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Abstract. We consider time-dependent perturbations u of R.Finn's stationary PR-
solution of the Navier-Stokes equations, which converges to a constant vector v^
as |,τ| —> oo. For a given time interval [<5,T], we find a radius K such that u is
essentially bounded on [δ, T] x {\x\ > K}.

1. Introduction

We want to investigate the boundedness for large \x\ of weak solutions v of the
Navier-Stokes system

υt - Δυ + (v V)v + Vp = / ,

ά\\υ = 0 in [O.T] x Ω ,

v ( O , x ) = υ o ( x ) forxeΩ. ( 1 )

v(t. x) = 0 for (L x) G [0, T] x OΩ ,

v(t,x)^voo as | x | ^ o c , ί G [ 0 , T ] ,

where i? is a smooth exterior domain in R3, div/ = 0, div u0 = 0, vo\dΩ = 0,
?;() —> 7;^ at infinity, t?^ G R3 is the prescribed constant velocity at infinity.

Most of the previous work concentrates on the case v^ = 0, where suitable weak
solutions of (1) are known to become small in some average sense and bounded for
large \x\ t, if / —> 0 (ί, \x\ -^ oc), see [CKN, MP, SW]. This means that singularities
may occur only in a compact subset of [0, oo) x Ω. Some important results are also
surveyed in fWJ.

If v^ φ 0 it is not apparent, whether a global weak solution to (1) will converge
to a stationary solution as t —» oc. This seems to happen in general only under some
smallness assumptions on a corresponding stationary solution, see Miyakawa and Sohr
[MS] and Masuda [MKJ.

In this note we will only assume the existence of a "reasonable" stationary solution

v, we will not require any additional smallness. For the existence of v we refer to
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Finn's work [Fi], cf. also [Fa]. We construct a solution v to (1) as perturbation u
ΐ ( 0 )

or v.
As it may be expected, that u in general does not calm down, we consider

an arbitrary bounded time interval [0, T]. We show that the boundedness criterion
of Caffarelli, Kohn and Nirenberg [CKN, Proposition 1J can be carried over to
weak solutions of a "perturbed Navier-Stokes system." For every δ £ (0. 7") we
construct a radius K — K{6. T) such that u (and hence v) is essentially bounded on
[ό,T] χ ( i ? n { | x | >K}).

The problem is left open whether K may be chosen independent of T.

2. Preliminaries. Results

Most of the notation is adopted from [W]. In particular H (Ω) denotes the completion

of {v £ CQ°(Ω)3 \divv = 0} with respect to the L^-norm, in a weak sense H (Ω)
is the set of all divergence free Lq-vector-functions with zero normal component on
dΩ.

Hk q(Ω), Ho 'q(Ω) are the usual Sobolev spaces of functions with weak derivatives
in Lq up to order k.

(u V)υ :— (u C\/v{), u (Vv2), u ' (Vv3)), "•" denotes the scalar product in R3,
(u,υ) := J u(ξ) 'V(ξ)dξ.

We start with a classical solution (υ, p) of the stationary Navier-Stokes problem

(\dΩ = 0

-Δv +

div

v (.τ)

(

(

(0)

0)

V)

= 0

(0) (0)
V + V P =

in i?,

uniformly as

We require v to satisfy

(M o : = s u p \x\ - \ v ( x ) -

fv\x)\ < M{ , |V(S}C

with some constants Mo, M,, Λf2.

< oc ,

oo

v e L3 .
(3)

< M2 for all x £ Ω

)The existence of such a stationary solution (υ , p) is ensured in Finn's article [Fi],
if I i ^ l is not too large.

(0) (0)

We construct a weak solution of (1) as perturbation of v, i.e. we look for u := v— v
as a weak solution of

ut - Au + (u V)(v + (?;} V)u + (IA

div ΪA = 0 in [0, T] x Ω ,

ϋ(0, x) = i/0(x) for x £ i? .

u(ί,x) = 0 for (/.x) £ [0,Γ] x Si7,

?x(t,x)-^0 as | x | - > o c , t £ [ 0 , T ] .

(4)
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Combining the methods of [W] and [MS, Sect. 5], where the additional lower order
terms in (4) are treated, the existence of a weak solution to (4) with localized energy

inequality can easily be shown. But in this inequality there are terms involving v
which cause some trouble.

