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Abstract. New bounds are given for the L2-norm of the solution of the Kuramoto-
Sivashinsky equation

dtU(x, t) = -(d2

x + dA

x)U{x, t) - U(x, t)dxU(x, t) ,

for initial data which are periodic with period L. There is no requirement on the
antisymmetry of the initial data. The result is

limsup||£/( , ί ) | | 2 < const. L 8 / 5 .

1. Introduction

In this paper, we prove new bounds on the Kuramoto-Sivashinsky equation (KS) by
extending the ingenious method of Nicolaenko, Scheurer, and Temam [NST]. We
study the KS-equation in its "derivative form:"

dtU(x,t) = -(d2

x + d4

x)U(x,t)-U(x,t)dxU(x,t) . (1.1)

The "original equation" is for the integral, H(x,t) = f* dξU(ξ,t). Before we start
with the bounds, we give some background material. The interest in the KS-equation is
based on its relation as a phase equation for hydrodynamic problems, see Manneville
[M] for a derivation. We consider the equation on the interval [—L/2, L/2], with
periodic boundary conditions. Since U should be thought of as the derivative of a

periodic function, we always require f_L/2U = 0. In the paper [NST] it is shown

that if the initial data are in L2, and are antisymmetric with respect to the origin, then
the evolution leaves them in L2, forever, and there is a global attracting set whose
diameter in L2 is bounded. This bound depends on the size L of the system, and the
bound given by [NST] is
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limsuρ||ί/( ,ί) | | 2 < const L5 / 2 . (1.2)

We shall drop the requirement of antisymmetry and prove that

limsuρ||E/( , ί ) | | 2 < const. L 8 / 5 , (1.3)

see the Main Theorem (4.2) in Section 4. A similar result, proved with different
methods, and less stringent bounds, can be found in Ilyashenko [II].

The mathematical and physical interest for this equation has to do with the mech-
anism which stabilizes this problem. To understand the problematics, we consider the
equation for the Fourier transform of U (with a factor i):

U(x,t) = iY^un{t)eιnqx .
nGZ

Note that

\\U(Ίt)\\2

2 = L ^ K ( t ) | 2 = L\\u(t)\\\ , (1.4)
nGZ

where u(t) - {un}nez The Eq.(l.l) takes now the form

d t u n ( t ) = C n u n ( t ) + \ q n ] P u n ι u n n , n G Z , (1.5)

where q - 2π/L and Cn - (nq)2 — (nq)4. Note that the spectrum of the linear operator
C is unstable for |n| < \/q - L/(2π). If \q\ > 1, all initial data converge to zero in
L2 since

! J 2 = Lj2 £«K| 2 < (q2 - q4) I U2 ,
nGZ

since UQ = 0. Henceforth, we can thus assume \q\ < 1. In that case, the nonlinearity
will stabilize the potentially growing modes. But there is an important difference to
other non-linear equations such as the Ginzburg-Landau equation:

d t u n ( t ) = ( 1 — q 2 n 2 ) u n ( t ) — V ^ u n ι u n ι ι u n m , n G Z . ( 1 - 6 )
nf+nf/+nΠ/=n

In Eq.(1.6), the stabilization is through the amplitude of each individual mode un

(through the diagonal term un Σn/+ n//=o'αn / Wn / /) I n contrast, in the KS-equation, it
is only the coupling of many modes together which collectively stabilize the equation.
Note also that, in contrast to the Ginzburg-Landau equation, the sign of the nonlinear
term is not related to the sign of the linear term. The mechanism of collective sta-
bilization is the source of all complications in proving bounds for the KS-equation,
and is also the basic reason for the absence of bounds in the infinite volume. The
"nonlocal stabilization mechanism" is beautifully illustrated in the construction of
stationary (i.e., time-independent) solutions by Frisch, She, and Thual [FST]. In our
normalizations, they construct periodic, time-independent solutions as follows: Let
n 0 be such that 0 < 1 - (gn0)

2 = e2, with e sufficiently small. Then one can find a
stationary solution of the form
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u±TlQ = ±λ/Ϊ2e + O(e2) ,
— 2 f\ί 3\

u±2n0 = Te + O(e ) ,
U±pnQ = O(€P) , p > 2 .

Here, the first mode, ΐ/no is linearly unstable, but it is coupled in such a way to the
second mode u2n0

 t 0 make the whole situation stable (and, in fact, stationary).

