
Commun. Math. Phys. 152, 127-160 (1993) Communicat ions ΪΠ

Mathematical
Physics

© Springer-Verlag 1993

Fusion and Singular Vectors
in A(/} Highest Weight Cyclic Modules

M. Bauer and N. Sochen

Service de physique theorique de Saclay*, F-91191 Gif-sur-Yvette Cedex, France

Received February 1, 1992; in revised form August 10, 1992

Abstract. We show how the interplay between the fusion formalism of conformal
field theory and the Knizhnik-Zamolodchikov equation leads to explicit formulae for
the singular vectors in the highest weight representations of A^\

I. Introduction

Infinite dimensional Lie algebras occur everywhere in the study of 2-d conformal field
therories: the Virasoro algebra and the affine algebras are the most common examples.
However, the construction of the irreducible representations of these algebras is
quite involved. Singular vectors are important because they indicate the existence
of subrepresentations in a given representation. In the affine case, Kac and Kazhdan
[12] gave the criterion for the reducibility or irreducibility of the Verma modules and
Malikov, Feigin, and Fuks [16] found a formula for the singular vectors. This formula
looks very simple, but involves an analytic continuation to make sense, which makes
it very difficult to use.

Apart from the purely mathematical description, several approaches motivated by
physics have been proposed, based on vertex operators (see [18] for a general reference
dealing with A±), bosonization and variants of the Feigin and Fuks construction and
BRST cohomology [4]. In the physical context, the importance of singular vectors
comes from Ward identities: to calculate a correlation function involving a descendent
of a primary field, one simply applies a linear operator to the correlation function
of the primary [2]. A singular vector is a descendent that is set to zero in an
irreducible representation, with the consequence that the correlation functions of the
corresponding primary satisfy closed linear relations, leading to a contour integral
representation.

One of the aims of this paper is to show that elementary methods of conformal
field theory allow us to understand some important features of the structure of
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representations of these algebras. Our inspiration comes from remarks at the end
of the seminal paper of Belavin, Polyakov, and Zamolodchikov (see Appendix B in
[2]). We restricted our attention to the A^ algebra not only for simplicity (although
generalization is not straightforward we believe that the same methods applied to
other affine algebras will lead to interesting results), but also because we hoped to
get a better understanding of the construction made in [1] by Bauer, Di Francesco,
Itzykson, and Zuber for the singular vectors in Virasoro Verma modules.

The basic idea is the following: the symmetries of conformal field theories are so
large that they determine "almost" completely the structure of the operator product
expansion of primary fields. A remarkable homogeneous linear system, the system of
descent equations (see Sect. IV.3), encodes this structure. The singular vectors are in
the kernel of the descent equations, and by duality, they also appear as an obstruction
to solve the linear system. This can be used to compute them.

The A^ case has its own peculiarities, but is in a sense easier to deal with than
the case of the Virasoro algebra, and a more complete treatment is possible. We still
expect a precise connection between the two cases via Hamiltonian reduction [5],
although as yet we have only been able to work out some simple examples.

The organization of this paper is as follows. We begin with a short reminder of
the basic notions in the representation theory of affine algebras in our particular case.
We introduce Verma modules, singular vectors, and the contravariant form. This is
standard material, included only for the sake of completeness. For a more detailed
and pedagogical presentation, see [13]. The next section quotes (without proofs and
again restricting to the A^ case) the results of Kac and Kazhdan [12], and the
formula for singular vectors given by Malikov, Feigin, and Fuks [16]. In Sect. IV we
introduce the notion of Verma primary fields and explain fusion from a naive point
of view. This leads to the "descent equations," which summarize the structure of the
operator product expansion. We end this section with some comments showing the
relation with a more mathematical definition of fusion. In Sect. V we derive important
consequences of the descent equations, using the contravariant form as a fundamental
tool. This leads to the existence of fusion rules. In Sect. VI we recast the descent
equations in triangular form, and point out the role played by the so-called Knizhnik-
Zamolodchikov equation. This allows us to calculate recursively all the descendants
of a primary field in a fusion process. We use this recursive form in Sect. VII to obtain
explicit recursion relations or matrix forms to calculate the singular vectors. The next
section is devoted to some simple comments related to our initial motivations, i.e.
the relation with the case of the Virasoro algebra via Hamiltonian reduction. Some
technical details are treated in appendix.

II. Basic Definitions

ILL The A[ι) Algebra

The A] algebra (which we shall also denote simply by ^S) can be presented as a
current algebra with generators k and J£, n G Z, a £ {-,0, + } . The non-vanishing
commutators are:

[ J m , Jn J = άzJrn+n YJm-) Jn\ — ^ rn^n-\-m •>
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This algebra is doubly graded if we define

d(J%) = a, d(k) = 0, d(J%) = n, d(k) = 0.

The so-called principal gradation d = 2d + d is used to define several subalgebras
needed to construct the A^ Verma modules. We remark that the commutation relations
with JQ simply calculate the d gradation, i.e. ad(J^) is multiplication by d. It is also
useful to add to J& a generator called D with analogous properties with respect to d,
that is

[D,J«] = nJ°, [D,k] = 0.

The Jacobi identities are still true because <_/& is graded by d. Shifting D by a constant
does not change the commutation relations. We set ,Λ — <A Θ CD. In physical
applications, the Sugawara construction will provide an explicit form for D, so adding
it to ^ is not completely artificial. Up to an additive constant, —D will be the energy
operator, which we require to be bounded below in representations.

We write

where %x is the subspace on which d = 2d + d takes the value i and <§f_ (resp. &+) is
the direct sum of the ^ ' s for negative (resp. positive) i's. Finally we let Jffi — ̂ θ ^ + .
The dimension of ^ is 3 and the dimension of <§ζ, i φ 0 is 1 or 2 depending on
whether i is even or odd. It is easy to check that the smallest Lie subalgebra of ^S
containing W_λ (resp. 2^) is W_ (resp. <£+). Furthermore &_λζ&<£λ generates ^4. This
last observation can be generalized (see [11]) to give an axiomatic definition of affine
algebras by generators and relations, leading to a theory very akin to the theory of
finite dimensional complex semi-simple Lie algebras.

We introduce now the basic tools to study a certain class of representations of ^>.
We begin by recalling some useful concepts. For the rest of this section, we more or
less follow [11].

II.2. Verma Modules

Let W be a Lie algebra. We shall denote by U{ίf) its universal enveloping algebra.
Representations of & and left [/(^-modules have the same meaning.

We recall two results which we shall need later on.
• The first one is the Poincare-Birkhoff-Witt (PBW) theorem: fix a basis ηi of 5^ as
a vector space, where i belongs to some ordered set /, then monomials of the form
η% ... 7 , where ix < . . . < in, form a basis of U(S?) as a vector space.

• The second one is the fact that E/(<§?_) does not contain zero divisors.
For an elementary and lucid account on universal enveloping algebras, see [14].
Verma modules are usually defined by giving properties that characterize them.

The starting point is a one dimensional representation of <§̂ , a maximal Abelian

subalgebra of ^β. In this representation, J® and k act by scalars which we denote
generically by j and t — 2. By analogy with the finite dimensional Lie algebra Av we
shall sometimes call j the spin of the representation. The value of D is immaterial,
we take it to be 0. This space is a one dimensional representation of B if we let &\
act as 0. We denote this representation by C ( j '^. The Verma module is the induced
representation U{ί7^)^u^^Q^'t\ As an ?70^)-module this is isomorphic to the
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quotient of U{,A) by the left ideal generated by JQ - j , k - (t ~ 2), D_, and the

J^'s in &+. Any element in U(^S) can be written as a linear combination of terms of

the form x_xox+ with xa e U((ζy

a) for a G {-,0,+}. Hence V3^ is isomoφhic to

Ό{W_) as an [/(gL)-module. If x e Ϊ7(^) we denote its image in the quotient by \x).
The module property is simply that x\y) = \xy), and we call |1) the highest weight
vector, a terminology borrowed from the theory of semi-simple Lie algebras. Later,
when we need to manipulate several Verma modules at the same time, we shall use
the notation \j,t) for the highest weight vector in V^^. The Verma module V^3)V>

has the following properties:

1. The module V^3^ contains a one dimensional subspace Voo carrying a represen-

tation of J? isomoφhic to C3^.

2. The smallest subspace of V^M stable under the action of ,Λ and containing Vo 0

is V{3^ itself.
3. Any representation of Λ> satisfying the first two properties is isomoφhic to a
quotient of V^\

Representations satisfying properties one and two are called cyclic representations.

n
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(4,-4) (4,-3)

m

(2,-2)
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(4,-2)
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Fig. 1. The set /

Let us finally remark that V^^ is a doubly graded representation. In fact the PBW
theorem implies that the monomials

(where all but a finite number of the integers p's are zero) form a basis of the Verms
module. The values of — d and — d on such a monomial are respectively n = Σ W% Q

and m = — ̂  &Vτ^
 a n c^ w e s e e m a t n ^s always non-negative and m is never lesί

i,a

than — n. We denote by / (see Fig. 1) the set of couples (n,m) and end up with ι
decomposition

v
(n,m)el

Highest weight cyclic modules are quotients of Verma modules. Thus they are
doubly graded.
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11.3. Singular Vectors, the Contravarίant Form and Representation Theory

It is important to know whether V^^ is irreducible as a U(,s4)-module or not. Two
important tools allow us to reformulate this question and will also prove useful later
on when we discuss fusion:
• Vectors lying in V^3^ with vanishing projection on V^o and annihilated by ^_,
called singular vectors,
• A bilinear symmetric form on V^^ called the contravariant form.

