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Abstract. The addition of a topological model to the matter content of a conventional
closed-string theory leads to the appearance of many perturbatively-decoupled space-
time worlds. We illustrate this by classifying topological vertex models on a
triangulated surface. We comment on how such worlds could have been coupled
in the Planck era.

1. Many Worlds in String Theory

Topological quantum field theories [1,2] are characterized by their invariance under
local smooth deformations of the background metric. Thus adding a two-dimensional
topological model to the matter content of a conventional critical closed-string theory
should not affect the decoupling of the Liouville mode and hence also the theory's
consistency. Could this then imply that critical string theory is not unique?

In order to address this question we must specify more precisely what we mean
by topological models. One way to define them, following Atiyah [3], is through a
set of axioms. The basic data is a finite-dimensional space ,W of states created by
local field operators {φ1 = I, φ2,..., ΦM}> together with their (symmetric) two- and
three-point functions on the sphere:

(ΦaΦb)sph = Vab > (ΦaΦbΦeϊsph = Cabe (!)

The two-point function ηab = clab must define a non-singular bilinear inner product,
which identifies J¥ with its dual: (0α)* = φa = τ]abφb. Here and in the sequel indices
are raised with the inverse metric ηab and repeated indices are implicitly summed.
Unitarity requires the correlation functions of self-adjoint operators to be real. Using
the three-point functions and the metric, we can give 3@ the structure of a commutative
operator algebra

Φa X Φb = Cab

eφe . (2)
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Now the crucial axiom is the assumption of factorization, which allows us to calculate
a correlation function on an arbitrary Riemann surface by first deforming the surface
into a collection of three-punctured spheres connected by long thin tubes, then cutting
the latter by inserting the identity operator I = \φa) (φa . Factorizing, in particular,
the four-point function on the sphere along two different channels gives the duality
constraint

cab

ecj = cbc

ecj , (3)

which implies that the commutative operator algebra is also associative. Under these
conditions it can be shown that there exists a self-adjoint basis, φa = (S~ι)a

bφb, in
which the algebra is diagonalized:

f λπ if α = i> = e,
ηab = δab and c α b e = j Q o t h e r w i s e (4)

The non-vanishing correlation functions in this basis are

<C)r = λf- 2 ^, (5)

where Γ is the genus of the Riemann surface. When translated in the original basis
these read

M
IA A \ — V ^ Qa QCL \2Γ-2+n ,^
\φ . . . CD IT1 — / O . . . D n Λn . IO)
\~ a\ T a<n / l / _> a\ un a χ ^

α = l

Note that the requirement (\ΦaΦ}j)φ = Vab i m pl i e s t n a t λα

 = O^i)" 1 -
Suppose now that we tensor such a topological model with the matter content

of a conventional critical closed-string theory. Both the SL(2, C) vacuum and all
physical vertex operators will in this case carry an extra index a = 1,.. ., M, since
multiplication by φa does not change the conformal properties of fields. The string
amplitudes are simply those of the conventional parent string theory, multiplied by
the (constant in moduli space) correlation functions of the topological model1. We
thus obtain M copies of the graviton, dilaton, antisymmetric tensor, etc...., which at
first sight may appear to interact. This is, however, an illusion since in the "tilde"
basis these copies decouple to all orders in the string loop expansion. A similar
phenomenon has been observed before, in the continuum limit of matrix models [5].
Note that these M copies differ here only in the value of the string coupling constant,
i.e. the vacuum expectation value of the dilaton field, but other backgrounds can be
also varied independently. For instance, modding out by a reflection of some internal
coordinate times a Z 2 symmetry of the topological model will yield a collection of
string theories defined either on the circle or the orbifold.

What we see here is another entry in the long dictionary between world-sheet
and space-time properties. A topological model on the former translates into the
appearance of many worlds in the latter. If these worlds were truly decoupled, this
remark would have only philosophical value. However, in a theory of gravity, such
worlds could have been coupled in the Planck era and/or through non-perturbative
effects, as illustrated in Fig. 1. Understanding such effects in string theory is therefore
intimately connected with understanding how a topological phase of two-dimensional

1 What we are here discussing is, a priori, simpler than the so-called "topological strings" [2,4],
obtained by coupling topological matter to topological gravity. Indeed, the contact algebra of
topological strings does not seem to factorize into the contact algebra of pure gravity times the
operator algebra of topological matter. To be sure, the structure of these models is not yet fully
elucidated
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Fig. 1. A non-perturbative contribution to the functional integral for the wavefunction of two
universes. Perturbative contributions would correspond to (Euclidean) space-time histories with the
topology of two disjoint disks

matter can be reached. Furthermore, as has been argued by Witten, such understanding
may be also relevant in the study of space-time singularities [6], as well as of a possible
phase of unbroken general coordinate invariance [1,7,13].

