with CKfc-central configura-
tions, k < n.

II. Theorem 5. Lagrangian describing dynamics of CRn-central configuration in the
Newtonian gravitational field with an arbitrary quadratic potential (2.4) is split into
sum of noninteracting Lagrangians, describing rotations of effective gyrostats.

Proof We shall prove Theorem 5 by induction, analogously to the proof of
Theorem 2 in Sect. 3. On each step of the induction we study the Lagrangian of an
effective gyrostat Tk carrying nk effective rotors TkoL (α = 1,. . ., n). The term effective
means that the gyrostat has point masses, so the mass density pk(rk) of the carrier
Tk0 and mass densities pka(τka) of rotors Tka contain (5-functions and have form
(2.15).

Dynamics of particles of the carrier Tk0 in the Euler coordinates x1, x2

9 x3 is
described by the formulae

xι = Σ QijWrί + qi(t), (8.1)
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where matrix Qk(t) with entries Qkj(t) is orthogonal. The mass center of the effective
gyrostat Tk is in the origin (0,0, 0) of the Lagrange coordinates rk9 its Euler
coordinates are qι

k(t).
Dynamics of the rotor Tka is determined by the expression

* ' = Σ {QkSkaRkaΫjrl + qKt). (8.2)

Here Rka(t) is the matrix of rotation

φfcα - s i n φ f c α θ\

(8.3)

\ 0

Constant orthogonal matrix Ska defines the orientation of the rotor Tk(χ in the
carrier Tk0, so Sk αe3 = £ka9 where vector e 3 = (0,0, 1).

The mass center of the rotor Tka is in the origin (0,0, 0) of the Lagrange
coordinates rka9 its Euler coordinates are q[(t). So the equalities hold

ί P*«(r*>U3r f c α = 0 , (8.4)

where pkα(rkα) is the mass density of the rotor Tka.
Lagrangian Lk describing rotation of an effective gyrostat Tk in the Newtonian

gravitational field with an arbitrary quadratic potential (2.4) has the form

U = Lk0 + X LkΛ . (8.5)
α = l

Here Lk0 is Lagrangian of the carrier Tk0. Lagrangian Lk0L describes dynamics of the
effective rotor Tka and has the form

( Σ (UkaΫ/ka

- f PkMφί Σ (Uk*)}rL + qL Σ (UfjfrL + qL,
\j=l 7=1

(8.6)

where Uka = QkSkaRka. Expression (8.6) in view of the equalities (8.4) obtains the
form

L k a = L k l a + L k 2 ( X , (8.7)

( 4) (), (8.8)

ίβkSteKteyα), (8.9)
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where a is symmetric matrix with entries atj (2.4), mka is the mass of the effective
rotor Tka and Jka is the symmetric matrix with entries

(Λα)y = ί PkΛna)rLrLd3rka . (8.10)

Inertia tensor Ika is connected with JkΛ (8.10) by the relation

(J fcα)y = Tr(Jk α)δy - (Jfcjy . (8.11)

Both tensors /feα, Jfcα are supposed to be invariant under rotations Rka(t) of rotor
Tka. Hence we have

T> f Df _ 7 D f _ 7 D (Q 1 O\
lvfcα*/fcαlvfcα °ka. ? 1^kocuka, »//cαlvkα ^O.-LZ^/

This relation obviously implies that matrix Jfcα is diagonal with entries
(Λα)ίj = diag(5fcα'5kα'Cfcα). In view of relations (8.12) Lagrangian Lk2a (8.9) takes the
form

Tτ( T fΛ — 1 fΛ fΛ — 1 i*Λ \ r~Vf( T ϊ? — 1 p D — 1 p \

— Tr(iS f e αJk αΛk α RkaSkaQk Qk) — -Tr(QkJkaQka) . (8.13)

Here we denote Jfcα = SkaJkaSka.
For the rotation matrix #fcα(ί) (8.3) the equality holds

'0 - 1 0

0 0 |. (8.14)

,0 0 0

Therefore Lagrangian (8.13) is transformed into Lagrangian

+ 2^«Φfc« + fiteΦteTφteβi^β*) , (8.15)

where Λka = — Ύr(SkaJkaSkaσ
2) is constant and zka is constant skew-symmetric

matrix

Zka = ~ S^σSL . (8.16)