As a consequence of an elementary algebraic lemma, any linear subspace F of
V^'^ stable under the action of D_ and J® can be decomposed as

F= (Φ) F
Γ VE7 Γn,m

(n,τn)£l

with F m = Vn rn Π F. It follows that Verma module is irreducible if and only if it
contains no singular vector. If it is reducible it contains a unique maximal submodule
Ms, the smallest submodule containing the linear subspace of singular vectors.

We are now going to recover Ms from another object, the covariant bilinear form

on V^^\ We extend the linear anti-automorphism σ of ,4 of order two defined by

σ( J£) - Γa

n σ(k) = k , σ{D) = D

to U(./S). We let x in U{,A) act on Vo 0 and take the projection of the result on
Vo 0 . This defines an endomoφhism of the one dimensional space Vo 0, i.e. a complex

number l(x), linear in x. We can now define b(x, y) = l(σ(x)y) for x, y G IJ{J&). The
form b is bilinear symmetric and factors through a bilinear symmetric form on V^ht\
We use the notation (x\y) for this bilinear form called the contravariant form. The
kernel of this bilinear form is Ms. We denote by \x)* the linear form associating to
\y) the complex number (x\y).

To summarize

Theorem 11.1. The following properties are equivalent:
1. The module V^^ is irreducible.
2. The module V^^ contains no singular vector.
3. The contravariant form on V^^ is non degenerate.

11.4. The Sugawara Construction

The idea that in some quantum field theories, the energy-momentum tensor is a
suitably renormalization bilinear combination of the currents proved to have many
applications in the representation theory of affine algebras (see for instance [11]). We
shall see several examples in the rest of this paper.

Let us define elements Cn for integral n by the following formulae:

m— — co

Cθ = 5<J0+ J0 + Jθ 4 + 2 « ) +
m=l
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The expression for Co is some normal ordered version of the generic expression.
These operators live in some completion of U{yS) but have a well-defined action on
yθ,ί) As such it is well known that they satisfy the following commutation relations:

[C m , C J = t(m - n ) C m + n + ±t(ί " 2) (m3 - m)<5m+n .

So, for t φ 0, T/^'^ carries automatically a representation of the Virasoro algebra
with central charge c — 3(t — 2)/t and conformal weight hj = j(j -f \)/t if one sets
Ln = Cn/t. The currents are primary fields of weight one. As a byproduct, we remark
that the enlargement of ^ in Ji is also automatic in the class of representations we
studying. We simply use Lo instead of Zλ

III. Fundamental Results

We introduce some notations. The set of couples (n, m) G / such that m φ 0 and
n is a multiple of m is denoted by j(sing) (see Fig. 2). The elements in I(smg) are in
one to one correspondence with the elements of the set J(sins) of couples of integers
(α, β) such that α φ 0, /3 > 0, and a + |α|/3 > 0, by the map (α, β) -> (|α|/?, α). We
shall often use this parametrization of J<sing>. For (α, /?) G J(sms>, we define j α β(t) to
be the solution of

t\a\β + a(2jaJ3(t) + I - a) = 0.

The first theorem, due to Kac and Kazhdan, localizes the singular vectors in certain
subspaces Vn^m.

(0,0)
' (

® ® (§) ®(•)•(•)•(•)•(•)•
® ®® ®® ®

• •) <u
® ®®® ®®® ®

® •(•)•(•)•(•)•(•)•
Fig. 2. The subset is in§ of/

Theorem IΠ.l (Kac-Kazhdan, [12]). For nonzero t the Verma module V^^ contains
a singular vector at level (n,m) if and only if there is a couple of integers (α,/3) G
j(smg) s u c n tfoat ( n m ) _ Qa\β,a) and j = j a β(t). Then the dimension of Sn is
exactly one, i.e. the singular vector is unique up to an overall factor.

This is an immediate consequence of the following lemma.

Lemma III.2 (Kac-Kazhdan, [12]). The determinant Dn of the contravariant
form in Vn m (defined up to a non-vanishing basis dependent overall factor) is
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proportional to

Armed with this result, it is possible to look for "explicit" expressions. This was

done by Malikov, Feigin, and Fuks. We quote their result for A^\

Theorem III.3 (Malikov-Feigin-Fuks, [16]). Fix a nonzero t. The vector

for positive a (resp. the vector

(J ) \ \ ( j γ \ ( β ) ( j ^

x (J-)M+W-4). . . (J+0lal+t(β-l)\3a,β(t), t) (4)

for negative a) is a non-trivial element ofS^βa in y^e*,/^*)'*), [%e% fs a singular vector.

These are expressions involving complex exponents of the operators JQ~ and J^ 1 ?

and they do not make sense a priori. Malikov, Feigin, and Fuks are able to prove that
they make sense by using the following trick: they prove identities relating products of
integral powers of generators of CS_, and observe that these identities admit an analytic
continuation for complex powers. Starting from the above expression, by repeated
application of these identities, they end up with a well-defined expression belonging
to U(&_) and depending polynomially on t. Moreover, naive manipulations using the
commutation relations as if the exponents where non-negative integers "show" that
the above expressions are singular vectors. Uniqueness of the analytic continuation
integers "show" that the above expressions are singular vectors. Uniqueness of the
analytic continuation ensures that this is indeed the case.

In the case when a is a positive integer and β = 0, there is no analytic continuation
to implement, because (3) reduces to (J^)a\ja β(t),t). One recovers the well-known
singular vector for the v^-subalgebra {JQ~, JQ, JQ1"}. The simplest non-trivial case
where analytic continuation is needed is (α,/3) = (1,1). We treat this example in
Appendix A.I to illustrate the method.

It is fair to say that explicit calculations of singular vectors remain quite
complicated, but these compact formulae exhibit naturally many non-trivial properties.
Among these, we quote
• The singular vectors are naturally normalized. We denoted by <§f_ the Lie algebra
of generators of degree (with respect to the principal gradation d) less than 0. The
generators of degrees less than - 1 form an ideal in W_, and we can consider the
quotient Lie algebra. In this quotient Jo~ and J^ι commute, and the operators acting

on \jaίβ(t),t) to give the singular vectors reduce to (J0~)α +lαl / 3(J+1)lαl / 3.
• Another useful property of the singular vectors is that with the above normalization
they are polynomial in t.

In the rest of this paper we shall give alternative formulae for the singular
vectors. They are quite efficient and have an intuitive physical interpretation. They
are connected with fusion rules. However, we have neither been able to show the
relation between the two approaches, nor to check directly the above properties.
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IV. Primary Fields and Fusion

We first give some motivation for our abstract definitions, considering for a while
general properties of quantum and conformal field theories. In a Euclidean quantum
field theory, the short distance singularities in the correlation functions can be
understood in terms of operator product expansions: when the spatial arguments of
two local operators almost coincide, we can replace their product by some asymptotic
expansion in local operators with functions as coefficients. In 2-d conformal field
theory, the operator product expansion, also called fusion, has a much stronger status.
Its convergence is only limited by the position of the nearest operator in the correlation
function under study. The symmetries of the theory are rich enough to determine
almost completely the structure of the operator product expansion. This in turn leads
to a purely algebraic or geometric study of the fusion.

IV. 1. Motivations

Our starting point will be a naive definition of fusion based on elementary properties of
the operator product expansion in 2-d conformal field theory. We shall concentrate on
the holomorphic part of an unspecified conformal field theory but similar statements
hold for the antiholomorphic part. A chiral field Φ(w) is called a primary field of
weight h if its operator product expansion with the holomorphic component of the
stress tensor T reads

T(z)Φ{w) = ( h + l Θw) Φ(w) + regular terms (5)

\(z-wf (z-w) WJ
expressing in the formalism of quantum field theory that Φ(w) is an h form in the
language of complex geometry. The fields appearing in this expansion are also scaling
fields. They have in general more singular terms in their short distance expansion with
Γ and T. All the fields one gets by repeated operator product expansions of T with
a given primary are called its descendants and they form what is called a conformal
family.

When one brings two scaling fields Fx(z) and F2(w) close together, one expects
that in some weaks sense (for instance after insertion in a correlation function) there
is an expansion

Fι(z)F2(w) = Σ 4uF2(z - w)F(w), (6)

where the sum is over all scaling fields and the coefficients cF F are functions. We
can split this sum by putting together scaling fields belonging to the same conformal
family. If (6) is to be true, both sides of the equality should have the same geometric
properties, i.e. change in the same way under a change of coordinates (see [1]). In the
field theoretic language, they should have the same operator product expansion with
the components of the stress-energy tensor (which generates changes of coordinates).
This is only a necessary condition, but it is very powerful as we shall see. To go
from a formalism of correlation functions to an operator formalism, we use radial

quantization and write T(z) = ]Π Lnz~n~2. A simple application of the Cauchy
— oo

residue theorem gives an operator version of (5),

[L m , Φ(z)] = (h(m + l)zm + zm+ιd)Φ(z). (7)
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The operator product expansion of the stress tensor with itself gives of course the
Virasoro algebra

[£m> LJ = <Jn- n)^^ + ^ (m3 - m)δn+πι. (8)

In particular L_ι generates translations and Lo generates dilatations.
Similar considerations apply in the case when holomorphic currents associated to

some semisimple finite dimensional Lie algebra 5? are present. In this case primary
fields have several components. The translation into operator language of the operator
product expansion gives the commutation relations of the untwisted affine algebra
associated to & for the commutators of the currents [that is (1) in the particular case
W — Aχ\. For the commutator of a current with a primary field, we get

[J^Φi(z)] = -zn(RaγtΦj(z), (9)

where the matrices Ra carry a representation of W. So we see that, apart from a
minus sign, the commutator acts as the loop algebra in some representation. This
time a descendant is obtained by repeated operator product expansion of the currents
with a primary. It should be stressed that although the Sugawara construction leads
(in a Verma module) from the S^ commutation relations to those of the Viraroso
algebra for suitable central charge, the commutation relations (9) do not imply that
the components of Φ are primary fields for the Sugawara stress tensor. An explicit
calculation shows that one has to postulate the correct commutation relations with
one of the L n ' s and then the others follow. The usual choice is L_λ, leading to the
Knizhnik-Zamolodchikov equation, which really is a dynamical equation, and not a
mere tautology. We see that descendants of a primary field can split into several
conformal families. By repeated use of these commutation relations (7) and (9) we
can evaluate the commutator of any product of primary fields with the components
of the stress-energy tensor or of the currents, i.e. in a more geometric language the
behavior of such a product under a conformal or a gauge transformation.

