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Abstract. We study the spatial asymptotics of generalized eigenfunctions of three
body Schrédinger operators and derive all the S-matrices with initial state of
2 clusters.

1. Introduction

This paper is a continuation of our previous work [2] and deals with properties of
S-matrices for three body Schrodinger operators. We first recall the basic notation
and results of [2]. In R? we consider three particles with mass m; and position x'.
Let « be a pair (i, j) and

) ) mxt + m;x’
xa = V 2ma(xl - x]), Xoa = \V 2na<Xk o l—j—> s

m,~+mj

1 1 1 1 1 1

= R = .
m, m; m; Ny my m; + m;

Then the Schrodinger operator is defined by

H=HO+ZV;(X“)> HO: —Ax“_Ax, (11)

on L*(X), where X = {(x, x, x3); )71 m;x' = 0}. We consider wave operators,
known to exist when V,(x*)’s decay faster than |x*| ™1,

W§ =s —limeitHe itHo | (1.2)
t— + oo

Wk =s—limeHe it | (1.3)
t— + oo

Ha = HO + Vz s (Jaf)(x“, xa) = uu(xa)f(xu) > (14)
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where u, is a normalized eigenfunction of h* = — 4,. + V,(x*) with eigenvalue
E* < 0. We define the scattering operator Sy, by
Soa = (Wo ¥ W, . (1.5)

Let Zo: L*(R%) — L?((0, 00); L*(S®)) and %,: L*(R®) — L*((E? c0); L*(5?%)) be
the unitary operators defined by

(Fof)(30) = Colh) | &N f(x)dx.,

Co(A) = 2m) 32712, (1.6)
(Fof) (A ) = Co(A) [ e WVATE* O f(x)dx
R3

C (A) = 2m)~322712() — E*)U/+ . (1.7)
Let
Soa = FoSonF ¥ . (1.8)
Then the S-matrix So,(4)eB(L3(S2); L*(S%)) is defined by the relation
(Soxf) (2, 0) = (Soa(2)S (4,))(6)

for all >0, 0S5 and feL*((E% oo); L*(S?)). We assume that V, is a real
C*-function such that for a constant p > 0

[0y VIS Cu(L+ yD)7P™™, m=0,1,2,..., (1.9)

oT denoting an arbitrary derivative of m™ order with respect to y. Let

X;={xeX;x!=0},

M =S\ X, N=SSm(UX,;>.

1] ]
Then in [2] we showed the following results.
(1) If p > 4 + 1/2, Sy,(4) has a continuous kernel outside N:
Sox(4; 0, w)e C((0, 00)x M x S?) .

(2) If p > 5 + 1/2, we have the following asymptotic expansion around N:

- 0* 6f
Soa(i;(?,w):lf?"l_lz‘lﬁ,—l( I@ﬂl s 0p, @ >+Aﬂ,0< |9ﬂ| eﬁ’ >’

as |6%] >0, where we decompose 0eS° as 0 = (6%, ;) in accordance with the
choice of the Jacobi coordinates. The coefficient 45 _; can be written explicitly in
terms of 2-cluster scattering amplitudes associated with eigenfunctions with zero
eigenvalues and the zero-resonance of h.

In this paper, we relate this S-matrix to the asymptotic behavior of the
generalized eigenfunction for H.
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We first recall the 2-body problem. The generalized eigenfunction ¢(x, &) of
— A4 + Vin R" is written as

(p(X, é)=eix{_ v,
v=0(x,&) = (=4 + V —[£ —i0)"H(V(x)e™).

The first term, e™¢, represents the incident wave, and the second term, v, the
scattered wave. The scattering amplitude A(4; 6, w) = S(4; 6, w) — 6(0 — w) is
derived from v in the following way:

(x, /Aw) ~ C(A)r~ =DV 4(); 0, w)
0=x/|x|, r=|x|—-> oo .
In the case of the three body problem, our generalized eigenfunction is given by
o(x, Lw)=e uy(x*) — v, (1.10)
v=R(A+i0)f, R(z)=(H—-2z)"", (1.11)

i/A—E*w x:

f=rx o)=Y V,(x")u,(x*)eV*"Ee>_ (1.12)

yFa
The scattering matrix So,(4) is related to the spatial asymptotics of v in the same
way as in the 2-body problem.

Theorem 1.1. If p > 4 + 1/2, for any 1 > 0,
s —lim r32e =3 p(r+) = C1(A)Soul; *, @) ,
C1(2) = e ™Homi V4 (L — E%) ™14
in LE.(M).

However, it is not easy to replace M by S° in the above theorem, since the
behavior of v in a neighborhood of N is rather complicated. What we can expect is
the limit in an averaged sense.

We take yz(x)eC®(X) such that yg(x)=1 if [xP|/|x] <& xp(x)=0 if
|xP|/|x| > 2¢, and p,(t)eC*®(R') such that p,(t)=1ift>1—¢ p,(t)=0 if
t <1 — 2¢ where ¢ is a small positive constant. We also take p(t)e C&((0, 00))
such that [ p(t)dr = 1. In order to facilitate the proof, we assume that the pair
potentials are rapidly decreasing, but the following two theorems can of course be
proved for more slowly decreasing potentials.

Theorem 1.2. Suppose that V,'s are rapidly decreasing functions. Then

! .
S;.*l;mﬁgse i\/26 xeﬂ. 5P <l9| l;‘ |> ﬂ( )P<|Rﬂl>0(x)dx
= C3(A)Soul4: 6, ) ,
Cy(A) = —(2n)2A732(4 — E*)~ 14 |

in Lz(ﬁﬂ), where Ny is a small neighborhood of N " X5 and %, = x,/|x].
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In the neighborhood of the X;-plane, there are two sorts of scattering, the
3-cluster scattering and the 2-cluster scattering. We can distinguish between them
by changing the way of taking the limit at infinity of v.