2. The Antisymmetric Case

We consider the class of real, L-periodic functions, with vanishing integral:

rL/2

: U(x + L) = U{x) , / dx U{x) = 0

J-L/2

We define the operator C by Cf = -d2

xf - dxf, so that the KS-equation is

dtU = CU -UU' . (2.1)

We shall omit the arguments of U whenever no confusion is possible. Rewrite U as
U(x, t) = V(x, t) + Φ(x\ where Φ, V G V\. Then, V satisfies the equation

dtV = CV + CΦ- W - VΦ' - ΦV1 - ΦΦ' . (2.2)

Remark. Suppose that the function Φ(x) equals x. Then, we get the equation

dtV = (C - \)V - W - ΦV' - ΦΦ' . (2.3)

The operator C — 1 is negative definite, and this is the source of the convergence proof
of [NST]. The "error terms" -VV - ΦV' - ΦΦ' will have to be bounded carefully.
Note that x is not a periodic function, but we shall choose a periodic function Φ for
which C — Φ' is a negative definite operator.

Denoting always by j the integral over a period we get from Eq.(2.2), using
integration by parts:

/

ί ί ί ί f

V2 = VCV + / VCΦ - / V2V' - - / V2Φ' — / VΦΦ' (2 4)
/ / / 2 / / '

J J J J J

The term J V2V vanishes. We will use the Eq.(2.4) and variants thereof to bound
V, as a function of time. If V\, V2 are sufficiently smooth, we can define the bilinear
form

fL/2 rL/2 rL/2

(Vi, V2)ΊΦ = / VI'Vi' - / V[V{ + 7 / F1F2Φ / . (2.5)
J-L/2 J-L/2 J-L/2

Note that this definition is formally equivalent to
(VUV2)ΊΦ = - / Vι(C~-fΦ')V2 , (2.6)

but we shall always refer to the form of Eq.(2.5) in manipulations below. We will
show that this form is positive definite. Note now that the Eq.(2.4) takes the form:
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\dt I V2 = -(V, V)Φ/2 - (V, Φ)Φ . (2.7)

We define the space ΛL of antisymmetric functions of period L:

ΛL = {U : U(x) = -U(-x), U(x + L) = U(x)} . (2.8)

The KS-equation leaves this space invariant, but it does not leave the space of sym-
metric functions invariant. Finally, we define the two quadratic forms

RΊΦ(U) = ([/, U)ΊΦ ,

dx{U"f(x) + \ ί dxU\x) .
-L/2 J-L/2

In these definitions, L is fixed once and for all. Our first main result is

Proposition 2.1. There is a constant K such that the following holds for every L > 0:
There is a function Φ G ΛL such that for all 7 G [5, 1 ] and all V G ΛL one has the
inequality

RΊΦ(V) > Q(V) . (2.10)

Furthermore,

RΊΦ(Φ) < KLl6/5 . (2.11)

Remark. The quantity RΊφ(Φ) is in fact independent of 7, since the 7-dependent term

is 7 / Φ2Φ' = 0, by the periodicity of Φ. Thus, RΊΦ(Φ) = Ro(Φ).

Remark. The preceding result is inspired by the proof of [NSTJ, but with a better
bound. The proof will be given in the next section.

We can use the preceding proposition for a quick proof of the following result
which is an improvement of the bound Eq.(1.2):

Theorem 2.2. If the initial data UQ(X) = U(x<0) of the KS-equation are in ΛL, then
the solution is attracted to a ball of radius const. L8/5 in L2. More precisely, there is
a constant K\ (independent of L and UQ) such that

limsup||i7( ,0||2 < K{L
S/5 .

/-»oo

Remark. We can apply the bound of Theorem 2.2 to improve a series of known bounds
for the KS-equation. For example, in [T], it is shown that the Hausdorff dimension
dπ of the universal attractor is bounded above by (9(L3//2). In fact, it is shown that
this dimension is related to the bound O(Lβ) of the L2 norm by Lβ5+wβ)/4i). Thus,
we obtain a bound dπ < O(L51^40) from our results. The conjectured "best bound"
is about O(L).