If \Ω) denotes the vacuum state (annihilated by all the L n ' s with n > - 1 and all
the J^'s with n > 0), we can create new states by applying a primary field. The states
Φj(0) \Ω) carry a representation of if and we can build on this a representation of the

associated affine algebra. We expect ezL~ιΦJ(0) \Ω) to coincide with Φ-{z^z) \Ω).
All these statements made sense in some a priori known conformal field theory,

where operator products were assumed to be well-defined. This is a naive approach,
but as we shall see, what we do is close to a more axiomatic approach.

IV.2. Verma Primary Fields

It is time now to return to the A^ case. We let t be a fixed nonzero complex number
(sectors of distinctg central charges are decoupled).

First of all we ought to define a vacuum sector. We look for a state annihilated
by all the J^'s for n > 0. It is to be found in a cyclic module and has properties
of a highest weight state. As it should be annihilated by JQ the obvious candidate is
the highest weight vector |0, t) in V(0^. It not annihilated by Jo~ but clearly Jo~ |0, t)
is a singular vector, so we choose for the vacuum sector the resulting quotient and
denote the image of |0,t) (i.e. the vacuum state) by \Ω).

We want now to associate a primary field to an arbitrary Verma module V^jt\
As we saw above, the components of this field should carry a representation of the
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finite d imens ional Ax a lgebra generated by J§, a = — ,0,-f. T h e subspace φ ^(o,m)
m

of yO'ΐ) carries such a representation. It is finite dimensional, spanned by the Taylor

coefficients of the family of states exJo | j , t) (parametrized by a complex number x).
On this family of states Jo~ acts as D~ = d/dχ9 J® as D® = j — xdx, and JQ as
Ώt = 2jx — x2dx. Hence the natural primary field to introduce ought to depend on
one extra variable x, with commutation relations

[J^Φ3(z,x)] = znD«Φj(z,x). (10)

We call such a primary field a Verma primary field. A closely related construction
was proposed in [19]. This leads to define the action of Φ- on the vacuum by the
formula

Then we can use repeatedly the commutation relations (10) to define the action of

Φj(z, x) on the whole vacuum sector. For fixed z and x, ezL~ι+xJo | j , t) is not a state

in V^^ but rather in some completion. Of course, if V^^ is not irreducible, we can

replace it by a quotient module.
Let us mention a more algebraic point of view. The differential operators βf£ =

-znΌa

3 [resp. S?n = —h(πι + l)zm — zm+ιdz\ satisfy formally the commutation
relations of the (non-anomalous) current (resp. Virasoro) algebra. Hence the tensor
product of V^ht) with a suitable space of functions of the variables x and z will carry
a graded representation of A[l) and of the Virasoro algebra with the correct anomaly.
Thus we can interpret Φj(z, x) \Ω) as an element of this tensor having the properties
of the vacuum [i.e. it is annihilated by the same left ideal of U{yS)\. We shall see a
similar phenomenon when we analyze fusion.

IV.3. Fusion and Descent Equations

We shall now try to understand the structure of the operator product expansion of
our Verma primary fields. Suppose that we bring Φ^ and ΦJQ close together and look
for their operator product expansion. For our purpose it is sufficient to consider the
following state

Φ3ι(z,x)ΦJQ(P,Q)\Ω) =Φ3ι(z,x)\j0,t). (11)

We postulate the following expansion, which is the analogue in the operator
formalism of the short distance expansion (6)

^z,x), (12)

where \j,t,z,x) is a (z,x) dependent state in V^^K
Covariance (with respect to the symmetries generated by the current algebra)

implies non-trivial constraints for the right-hand side of this expansion. This leads to
the following theorem, which is crucial for the rest of our discussion.

Theorem IV.l. The covariance of the operator product expansion has the following
consequences:
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1. It fixes the (z, x) dependence of \ j , t, z, x) to be

(n,m)el

with \n,m)j G Vn^

2. It leads to relations among the coefficients |n,

m+ l)\n- l , r a + 1)̂  , (13)

)ό = -(-j + j 0 ~ h + m - l ) | n , m - 1)^. (14)

To find these constraints, we use the following trick: the left ideal in U(^&)
generated by JQ — j 0 , k — (t — 2), Lo — hQ, and the J^'s in &+ annihilates \jQ,i).
Then by using the commutators (10) we get relations that the right-hand side of (12)
has to satisfy. For instance (JQ — j0) | j 0 , t) = 0 implies Φj (z, x) (JQ — j o ) | j o , t) = 0
and after commutation we get

(Jo° - D0

Jχ - JQ)Φ3I(Z, x) | j 0 , t) = 0 . (15)

In the same way we obtain also

(Lo -h0- zdz - hx)Φάι{z, x) bo, t) = 0 (16)

and

(j« - *"£>£ )Φ iι (^ x) Ij0, t) = o v r n e g ; .

As we noticed before, the corresponding constraints on the right-hand side of (12) do
not mix different values of j , and they apply to each term in the sum separately. So we
fix j and decompose \j,t,z,x) = ^ \jyt,z,x,n,m) according to the eigenvalues

of LQ and J j . Then Eq. (15) and (16) imply that

(j -rn- j 0 + xdx - jx) \j, t, z, x, n, m) = 0

and

(h + n — h0 — zdz - hx) |j,ί, 2,x,n,m) = 0,

so they determine completely the x and 2 dependence. We write

with In^m)^ G Vnm. Then we obtain for the other constraintsVn^m

J~\n,m)j = ( - J + i o + ii + m + l ) | n - ; p , r a + 1)̂  for p > 1, (17)

Jp |n, m)j- = - ( - j + j 0 + m) |n - p, m) J for p > 1, (18)

^ Ji + m - l ) | n - p , m - l ^ for p > 0. (19)

This will be the starting point of the definition of fusion.
We expect that these equations, called the "descent equations", are compatible. A

formal proof of this leads to the definition of a family (parametrized by j 0 , j 1 ? and
j) of graded representations of ^?. The vector space V on which they act is a direct
sum of copies of C indexed by couples (n, m) G /, that is V = θ C ( n m ) . We denote
by Ψnπι the vector with component 1 in C ( n m ) and 0 elswhere. The action of J%t
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on V is as follows. The vectors Ψn m are eigenvectors of Lo and J® with eigenvalue
h + n and j — m respectively. Moreover

Jpψn,m = (-3 + JO + h + m + ^ n - p . m + l for p > 1 ,

- jι-\-m~ l)Ψn_ m _ ! for p > 0.

Note that we did just mimic the descent equations. It is easy to check that we
indeed get a representation whatever the parameters j 0 , j λ , and j are. We denote
these representations by iϊj . . The representation property implies that Eq. (17, 18,

19) are compatible. Then they are consequences of (13,14), because J f and JQ
generate t?+ by repeated commutations. D

We introduce the notation μa(j — j o >ii> m ) for the scalar factors on the right-hand
side of the descent equations, that is

Jp&n,m = Va(J~JoJv™)&n-p,m-a V(n, m) G / , VJp

α G S\ .

The striking fact is that μa(j — jo,jvm) does not depend on the Lo degree.
In the formalism of correlation functions, mutually local fields commute. If they

are not mutually local, they do not commute, but after fusion in a given sector, they
commute up to a phase. Thus, in the spirit of radial quantization we expect that
Φ3ι(z,x)\j0,t) has exactly the same covariance properties as (notice the change in
the operator ordering)

e z L _ ι + x J Q φ ζ_z χ^\j +\ (20)

We give the proof in Appendix B. This property allows these two states to be
identified, as far as covariance is concerned.

According to this discussion, we propose the following definition of fusion.
Fusion of the Verma modules V(jι^ and V^0^ in V{ht) is possible if and only

if the descent equations (17-19) have a non-trivial solution. The dimension of the
vector space E3

3ιj of solutions of the set of linear equations (17-19) for the family
of vectors \n,m)j G Vn?m is called the multiplicity of the fusion. A solution of the
descent equations is said to be proper if |0,0) ̂  φ 0.

This deserves some comments.
• The first point is that we could look for analogous definitions involving quotient
modules of non-irreducible Verma modules.
1. Equations (17-19) still make sense in any quotient module of V^3^ and we can
look for solutions in this smaller space, modifying the definition of £7j jo accordingly.
We shall use this generalized definition freely in the following.
2. The case when we consider a quotient module of V^'i'^ or V^30^ is more
complicated. We have to introduce new constraints because the ideal annihilating
the highest weight state is bigger. We shall see examples of this in Appendix C.
• The second point is concerned with the relation between our construction and the
existence of intertwiners between representations. As we saw above in the definition of
Verma primary fields, the differential operators j?^ = ~znD^ [resp. 5€n = —h3(m+
l)zm - zm+ιdz) satisfy formally the commutation relations of the (non-anomalous)
current (resp. Virasoro) algebra. Hence the tensor product (denoted by V{3jt)[z,x])
of V^M with a suitable space of functions of the variables x and z will carry a
graded representation of ^4^ and of the Virasoro algebra with the correct anomaly.
The covariance constraints ensure that the state ^ 2:^~/ l ( )~hl+nx : /0+ 7 l ~ : / + m | n , m ) j ;
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associated to a non-trivial element of R is a highest weight state with highest weight
j 0 in this representation. As such it generates a highest weight module. Hence there
is an intertwiner between V(j0^ and V^Λ)[z,x\. In the same way one can construct
an intertwiner between V(jut) and V^Λ)[z^x]. Admittedly this is very formal. We
do not attempt to define what we mean by "suitable space of functions" and this
prevents us from elucidating the structure the tensor product representation. But this
suggests that our definition of fusion is reasonably close in spirit to what is usually
done. Let us also observe that solving the descent equations, i.e. finding E3

 JQ, is also
an intertwiner problem, because it amounts to find graded linear maps from R3

 3 to
y(j,t) commuting with the action of .7).