Let ug(x”) be a normalized eigenfunction of h# with eigenvalue Ef < 0. Let
Api(4; 04, ) be the 2-cluster scattering amplitude associated with the process in
which, after the collision, the pair f takes the bound state ug,.

Theorem 1.3. Suppose that Vs are rapidly decreasing functions. For a small
e>0, let Yy(t)eC®(R') be such that Yu(t)=1 if t>A—¢& Yu(t)=0 if
t < A—2e Let y4(Dy,) be the pseudo differential operator with symbol Ya(1&p1%).
Fix a > 0 arbitrarily. Then as r = |xz| - oo, we have the following asymptotic
expansion:

Wp(Dy)o = Y Co(Ayup(xP)r=1eNA B 4,05 05, 0), 05 = x4/r
l

Cpi(2) = 2mi(A — E*)" 144 — EPy~14
uniformly for || < a, 6,€ 5>

One of the basic tools to prove the above theorems is the spectral repres-
entation theory developed for 2-body Schrédinger operators, the key idea of
which is to relate the generalized eigenfunction to the spatial asymptotics of the
resolvent of Schroédinger operators (see e.g. [3, 10]). Another important tool is
the estimate of the N-body resolvent ([2], Theorem 2.2) proved essentially by
Skibsted [12], whose method is based on the study of propagation properties of the
unitary group due to Sigal-Soffer [11]. This estimate has been further refined by
Gérard [1].

Asymptotic properties of generalized eigenfunctions of three-body Schrodinger
operators have been so far studied mainly by physicists. In the work of Newton [6],
Theorems 1.1 and 1.3 were derived by intuitive arguments. If we consider the
collision process of initial state of 3-clusters, we are led to consider the generalized
eigenfunction formally defined by

Y(x, 4, 0) = N30 — R(2+10) Y. VeV

The rigorous study of this generalized eigenfunction seems to be much harder.
Nuttal [8] and Newton [6] gave precise explanations. For the structure of the
related S-matrix, see e.g. [7]. One should also note the work of Mercuriev [5] of the
three-body scattering theory for the Coulomb potential based on the stationary
theory.

We shall quote freely our previous work [2], so the same notation is used in this
paper. In particular, L*>* denotes the usual weighted L*-space:

feL**<=|flI} = fn COF|f(x)Pdx < oo,

(x> = (1 + |x|*)% For two Banach spaces X; and X,, B(X;; X,) denotes the
totality of bounded operators from X; and X,.
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2. Proof of Theorem 1.1

We recall the localization given in [2], 4-1. For a sufficiently small ¢ > 0, we put
h={xeX;|x|/|x| <e},

Ma=S5\UXa ,
B

N® =Ssm<U X;,).
B
We take ¥y (0), yn(0)e C*(S®) such that

Uae(0) + Yn(0) = 1,
1 feM?,
x//M(e>={0 e

1 6eN*,
Yn(0) = { 0 feM?,

We also take yp(x), xn(x)e C®(X) homogeneous of degree 0 for |x| > 1 and

(x) = 1 if xeM®?,|x|>1,

WEXIZ 0 i ge N,
{1 if ReN2, (x| > 1,
INI=00 i geM,

where X = x/|x|. Next we fix A >0 arbitrarily and for a small & >0 take
¥1(t)e CF(R) such that

1 if jt—Al<ey,

"’1(”={0 if [t — A > 26, .

Let P be a Ps.D.Op. with symbol p(x, &) = XMA(x)l//M(f/Iﬂ)lﬁl(IC[Z). Then, as has
been proved in [2], (4.8), the kernel of ¥/,,(6)So,(4) is given by
— 27iC,(4) Fo(A)(Hy — A)P*R(A + i0) f,
f= 3 VxulxeV e @.1)

y¥a
We take y(x)e C*(X) homogeneous of degree O for |x| > 1 and
(x) = 1 if xeM*,|x|>1,
X =V0 it ge M.

To prove Theorem 1.1, we consider the limit of y(x)v as r = |x| - co. We intro-
duce the following notation:

Uy ~ uy =12 (uy(r*) — uy(r+)) >0 in L2(S3) as r - oo .
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As can be checked easily, w ~ 0 if we H*(R®), where H!(RS) is the usual Sobolev
space of order 1.
Recall that v = R(4 + i0) f and that

If1 S Gx*) ™ x)7?, VkzO0. 2.2

Let ¥,(t) be as above. Then v — y (H)ve H'(R®). By [2], Lemma 2.1,
2(x)(W1(H) — Y1 (Ho))ve H'(R®). So we have

2(x)v ~ x(x)¥1(Ho)v . (2.3)
We set /(&) = ¥1(1€1)¥n(&/I€)). Since suppy and supp(l — (/1€ (IE1)

are disjoint, one can use [2], Theorem 2.2 to see

X)W1 (Ho)v ~ x(x)¥(D;)v . (2.4)
Since x(x) = x(x)xa(x), we have
AW (D)v ~ x ()Y (D) m(x)v - 2.5)

In fact, on the support of the symbol of the commutator [y (x), ¥(D.)], the
directions of x and ¢ are different. So, (2.5) follows from [2], Theorem 2.2.

Noting that P is a Ps.D.Op. with symbol y(x)y (&), we let g = (Ho — 1) P*v.
We claim that ge L** for some s > 3/2. In fact, g is written as

g =[Ho, P*IR() + i0)f+ P* f— P*VR(A + i0) . (2.6)

As above, we apply [2], Theorem 2.2 to estimate the first term. By (2.2), the second
and the third terms belong to L% for some s > 3/2.