Proof of Theorem 2.2. We can write the Eq.(2.7) as follows, choosing suitable con-
stants e, e\ e.g., c = 2/3, c' = 2/3:
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\dt fv2 = -(V,V)Φ/2-(y,Φ)φ

< ~{V, V)Φ/1 + f (V, V)Φ + £(Φ, Φ)Φ

= J V ((1 - f )£ - Φ;(I - f)) V + ^

207

(2.12)

Here, we have used the inequality (2.10), and the choice of 7 > \. The assertion
follows from the definition of Q and from Eq.(2.11).

3. Proof of Proposition 2.1 and construction of Φ

The reader who is only interested in the general case, can skip this section at a first
reading except for the construction of Φ which will also be used in the general case.
We fix throughout L > 0 and let q = 2π/L. If V G AL, then we can write V as

Vn = -V-n = -V-n ,

so that vn = —V-n G R, and VQ = 0. Similarly, if Φ G AL, then

(3.1)

and, since Φ' G R we have φn = φ~n G R. We also require ^0 = 0.
We now exploit, as in [NST, Appendix], these symmetries to simplify the expres-

sion for RlΦ{V) = {V, V)ΊΦ. We have

\ [dxV\x)Φ\x) = y

k+£+m=0 k,£ k/

Using now υk = -V-k and φk = ψ_k, ψ0 - 0, we get, with En = ~{nqf +

-(V, V)Ίφ = 2
n > 0 /c,m>0

n > 0

= 2

k,m>0

nK; + 2 7
n > 0

= 2

_n>0

k,m>0
kφm

k>m>0
k+rn\ - ψ\k-m\)
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We shall bound the bracket J = [ ] from below.
Here, our method varies with respect to that of [NST], without being radically

different. We assume henceforth that φ2n = 4 for n < 2/q and φ2n > 0 for n > 2/q.
Then,

En+Ίφ2n > \

as follows easily from 7 > | and from the definition of φn. We now define

so that En + ηφ2n > τ\. The main idea is now to set υnτn = wn, so that J is bounded
below by

V^ 2 o V^ Ψ\k+m\ — Ψ\k-m\ . / τ ,

2^ w; + 27 2_^ wk~ -Wm = (w, (Id
TkTn>0 k>m>0

To show Eq.(2.10) of Proposition 2.1, we will show that J > \{w, w) for 7 e [1/4,1].
(The assertion follows then at once from the definition of Q.) For this, it suffices to
check that the Hilbert-Schmidt norm of 2^Γ is less than \. But this means that we
only have to verify that

^_^ φi^.^i — φ\h m\ 1

W1
 HHS = 2_^ < Tf, ' ^ >

k>m>0

We want to choose φ such that the inequality (3.2) holds, while, on the other hand,
we want to minimize (Φ, Φ)ΊΦ as a function of L. In view of the first requirement the
choice φn = const, will be the best, however, in order to make the norms of Φ finite,
the Fourier coefficients of φ have to vanish sufficiently fast as n tends to infinity.
Therefore we choose ψ(ή) = φn to be a non-increasing Cι function having a small
derivative. We do this in the following way: For a natural number M to be chosen
later, we define φ2n+\ = 0 and, for even n,

, _ J 4, when 1 < \n\ < 2M
Vn " \ 4/( |n |/2M - 1), when 2M < \n\

where / is a non-increasing Cι function satisfying /(0) = 1, f'(0) = 0 and

< 00 . (3.3)

Then we have, for all k > rn > 0,

\Φk-rn - Ψk+m\ = 0 , if k + ΊM < 2M ,

and

|^A;-m — ̂ /c+m| < 4m/M , for all /c > m .

Therefore, we have the following estimate of the Hilbert-Schmidt norm of Γ
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M

m=l

V"
τn=l

Equation

oo
2^2 Σ ->

k=2M-m+l

2 r-2

m J
_2

l θ v—A o

m=M+l

16 ^
/Γ9 / ^ ^

oo

™ 2 Σ
k=m+ί

/•OO

Γ-2 /
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771=1 m=M+l

Taking again integrals as upper bounds for the sums we obtain

64

/M

128 7 c 16 o fi< q~ΊM~5 + — g ~ 8 M ~ 6 . (3.4)

Definition. We choose M as the smallest integer bigger than 4g~7/5= 4(2τr/L)~7/5.

Then Eq.(3.4) implies the desired bound on the Hilbert-Schmidt norm of Γ. Sub-
stituting into Eq.(3.4), we find, since we only have to consider the case \q\ < 1,

\\Γ\\ls < 11/256 < 1/16 .