• The third point is that we do not impose the absence of short distance singularities
in x-space, that is we do not restrict to the case when j { -f j 0 — j is a nonnegative
integer. This is quite unconventional but well suited to our purposes. As we shall see
in Appendix C, when j γ or j 0 are positive integers of half-integers, the singularities
in x-space disappear. This is related to the existence of singular vectors (see the first
remark above).

Bearing all this in mind, we can now proceed with the consequences of our
definitions. To summarize, we shall give two reformulations of the descent equations.
The first one will be used to show that if V^3)t) contains a singular vector, the descent
equations cannot be solved unless j x and j 0 satisfy some non-trivial polynomial
relation. The second reformulation will recast the descent equations in triangular
form. If V{j)t) contains a singular vector, it appears up to a factor as an obstruction to
the recursive solution of this triangular system. The first reformulation identifies the
factor as (non-trivial) fusion rules, and if they do not allow the fusion of j { and j 0 to
give j , the second reformulation of the descent equation is equivalent to a recursive
formula for the singular vector.

V. First Reformulation of the Descent Equations

As they stand, the descent equations are not very tractable. For given j { i j 0 , and j ,
it is not at all clear whether or not they do have non-trivial solutions. However, we
have the following simple bound.

Lemma V.I. The vector space of solutions of the descent equations in an irreducible
highest weight cyclic module has dimension at most one.

m (0,0)
® ® ® ® ® ® ®

® ® ® ® ® ® ®

® ® ® ® ® ® ®

® ® ® ® ® ® ®

® ® ® ® ® ® ®

Fig. 3. The couples (n,m) satisfying (n,m) < (4,2)

We introduce a partial ordering on the couples (n, m) by the rule (n,m) < (n'\m')
if and only if n < n' and n -f m < nr + m! (see example on Fig. 3). With respect to
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this ordering <§ί+ decreases the degree. This implies that if the descent equations do
have a non-trivial solution in a highest weight cyclic module, then the nonzero |n, m)J

with minimal (n,m) have to be annihilated by < +̂. If the module is irreducible, the
vectors annihilated by ^ + form a one dimensional subspace generated by the highest
weight state. Hence any two solutions of the descent equations are proportional. D

We are going to see that if V{hi) is irreducible, the vector space of solutions of

the descent equations is exactly one dimensional.

Using the representations Rl • , we shall derive consequences of the descent

equations which are much easier to deal with. We define a family of linear forms on

U(β+). Let x + be in U(&+). If we denote by π the projection on C ( 0 0 ) in RΪ y , the

composition πx+ defines a linear map from C ( n m ) into C ( 0 0 ) , i.e. (we identify the

endomorphisms of C with C itself) a complex number unm(x+), clearly linear in x+.

Then unmoσ defines a linear form on £/(?_), thus on V3}t\ We denote this form by

un m and observe that it acts non-trivialy only on Vn m . As |0,0)^ is proportional to

the highest weight of V^^\ by applying repeatedly Eqs. (17-19) until we end at level

(0,0) we do in fact calculate up to a factor the "scalar products" between |n, m) • and

arbitrary elements of V^^. More precisely we have shown

Lemma V.2. The descent equations imply that

\n, m>* = (j, 11 0,0) 3 u n ^ V(n, m) G I. (21)

If we replace the Verma module V^^ by a quotient module, we have to be careful
since un m does not always descent to this quotient. The obstruction is clearly that
ύn m should vanish on the submodule with respect to which we take the quotient.
However, the former reasoning shows that if it does not, the descent equations cannot
have a solution in the quotient module.

V.I. Preliminaries

To use the full strength of (21), we need to know some properties of the linear forms
unrn. The action of unrn on F ( j ) t ) is simple. We begin with

Lemma V.3. If x_ is a homogeneous element of Uiβ'J) of degree (n, ra),
m —m

ύn,m(χ- b'j *)) contains a factor f ] (j - j 0 + j x - m + i) if m > 0 and \[ ( - j +
3o+3ι +m + i) ifm < 0. ι=ι *=1

Without loss of generality, we can assume that x_ is a monomial in the generators
of W_. It is homogeneous in the double gradation, and we call (n, m) its degree. We
associate to x_ an oriented walk on the set /. The starting point is the pair (n, m).
The operator σ(x_) is a product of generators of ĝ _. Each of these generators defines
a step on / according to the double gradation, and the walk ends at (0,0). Knowing
the walk allows x_ to be reconstructed. Relative to the ordering on /, the walk

consists of a decreasing sequence. Now σ(x_) acts on C n m in R3 , and if our sole
purpose is to calculate ύnrn(x_ \j,t}), we only need to know the projection of the
oriented walk on the second factor (i.e. the space of eigenvalues of JQ) because the
descent equation does not depend on the projection on the first factor (i.e. the space
of eigenvalues of Lo). This new oriented walk goes from m t o O and we observe that
each step changes the eigenvalue of JQ of at most one unit. Hence if m is strictly
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positive, this walk contains at least once the steps i —> i — 1 for i — 1,.. ., m. For
the same reasons, if m is strictly negative this walk contains at least once the steps
i —> i + 1 for i = m , . . . , — 1. This leads to the announced factors, ϋ

In general, no other factor is expected, because there is always at least one
monomial x_ whose associated walk consists (after projection on the second factor)
only of decreasing steps if m > 0 and increasing steps if m < 0.

To go one step further in the calculation, we use the particular basis (2). Consider
the monomial

-foo +oo +oo

2=1 ΐ = l i=0

and set ra_ = Σ P%-> m o = Σ P;,o> m + = Σ ί\,+ ' Σ Φί,α = n ' a n d

z i z i ,α

m_ - ra+ = m (then x_|j,t) belongs to Vn ). Define polynomials

- IX + Vfl_ - TΠ+ + ϊ) J | (υ + IX - TΠ_ + ί) .

Then we have

Lemma V.4. The linear form un, ^ takes the value δnyδrnrn,Prn_/rnorn+(j -jQ,jx)

on x_\j,t).

This is a simple application of the descent equations. D

As we remarked above, this "scalar product" has no dependence on the Lo

gradation, with the consequence that, in general, several monomials x_ lead to the
same result. However, ( J ^ 1 ) n ( J 0 ~ ) n + m is the only monomial having m_ — n + m
and m+ — n. The next lemma will allow us to prove the existence of fusion rules

Lemma V.5. For fixed m, the family of polynomials P m _ m Q m _ _ m indexed by m_

and m0 is linearly independent.

Suppose Σm_,m{)

λm-,πι{)

pm-,m{),m_-m i s s o m e vanishing linear combination
of these polynomials. We can group terms to get

The degree of the polynomials

Jj[ (V — U + 771 + ϊ) \\(V + u — m - + ί)
i=\

in v is 2m_ —m, thus they are linearly independent as polynomials in υ. This implies
that Σ ^m^,mo^

u ~~ r^-)rn° = 0 Vm_. This in turn implies that the initial linear
ra0

combination was trivial, i.e. that the λ's were all zero. D
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V.2. Fusion in Irreducible Verma Modules

Lemma V.6. // V^^ is irreducible, the vector space of solutions of the descent
equations is exactly one dimensional. Equivalently, fusion of V^0^ and V^1^ in
an irreducible V^ht) is always possible and unique.

In the case when V^3^ is irreducible, the contravariant form is non-degenerate.
Hence Eq. (21) have a unique solution if we fix the value of (j, t | 0,0) y The solution
is also a solution of the descent equations. The check is easy. It is enough to check
scalar products. Let x_ belong to U(<o_) and J£ belong to <§f+. We have

(x_ I ( j ; I n, m)3) = (σ(Jpx_ | n, m)J

= βaU ~ Jθ> 3\, p,

= Mα0" -JoJnm)(x- \n-p,m-a)3. D (22)

In the sequel, we shall normalize the solution by taking |0,0)^ = | j,ί).

V.3. Fusion in Reducible Verma Modules

In the case when V^3^ is reducible, the contravariant form is degenerate on Ms

which is a submodule, i.e. is stable under the action of U(&_). This implies that the
direct sum of the subspaces Vn m on which the contravariant form is non-degenerate
(we call I' the set of couples (n, ra) such that this is true, and although // depends on
j and t, we shall not mention this dependence explicitly) is a /7(g+)-module. Hence
the descent equations make sense when restricted to this subspace, and by the former
reasoning, the vectors |n, ra)^ for (n, ra) G i 7 are completely determined once the
value of (j, t \ 0,0)J has been fixed, and satisfy the descent equations restricted to this
subspace.

However, this solution cannot always be extended to define the states |n, ra)^ for
(n, ra) G /\/ ; . This means that fusion rules have made their appearance. We shall
examine them shortly. They have interest in themselves, but they will also be of use
later on when we shall give formulae for the singular vectors. A word of caution
is needed here. For generic values of t, there is no hope of building a respectable
conformal field theory, and the word fusion we use here is an extension of what is
usually meant.