By definition the mass centers qfcα(ί) of the effective rotors Tka are immovable
relative to the carrier Tk0. Effective rigid body Tk0 is obtained from fk0 by putting
masses mka of rotors Tka into the points qfcα(ί) So the mass density of the effective
rigid body Tk0 is determined by the formula

Σ mkaH*k ~ Pfcα), (8.17)
α = 0

where vectors Pfcα define positions of mass centers qfcα in the Lagrange coordinates
1 2 ?
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In view of the formula (8.5)—(8.8) Lagrangian Lk0 of the effective rigid body
Tk0 has the form

Lk0 = Lk0 + ]Γ Lkla = Lkl + Lk2 , (8.18)
α = l

Lkl = -mk(qk, qk) - mkφ(qk) , (8.19)

Lk2 = - \τr(JkQk

1QkQk1Qk) - \ττ(QkJkQla) . (8.20)

Here mk is the mass of the whole gyrostat Tk, vector qk(ή determines position of its
mass center, tensor Jk is defined by the formula

(Jkh = J Pk(rkykr
J

kPrk .

Substituting formulae (8.18)-(8.20), (8.15) and (8.7) into the initial sum (8.5) we
obtain the following expression for the Lagrangian Lk of the gyrostat Tk:

Lk = Lkί + Lk2 , (8.21)

Lk2 = -^T{JQi1QQi1Q)

+ Σ U 4 ώ + B^φ^Ίτiz^Q^QM , (8.22)

where tensor Jk has the form

Jk = Jk + Σ Jka (8.23)
α = l

Lagrangian Lfc2 (8.22) has nk cyclic coordinates φka. Therefore applying the
Routh transformation

nk

L k 3 = L k 2 - X pkaφka, (8.24)

α = l

^ + BfcαTφteβ^βfc.) , (8.25)
we obtain that Lagrange equations with Lagrangian Lk2 (8.22) are equivalent to the
Routh equations

^ ^ , (8.26)
dQit dtdQίt

dLk?i . 8Lk3
Pka = -z— = 0 , φka = - -— . (8.27)

Vψka VPka

The last equation (8.27) has the form

ΦM = -j-Pka - ^Tr(zkaQk x Qk) (8.28)
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Substituting these expressions into (8.24) we obtain the formula

Lk3 = - \ ^

- Σ (^πCΓΦtaftΓ'β*))2 + Pta^Tφteβ^βta) - £ - ) • (8 2 9)

Here ,4fcα, 2?feα, pfcα are constants and zka is the constant skew-symmetric matrix
(8.16). Therefore we get that dynamics of the effective gyrostat Tk is described by
Lagrange equations with Lagrangian

Lk = Lkl + Lk3 (8.30)

and Eqs. (8.28), determining the relative rotations of the effective rotors Tka.
Formula (8.30) with Lagrangians Lkl and Lk3 defined by (8.19) and (8.29) shows

that Lagrangian Lk is split into two noninteracting parts, describing dynamics of
mass center of the effective gyrostat Tk and its rotation around mass center.
Therefore the first and consequent statements of the induction are proven. Hence
Lagrangian of the whole CRM-central configuration has the form

L = Lx + Σ Lk3 (8.31)
fc=l

Here Lagrangian Lx = m(q, q) - φ(q) describes dynamics of the mass center q(ί) of
the whole configuration. Lagrangians Lk3 describe rotations of effective gyrostats
and have the form (8.29). Theorem 5 is proven.

III. Lagrange equations with Lagrangian (8.29) are equivalent to the following
matrix equations:

Mk = [Mfe + A/,,, ω k ] + [ttfc, J k ] ,

uk = IX, ωfc] ,

where the notations are used

Mk = Jkωk + ωkJk + 2 Σ —^Tΐ(zkaωk)zkQC,
α=l Λka

Nk=-2Σ ^Pkazka , ωk = Q^Q,, uk = Q{aQk . (8.33)
α = 1 Λka

Here only skew-symmetric matrix Nk depends on conserved momenta pka and is
constant.

Equations (8.32) have first integral

Hk = ^Ίr(Mkωk) + Ίτ(ukJk), (8.34)

which does not depend on the constant matrix Nk and momenta pka.