Lemma 2.1. Let Ry(z) be the resolvent of — A in R" and feL*3?. Let

C(A) = e~ mild =12 314 Then the following strong limit exists in L*(S" ') for any
A>0:

Fo(A) f=s — lim C(A)r®~ D2~ N (R (A +i0) ) (r+) ,

r—> o

where Fo(A) is the Fourier transformation defined in the same way as in (1.6) with
Co(h) = (2m)~"227 120~ 2I% The right-hand side converges uniformly on S"~ 1, if
f is rapidly decreasing.

Proof. For the proof, see e.g. [10]. The last assertion following from the asymptotic
expansion of the Green’s function of — 4. [

We rewrite P*v as P*v = (Hy, — A — i0)” 'g and apply the above lemma. Then
P*vp ~ C(A)r~32eVA Z4 (1) (Hy — A)P*v ,
C(h) = e 34tz =14 2.7
Equation (2.1) shows that
Fo(3) (Hg — A)P*v = i2n) 2212 (4 — E*)~ Y4 01(0) Sos(4; 0, ) .
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In view of (2.3) ~ (2.5) and (2.7), we have

1()0 ~ 2(x)C1(A)r =52y, (0)Sou(43 6, )

Ci(A) = e ™R rA~ V44— E*)" Y4 0 =x/|x]|.

This completes the proof of Theorem 1.1.

3. Proof of Theorem 1.2

We first recall the following well known fact.

Lemma 3.1. Let To(A) be defined by
(To(A) f)(0) = f e *f(x)dx, 0eS°.

Then for any A > 0, we have

[ To(A)fll2ssy) S Csll flls, s> 1/2.

We next recall the localization given in [2], 4-3-1. Let iy, ¥, be as in Sect. 2 and
take Y4(t)e C§(R') such that

(1 - Al<es,
Wm_{o it — Al > 2, .

Then by a suitable choice of ¢’s, we have

V(ISP n(E/1ED) = ; V(1€ (1EP)Yn(E/1E1) -

We note that, if ¢ is small, yy(x) is split into three parts:
an(x) =2 15(x)
]
() = 1 if feX3, |x|>1,
*e 0 if $¢X3.
Let A be the Ps.D.Op. with symbol

11PN (1EP)Wn(E/1ED) - (.1)

Let P = z pAg. Then by [2], (4.19), in a small neighborhood of N, .§Oa(l; 0, w) is
given by

— 2miCy(A)Fo[(Ho — A)P*R(A + 10)f1(4)

where f is defined by (1.12). It is easy to see that if 0 is very close to N n X,
So«(4; 6, w) is represented as

—27iC,(A) Fo[(Ho — A)AFR(A +i0) f1(4) . (3.2
We take p(t)e C§((0, o0)) such that jg‘)p(t)dt = 1. Let v be defined by (1.11).
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Lemma 3.2. Let N s be a small neighborhood of N N Xg. Then the following strong
limit exists in L*(N,):

1 .

s —lim— | e“ﬂe'x0ﬂ~>‘cpp<M> Ajvdx , (3.3)
R-w R® R

where Xg = xp/|xp].

The proof of this lemma is long and complicated. Let p(f) = j,‘” p(s)ds and
w = A¥v. Then by integration by parts, we have

21\/_ j i7" %, - <| ﬂ|> w(x)dx = j e—,\/ze x <|_);ﬂ_i>(4 + Mw(x)dx

- e"iﬁo"‘<Ap1<|x—;|>>w(x)dx.
RG

(3.4)

We show that the right-hand side of (3.4) converges in L2(1\7 p)as R — oo.Itis easy
to see that (4p;(|xs|/R))w(x) — 0 in L** for some s > 1/2 as R —> co. By Lemma
3.1, the second term of the right-hand side of (3.4) tends to 0 in L2(S%) as R » .
The first term tends, formally, to

[ e VA5 (4 + Dyw(x)dx ,
RG

which coincides with §Oa(i; 0, w) up to a constant depending on 4 by virtue of (3.2).
But this term must be treated carefully, since (4 + A)w(x)¢ L>* for s > 1/2.

Let Py(&) = ¥ (I€17)Yn(&/1€]) and Yy(D,,) be the Ps.D.Op. with symbol
Wa(1€51%). We set

gp = (Hg — AYp(Dy,) 2(x)R(Z + 0) f . 3.5

By [2], Lemma 4.2, g, is rapidly decreasing. A straightforward calculation shows
that

4+ hw= — ; Pn(D:)(Ho — WYp(Dy,) xp(x)R(A + i0) f
= — ; ¥Yy(D,)gs + % Yn(D)V3Rs(A + i0)gy .
So, we have only to show the existence of the limit
s —lim [ e"W0xp, <'—’;"—|> VRy(A + i0)gydx (3.6)

R—->o R

in L?(N;). Note that TN(f 0)=1 if |0%| is sufficiently small. Let
rp(z) = (h* — z)~1. By the partial Fourier transformation with respect to xg,
Rg(A + i0)gy is transformed into rp(A — |&p|? + i0)gs, where

Gp(xP, Eg) = 2m) 3% [ e @ gy(xP, xp)dxg . (3.7)
R3
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By the result of Jensen—Kato [4], the following expansion holds around z = 0:

B_, B_
re(z) = 72 + =2+ Bo(2),

7
in B(L*%; L* ~%), s > 5/2, where — B_, = the projection onto the eigenspace of
h? with zero eigenvalue, and B_; = — iB_, V3GV3B_, +i{*, ¢p>pp, G being
an integral operator with kernel |x? — y#|2/(24x), and ¢, being the zero-resonance
for h®. By(z) is a B(L**; L* ~%)-valued continuous function of z. We have,
therefore,

B_,4,

; — -3/2 ixp* &p
Ry(A + i0)g; = (27) ]i[ o — &0 dég

B s
—1915 = d&y
Ji— &P+ 10

+ (2m) 732 [ ™Y Bo(A — &1 + i0)ggdls . (3.8)
R3

+ Q)7 |
RJ

Now we consider the limit (3.6). Let uf,f ) be normalized eigenfunctions of h” with
zero eigenvalue, and put

pi(&p) = [ u(xP)gp(x", &g)dx" .
R3
Then we have
B_34p= — Z Ufaj)(xﬂ)gﬂj(fp) .
J

So, letting ro(z) = (—4,, — z)~ " and gj; be the inverse Fourier transform of g;, we
have

B_,J , .
20 e, = S uP(xP)ro(h+ i0)gp; . (39)

)32 [ i
@m) ,;E A—1&)* + i0 ;

Lemma 3.3. The following strong limit exists in L*(N )

s—1lim [ e"W30xp, <%> Ve(xP)ug (x")(ro(4 + 10)gp;) (xg)dx .