Lemma V.7. ifV^3^ is reducible, fusion is not always possible. The descent equation
has no proper (i.e. such that |0,0)^ φ 0) solution in general. A necessary condition
for fusion to be possible is that j 0 and j x satisfy non-trivial polynomial relations.

We mentioned in Sect. Ill a crucial property of singular vectors, called normal-
ization. We can rephrase it by saying that if V^3^ contains a singular vector at
level (n, ra) [there is no need at this point to be more precise, but we recall that
(n, ra) cannot be arbitrary in /] and if we expand it in the basis (2) the coefficient
of ( J ί 1 ) n ( J 0 ~ ) n + m is nonzero and can be rescaled to one (this is the normalization
we find if we use the Malikov, Feigin, and Fuks expressions). The result on linear
independence (Lemma V.5) proved in the preliminaries shows that the value of ύn m

on this singular vector is a non-zero polynomial in j 0 and j x . Hence (21) implies that
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fusion is not possible unless either j 0 and j { satisfy a non-trivial relation containing
t as a parameter, or (j, 1|0,0)^ is taken to be zero. D

These are a priori only necessary conditions. The second one means that the
operator product expansion, if possible, is less singular than expected. Of course, if
y(j,t) contains several singular vectors, each one contributes a (possibly redundant)
constraint on fusion.

If yUJ) i s reducible, it contains at least one non-trivial submodule, and we can
look for solutions of the descent equations in the quotient module. As any submodule
contains a singular vector, the proof of the above lemma shows that there is in general
an obstruction to extending the linear forms un m to the quotient (see remark after
Lemma V.2), with the consequence that the fusion rules are also non-trivial in this
case.

V.4. Truncation of the Descent Equations

We shall now see that the descent equation can be truncated in several ways.

Lemma V.8. If —j + j 0 + h ^ a nonnegative integer i+, it is possible to restrict the
descent equations to the subspaces Vn m such that m > —i+. If —j + JQ — jγ is a
nonpositive integer i_, it is possible to restrict the descent equations to the subspaces
Vn m such that —i_ > m.

In the first case, the descent equations connecting the domain m > — i+ with
the rest of / state that J+ |n, — i+)3 = 0. In the second case, the descent equations
connecting the domain —%_ > m with the rest of / state that J~\n,—i_)3 = 0.
Hence the announced truncation is possible. D

In fact, we have a more precise result, stating that in the rest of Γ, the solution of
the descent equations is identically 0.

Lemma V.9. If —j -f j 0 + j \ is a nonnegative integer i+ and if (n, ra) G V is such
that rn < —i+ then \n,m) = 0. If —j + j 0 — j λ is a nonpositive integer i__ and if
(n, m) e V is such that —i_ < m then |n, m)3 = 0.

This is a simple application of Lemma V.3 and the fact that the contravariant form
is non-degenerate on Vn m , (n,m) G i 7 . D

If both the above conditions are satisfied, (in which case j γ — (i+ - i_)/2 is a
nonnegative integer or half-integer) this truncation is related to the fusion of quotients
of Verma modules. This is shown in Appendix C, where a derivation, using our
technique, of the (well known) fusion rules for the unitary models is also given.

V.5. Algebraic Structure of the Solutions of the Descent Equations

To close this section, we make some comments on the behavior of the solutions of
the descent equation as functions of the parameters j , j 0 , j { , and t.

We already remarked that all Verma modules are isomorphic to U{&_) as U(J?_)-
modules. This allows us to consider them in a uniform way.

Lemma V.10. The action of\/& (hence of Ό{,/£)) on V^3^ is polynomial in j and t.

To give a precise content to this lemma, we use our preferred basis (2) in Vj^ to
write down the matrices of the linear maps J^ mapping Vn m into Vn_prn_a. That
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the matrix elements are polynomial in j and t (in fact of degree < 1) is an immediate
consequence of the constitutive commutation relations (1). The same property of
course holds if we choose another j and t independent basis of Ui&'J). D

If yθ>*) i s irreducible, we have seen that the descent equations have exactly
one normalized solution and we can interpret the normalized sequence \n,m)j as
a sequence x™'m in U(<?_).

Lemma V.ll. Each x™'m is rational in j and t and polynomial in j 0 and j γ . The poles
in j can occur only at zeroes j a β(t) of the determinant of the contravariant form.

According to Theorem III. 1, for fixed (n, ra) and t Φ 0, there is only a finite number
of values of j such that the contravariant form is degenerate on Vn m in y^>*). The
determinant of the contravariant form is polynomial in j and t and the linear forms
un m evaluated at members of the basis (2) depend on j , j 0 , and j x polynomially.
Hence the solution of the system (21), whose determinant is the determinant of the
contravariant form at level (n, ra), has the announced properties. •

The singularities of x^'m as a function of j and t may depend on the value of j 0

and j x . The two above lemmas lead to the following

Corollary V.12. If for a certain choice of (a, β), j 0 and j { , each and every x^.'m has
a limit when j goes to j a ̂ , then the image of the limit of x^'m in V^a^^^ gives
a solution of the descent equations.

VI. Second Reformulation of the Descent Equations

We are now going to derive the most useful consequences of the descent equations.
Then, we shall give a geometric interpretation to our computations.

VI.I. Triangular Form of the Descent Equations

The fundamental result is

Lemma VI.1. Any solution of the descent equations satisfies

(tn + ra(2j -f 1 - ra)) |n, m)J

= (-j + Jo + h + m + !)
p=l

- 2(-j + io + "0 Σ J-pln - P' m )

JZp\n-p,m-\)ά (23)
p=0

/or (n,m)^(0,0).

Multiply the descent equations (17), (18), and (19) by J ί p , J°.p, and JZp

respectively. Then the sum Σ Jίp(17) + 2 Σ J^p(18) -f- Σ J-P(
19) g i v e s o n t h e

p=l p=l p=0
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right-hand side of the equality the right-hand side of (23). On the left-hand side,
one recognizes the definition of (Co — JQ(JQ + 1)) \n, m)^ which is nothing but the
left-hand side of (23). D

For (n, ra) = (0,0) it is natural to interpret (23) as the empty relation 0 = 0.
It will be useful later on to separate Eq. (23) to get a system

n ΊΎΊ > — ί — 1

• — p , ra)

- (-J + Jo ~ 3\ ~ 1) Σ J-P\n -P,m-
0

(tn + ra(2j + 1 - ra)) |n, ra) = |n, ra) •

The important property of Eq. (23) is its triangular structure. The appearance of
the pref actor tn -f- m(2j -f 1 — ra) should not come as a surprise. If this pref actor does
not vanish, the state \n,m)J is expressed in terms of lower degree (we still use the
same ordering in /). Hence, if j and t are such that tn + m(2j + 1 — ra) vanishes
for no non-trivial value of (n, ra) [this is more restrictive than demanding that j is
not a j a β(t)], (23) has a unique proper normalized solution, whatever the values of
j 0 and 2\ a r e By unicity, this solution has to be a solution of the descent equations.
However, we can show a little more.

For fixed value of j and t, we call I7 7 the subset of / containing the set of pairs
(n7,ra7) such that tn -f m(2j -f- 1 — ra) ψ 0 for any (n, ra) G I\(0,0) such that
(n, ra) < (n7,ra7). The set I" contains (0,0).

Lemma VI.2. Equation (23) restricted to I" has a unique normalized solution, and
this solution satisfies the descent equations.

By the definition of I7 7, the direct sum 0 Vn m is a U((?+)-module. Hence
{n,nι)el"

Eq. (23) and the descent equations make sense when restricted to this subspace of
y ( j '^. It is clear from the triangular structure of (23) that the restricted equation
has a unique solution. As I7 7 is included in /7, we know that the descent equations
also have a unique normalized solution for (n,ra) G /7/. These solutions have to co-
incide. D

We also have a weaker result when (n, m) is "as close as possible" to I7 7.

Lemma VI.3. Let (n, ra) G / be such that (n7,ra7) < (n, ra) implies (n7,?n7) G /7/.

- p, ra — α) VJ; eJp\n,m)j = (tn + ra(2j + 1 - m))μa(j - j 0 , j l 5

Let us first note that, with the hypotheses of the lemma, either (n, ra) belongs to In

or tn + ra(2j -f 1 — ra) = 0. According to Lemma VI.2, |n, ra) , which is expressed

is well-defined. To prove the

= Jf . We do the calculation

only in terms of vectors \n'^m')^ with (n^ra7) G /7/

lemma, it is enough to check the cases J^ = J ^ and ^ f

in detail for JQ1", and leave the other verification to the motivated reader. Using the
commutation relations (1) we obtain
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j
o
 + h

- 2(-j + j
0
 + m)

p=l

- Jl
p
) \n - p, m)

J

p=\

- (-3 p Jo - 1)J .(24)

p=0

On the right-hand side, the descent equations are valid, because we can simply
invoke Lemma VI.2. (Notice that we might also argue by induction as follows. The
vector |0,0)j always satisfies the descent equations. We assume that the descent
equations are valid for the predecessors of (n,m) and we follow the rest of the
proof of Lemma VI.3. Then if (n^m) belongs to /", tn + m(2j + 1 — ra) does not
vanish and we infer that |n ,m) J is well-defined and satisfies the descent equations,
completing the induction step and giving an alternative proof of VI.2.). Using the
descent equations we get

m) p,
p=l

p=\

m) Σ J-p\n - V.