So far, we have only used the first condition on / in Eq.(3.3). Using the second
condition, we estimate the scalar product of Φ. There is a constant K such that

4π
(Φ,Φ)ΊΦ = Ro(Φ) = —

n=l

< KL16/5(l

The proof of Proposition 2.1 is complete.

4. The general case

We now come to the extension of the method to the case of functions U G V°L,2. The
reduction to half the interval will be exploited below. The idea will be to consider a
generalization of the quantity V, namely V = U — Φ&, where Φb(x) = Φ(x + b). The
translation b will be carefully chosen below. We consider now Z = Z(V) = fV2.
Note that the integral extends still over a length L, i.e., twice the period of U. All
integrals below are over [—L/2, L/2]. Note that, in the antisymmetric case, we have
really studied Z with b = 0.

Since U does not have symmetry properties in the general case, we can choose
in principle any comparison function Φ^', these comparison functions form a closed
curve in V\ ΠL2. The idea of the proof is to show that the distance of U to this curve
will diminish until it reaches some saturation value. The point b will be chosen as a
function of time, in such a way that the gradient of the distance function is essentially
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parallel to a line connecting U to the closest point on the curve. More precisely, we
define 6(0) = 0 and we define b(t) as the solution of the equation

L/2

dxU(x,t)Φ'm(x) . (4.1)

Note that

and that

dxU(x,t)Φ'm(x) = - / dxV(x,t)Φ'm(x) .
-L/2 L J-L/2

Also, if U G V^^ then so is V, since Φ has only even Fourier coefficients. The
existence and uniqueness of solutions to the Eq.(4.1) and to the KS-equation are
shown for completeness in Appendix A. Our main bound is:

Theorem 4.1. There are constants a > 0, and β such that for all L > 0 and all
as

dtZ < -aZ + βL16^5 . (4.2)

'L/2 O ΐ i e ^aS

Clearly, this implies l i m s u p ^ ^ Z(t) < (β/a)L16/5. Since Z = J(U-Φb)
2 and since

\\\Φb\\l < RΊΦb(Φb) < KLl6/\ by Eq.(2.11), this implies our main result:

Main Theorem 4.2. Let the initial data UQ = £/(-, 0) of the KS-equation be in T\, Le.,
L-periodic, and of integral 0. There is a K^ {independent of L and UQ) such that

limsup||/7(.,t)||2 < K2L
S/5 .

Proof of Theorem 4.1. The proof is very similar to the one for the case of antisym-
metric functions. Instead of Eq.(2.7), we now have,

\dt j V2 = -(V, V)Φb/2 - (V, Φb)Φb - φφ) j VΦf

h , (4.3)

with a new term coming from the derivative of b. There is an analogue of the inequality
(2.10): We define, similarly to Eq.(2.5), the bilinear form

fL/2 fL/2 4 2 rL/2 fL/2

BΊΦh(vuv2) = - / vί/ vi + T / v&'M + -f- / vxΦ'b.
J-L/2 J-L/2 L J-L/2 J-L/2

Then, one has

Proposition 4.3. For all V E V°L/2, all b e R, all 7 G [|, 1], and all L > 0, one has

BlΦh(V,V) > Q(V). (4.4)
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The proof will be given in Section 5, and we continue with the proof of Theorem 4.1.
Note first the identities (V,Φb)Φb = BΦb(V,Φb) and BΦh{Φb,Φb) = R0(Φ). Further-
more, the inequality (4.4) has just one more term than Eq.(2.10), and thus we find,
as inEq.(2.12):

\dtZ < -e'Q{V) + j-eR0(Φ) + 5Γ ( / VΦ'λ - φtb) J VΦ'h . (4.5)

By the construction of b in Eq.(4.1), the last two terms in (4.5) cancel and we get

\dtZ < -eQ(V)+j-eRo(Φ) .

Since Q(V) > \ J V2, the assertion of Theorem 4.1 follows.

5. Proof of Proposition 4.3

It suffices to prove the proposition for b = 0 since the inequality (4.4) is invariant under
translation. When b = 0, it is useful to define the spaces ΛL and SL of antisymmetric
and symmetric functions of period L:

ΛL = {V :

SL = {V : V(x) = V(-x) , V{x + L) = V(x)} .