To make further progress on these issues we must, however, abandon the above
axiomatic definition of topological models and study instead how these arise from
some local world-sheet dynamics. Several possibilities have been suggested in the
literature: σ-models on a manifold with complex structure [1,2,8], twisted N = 2
supersymmetric models [2,9], gauged WZW models [10] and finally topological
models on a cut-off triangulated surface [11,12], The absence of spurious degrees
of freedom for the metric makes the characterization of lattice topological models
particularly simple and these models will be the subject of the remainder of this letter.
We will, in particular, show how under some assumptions they can be completely
classified, confirm the above cloning of string theories and suggest a qualitatively
but intuitively appealing picture for the wormhole of Fig. 1. Though many parts of
our analysis have appeared in the literature in various contexts before, putting them
in a new perspective could, we hope, be a useful prelude towards addressing the
aforementioned hard non-perturbative issues of string theory.

2. Topological Models on a Triangular Lattice

Consider an oriented genus-Γ surface <yMΓ made out of A identical equilateral
triangles. As is well known, the way of gluing these triangles together encodes
all invariant information about the underlying two-dimensional metric [14]. We will
consider a class of ("matter") spin models on ̂ Γ defined as follows: the spins,
denoted by lower-case Greek letters {α,/3,... = l , . . . , s } , live on the oriented
links of the lattice. To every oriented triangular plaquette with spins a, β, and 7
we assign a Boltzmann weight PaβΊ, while to every link with spins a and β in
the two orientations we assign a weight laί3. Both POίβΊ and la(3 must be symmetric
under cyclic permutations of their indices, which corresponds to local rotations on the
surface. Plaquette weights, on the other hand, need not be invariant under orientation
change, so that in general PaβΊ is not equal to PaΊβ.

The partition function is a product of plaquette and link weights, summed over
all possible values of the spins on the oriented links of the lattice. More general
correlation functions can be defined by drilling holes on the surface and fixing
the values of the spins on their boundaries. As a simple illustration consider two
triangles glued together to form a disk or a cylinder as shown in Fig. 2. The
corresponding correlation functions, that would be equal if the plaquette weights
were fully symmetric, read:

Γ) — P P ]σσ' ]QQ — p σ p Q (H\
Uaβ — ^aρσ^βσ'ρ'1 l = ^aρ *βσ \'J
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Fig. 2. a The elementary area-2 disk defining the correlator Daβ. b The elementary area-2 cylinder

defining the correlator Caβ

and
— p p j
— ΓocρσΓβρ'σ/l

jρρ — p σ p Q
1 - Γaρ ^σβ >

(8)

where indices are here raised with la/3. All partition (correlation) functions are clearly
invariant (covariant) under the similarity transformation

(9)

with T an arbitrary invertible complex matrix. These transformations define an
equivalence relation among different spin models. A further equivalence can be
defined through restriction, if in some basis certain values of the spin never occur in
the interior oϊ^MΓ. If, for example, laί3 were degenerate we could obtain an equivalent
theory by restricting the values of the spins to those labelling a basis for the subspace
of non-null eigenvectors. Without loss of generality we may therefore assume in what
follows that la& has an inverse, which we denote by laβ. Note finally that the models

considered here are the most general vertex models on the dual φ3 -graph ^ * . We
will refer to them for brevity as vertex models.