+ (-J + Jo -Jι+m-l) (-J + j 0 -jy+rn-2)

P=o

3\ +m- V) (25)
p=0

We recognize many terms of the right-hand side of (23) for the couple (n, m - 1).
We obtain

j + 2- m)) \n,m - 1)

m) ] Γ J+p\n - p, m)3

+ 2(-j + j 0 - j , +m -

n

+ 2(-j + Jo + m) ^ J+

p=l

p
p=l

m -

n -

P=o
- p, m - (26)
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There are many cancellations on the right-hand side, and except for the first line
and the term p = 0 in the last line, everything disappears. But JQ acts on |n—p, m— 1) •
as multiplication by j — m + 1, and we finally obtain

, rn)Ί — —(—j + j 0 — Jι + m — 1) (tn + m{2j + 1 — m)) |n, ra — 1)̂  •

We deduce the following result, which is reminiscent of Corollary V.I2. For fixed
nonzero t, we can consider the solution of Eq. (23) as a function of j , j 0 , and j x . A
given couple (n, m) belongs to I" for all but a finite number of values of j , and the
form of Eq. (23) gives another proof that the vectors x™'m G U(%_), introduced in
Sect. V.5, are rational in j and t and polynomial in j 0 and j x . However, the prefactor
tn + m(2j + I — m) in (23) leads to consider "spurious" poles for xtum. We know
that the true poles are the zeroes of the determinant of the contravariant form. Hence,
the only couples (n,m) that contribute to the poles are of the form (\a\β:a) for
(α,/3) G J s i n g .

Corollary VI.4. Let (n,m) e I be such that for j = -t 1 , {n1\mf) <

(n.m) implies (n/\πι') G /". // \n.m) n m_ι = 0, then xn_!ΊU has a limit when

j —> —t 1
1 . ( t n i m~~* Λ)

—. The image of this limit in Vκ 2m 2 ' ' satisfies the descent
equations at degree (n, m).

We are interested in the behaviour of \n.m)n near j = — t 4~ + ^τ~- The vector
1 ' '3 J 2m 2

χ}y11 e U(X_) (corresponding to |n,ra) G y ( j / ) ) is well-defined and analytic in j

in a neighbourhood of —i 1 . Hence the vanishing of
Lm

n. m)

implies that (tn + m(2j + 1 - m ) ) " 1 ^ ! ! ' " 1 has a limit when j -* -t- 1 — . We
Lvsx L

take this limit to be #™'m at the point j = —i 1 . The proof that this limit
2m 2

satisfies the descent equations at degree (n, in) is the same as the proof of Corollary
V.12. D

VI.2. The Knizhnik-Zamolodchikov Equation

Although the derivation of (23) is simple, its physical meaning is not clear. We
shall now show that (23) is a consequence of the Knizhnik-Zamolodchikov equation,
illuminating the geometrical origin of the descent equations and their associated
triangular form.

Lemma VI.5. Equation (23) is the constraint on Φ J j (z, x) | j 0 , t) coming from the fact

that tL__ι - J-\JQ ~ 2J^j JQ annihilates the state \j{, t).

The proof is a straightforward but tedious computation. Remark that (tL_ι ~

JlyJ^ — 2J° j JQ) |jj, t) = 0 comes from the definition of L__x by the Sugawara

construction. On | j 1 ? ί ) , JQ acts as multiplication by j j , so we start with
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and multiply on the left by e

zL-\+xJo φ (_£? —xy We use the commutation relations

(7) and (10) to get

-2jλ{3\ +z-ιD°Jo))ezL-ι-χJo ezL-'+xJo Φjo(-z, -x) \ju t) = 0 .

We have checked in Lemma B.I that, as far as covariance is concerned, it is not

possible to distinguish e

zL-i+xJo φ^ (—z, — x) \j^t) and Φ^ (z,x)\j^t). Hence we

have to compute

+ dz) - (J+, - z-λD+ϋ){J- + D7)

- 2j,(J°, + z-1Z?Jo))e-*L-'-χ Jo~ . (27)

This is done by repeated use of the basic commutation relations. We compute

p=l

oo oo oo

We define J+(z) = £ ^P" 1 J ± p , J°(z) = £ ^P" 1 J°_p, and J " (^) = £ z^1 Jtp.

We can interpret these expressions as the "negative part" of the currents, the part
which acts non-trivially on the highest weight state. The p = 0 part of J~(z) appears
in the computation of

ezL_^xJ- D^e-zL^-xJ- = D + + χ2j- ?

eZL^+xJf QO^-ZL^-XJO = D ^ + χ J -

It is now a simple matter of regrouping terms to check that (27) is equal to

(tdz + z-l(DfDT - 2j0D° )) - U+(z)Djλ + 2 7 ° ^ ) ^ + J-(z)D+). (28)

The exchange of j 0 and J Ί is somewhat unexpected, but in fact D+ DJ — 2j0^{

Df D~ — 2j,D® . If we apply (28) to the short distance expansion projected on the

j-sector

\ ^ hQ-hλ+nT3<d+3\-3+rn\
Jb7 T 3 < d + 3 \ 3 + r n \ r i

we know that we obtain zero. Term by term identification of the powers of z and x
leads to (23). D

By abuse of language, we call (23) the fused Knizhnik-Zamolodchikov equation.
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The fundamental role played by the Knizhnik-Zamolodchikov equation, or its fused
version (23), is not really a surprise. It is well known that this equation is related to
the existence of integral representations (i.e. quite explicit forms) for the correlation
functions of minimal A\ Wess-Zumino-Witten models (see for instance [17]). This
shows that it is related to the fusion, but also to the structure of singular vectors. We
shall see shortly that this is indeed true.

VII. Singular Vectors

We are finally in position to propose an effective way to compute singular vectors.

VII.1. General Construction

We fix a nonzero t.

Lemma VII.l. Let(n1m) G I be such that for j = —t 1 ,{nf,m') < (n,ra)
2m 2

implies (nf\m!) G // ;. Then |n,ra) n m _i is annihilated by
t +

If (n, 777,) satisfies the hypotheses, |n, m) n rn_ι is well-defined. The lemma is
~t2m~ + ~2~

then a direct consequence of Lemma VI.3. D

Corollary VII.2. Under the same hypotheses, if \nΊ m) n m-ι does not vanish, it

is a singular vector.

Clear from the definition of the singular vector. D

Corollary VII.3. Under the same hypotheses, if"(n, m) is not of the form (|α:|/?, a) for

some (α,/3) G J s m g , |n,ra) n rn_ι does vanish.

Clear because in this case Vκ 2m 2 } contains no singular vector. D

Lemma VII.4. Let (\a\β,a) e I be such that for j = ja^(t), (nf,mf) < (|α|/?,α)

implies (n1\mf) G / ; /. As a polynomial in j 0 and j χ , |/5|α;|, ce)̂  ( ί ) cannot vanish

identically.

As we have seen in the proof of Lemma V.7, if V^ht) contains a singular vector
at level (n, ra), the equation

| n , m ) * - ( j , t | 0 , 0 ) ^ n 5 m (29)

cannot have a solution, unless j Q and j x satisfy non-trivial relations. But Corollary

VI.4 shows that whenever |/3|α|,α) ( ί ) vanishes (for a particular value of j 0 and

j x ) , it is possible to define a solution of the descent equations at level |α|/3,α) by
analytic continuation. This solution is automatically a solution of (29). D

This leads to the important
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Theorem VII.5. Let t be irrational. Unless j 0 and j λ satisfy non-trivial fusion rules,

the vector \β\a\,a) ( ί ) is a non-vanishing singular vector in V^a^^t) aχ level

(M/J,α).

We demand that t be irrational to be sure that the condition (n\mf) < (|α|/J, a)
implies (n'\m') G /" is satisfied.

The values of j 0 and j γ leading to a vanishing vector are restricted by polynomial
equations. Hence, we can choose j 0 and j { almost arbitrarily to get the singular vector.
We shall illustrate this point below.

VII.2. Some Matrix Forms for Singular Vectors

In Eq. (23), it is possible to put the vectors \n,m)j ( t ) for (n,ra) < (\a\β,a)

together to build a column vector with ((\a\β + a + l)(H/3 + 1) - 1) components.
We have to choose a total ordering for the couples (n, m) < (|α|/?, α). We can
even arrange things to make this total ordering compatible with the partial ordering
we had before (but there is no canonical way to do this). We write for instance

/ = (\β\a\,a- l)JatβW, - ,\0,0)Ja<βWr and F = (\β\a\,a)]aβ(t),0,... ,0f •

Equation (23) is then recast in a matrix form F — M/. The matrix elements of
M are of course operators.

We shall also use the notation | )^ n g )

( t ) for the state \β\a\,a)ja ( t ). The matrix

M is triangular.
In certain circumstances, a simpler matrix form is available. This is based on the

truncation of the descent equations (see Sect. V.4 and Appendix C). If a is positive,
we choose j 0 and jj such that jQ-j{ = jaβ(t)-a and j 0 +j{ = j , i.e. 2j 0 = -tβ-l,
2jγ — a. In this case, we know that the couples (n, m) with m < 0 or m > a do
not contribute. This leads to a matrix form for the singular vector, involving only the
states |n, rn)j {t) with 0 < m < a and 0 < n < aβ. The number of components of

the vectors is reduced to ((aβ-\-1) ( α + 1) — 1). A similar construction is also possible
if a is negative. To be sure that we obtain the singular vector, we ought to prove that
the values of j 0 and j ι do not satisfy the fusion rules. We conjecture that this is true.

The case, when a = 1 is interesting. We remark that jXβ(t) = . The family

of Eqs. (23) can be restricted to

Ύ (30.

=
J I

tβ

We recall that the singular vector is given by the right-hand side of the degenerate
equation corresponding to the singular level (n, m) = (/?, 1). The associated matrix
form can be written explicitly. We give an example in Sect. A.2. These expressions
play the same role for A\ as do the matrix expressions (see [1]) of the Benoit-Saint
Aubin formulae (see [3]) for the Virasoro algebra. We shall comment on this in the
next section.
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In this case, we have computed the overlap function (see Appendix D) ΓβX for

f —tβ — 1 1 \
(j 0 ? jχ) — ί ? - j and (JQ, j[) for small values of β. This leads to

Conjecture VII.6. When j = j ι β(t), a necessary condition for fusion from y^o^)

and V^i'^ in V^3^ to be possible is the vanishing of the polynomial

β β

Π OΌ + h - i + ι - m t ) Π Oo - i\ - J - m t )
771=1 771=0

If t is irrational, the vanishing of this polynomial is also a sufficient condition.