Therefore we consider w(t,x) := e~λtu{t,x), π(t,x) := e~~λίβ(t:x), g{t,x) :=
e~Xtf(t>: χ)τ A > 0. (u.p) solves (4) if and only if (w, π) solves

(0) (0) λf

wt — Δiυ -f An; + (w V) v + (v V)u' + e (w V)u> + Vπ = g ,

divw = 0 in [0,T] x Ω ,

u'(0, x) = uo(x) for x G i? , (5)

w(t, x) = 0 for (ί, x) G [0, Γl x aί2 ,

w;(t, x) —> 0 as |x| ^ oc , ί G [0, T ] .

For this problem we have the following existence theorem:

Theorem 1. Let T > 0, u0 G H2(Ω) Π H9β(Ω), g e Lι((0, T), H2(Ω) Π H9β(Ω)) Π

Ljoc((0, T), iJ2 Π H9β) Π L ((0. T), //2) ^ ^ ^ w e have:

(i) There is a weak solution w on [0:T]x Ω to (5) in the following sense: tυ: [0, T] —>
1 continuous, w e ^^((O, Γ). J?2(^)) Π L2((0, Γ), Hι^2(Ωγ),

-f A / (w,Φ)dr

o
r

^ ((V V)w,Φ)dτ

o o
T r

for every Φ(ί.x) = ψ{x)h(t),φ G H22(Ω)3 Π //^(i?) 3 , div y? = 0, ft G Cl([0.T].R),
h(T) = 0.
(ii) i/1 has the following additional properties:

ε:θ<ε<T

ΓΊ L5/\(ε, Γ), H2>5/Λ(Ωγ ΓΊ i/(J
 5 / 4(i7) 3 ΓΊ H5/4(Ω)),

L3 / 2((ε, Γ), L9/8(ί2)3) Π L5/4((ε, Γ), L5'\Ωγ).
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There is a mapping π:(0, T) -• L15/7(Λ?) Π L9^{Ω) with

Vπ e p | £ 5 / 4((ε, Γ), L5/4(J?)3) ΓΊ L3 / 2((ε, Γ), L9/8(J?)3),
ε:0<ε<T

π G p | X5/4((ε, Γ), L15/7(ί2)) Π L3 / 2((ε, T),
ε :0<ε<T

that the Navier-Stokes type system (5) is fulfilled a.e. in (0, Γ) x Ω.
//λ =

inequality:
(iii) If λ — M2 + \ M\ {for Mi see (3)), we have the following localized energy

t

[ Φ(t)\w(ί)\2dξ+ ί ί Φ\Vw\2dξdτ

Ω s Ω

t
r ff

< / Φ(s)\w(s)\2dξ + 2 / (Φg) wdξdr

Ω s Ω

t

f{\w

s Ω

(6)

for all Φ G CβflΌ, T] x Ω), Φ > 0,for all t > 0 ^ J almost all s e (0, t].
Moreover for all t > 0, s = 0, almost all s G (0, ί] H'^ have the generalized energy

inequality

\\Vw(τ)\\2

L2{Ω)dτ < \\w(s)\\2

H2(Ω) + 2 Ug,w)dτ . (7)

Proof Imitating [W, Chap. II.4, 11.51 and [MS, Sect. 5] we readily obtain part (i), (ii)
and the following version of the localized energy inequality (6):

Φ(L)\w(t)\2dξ + 2 / / Φ\Vw\2dξdτ

s Ω

t

< / Φ(s)\w(s)\2dξ + 2 / (Φg)-wdζdr

Ω s Ω

t t

-2 ί I\φw) - [((w V)(v) + (((v V)w)]dζdτ - 2λ ί ί Φ\w\2dζdτ

s Ω 's Ώ

t

ί {H2(φi +ΔΦ) + VΦ-[eλτ\w\2ιv + 2πw]}dξdτ. (8)

s Ω



Boundedness for Large 581

Using the Cauchy-Schwarz inequality, Φ > 0, the bounds for υ and Vυ we
conclude

(0),
(Φw) ((w X7)v)dξdτ

s Ω

t

<2M2 I / Φ\w\2dξdτ:

Ω

.,(0)
-2 (Φw) ((v -V)w)dξdτ

s Ω

t

<2MX ί ί\VΦ\w\)-(VΦ\Vw\)dξdτ

< 2M,
M,

2M-
•Φ\Vw\2)dξdτ

s Ω

\w
ιdξdτ.

s Ω s Ω

t
These two estimates are inserted into (8), J J Φ\Vw\2 dξdr is subtracted on both

.s Ω

sides. Taking notice of 2M2 + M2 - 2λ = 0 we arrive at (6).
To obtain (7) we can argue slightly differently: Integration by parts yields

(Φw) ((υ V)w)dξdi

s Ω

({) + \w\2({v • VΦ)]dξdr .

s Ω

We simply mimic Chap. II.5 of [W] (Φ approximates the constant 1) and deduce the
generalized energy inequality (7). D

Now we can give our partial regularity result for w, note that u and w differ on
bounded time intervals only by a bounded factor.