Let us consider now the behaviour of correlation functions under local variations of
the metric in the interior of JMΓ. The key observation [11, 12, 15] is that these latter
can be generated by two elementary moves: the link-flip and pyramid moves illustrated
in Fig. 3a and b respectively. We may therefore define the class of topologίcal vertex
models by imposing invariance under these two moves. The corresponding conditions
read:

± l - v R -L C-/Λ/ ^ R r s i -* /-v£ 7

and

' aβ y J- nuFi ^Re- -* /-i//"

(10a)

(10b)

When these are satisfied, correlation functions only depend on the genus of the surface

and on the values of the spins at its boundaries. We will therefore denote them by

Cj (ΐ)-i ra(n)Λ> where {a^} are the values of the spins ordered according to the

induced orientation around the hth hole. A special name will be reserved for correlation
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Fig. 3. a The link-flip move, b The pyramid move

functions on the sphere with n length-one boundaries, or one length-n boundary. We
will refer to them for short as ?ι-point functions on the sphere and disk, and use
the already anticipated notation: C f t , . α i i Ξ c £ = j » _ _ w and Daι Q n EΞ C } ^ Q n }

respectively. Note that the three-point function on the disk is simply the plaquette
weight: PaβΊ = Daβr

Some comments are in order here concerning the above definition of topological
models. First, it includes as special cases all models studied in [11,12J. Nevertheless,
it could be still conceivably relaxed in a variety of ways. One may, for instance,
demand topological invariance only in the continuum {A —> oo) limit, or for only a
subset of external (boundary) states. One may also drop the pyramid-move condition
altogether. This introduces only area in addition to genus dependence, because link
flips suffice by themselves to connect any two surfaces of fixed A and Γ to each other
[15]. Finally one may consider continuous and/or unbounded spins. We will comment
on some of these variations below, though an exhaustive study lies beyond the scope
of the present letter.

The conditions for topological invariance, Eqs. (10a, b), have a simple interpreta-
tion, if we define a formal algebra .//, generated by a basis of linearly independent
vectors {roQ, a = 1...., s}, with multiplication rules

The link-flip condition implies that the algebra is associative. In that case, the structure
constants define the so-called regular representation where wa is represented by a
matrix with entries Paβ

Ί\ β, and 7 being the column and row indices respectively.
Both Eq. (7) and the pyramid-move condition (10b) are then summarized by the
following elegant form for the n-point function on the disk

D
a{...an

x m (12)

This rewriting suggests that the algebra . /, encodes all information about the
underlying topological vertex model. Indeed, as we will explicitly confirm below,
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all correlation functions can be expressed in terms of the structure constants Paβ
Ί

alone. The alert reader will have, in fact, recognized that ,/ί plays the same role for
open strings, as the algebra 3@ did for closed ones. Indeed, the link-flip condition is
the condition of planar duality, while the lack of commutativity reflects the fact that
open-string states cannot be freely permuted on the boundary. Classifying topological
vertex models turns out, therefore, to be equivalent to classifying Chan-Paton factors
for open strings. This problem was analyzed some time ago by Marcus and Sagnotti
[16] 2 and we will essentially repeat their argument below. Of course any open-string
algebra ,A has a closed-string descendant M, defined by the two- and three-point
functions of the corresponding topological vertex model on the sphere. The precise
relation between y& and 3S will be established in Sect. 4.

3. Examples

Let us, however, first illustrate the above discussion with three concrete examples of
topological vertex models. These will, in particular, give us a better understanding of
how the advocated cloning of string theories occurs.

Fig. 4. Conventional spin model on the triangular lattice. This model is topological only at T —> oo
or, for ferromagnetic interactions, T = 0

(a) Ferromagnetic Potts model. Consider Potts spins z, j , . . . e {1,... ,d} located
at the sites of the triangular lattice and interacting among nearest neighbours, as
illustrated in Fig. 4. This model can be described in our language by assigning to
each oriented link a pair of indices that designate the values of the spins at endpoints,
a = (i,j), and by choosing the link and plaquette weights as follows:

so as to ensure that all spins at a common endpoint coincide. Here W2(i,j) =

K exp — is the Boltzmann weight for the corresponding link, with K a constant.

Note that, because of the fluctuating coordination number of vertices, we cannot
accommodate into W a constant external field, a remark that will play a role in the
sequel.

2 These same authors also suggested [17] representing certain Chan-Paton factors with boundary

fermions φ1. These can be considered as the remnant of a topological action, J d2σεtJdtφ
]djφ1,

on the world-sheet
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Simple inspection shows that the Potts model satisfies the topological invariance
conditions (10a, b) only in the two extreme cases: W(i,j) = δτj or W(i,j) — d~1/6,
corresponding t o a T = 0 o r T - ^ o o ferromagnet. At T = 0 all correlation functions
on a connected surface vanish unless all spins on all boundaries are aligned. Thus
there is one propagating open- and one closed-string state for every value of the
spin, or equivalently for every world-sheet ground state. The corresponding algebras
are isomorphic to the trivial algebra of d mutually annihilating orthonormalized
idempotents: ^4 ~ 3@ ~ Cd. All diagonal couplings λ̂  = 1, so this model cannot
distinguish the genus of the surface.