VII.3. Projection of the Recursion Relations

The family of Eq. (23) involves only U(&_). We have already emphasized several
times that W_, which consists of generators of degree less than 0 with respect to the
principal gradation, contains the generators of degree less than —1 as an ideal. The
quotient is a commutative Lie algebra with J^ and J^ι as generators. Its universal
enveloping algebra is still graded by n and m, and there is a single generator at level
(n, m), (J ί 1 ) n (J(J~) n + m We can write Eq. (23) in the quotient, replacing \n,m)j by
Cn5m(Jί1)

n(J0~)n+m. The coefficients Cnrn are complex numbers satisfying

(fin + m(2j + 1 - m))Cn^ = (-j + j0 +jι+m

- (-J + Jo -3i+rn-

The initial condition for a proper solution is Co 0 = 1. It follows from the previous
considerations that, as a function of j for fixed t, C is rational, with poles only at
the zeroes of the contravariant form. The residues at the poles give the fusion rules
(this is a consequence of the normalization property of the singular vectors.) The non-
appearance of the spurious poles is highly non-obvious. Hence, this innocent-looking
recursion relation contains a lot of information, and it would be of great value to be
able to study it independently. We have not been able to do so, and leave it as an
open problem. This is an appropriate point to close this section.

VIII. Some Comments on Hamiltonian Reduction

We make some comments related to our initial motivations.
There is a close connection between the structure of the representations of the

A\ algebra and the Virasoro algebra. It uses quantum Hamiltonian reduction (see
for instance [5] for references in the quantum case and [6] for the classical one, also
[9] and [10] seem to be dealing with this problem using a different approach). We
recall the basic steps of the construction. The idea is to introduce on Verma modules
for A^ a modified Virasoro algebra. From now on, we denote by L^ the Virasoro
generators obtained by the Sugawara construction. We set L ^ } = L^ — (ra +
We observe that there is no modification for m = — 1. It is easy to check that

= (m - n)L^+n + ^ = ^ (15 -6t- ^)δm+n .
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With respect to this new Virasoro algebra, we obtain

Hence, J+(z) — J2 J+z~n~ι and J~(z) = Σ J~z~n~ι are primary fields of
—00 —00

respective weights 0 and 2. However,

&JZ\ J°n) = -nJ°n+m --Ί-m(m+ l)δn+m

leading to

&£\ J\z)] = ((m + l)zm + zm+ιdz)J°(z) - i—^ m(m + l)zm-{ .

Hence J°(z) is a scaling field of weight 1 but not a primary field.
If we replace the above commutators by Poisson brackets, the system becomes

classical. If we take J + O ) as a dynamical variable, the fact it has conformal weight
0 makes it possible to reduce the phase space by the constraint J+(z) = 1 without
losing conformal invariance. The correct way to treat this problem in quantum field
theory is to introduce ghosts.

To the be system with commutation relations

ίCm> K) = δm+n > {Cm> Cn) = {bnn bn} = °

we associate a graded Fock space. There are two states at level 0, | j) and | | ) such
that CQI I) = I ΐ) and 60| | ) = | | ) . The states | | ) and | [) are annihilated by bn

and cn for positive n. By definition, the Fock space is the representation obtained by
acting on the states at level 0 with any combination of the generators. The Fock space
can be turned into a representation of the Virasoro algebra by choosing an arbitrary
parameter s and taking

+ OO

- \\ τι)b c for τίi ̂  0

Then

[L

Then

one

{G)

the

can check

ΓJΓ^(G) -j^G

bn] = (mθ

fields

n

(G
0

that

}] =

5 - ]

-= — oo

+ OO

— \ nίh
— / '"KU..

(m - n)L^

)-n)bn+m

^ (12,(1 - s) - 2)δm+n ,

cn] = (m((l - s) - 1) - n)c
n+m .

z~n~s and c(z) = Y^ c^z~n~ι+s

are primary fields of weight s and 1 - s, respectively. Remark that the regularity of
b(z) I t) and c(z) \ | ) at z = 0 is equivalent to the defining properties of | | ) if and
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only if s = 0. We shall see below another reason to fix s to be zero. We define the
ghost number to be 1 for c(z) and —1 for b(z). This leads to define the ghost number

operator U by U = Σ ( c - A ~ h-ncn) ~ W
n=l

We can now study the tensor product of this Fock space with a highest weight cyclic

A^-module. The generator JQ commutes with the Virasoro algebra (with generators

L^ = L^ + Lffi)) and can still be diagonalized in the tensor product. To impose a

quantum analog of the constraint J+(z) = 1, we define Q — Σ c

n(^-n-\ ~~ π̂> 0)
n— — oo

Then [ί/, Q] = Q, i.e. Q has ghost number 1. It is easy to check that Q2 — 0. The
operator Q commutes with the Virasoro algebra (with generators L^f} = L^ + Lffi)
if and only if s = 0. We assume that s = 0 in the following. Then Q is proportional
to § c(z) (J+(z) — 1) which is geometrically well-defined, showing clearly the relation
with the appropriate constraint. Moreover, the representation of the Virasoro algebra

1

 oin the tensor product has central charge c = 13 — 6t — 6 t - 1 , and the eigenvalue of Lo

id H~ 1) (2? + 1 — tΫ — (1 — tΫ1

acting on \j,t) Θ | T) is h = — - j = — —. This state is

clearly annihilated by the L n ' s for positive n. The fundamental remark is that if we
take j = j a β(t) with a positive, we get

{a-t{β+\))2-(\-tγ

and these are just the weights for which the Virasoro Verma module is not irreducible
and contains a singular vector at level a(β+1). The cohomology of Q is graded by U,
and at a given degree, the cohomology space carries a representation of the Virasoro
algebra. Clearly, the state | j , t) 0 | j) has ghost number 0 and is in the kernel of Q.
It is never Q-exact. This is because the only states at level 0 for the Virasoro algebra
are obtained by repeated action of J+j and b0 on \j, t) <8>\ | ) . But Q commutes with
J~^χ and Qbo\j,t) ® | j) = (Jl\ — 1) \j,t) 0 | T) Hence, no finite linear combination
can lead to \j, t) 0 \ | ) by application of Q (we note, however, that the ill-defined

oo

- Σ (J-ι)nb0\j> t) 01 T) would formally do the job). Hence the cohomology at ghost
o

number 0 is non-trivial.
We believe that there is no cohomology at non-zero ghost number and that if the

^4^-module is a Verma module, the cohomology at ghost number zero is a Verma
module for the Virasoro algebra. This result probably exists already in the literature,
but we have neither been able to find it written in an accessible language for us, nor
to build a proof, although we think there should be some elementary argument.

It is easy to check that a singular vector in an A\l)-module tensored with | | )
is annihilated by Q. Our hope was then to prove that the singular vectors for A[ι)

with a positive could be easily rewritten as polynomials in the generators of the
Virasoro algebra modulo a Q-exact term. Remark that the operator — c0 has a trivial
cohomology and that Q is the sum of — c0 and a term decreasing the eigenvalue
of J® by one. This ensures that a state annihilated by Q which is a finite linear
combination of eigenstates of JQ with eigenvalues greater than j is always equivalent
to an eigenstate of JQ with eigenvalue j modulo a Q-exact term. Hence the situation
is not hopeless. But we have not been able to proceed further except in very special



154 M. Bauer and N. Sochen

examples. For instance, if j = 0,

tL^γ%t) = JVoΊO,*), L<&\ T) = 0.

Hence

ΐ) + Wo~KM> ® I ί>= Jo-|O,ί)Θ

showing that this particular singular vector for A^ flows to the singular vector
for the Virasoro algebra under Hamiltonian reduction. If we could do this more
systematically, we would probably understand much better the construction (see [1])
of singular vectors in Virasoro Verma modules. The special case a = 1 is promising
and interesting because the relation with the Benoit-Saint Aubin formulae (see [3]),
but has nevertheless eluded us.

Moreover, a precise solution to these questions would give an interesting shortcut
for the usual proof (see [5] and for the mathematically inclined reader [8]) that
Hamiltonian reduction relates the minimal models for the A^ and the Virasoro
algebra. The usual method is quite indirect and involves bosonization in two places,
with the necessity of introducing other Q operators. A direct proof would be much
more illuminating. We leave this as an open problem.

IX. Conclusions and Remarks

The interplay between fusion, fusion rules and singular vectors has been used to
construct these singular vectors explicitly. It is not clear for us whether these
expressions can be used in other theoretical applications, but we think that the
relationship between these aspects, although not unexpected, was not recognized to
be so intimate. The proper interpretation of the Knizhnik-Zamolodchikov equation in
our context has been of great importance. On the other hand unitarity played no role
in our discussion. Some fusion rules have been computed, and a general calculation
should be possible. However, many questions remain open. Among these we would
like to emphasize two.

The generalization to other affine algebras would be interesting. There are serious
technical difficulties, but they should not be insuperable. Much more intricate seems
to be the extension to other chiral algebras. The Virasoro algebra is an example which
stil needs to be better understood, and we are back to Hamiltonian reduction.

We have concentrated on purely algebraic aspects, but geometry certainly plays a
fundamental role. We have some hints that a geometrical interpretation of the formulae
(30) exists, and is related to the analogous geometrical interpretation of the Benoit-
SaintAubin formulae in terms of covariant differential equations given in [1], inspired
by [6]. We observe that the two cases are related by Hamiltonian reduction.