(The space ΛL was used before.) We also define

S°L = {VeSL : V(0) = 0}

If V G V\ ,2 then we can decompose V as follows:

V{x) = V(0) + Vs(x) + Va(x) ,

with Vs e S^ ,2 and Va G ΛLJI We define now the operation T : S\ ,2 -* ΛL by

\ ifxe[-L/2,O] '

see Fig 1.
Note now that from the definition of RΊφ and Q it follows that

RΊΦ{TVS) = RΊΦ(VS) , Q{TVS) = Q(VS) .

This is checked easily by using the definition Eq.(2.9) of the quadratic forms. There-
fore, we can apply Proposition 2.1 to TVS and we see that for Vs e SL,2, one has

Lemma 5.1. If Vs G S^,2

 an^ RηΦ> Q are defined over the original interval
[-L/2, L/2] then one has

RΊΦ(VS) > Q(Vs), (5.1)

when 7 e [|, 1].
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-L/2 L/2

TF

-L/2 \ / 0 L/2

Fig. 1. A function F G <$^/2 and its antisymmetrized part ΎF G Λ L

We now write Φb=o = Φ, with Φ defined in Section 3. Note that

- / V2Φf = - ί VlΦ' - ί VlΦ' -2 f VsV(0)Φf - ί ViOfΦ1

= - ί VlΦ1 - ί VlΦ' - i f V(0)VΦ' ,

since the term / V(0)2Φ' vanishes. Using Lemma 5.1, we get

VCV - 7 fv2Φ'= ( VaCVa - Ί j VlΦ'

+ / VSCVS - 7 I VlΦ' - 27F(0) / VΦ'

= -RΊφ(Va) - RΊΦ{VS) - 27V(0) f VΦ'

< -(Q(Va) + Q(Y8)) - 27T/(0) ί VΦ' .

Note now that

Va) + Q(Vs)= \

= ϊ

2 + vs

2

"2
Va + V(0)) Va + V(0))2 + ±

where we have used the fact that V € Vϋ

L/2 and therefore 0 = / V = LVφ) + / V̂ .

Thus,

-RΊΦ(V) = j VCV - jV2Φ' < -Q(Y) - jVφf - 2ηVφ) j VΦ1 . (5.2)



Attractor for the Kuramoto-Sivashinsky Equation 213

Completing the square, we observe that

/ VΦf < ^ - ( ί VΦ* (5.3)

Combining the inequalities (5.2) and (5.3) the assertion of Proposition 4.3 follows.

Appendix A. A Priori Bounds

It is well-known, see e.g. [T], that the KS-equation has a unique solution Ut for all
initial data Uo in H = L2 Π V\. In particular, we have the estimate

\dt ίu
2 = ίucu < \ ίu2,

which implies

We next prove the existence of a unique solution of Eq.(4.1). This equation is of
the form

dtb = F(t,b) . (A.2)

It follows from the existence of strong solutions of the KS-equation that F is contin-
uous in t. Furthermore, F is differentiable in b and

dbF = —

which is finite because of the estimate (A.I) and because Φ'ζ e L2, and 11Φ̂ 7112 is
independent of b. Therefore a unique solution satisfying b(0) = 0 exists for all T > 0.

Acknowledgement. This work was supported by the Fonds National Suisse. Our collaboration was made
possible by the hospitality of the IHES, Bures-sur-Yvette.

References

[FST] Frisch, U., She, Z. S., Thual, O.: Viscoelastic behaviour of cellular solutions to the Kuramoto-

Sivashinsky model. J. Fluid Mech. 168, 221-240 (1986)

[II] Uyashenko, Yu.S.: Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation. J.

Dyn. Differ. Equations, in print

[M] Manneville, P.: Dissipative Structures and Weak Turbulence, San Francisco-London, Academic

Press, 1989

[NST] Nicolaenko, B., Scheurer, B., Temam, R.: Some global dynamical properties of the Kuramoto-

Sivashinsky equations: Nonlinear stability and attractors. Physica D16, 155-183 (1985)

[T] Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. Berlin, Heidelberg,

New York: Springer, 1988



214 P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe

Communicated by A. Jaffe
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our paper had been accepted for publication.
Goodman, J.: Stability of the Kuramoto-Sivashinsky and related systems. Commun. Pure Appl. Math, (to
appear)

This article was processed by the author
using the Springer-Verlag T^X CoMaPhy macro package 1991.