R-o R

Proof. We first rewrite the above integral as

j\ e_i\/ioﬁ‘xﬂ Vﬂ(xﬁ)u;gj)(xﬂ)dxﬂ X j e"i\/7»95~xﬁp1 (%) ("o(l =+ iO)gﬂj)(Xﬁ)de .
R? R3
(3.10)

In the following arguments, we always assume that |0#| # 0 and | 0| is sufficiently
small. Taking account of the relation

(—4— l)e_iﬁeﬁ')w _ _ M@ﬂlze—i\/}o,-x, ,
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and letting
—i /200 x? Vﬂ(xﬂ)u%j)(xﬂ)dxﬂ ,

1
a0 =g J.¢

one can rewrite (3.10) as

a(0) [ (= 4 — 2)e= /) p, (P
R3

—R—>r0(l + iO)gﬁjdXﬁ

Xﬂ|

— a(6%) { — [ e Witrm <Ap1 (———)) ro(4 + i0) gp;dx;
R3 R

2 . ) [x5] 0 .
= tﬁ@p Xp B /‘L O d
+R1i[e p(——R >5lx;slr0( + i0)gg;dxg

1 [ e, (';')gmdxﬂ} (3.11)
R3
Let K(6*) be the sphere:

K(@ﬂ) = {9,3, |0ﬁ| = ./ 1-— Iﬁﬂ 2} .
By [2], Lemma 2.3, |a(6”)| < C|6”|~'. Hence, to show the convergence of (3.11) in
LZ(N ), we have only to show that each term in the parenthesis { . . } converges
in LZ(K(GB)) and the convergence is uniform for small |6%|. Thls is obvious
for the third term, since g;; is rapidly decreasing. It is easy to see that
(Apl(lxﬂl/R))ro(/l + i0)g;; — 0 in L>* for some s > 1/2. By Lemma 3.1, the first
term converges in L2(K(0*)) uniformly for small |0#|. A simple computation shows

that <6|5 | i\/—)ro(l + i0)gg; = O(|x4] %), hence
Xp

0
R~ p(lm/R)(l zf)rowlomwo

in L** for some s > 1/2. So, it remains to consider
i | X1 .
R Le /465 xs <—Ri ro(4 + i0)gg;dx - (3.12)

By the well-known property of the Green’s function of — 4,,, we have

i/ x|
[xg]

where Y(w) = éﬂj(ﬂw), ® = xg/|xg|. Then, up to a constant, (3.12) is asymp-
totically equal to

e
ro(4 +i0)gg; = C(4)

V(@) + O0(lxs1 %)

1 o Ixg ] eV215!
il i/A8sxs [ 1781
Rﬁ[e p< R> N Y(w)dx,

=R [ eV R p(t)dt [ eV oy (w)da . (3.13)
0 S2
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The stationary phase method on the sphere and integration by parts show that
(3.13) is asymptotically equal to, up to a constant,

©
1051 o

Now, it is easy to see that (3.14) is convergent as R - co. [

VAR =10D) 5 () dg W (0s/105]) - (3.14)

We next consider

| e—iﬂe'xpl<¥) Vﬂ(xp)<j’ eixa’éﬂﬂﬂ_déﬂ>dx, (3.15)
RS R?

VA= 1&* + 0
which corresponds to the second term of the right-hand side of (3.8). Note that by

virtue of [2], Lemma 2.3, B_, g, consists of a sum of the terms, y(x*) f(¢;), where
[Y(xP)| < C{xP»~ 1, and f(&) is a smooth function supported near the shell

&l = /2.
Lemma 34. Let | (x*)| < C{x*)~1, and f (&) be a smooth function supported near
the shell |£g] = ﬂ Then there exists the following strong limit in L*(N )

— K —isios, (1%l ixs & J(Sp)
SR_'l:)m J‘s o~ i/ P1< R ) Vp(x£)$(xﬂ)<ﬁ[ et ———_A = Iéﬂlz_.}_ 5 dég )dx .

Proof. We have only to consider the integral

—i\/260xp M)( ’.x"'é"—de >d 3.16
li[e p1<R I‘Le m éﬂ Xg - ( )

We calculate the limit as R — oo by the repeated application of the method of
stationary phase. We first integrate in o = &y/|&;|. Then letting r = |x5| and
, = xg/r, we have as r - oo,

§ eix”'l‘:’lwf(léﬂw)dw ~ eirlél Z r_l_nf+n(|§p|:wx)
52

n20

Fe MO Y g (18], ) .

n=0

We concentrate on calculating the contribution of the first term e!%!r 1 £, (| &sl,
w,). To perform the integration in |&4, we split the integral into two parts:

{1&51 2 ﬂ} and {|&| <./4}, and compute on the region {|&;|2 ﬂ} for
example. Then letting |&;] — \/Z =1t%t>0, and

[ 0. = 2f4o(? + /A 02 + 2/ + /1),

we have

2 @
i5p2| d|&g| = eVArr 1t [ e (¢%, wy)dt .