At T —* oo, on the other hand, ,Λ ~ End(Cd) is isomorphic to the algebra of
all d x d complex matrices. Since the high-temperature phase is, however, unique,
there is no cloning of theories, i.e. there is a single propagating closed-string state.
Its coupling constant is λ = 1/d, as can be read off from the partition function
Z{Γ\T -» oo) = d n 2 - n i + n o = d2~2Γ, where n 2, nv and n 0 are the numbers of
faces, edges and vertices of ̂ MΓ. This is of course the well-known counting used in
the topological expansion of matrix models [14].
(b) Lattice gauge theory: The link variables /, g, /ι,... are in this case elements of a
compact group G. The theory is defined by

lfg = δ(fg) (14a)

and
Pfgh = ΣdrPrXr(f9h), ( 1 4 b )

r

where δ(g) is the group (^-distribution, which sets its argument equal to the identity.
The choice of link weights ensures that inverting orientation amounts to group
inversion. The cyclically-symmetric plaquette weight, on the other hand, is an arbitrary
class function of the corresponding Wilson loop, expressed in terms of its character
decomposition. Here dr is the dimension of the representation r and pr are arbitrary
coefficients. Using the orthonormality relations

{g-{)=jδ^>δjk6H, (15)

where dg stands for the normalized Haar measure and R^hg) for the matrix element
of g in the representation r, one can check that

P / Λ / V = P9f>hpfh9' = Σ drPlxΛf9f'9'), (16)
r

so that the link-flip move condition is automatically satisfied. As a result, Yang-Mills
in two dimensions is, modulo area dependence, a topological theory [12,18]. Equation
(15) is actually all one needs to calculate an arbitrary correlation function, with the
result [12]

C{Z {9u} = Σ dl~2Γ~nPrXr(9l) • XM > ( 1 7 )
r

where gh is the Wilson-loop around the hth hole. To prove this statement, one deforms
a surface by gluing triangular plaquettes on its boundary and integrating out the group
variable(s) along the common links. Each plaquette will contribute an extra power
of pr in the character decomposition of the result. The powers of dr in Eqs. (14b)
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and (15) on the other hand, will generically cancel out except when one creates or
destroys a connected component of the boundary, in which case one loses or gains,
respectively, an extra power of dr. Since any Riemann surface can be constructed
this way, the above result follows easily. In the case of a finite group of order \G\ the

above analysis holds, provided we take Vg — —— δ(fg) = —- δ^9jl instead of (14a),
|G| |G|

and replace in the orthonormality relations (15) the Haar measure by the average over

the group, — £ .

I G IFor the theory to be truly topological, the correlation-functions must be area-
independent. This implies that for all representations, either pr = 0 or pr = 1 3 . Let
us assume, in particular, that pr — 1 Vr, so that Pfg

h — δ(fgh~ι). In this case ,sβ
is the so-called group algebra, and the partition function measures the volume of
flat gauge connections on ,/MΓ, with the result: Z ( Γ ) = ]Γ d2

r~
2Γ. Furthermore, as

r

seen from Eq. (17), inequivalent closed-string states are in one-to-one correspondence
with the conjugacy classes of the group. Their algebra 3/ξ, read off from their two-and
three-point functions on the sphere, is isomorphic to the so-called algebra of classes.
Comparing Eqs. (6) and (17), we see that this algebra can be diagonalized in the basis
of representations {φr}, with the diagonal structure constants λ r = l/dr

 4 . We thus
obtain one decoupled theory for every irreducible representation of the group. The
change of basis between conjugacy classes and representations is effected, for a finite
group, by the matrix Sr

a = Wa\χr(ga), where \Wa\ is the number of elements of the
class Wa with representative ga.
(c) Gauged σ-model. A question that arises is whether we can find a model for which
M is the fusion algebra of group representations, equipped with the usual conjugation
operation. Let us assume for definiteness that the group G is finite. Writing the fusion
coefficients in the form

a ' '

shows that they are diagonalized in a basis of classes, with diagonal couplings given
by Λα = \/\G\/\Wa\. Let us therefore try to construct a spin model like the one shown
in Fig. 4, but with spins taking their values in G, and with Boltzmann weights forcing
them to lie in the same conjugacy class

l Σ h~l) (19)