Theorem 2. Let T, u0, g, w, π, λ be as described in Theorem!. Assume additionally

g e Π Lq((εi T)i Lci{Ωγ)for some q > \. Let δ G (0, T).
0<ε<T

Then there exist numbers K = K(δ,T,w,π)M0,MuM2) and L = L((5,Γ.M1;

M2) such that
w(t,x)\ < L

for almost all (ί, x) e [δ, T] x Ω with \x\ > K.

The proof is based upon a generalization of a boundedness criterion of Caffarelli,
Kohn, Nirenberg, see [CKN, Proposition 11, which we will develop in the following
section.
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3. A Boundedness Criterion

Throughout this chapter let the assumptions of Theorem 2 be satisfied. We remark that
all the integrability properties needed below can be derived by means of interpolation
inequalities, see the proof of Theorem 2.

Parabolic cylinders will play an important role in the following:

QR(t,x) := {(τ,0 G R x R3:ί- R2 < τ < t, \x - ξ\ < R} .

Lemma. Let QR(tQ,x0) c [δ.T] x Ω for some δ > 0. There are constants ε{ =
εx(Mv M2, T), ε2 = ε2(MVιM2<T, q), L = L(M{,M2. T), such that the validity of

ί ( ) 5 /4

RT2 ( I (\w\3 + \w\-\ττ\)dζdτ + R - { y 4 1 ( 1 M ^ j d τ < ε u { 9 )

Qiι(tQ χQ) to-R2 V|ξ-z ol<Λ /

R^-5 jf \g\«dξdτ<ε2.

%

implies

υ(x)-voc\ <ε{R
 ι for \x - x{

w(t,x)\ <L R-

R

(10)

(Π)

(12)

almost everywhere in

Proof. We can use some parts of the proof of Proposition 1 of [CKN] with only mi
changes, these parts will not be repeated here but only referred to.

minor

Step 1. We shift (to,xQ) to the origin (0,0) and scale the cylinder
For (t.x) e Q^O.O), let

0 + R2t. x0 + Rx), v(x) := R%\x0 + Rx)
2t, x0 + Rx)

• (t.x) G Q{(0,0), let

w(ί,x):=Rw(tyj

π(t. x) := R2π(t0 + R2t. x0 + Rx). g(ί, x) := R3g(t0

Then (it), ff) is a weak solution of the differential equations

wt — Δw + λw + (w V)ϋ-\-(ϋ'1V)w + eλteXt°(ιύ

div w = div -D = 0 ,

Q
R:

(13)

(14)

where λ = XR2. Moreover for every Φ G CQ((—1.0] x B^O)), Φ > 0, and every
ί G (-1.0] the localized energy inequality holds:

t

ί Φ(t,ξ)\w(t,ζ)\2dξ+ I [ Φ(τ.ξ)|V?Z'(r.ξ)|2f/ξί/r

leλreχk)\w\2ιv-{-2πw\}dξdτ. (15)
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The smallness conditions (9)-(ll) now read as follows:
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5/4

Qi(0,0)

(16)

(17)

(18)

where ε 1 ? ε 9 have to be determined below. W.l.o.g. we assume ε 1 ? ε 2 < 1. We remark
that eλ ί» <C, C = C(M{, M 2 , Γ).

\π\) ς

/ /
Qi(O,O)

v(x)

dτ + J

\fj\qdξ

- Rυ

dr

<

B{(0)

< ^

2. Let (s,α) G Q1 / 2(0,0) be an arbitrary point, Qn := Qrn(s,a), rn := 2 " n .
We will prove inductively:

C/α/w (An):

s-r^<r<s ' n

n > 2 .