IV. The proof of Theorem 5 is valid as well in the case of time-dependent
gravitational potential (2.4) which has the form (7.8) for example. Therefore
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applying Theorem 5 to the problem of rotation of space station type orbiting
multibody configuration we obtain the following result.

Corollary 7. Equations of rotation of an arbitrary CRn-central configuration around
its mass center q(ί) (moving around the Earth in an elliptic orbit) are split into system
of noninteracting equations describing rotation of the effective gyrostats Tk around
their mass centers.

Equations of rotation of the effective gyrostats Tk have the form, generalizing
(8.32) and (7.15),

Mk = [Mk + Nk, ω k ] - ao[uk9 J k ] ,

ύk = [uk9 ωk - Ωnk~] , ήk = [nk9 ω k ] , (8.35)

3Gm0 μ
ao = TT7^Ϊ3> Ω =lq(ί)Γ lq(0Γ

where skew-symmetric matrices Mfc, ωk, Nk are determined by expressions (8.33).
For a circular orbit we have a0 = 3Ω2 = const. Equations (8.35) in this case

have first integral

Hk = ^Tr(Mfeωfc) - a0Ίv(ukIk) - ΩΎv((Mk + Nk)nk) . (8.36)

Equations of rotation of the effective gyrostat Tk have the following vector form

Mfe = (Mk + N k) x ωk + aoyk x Ikyk,
(8.37)

Ίk = Ίkx(ωk -Ωnk) , ήk = nkxωk.

These equations in case of circular orbit (a0 = 3Ω2 = const) have first integral

Hk = i ( M k , ωk) + ^ ( γ k , / kγ k) - Ω(Mk + Nfc, nk) . (8.38)

V. Applying Theorem 5 to the problem of the inertial dynamics of a multibody
configuration we obtain the consequence.

Corollary 8. The inertial dynamics of an arbitrary CRn-central configuration is
integrable.

Indeed, system (8.32) in the case of inertial dynamics (uk = 0) is reduced to a one
matrix equation

(8.39)

This equation has two first integrals

Hk = l-Ίx{Mkωk), Hk2 = Ίr(Mk + Nk)
2. (8.40)

Therefore Eq. (8.39) in the space of 3 x 3 skew-symmetric matrices is integrable in
elliptic functions. Rotation of the effective gyrostat Tk is determined from the linear
equation Qk = Qkωk.
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Remark 7. Lagrangians (8.22), (8.29) in the case of absence of gravitational field are
left-invariant on the Lie group 50(3) x S1 x x S1. So inertial dynamics of an
arbitrary CR"-central configuration possesses large group G of hidden symmetries

G= Π S0(3)kx(S1)M .
k=l

Here commutative subgroup (S1)** acts as independent rotations of all effective
rotors.

VI. By definition two rigid bodies are coupled by a universal joint if they are free to
rotate around two intersecting axes Λ>^2 which are fixed with respect to each
other, see Wittenburg [26]. We consider system Uk obtained by a universal joint of
arbitrary many rigid bodies Tka (α = 1,. . ., ή) having inertia tensors /fcα symmetric
under rotations around axes ίkΛ and with mass centers lying on the axes Ska. Such
systems Uk of universally joint rigid bodies Tk(X is obviously a particular case of
a gyrostat Tk, for which carrier Tk0 consists of all connected axes ίka (not intersect-
ing in general) and is massless.

Therefore dynamics of system Uk in the Newtonian gravitational field with an
arbitrary quadratic potential (2.4) is described by Lagrange system with the
Lagrangian Lk (8.21), (8.22). Here the mass density of the effective rigid body Tk0 is
determined by the formula (8.17) with pk0(rk) = 0.

Lagrange equations for inertial dynamics of system Uk are reduced to one
matrix equation (8.39), which possesses two first integrals (8.40) and hence is
integrable in elliptic functions.

We call the Cϊ7"-central configuration of a particular case of CR"-central
configuration, where some of carriers fk0 are massless, and so corresponding rotors
Tk(X are coupled by universal joints. Applying Theorem 5 we get the consequence.

Corollary 9. Equations of inertial dynamics of an arbitrary CUn-central configura-
tion are integrable.
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