[ 1911, o (1), ) —t
5 T JlG =4 o

By the stationary phase method, we have as r - oo,

— 0 —
eiVAre -1 j‘ e'"zfl(tz, w,)dt ~ o/ Z r~3/2—ngn(wx) .
0

nz0
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So, we consider the contribution of the first term eV*r~32g,(w,). By integrating
in w,, we have as r » o0,

j‘e—z\/lrwx 05 piy/Ar . = 3/2 ( )dCU Nez\/i.r(l 16s]) Z P52 "h+n(|0ﬂ| wo)
S2 nz0

+ eiﬁr(u[epl) Z T—S/Z—"h—n(lepl,wo) ,
nz0
where wy = 0;/6;]. We look at the first term e™VAr =190 =512 (16|, wy). By
integrating in r, we have

I ei\/Ir(l_Ieﬂl)r—5/2h+o(|9ﬂ|, p) P1 (%) r2dr
0

= ho(105], @0) x 2/R [ ™A1 o (12) dy . (3.17)
0

Here we note the inequality

2

j 2 £ (t)dt §—C—

Jk
for feC¥(R") and any k > 0, which follows from the stationary phase method.
Therefore, we have

[eo)
\/E j eiRﬁu —|9a|)t2p1(t2)dt
0

This shows that (3.17) is dominated by C|6#|~! uniformly in |6;| and R. One can
also see by the stationary phase method that (3.17) is convergent pointwise as
R — oo, when |8;] < 1. These two observations prove that (3.17) converges in
L*(N 5) a8 R —» 0. In a similar and simpler way, one can treat all the terms of the
asymptotic expansion appearing above. Hence (3.16) converges in L*(N ) as
R-> 0. O

SCA -6~ 2= Clof7t.

We finally consider the limit corresponding to the last term in (3.8).

Lemma 3.5. The following strong limit exists in L*(N )

s —lim [ e” W), <%> Vﬂ(x”)( | € ¥Bo(A — &> + io)éﬂd§p>dx
R3

R-o RS

Proof. Let
a(&p) = [ e NV Yy(xP)(Bo(h — 117 + 0)gp) (x, &g)dx” .
R3
Then a(&;) is a continuous function of compact support. Letting f,({s) be the

inverse Fourier transform of p;(|x,|), one can rewrite the integral in question as
follows:

Ay <f0ﬂ )dnp,

from which the lemma follows immediately. [
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Lemma 3.2 now follows from Lemmas 3.3, 3.4 and 3.5.

Our next aim is to rewrite (3.3). Since R ™" [p(|x4|/R), AfJv—0 in L** for
some s > 1/2, it follows from Lemma 3.1 that as R — oo, the left-hand side of (3.3)
is asymptotically equal to

1 .
z) e“ﬁo'xé),,'ﬁﬂA;,"p<¥>vdx. (3.18)
RG

We take a bounded C®-function a;(xg, £5) such that a;(x;, &p) = X4° 5,,/\/1 when

Ixg] > 1 and |&;] is close to \/I Let 4; be the Ps.D.Op. with symbol a; (x4, £p).
Let To(A) be as in Lemma 3.1. Then (3.18) is asymptotically equal to
R~ To(2) A% AF p(|x,|/R)v.

Let P, be the Ps.D.Op. with symbol

a(xg, fp)Xﬁ(x)lpﬂﬂfﬂz)Wlﬂflz)WN(f/MD .

Then, since
Larag - poyp (P2} o
i( TAf — PYp R v—=
in L% for some s > 1/2, (3.18) is asymptotically equal to
Lo, 1) () 319
E,ie 5 Xpxp(x)p Rz v(x)dx . (3.19)

We have localized v in the region {x; a < |x|/R < b, |x*| < 3¢[x|}. The next aim is
to localize v in the region where 6; and x,; have almost the same directions.

Theorem 3.6. Let P; be the Ps.D.Op. with symbol p(xs, £g) having the following
properties:

0%, 08,0 (xp, Ep)| £ Coun{xg>™ ™ Vm,m, (3.20)
there exist constants 0 < a <b < oo such that
suppe,p(xp, &) < {a < |&] < b}, (3.21)
there exists a constant p_ such that — 1 < pu_ <1 and
p(xp, &p) = 0 if xp- &5 > pu—[xpl|&p] - (3.22)
Let y4(x) be as above. Suppose that V, satisfies (1.9) with p > 0. Then we have
(xY*Pyyp(x)R(A + i0) (x) ' e B(L*(X); L*(X)), (3.23)

fors> —1/2,t> 1, leo, (H)\A.

We prove this theorem in the next section.

Let p,(1)eC*(R') be such that p,(t)=1 for t>1—¢;, p.(t)=0 for
t < 1 — 2e;, ¢3 being a sufficiently small constant. Let p_(t) = 1 — p . (t). We take
b(xs, £5)e C*™ such that

Mw£ﬂ=p—G%T§%>
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if |xg] > 1 and |&;] > ﬁ/2. Let P, be the Ps.D.Op. with symbol b(x,, &). Let P,
be as above. Then by Theorem 3.6, we have

1 ||
EP*PB <R U—)O,

in L** for some s > 1/2. Multiplying T,(A) and looking at the symbol of P¥P¥, we
have

RS- <|eﬂ| |xﬁl> l ”’(llg')”dHO o2

as R — 0. By (3.19) and (3.24), we have shown
Lemma 3.7. The following strong limit exists in L2(]\7,3):
! i i0xn . A O  xp [xp]
N ;ﬂlolom Ek‘; e /70 Hﬁ-xl,p+ (@ . ix—pl>xﬂ(x)p<T U(X) dx . (325)

The proof of Theorem 1.2 is now completed if we show that (3.25) coincides
with C;(4)Sos(4; 6, w). For this purpose, it is sufficient to show that for any
Y(0)eCT(Ny — Xp),