This model is invariant under spin transformations / —>• gfg~ι with g chosen
independently at every site. It resembles, in this sense, the topological gauged
WZW models G/G [10], for which M is believed to be the fusion algebra of
the corresponding quantum group representations. This is, however, where the
analogy ends. Indeed, although the closed-string algebra of the above spin model
is diagonalized in a basis of classes, its diagonal couplings, after appropriate
normalizations, turn out to be λα = 1/|2^|, in disagreement with (18). As we will in

3 It is amusing to observe that by choosing, for a continuous group, the coefficients pr appropriately,
one can modify the string-susceptibility exponent. We thank E. Kiritsis for bringing up this point
4 To avoid confusion, we stress again that the diagonal structure constants are meaningful because
we normalized the propagator or two-point function on the sphere to one
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fact now prove, a generic fusion algebra cannot be obtained from a topological vertex
model, because the inverse couplings of the latter are necessarily quantized.

4. Classification

The classification of topological vertex models is a simple corollary of some standard
results on the structure of algebras [19], which we will use without proof in this
section. First let us suppose that the algebra ,S associated with the topological model
has a non-trivial (φ {0}) radical M, i.e. a non-trivial maximal nilpotent two-sided
ideal. Being nilpotent, the elements of M have a vanishing trace in any representation
of algebra. Furthermore, being an ideal, M is closed under multiplication by an
arbitrary element of ,A. Thus for any ρ <G M, we have Trreg(zi7α x Wβ x ρ) = OVα, /?,
so that elements of the radical cannot appear on any elementary plaquette of the
surface. We may therefore define an equivalent topological model by restriction:
,A —»,/^/J. Put differently we can assume without loss of generality that ,/& has no
radical and is hence semi-simple.

Now a semi-simple algebra has a unique decomposition into a direct sum of
mutually annihilating simple components:

M

Jί = 0 ySa with ,Aa xΛb = 0 if a φ b. (20)

A simple algebra over the complex field, on the other hand, is always isomorphic to
a complete matrix algebra

d ) . (21)

Thus the most general yS is isomorphic to an algebra of all block-diagonal matrices,
M

with M blocks of sizes da x da (a = 1,..., M); the dimension of ,/& is s = Σ d2

a.

For instance the group algebra is isomorphic to φ End(Cd r), while its dimension,
r

for a finite group, is precisely the number of group elements, Σ °? = l^l
r

The M components in the decomposition (20) correspond to M completely
decoupled theories. Indeed, from (12) we see that the plaquette weights, and hence
also all other correlation functions, vanish unless all boundary spins belong to the
same irreducible component. Let us therefore concentrate on a single component or,
to simplify notation, take ,,4 = End(Crf). We may choose for this algebra the basis
{τα, a = 1,.. ., d2} of d x d matrices, such that τx — — ldxd, while the remaining

τa are hermitian, traceless and normalized so that Tr(r ar^) = - δaβ. These matrices

provide in fact the only non-trivial irreducible representation of the algebra, contained
d times inside the regular representation. From the expression (12) for the two- and
three-point functions on the disk it is then straightforward to deduce that

( 2 2 )
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Note in particular that laβ is nothing but the two-point function on the disk, Daβ,
which is invertible because yί has no radical. Substituting now into expression (8)
for the two-point function on the sphere, and using the orthocompleteness relation

2

OL=\

one finds
CQβ=Tr(τa)Ύτ(τβ). (24)

Since Tr(τα) = <5αl, we conclude that, out of the d2 open-string states in yS, only the
one corresponding to the identity propagates as a closed-string state. Allowing holes
of length more than one does not, in fact, introduce any new linearly-independent
states in M\ Indeed, with the help of Eqs. (22) and (23) we can compute an arbitrary
correlation function with the result

Π

where lh is the length of the hth hole, and {a(h)} = {a\h\ . . . , a\^} the values of the
spins ordered around it modulo cyclic permutations. Clearly any closed string state
{a^} is a simple multiple of the state {1}, the three-point coupling of this latter
being equal to l/d. We thus conclude that the only effect of adding a topological
vertex model with yS — End(Cd) to the matter content of a closed string theory is
to renormalize the string coupling constant. More generally, the space of propagating
closed-string states is the center of, A, and contains M elements corresponding to the
identities of the simple components.