We hope that these questions will motivate further work.
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A. The Singular Vector at Level ( 1 , 1 )

The singular vector for (α, /?) = (1,1) and j = — - is the simplest non-trivial singular

vector. We compute it in two different ways.

A.I. The Method of Malikov, Feigin, and Fuks

To illustrate the technique of analytic continuation, we do the calculation in detail for
(Q/? β) — (1 ; 1). So, we are trying to make sense of

The fact that J^χ already appears raised to an integral power (in fact 1) makes the
situation comparatively easy. However, the general computation follows analogous
patterns. The starting point is the identity

which is proved for instance by differentiation. Then we expand

PXJQ T+ - ( J+ -2TJ° - Ύ1 T~ \p-χJΰ

in powers of x to get

We observe that the coefficients are polynomial in p, and we extend these identities
for complex p. Both sides are ill-defined. We take p = 1 + 1 and multiply the identity
by (J^)1"1 on the right. This leads to

If we assume that the usual rules for multiplication of powers of Jo~ can be extended
to complex powers, we end up with

The right-hand side gives a definition of the left-hand side. We remark that the left-
hand side was already well-defined for t G {—1,0,1}. It is easy to check that at these
special values, the two definitions coincide.

Of course, we could have started with an identity for J^^J^y. We do not prove
that the result is the same. This is a consequence of the general theory of Malikov,
Feigin, and Fuks [16].

It is clear that even when a = 1, if β > 1 formula (3) contains more factors,
making the computation more and more complicated. This is to be contrasted with
the form given in Eq. (30).
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A.2. The Matrix Form

In the case when (α, β) = (1,1), our method leads to the following computation. The
family of equations (30) reduces to

It is easy to recast this in a matrix form. We write

t - J +

0 t

We solve this triangular system and obtain

J~ι) |o,o>_t/2.

Using the commutation relations to rewrite the right-hand side of this equation in the
basis (2), it is easy to check that the different expressions for the singular vector are
proportional to each other. The analogous computations for β > 1 become more and
more tedious, but they are much simpler than the ones involved in the computation
by analytic continuation. There is some intuitive explanation for this: our recursion
formulae define the singular vector, without specifying a basis of t/(£?_), with the
consequence that in a sense "the singular vector itself chooses the way it wants to be
expressed."

B. Further Covariance Constraints

We are going to study the covariance properties of the state (20) of Sect. IV.3 with
respect to the current algebra. So we apply our method to the state

ezL-\+xJ*Φ3o(-z,-x)\jvt). (31)

The left ideal annihilating \jι,t) is generated by JQ — j 1 ? k — (t — 2), LQ — hx, and
the J ^ ' s in ^_. We use once more the commutators (10) and then conjugate with

e

zL-ι+xJo to get

χφjo(-z,-x)\jvt) - 0 ,

ezL-ι+xJo(Lo -hx- zdz

xΦJQ(-z,-x)\jι,t)=0,

ezL_x+xJ~ /ja _ /_\n+aznjja \^ — zL_χ -x

x<P J 0 (-z,-a:) | j 1 , ί)=0 VJa

p e %+ .

We can now prove
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Lemma B.I. The covariance constraints on (11) and (20) coincide.

We use the commutation relations between the stress-energy tensor and the currents
to check that

ezL-i+xJo (Lo -h0- zdz - hx)e-zL-'-χJ* =L0-h0- zdz - h{.

It is quite tedious to show directly that the operators

ezL_ι+xJ~ ^ja _ ( — }n+a

z

nDa ^-ZL-Ϊ-XJQ

for J% in &+ are [(z, x) dependent] linear combinations of the operators appearing in
the constraints for ΦΛz,x) \jo,t). Happily, as we emphasized above, two particular
constraints generate them all. So we are left with two simple computations

and

= j+ _ 2 χ J 0

= (J+-Dp-2x(J°0~D°Ji-j0).

This concludes the proof that the covariance constraints on (11) and (20) are the
same. D

It is in this sense that we can identify these two states.

C. Fusion of Quotients of Verma Modules

We give an interpretation of Lemma V.8. This will also lead to some illustrations of
the comments we made after the definition of fusion. This section is very close in
spirit to the computation of the fusion rules in [19]. We note that if j x is a nonnegative
integer or half-integer, (J^)2jι+ι\jι,t) is a singular vector in V^Jlit\ This singular
vector generates a submodule, and we can take the quotient. In this quotient the left
ideal of U^A) annihilating \jγ,t) contains (J^)2jι+ι. So if we try to implement fusion
of this quotient module with V^o^) to get V^J^ there is a new constraint.

Lemma C.I. This constraint is simply that

where this time Φ^ stands for the primary field associated to the quotient module.

We multiply the relation ( J 0 ~ ) 2 j l + 1 \jvt) = 0 on the left by

Then a simple application of the commutation relations (10) leads to

But, as far as covariance is concerned, we have shown that it is possible to identify
L J ~ 3ι(z,x)\j0,t). D
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From this we deduce that in the j -sector

dlJl+l Σ ^h~hQ~hχ+n^o"rΆ~JJrΎn\^rn)j = 0.
n,m

Hence for any (n, m) G /,

Oo + i i ~ 3 + m) Oo + i i ~ i + m ~ !) Oo + J i ~ 3 + m - 2 Λ) K m)j = ° ( 3 2 )

In particular, either |0,0)^ = 0 or j G {j0 + jvj0+ 3\ - 1, Jo ~ j\} T h i s i s

a fusion rule. It looks quite familiar. If we define i+ and i_ by j j = (i+ - i_)/2,
j 0 — j — (i+ + iJ)/2 then the content of (32) is equivalent to the truncations of the
descent equations obtained in V.8. We observe that the use of the quotient module of
yϋut) to define fusion imposes that the operator product expansion has no singularity
in x-space.

Using the same method one shows

Lemma C.2. Assume j 0 is a nonnegative integer or half-integer. In the fusion ofV"J] ^
with the quotient module ofV^°jt\ the new constraint is

leading to the fusion rule j G {jx + jo,jx + j 0 - 1,..., j x - j0}}.

Lemma C.3. Assume t/2 — j 0 — 1 is a nonnegative integer or half-integer. Then
{Jtγ)t~2jd''l\3o,t) is a singular vector in V(j^^\ In the fusion of V(j^t] with the
quotient module ofV^0it\ the new constraint is

leading to the fusion rule j G {t - 2 - j 0 - jλ,t - 2 - j 0 - j λ - 1 . . .j0 - jx}.

If t/2 — j γ — 1 is a nonnegative integer or half-integer the fusion rule is j G

\t — 2 — j \ — jo,t — 2 — j { — j 0 — 1 , . . . , j x — j o }

Putting all these results together, we obtain the usual conditions for fusion.
• If both j 0 and j x are nonnegative integers or half-integers, we simply recover the law
of composition of spins. The spin j has to belong to {jγ +joj1 + j 0 — 1,. . ., | j x —JQ\}
Thus it, too, is an integer or half-integer, and V^^ contains a singular vector. We
have only obtained a necessary condition for fusion to be possible. But it is not
difficult to show that the fusion involving the three quotient is possible and unique if
t is irrational. We do not give the proof here.
• If moreover £ — 2 is a positive integer, we recover the full set of fusion rules for
the unitary models. Note that unitarity played no direct role in the discussion. This is
common in the representation theory of finite dimensional semi-simple Lie algebras,
where the requirement of finite dimensionality of a representation implies its unitarity.

Let us stress once more that, although our definitions did not prevent short distance
singularities in ^-space, these singularities disappear when we consider fusion of
quotients of appropriate Verma modules.
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D. The Overlap Function

In the definition of fusion, j 0 and j { play the role of parameters, and it is interesting
to have some kind of measure of how much the solutions of the descent equations
differ at level (n, m) when j 0 and j γ vary. The contravariant form gives such a
"measure." We define the "overlap" between two solutions of the descent equations,
corresponding to distinct couples (j0, jx) and (j'0,j[) but of course with the same value
of j and t to be

Γn,m(hJiJΌJ[J,t) =j (n> m K m)'3
Using the method of Sect. V and VI, it is easy to show that the overlap satisfies

recursion relations.

Lemma D.I. The overlap Γn m satisfies

(tn + m(2j + 1 - m))Γnm

= (-j + Jo + 3χ + m + 1) (-j + j'o + j[ + m + 1) ̂  Γn_Pj-p,ra+l

'o + m) ]Γ Γn_pm

p=l

n_^πι_[. (33)

To prove this, we first use (23) for \n,m)'-, and then we use the descent equations

for (n,ra|. This procedure in not symmetric, but the final formula treats (jo> Ji) a n d

Oό'^ί) m a symmetric way. D
These relations are quite complicated as they stand, but by using truncation, it is

possible to use them to compute for instance fusion rules.
Theorem VII.5 allows us to say something about the structure of the overlap

Γ\a\0 a w n e n j — 3a β^' ^n ^ a c t ' ^ o r m e s e v e r v special values of the indices, the
right-hand side of (D.I) has to split as a product of the fusion rules for ( j 0 , jx) and

Oo> Jί) This is because |/3|α|,α) ( ί ) and |/3|α|,α) ( έ ) are both proportional to

the singular vector, and the right-hand side of (D.I) computes the obstruction to the

solving of the descent equation at level (|α|/?, a).

Hence, the overlap equation provides a method to compute the fusion rules. When

a = 1 and j = j^β(t) = —β\ for instance, it is possible to compute Γβ^ for

small values of /?, taking O'o'ii) = ( 2 -> ΐ J ( m e s e a r e m e values leading to the

truncation of the descent equations) and (JQ,J[). This leads to Conjecture VII.6.
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