.1 iSiera & | x|
_ tf X0 .
lim RI [ w(O)e Vg, xﬁp+<,0| i, |> 1p(x )p( >v(x)dxd0

R—ow f* R SS

=Cy(4) | Y(0)Sos(4; 6, w)db . (3.26)

Applying the stationary phase method on the sphere and taking into account of
the fact that on the support of the integrand 6, x, are sufficiently close to 6 and x,
we have as r = |x| > o0,

J v, xpp+<|z| o I)xﬂ(x)de Cs(Me ™ sl =y (xr)

C3()u) — e5ni/4(2n.)5/2/1—5/4 ,
where we have used the fact that yz(x) = 1if » > 1 and y(x/r) £ 0.
On the support of ¥(x/r), x/re M. Therefore by Theorem 1.1, we have
e F gl =2 (x/r) p (1% /R)0 ~ C ()] x5 =% (x/r)p (1341 /R) Soul 25 X/, @)
as R — oo. Hence we have

0
lim Ej [ w(O)e =g, xﬁp+<|0| 1% l> xp(x)p (IJX’)v(x)dde

R- R® S5
= lim C (l)Cs(i)— I |xg 17~ W (/r) p (|3 1/R) Soul 45 x/r, )dx .
R—
Passing to the polar coordinates x = rf, we have

1 [eo)
7 1 L1010 @ p(0311/R) S350, 0)d0dr = § (6)35,(350, )0

S50
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where we have used the substitution ¢ = |6;|r/R and j;) p(t)dt = 1. This proves
(3.26).

4. Micro-Local Positivities and Resolvent Estimates

We explain the proof of Theorem 3.6. To make the arguments clear we first explain
it in the case of the 2-body Schrédinger operators. We introduce the following class
of symbols:

|0208p(x, &) £ Cy<{xp™ 1%, there exist constants
p(x,{)eS" <=0 <a<b< oo such that supp.p(x, &) = {a <|¢| < b},
p(x,E)=0if %-é>1—e0<e<1).
p(x, £)eS ™V = [0308p(x, &) < Cpp(x) N7l

Here and in the sequel, X = x/|x| and &f= E/€).
p(x, £)e S¥™ is said to be a symbol of canonical type if

p(x, &) = (Ix|[E] — x> p(%- &) p(&)x(x) ,

where p(t)20, p)=1 if t<1—-2, p()=0 if t>1—¢ p'(t)=<0,
peCP(R"—{0}), 0 20, x(x) 2 0, x(x) = 1if [x| > 2, x(x) = 0if |x| < 1.

Lemma 4.1. Let m > — 1/2 and p(x, )€ S*™ be a symbol of canonical type. Let
a(x, &) = (Ix||€] — x*&)p(x, &). Then there exists a constant Cy > 0 such that

—{I&1,a} = Cop + ¢,
where {,} denotes the Poisson bracket and q is compactly supported in x.
Proof. Modulo a function of compact support in x,
—{IEP, a} =2@m + DIEP( - £+ Ep(x, &)
— 21EI(IxEN = x- &P x| T (1 — (£ EP)p' (£ E) (&) () -

The second term is nonnegative since p’(f) <0. On the support of p(x, &),
2(2m + 1)[&]2(1 — %+ &) is estimated from below by a constant C, > 0. [

With a symbol p(x, &), we associate the Weyl quantization P = p"(x, D,) (see
e.g. [9]).

Lemma 4.2, Let p(x, {)eS™ be a real symbol. Let Q be the Weyl quantization of
p(x, &)%. Then we have — Q < P, + Py in the form sense, where P,eS*" 2,
PyeS™Y, N being a sufficiently large constant.

Proof. Let P = p¥(x,D,). Then P2 = Q + P, + Py, with P,eS?" 2 pPyeS~N
P2 >0, since P is symmetric. [J

Let H = — 4 + V'be the Schrédinger operator on R" where Vis a real function
satisfying

BV =0(x>71M7), 0<p<1.
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Let p and a be as in Lemma 4.1 and set 4 = a"(x,D,), P =p"(x,D,).
Let Cop + g be as in Lemma 4.1. One can construct p(x, ) in such a way
that the square root of — {|¢|% a} — (Cop + q)is C*. So, by Lemmas 4.1 and 4.2,
we have

Lemma 4.3. CoP < —i[H, A] + P, + Py in the form sense, where P,eS*" ",
PyeS™N, N being a sufficiently large constant.

Let u=(H — z)"'f,Imz > 0. Then by Lemma 4.3 we have
Co(Pu,u) < —i([H, AJu, u) + (Pyu, u) + (Pyu, u) . 4.1)

The first term of the right-hand side is calculated as
—i([H, AJu,u) = — 2Im z(Au, u) — i{(Au, f) — (f, Au)} . 4.2)

One can assume that the square root of a(x, &) is C*. So, by Lemma 4.2, the first
term of the right-hand side of (4.2) is dominated by

(Pyu,u) + (Pyu,u), P,eS*™ ', PyeSV. 4.3)

We also have
1
I(Au, f)] = 5(” AulZ iy + [ f lms14p)

S(Pyuwu)+ Cllfllms1+p Pr1eSTT22. (4.4)
These estimates together with (4.1) show that
(Pu, u) < (Pyu,u) + Cll fllz+1+,, PreST2. 4.5)

Here we note that by enlarging the support suitably, we can dominate the symbol
of P, e S*™~* from above by the symbol of canonical type e S*™~*. So, one can use
(4.5) with 2m replaced by 2m — p to estimate (P u, u). We repeat this procedure and
finally obtain

(Pua u) g C”f”rzn+1+p s
which implies that

”Pu” é C”f||m+1+p ’

if PeS™, m> — 1/2.