Both this renormalization by an inverse integer, and the cloning of theories when

t S has more one simple component, have been already illustrated by the infinite- and
zero-temperature Potts ferromagnet. The point of our discussion here was to prove
that an arbitrary topological vertex model can be reduced to the above two simple
effects. We summarize this in the following

Proposition. Inequivalent topological vertex models are in one-to-one correspondence
with semi-simple algebras yί over the complex numbers. These, in turn, are isomorphic
to a direct sum of M complete matrix algebras of dimensions d2

afor a = 1,. . ., M. The
center of \A is the commutative algebra of closed-string states, M. The diagonalized
structure constants of this latter in an orthonormal basis are Xa = l/da.

The above analysis goes in fact through with little change, if one drops the
constraint of invariance under the pyramid move of Fig. 3b. The net effect is that for
every simple component of yS, laβ can now be an arbitrary multiple of the identity,
i.e. the two-point function Daβ on the disk of area two, Eq. (7). This corresponds to
an independent renormalization of the world-sheet cosmological constant for every
decoupled component of the theory as illustrated in the example of gauge theory with
arbitrary plaquette action, Eq. (17).

More important is the fact that the above classification was based on the assumption
of equivalence under the complex transformations (9). These allow us, for example,
to transform lattice gauge theory into an appropriate Potts model. Nevertheless, it
could happen that only a subset of these transformations are admissible. Consider
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for instance the coupling of topological matter to pure gravity, described by a matrix
model with partition function

where Φa are hermitian N xN matrices, \/N is the bare string coupling constant and
In μ the world-sheet bare cosmological constant. The perturbative expansion of this
integral is left invariant under arbitrary complex changes of basis, Φa —» Ta

 f3Φ
β'. As

a result, we conclude from our discussion that within perturbation theory the model
(26) is equivalent to M decoupled models of hermitian matrices with renormalized
sizes (daN) x (claN). Note, however, that only real transformations leave invariant
the integration contours in the complex-Φ space. This could be important if one had
a non-perturbative definition of the integral. Another situation in which only real
transformations are allowed, is when one wants to twist by a parity that distinguishes
hermitian and anti-hermitian states of the topological model. In such circumstances
we need the finer classification of algebras over the field R of real numbers. A generic
. / is now a direct sum of complete matrix algebras over a finite extension of R. i.e.
over the real, complex or quaternion fields. This is precisely what allows the addition
of SO(d), U(d) or USp(d) quantum numbers to open strings with Chan-Paton factors
[16J.

5. Conclusions

We conclude our brief tour of topological vertex models with two remarks. The
first concerns the quantization of the inverse couplings of closed-string states in the
diagonal ("tilde") basis. This quantization is not required by the axioms of [3], and
there are examples, such as the coset G/G models [10], for which it does not hold.
Such models could, to be sure, be put on the lattice if we allowed a constant external
field to act on the spins in Fig. 4, or else [20] if spins could take their values
in a quantum group a la Woronowicz [21]. Neither construction seems, however,
compatible with a local, cyclically symmetric plaquette action, or equivalently with a
factorizable open-string ascendant. The question of how to couple such models to a
theory of both open and closed strings deserves further study.

Our second comment concerns the wormhole of Fig. 1. We may think of this as
describing the approach to the simplest topological model, namely the ίsing model
at zero temperature. Indeed, consider a background for which the temperature T
varies continuously from large values to zero as a function of Euclidean time. Then a
splitting of worlds will occur precisely when T crosses the critical temperature into the
ferromagnetic phase. Alternatively, we may consider a cosmological scenario in which
the conformal factor, or the distance on the triangulated world-sheet, plays the role of
Minkowski time [22]. If the Ising temperature were chosen below criticality at the cut-
off, it would renormalize towards zero at larger scales, so that two decoupled worlds
would emerge asymptotically in time. It may be possible to study this quantitatively,
by considering the appropriate flows in the two-matrix-model.
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