Now we turn to the three body problem and prove Theorem 3.6. Let S™ be as
above with x, £ replaced by x;, ;. We introduce P and A4 in the same way as in
Lemma 4.1 with x, £ replaced by x;, 5. Let u = R(z)f, z = A + ie.

We first note that

—i[H, ygAxs) = —ixg[H, Alys — i[H, xp]Axp — ixgA[H, 251, (4.6)
and that

—i[H,A]l= —i[ — 4,,A]—i ) [V,  A]. (4.7)
Y+ B
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To the term — i[ — 4,,, A], we apply Lemma 4.1. On the support of y5(x), V,(x?)
(y # B) behaves like (x;)> "%, p > 0. Therefore arguing as in the proof of Lemma
4.3, we have

finite

ColxpPrpu, u) < — i(ys[H, Alypu, u) + Y. (" PY' 7w, u)
j

+ Cyll <> ™ Mull?, (4.8)

where P{’eS?"7% and 7§(x) is a cut off function similar to ys(x) and N is
a sufficiently large constant.
We claim that

((CH, 251 Axpu, )l S ClL f s 145 - (4.9)
Let ¢(+) be a smooth cut off function near 1. Then as is well-known, for any seR,
(1 — @(H))R(A £ ie) {x) e B(L*(X); L*(X)) ,
uniformly in ¢ > 0. On the other hand, by [2] Lemma 2.1, we have

Q(H)[H, 3] Axs
finite

= @(Ho)[H, y]1Axs + Z {x) 7P pu(x, D)o (Ho)[H, 251 Ax5 + Ry,
I3

where p,(x, &) satisfies (2.1) and (2.2) of [2], supp @, = supp ¢ and {x "2 Ry {(xHN/?
eB(L*(X); L*(X)). Now we note that on the support of the symbol of
©(Ho)[H, s Axs, x+ & = pulx||¢], —1 < p < 1, which follows from the fact that
x5 Es < (1 — &)|x4||€4l. One can then apply [2], Theorem 2.2 to estimate this term.
The terms {x)?*p.(x, D) o,(Ho)[H, x3]1Ayx; are treated similarly. This proves
4.9).
In view of (4.6) ~ (4.9) and arguing similarly to the 2-body case, we have
finite
(XﬂPXBu’ u) é z (i;ij)P(lj)Z;}j)u’ u) + C”f”r2n+1+p s> (410)
j

where PY’eS$2"7% and 7$(x) is cut off function similar to y4(x). The rest of the
proof is the same as in the 2-body case.

5. Proof of Theorem 1.3

For a small ¢ > 0 we take y5(r)e C*(R") such that y,4(t) = 1ift > 1 — &, Y4(t) = 0
if t<A—2e Let yu(D,,) be the Ps.D.Op. with symbol ¥,(|&*) and put
w = Ys(Dy,)xp(x)v, where v is defined by (1.11) and y4(x) is given in Sect. 3. Note
that by our assumption f defined by (1.12) is rapidly decreasing. A simple calcu-
lation shows that for any N > 0,

2 ()Wp(D)v = Yp(D) 2p(x)0 + 0% "),

as |xz| » oo uniformly for |x#| < a. So, we have only to consider the asymptotic
behavior of w.
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Let g = (H; — A2)w. Then by the same arguments as in the proof of [2], Lemma
4.2, we have ge L?* for all s = 0. Hence

w=Ry(1+i0)g . (5.1)
Let P,(h*) denote the projection onto the point spectrum of h”. Then
(P(h")® Dw =Y P{ ® (— 4, — (A — Ef +i0))" g, (5.2)
1

where P! denotes the projection onto the eigenspace of h* with eigenvalue Ef.
Lemma 5.1. Let r = | x4, 05 = x4/r. Then we have the following expansion:
PE@ (= A, — (2 — Ef +10) g = Cu(A)r eV = H 7 4 (0; 0, 0)up(x9)
Cp(4) = 2mi(A — E*)~Y*(A — Ef)~ 1%
as r— oo uniformly for 0z€S>.

Proof. We proceed in the same way as in [2], §5. We define Z#,(4) in the same way
asin (1.7) with E® replaced by Ef. Let x; and y; be as above and define P and G by

P=Xﬂ(x)l//ﬂ(Dxﬂ)’ G=HP—PHp

Then by the same argument as in the proof of [2], Lemma 5.2, we see that
Api(4; 0, ) is represented by

A3 05, 0) = — 2miC,(A) Fp(A)T 5(P*f— G*R(A + i0)f) ,

where Jg, is the injection defined in the same way as in (1.4) with u, replaced by
ug and f is defined by (1.12). Let v = R(A + i0) f. Then

P*f— G*R(A+i0)f=(Hz — A)P*v.
Since w = P*v, the right-hand side is equal to g. So, we have
Ap(4; 05, w) = — 2miC(A) F (M) g - (5.3)
Let W be defined by
W= (=44 — (2 —Ef +i0)" Thg ,
Thg(xg) = | up(x")g(x)dx" .

Since J g is rapidly decreasing, we have by Lemma 2.1,
W CyrteN T E () g
C(A) = rt?(A — EF)~ 14| (54)
as r = |xg| > oo uniformly for 0;€S>. Equations (5.3) and (5.4) imply that
W Cu)r eV E 400250, )
Cp(A) = 2mi(A — E*)" 14 (A — EF)~ 1%, (5.5

Lemma 5.1 immediately follows from (5.5). O.
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Let P,.(h?) denote the projection onto the absolutely continuous subspace for
hP. It remains to show that the asymptotic behavior of (P,.(h*) ® 1)w is negligible
compared with that of (P,(h*) ® 1)w. For that purpose, we recall some results on
the 2-body Schrédinger operators.

Let Hy = — A, H = — A + V be the Schrédinger operators in R>. Suppose that
V(x) is a rapidly decreasing function. Let R(z) = (H — z)~ 1. We define the usual
Fourier transformation T, and the generalized Fourier transformation 7" by

(Tof)(&) = @m)™? [ e”™ ¢ f(x)dx, (5.6)
2
(Tf)(&) = (2m)~*2 j:, e” ™ (f(x) = V(X)R(IE)* +i0)f)dx . (5.7)

Then as is well-known, T is a partial isometry with initial set E((0, o)) L*(R?) and
final set L?(R?®), where E(1) denotes the spectral measure for H. E((0, c0))L?(R?3)
coincides with the absolutely continuous subspace for H. Let Q = T*T, be the
stationary wave operator, which is known to be equal to the time-dependent wave
operator.

Lemma 5.2. Let ¢(t)e C®(R?) be such that for some a >0, ¢(t) =0 if t < a and
l™(t) £ Cut 1 ™™2, m=0,1,2,..., for any t. Then for any s’ > s = 0,

()™ @(H)Q{x) e B(L*(R%); L*(R?)) .

Proof. Let H™ denote the Sobolev space of order m. Then by [3], Theorem 0.1,
To(H){x) "' is bounded from L?*(R3) to HM(R?), which shows that
OONTETe(H) (x> N1 = (xDV Q*p(H){(x» N~ is bounded in L*(R?). The
lemma then follows from the interpolation. [J

For 1 >0, we set (T(A)f)(w) = 2‘1/2/11/4(Tf)(ﬂw), which is well-defined
when fe L*5, s > 1/2. Then for f,ge L**(s > 1/2) and 0 < a < b < 00, we have

b
J(TA)f, T(D)g)rzs2dA = (E((a, b)) f. 9) - (5.8)

Lemma 5.3. If s > 5/2, there exists a constant C > 0 such that

| TP* T(D) g2y S C/A i 0<A<1.
Proof. Equation (5.8) shows that

T(A)* T(2) = 5% (R(A + i0) — R(4 — i0)) .

The lemma then follows from [4]. O

We now turn to our problem. Let hf = — 44, h* = hf + V;(x*?). Let Ty and T}
be defined by (5.6) and (5.7) with H, and H replaced by h% and h”, respectively. Let
QF = (Ty)*To. We choose ¢o(t), @1(t)e C*(R*) such that ¢o(f) + ¢4 (t) = 1,
po(t) =1 if t <1/2, ,(t) =1 if t > 2. We define the operators F(h® <¢) and
F(h* =z &) by F(h? < &) = @o(hP/e), F (h* = ¢) = @,(h?/e). In the sequel we omit the
symbol ®. We split P,.(h*)w into two parts:

Poo(h")w = Po(W)F(h* < e)w + F(hF z e)w .
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We first note that by the intertwining property Rp(z)P..(h?) = QPR (z)(QF)*,
where Ry(z) is the resolvent of — 4 in R°. Then, we have

F(h* = e)w = F(h® = &)QPRo () + i0)(QP)* F(h* = ¢/4)g

where F(h® = ¢/4) is an operator similar to F(h* > ¢) which cuts off the part
h# < ¢/4. By the Sobolev inequality, we have

| F(h* 2 &)QP(hG + 1)72(xF)* llB(z2®2) L=(1x1 < a))
S C(I|F(h Z e)h? QP (R + 1)72 (xP)* B2 R2) L20x%1 < a + 1))
+ | F(h* Z e)QP(hf + )72 (xP)* B2y L2050 < a s 1)) 5
the last term being finite for any s > 0 by Lemma 5.2. Therefore,
I (F(hﬁ 2 e)w(xﬂ, xﬂ) ||L°°(|x"| <a)
< ClIKxY T (Ro(A + 10)(1 + Wb (QP)* F(h* = &/4)9)(x", xp) | 2w -

Let § = (1 + hB)2(QP)* F(h* = ¢/4)g. Since g is rapidly decreasing, so is § by virtue
of Lemma 5.2. We then have

[(Ro(2 + i0)d)(x)| < C(1 + |x| + [x5)%2,
by the well-known property of the Hankel function. Hence
I(F(h* Z e)w)(xP, xp) | =gy < ) £ C(1 + [x5]) 72 (59
We next consider P, (h*)F(h? < ¢)w. Passing to the generalized Fourier transform,
we have

P, (W )F(h* < e)w = Zfe @o(k/e)( — Ay, — A+ k —i0) ™ Ty(k)* Tp(k)g dk .
0

By the Sobolev inequality, we have
I (Pac(RP)F(h? < e)w)(xP, x4) 2= (1x#) < )
< CUI(Pac(h*)RPF(h* < &)w)(x*, Xg) |20y < a 4 1

+ ” (Pac(hﬁ)F(hﬂ § 8)W)(xﬁ> xB)“Ll(lx”l <a+ 1))
2e

<C (f) (= 4x, — 2 + k = i0) " Tp(k)* Tp(k)g) (X", xp) 2t < a4 1y
C being independent of ¢ and x;. Using the decay property of the Green’s function
of — 4,,, we have
(= 4sy — A+ k = 10) " Ty(k)* Ty(k) g) (", xp)]
< C( + Ix)) ™I g * (Ty(k)* Ty(k)9) (X%, xp) I 2 rs) »
for sufficiently large s > 0. We have, therefore,
[(Pac(RP)F (R < e)w)(x”, Xp)llL=(1x1 < a)

2¢

S CA A+ Ixpl) ™" [ I <xp»* P> > Typlk)* Ty(k)g Nl Loy dk -
0
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Since ¢ is rapidly decreasing, by Lemma 5.3, the above integral is dominated by

2¢
(L4 x5 [ k™Y2dk = C(1 + [x) "' /e . (5.10)
0

Equations (5.9) and (5.10) show that if [x?| < a, P,.(h*)w = o(r ™) as r = |x,]
— o0, which completes the proof of Theorem 1.3.
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