Qn

with a constant Co = CO(MU Λ-f2, Γ) which does not depend on either n or wλ

(Bn):

-22/5 3 dξ dr < εψ , n > 3 .

where π(r) : =
Λτ £>*

From (AΠ) it follows r r ι

3 | \w(s.ξ)\2dξ < Co and further \w(s.a)\2 < Co, if

(s,tt) is a Lebesgue-point for |ιZ'[2, i.e. almost everyhwere in Q1//2(0,0).

To prove (A2), we choose a smooth function Φ > 0, Φ = 1 in Q2 and Φ = 0
outside Q1 and see from (15), that the left-hand side of (A2) is bounded by

u\2C JJ{\g\ \w\ + \iu\
Q]

w \w\}dζdτ.

If ε1? ε2 are small enough, this is at most Coε] by Holder's inequality, (16) and
(17).

Step 3. (Ak), 2 < k < n, implies (Bn + 1), if n > 2.
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We use the following Sobolev and inteφolation inequality (see [CKN], Lemma

3.1.):

w
3dζdτ<CrιJ\

3/2

Qn

sup
s-rl<τ<s ,

w(r,ξ)\2dξ

\ξ-a\<rn

3 / 4

+ ( sup I \fυ(τ,ξ)\2dξ\ Πf\Vw\2dξd

\S~rn<T~S \ξ-a\<rn J \ Q7''

From this and the inductive hypothesis (An) it follows:

w\3dξdτ <Cr~5 I I \w\3dξdτ <C*ε{

3/4s

(19)

Qll+\

If ε{ is so small, that

is satisfied, then

o ε
1/3

w\3dξdr < \εψ . (20)

The second term in (B n + 1 ) causes more trouble. In Step 4 we will give a sketch

of proof for the following estimate:

w — π.π + l dξdr
Qll

1/3

w\3dξdr
2/3

\w\3dξdr

1/3 >

1/3

x sup

-Cr3

n+ι

\rn<\ξ-a\<r2

dξ

1/3

w\3dζdτ\ +ε w \3dξdτ)

1/3 >

Q2
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Cr.
14/5

1/5

X

sup / \w(τ,Q\2dξ

"\ξ-a\<rn+] 7

]/5 /

w\όdξdr \π\dξ\ dτ

\Qn+ι

= : I + Π + IΠ +

\|ξ-α|<l/4

These four terms are estimated using (16), (19) and (Ak) (note that ε- < 1):

^f^ + ειr
s

r/\Cειr
5

n)
i/3} < Cε^,

Π < ^

n-\

k=2 s-rr<r<s

W

<\ζ-a\<rk

' n-\

III < Cτi(CειτίΫ'\ε2/3 + ε f ) < Cεxr^ ,

Collecting terms we obtain from (21):

We require now ε{ to be small enough to satisfy

(21)

< C* , .

and conclude:
-22/5

w\ | τ f - 7 r n + 1 | d ξ d τ < \ε 1 (22)

From (20) and (22) we obtain (B n f l ) .

Step 4. We give a sketch of proof for (21). Applying div to (14), we see that π is a
weak solution of

Δπ = -

3 2

v—Λ C'

^ dxΊdxΊ
2 . 7 = 1 * ^

(23)
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Now we can proceed in exactly the same way as in [CKN, Lemma3.2j: localization
of (23), integral representation for π, Calderon-Zygmund theorem, etc.

The only change lies in the additional term w^\ϋ — Rυ^)^, which is treated by
using the smallness condition (18): \v - Rv^l < εx on B{(0). The time dependent

factor e^eλ έ° is estimated by a constant C = C(M{,M2,T).

Step 5. (Bk), 3 < k < n, implies (An), ifn>3.
This may be proved by copying the corresponding part of [CKN, pp. 792-795].
We have to insert a regularized fundamental solution of the backward heat equation

into the energy inequality (15). We remark that our energy inequality (15) differs from
that one used in [CKN] only by bounded factors. D

Proof of Theorem 2. We follow the proof of [W, Theorem III.2.1], so we only give
the estimates without calculations.

Let K so be large, that {\x\ > K - Vδ} C Ω. Let 0 < R2 < - fixed,

[ c 1 2

- , T x Ω. We have:

QR

,t-R2<τ<t

t-R2 \\ξ-x\<R

Using the integrability properties of w, π, g, we conclude that the integrals in (9),
(10) become uniformly small on QR(t. x) for all t £ [<5, T] and fixed R, if \x\ —» oo,
i.e. (9), (10) are fulfilled if \x\ > K for a constant i f = if(<5, T, ?/;, π, (/: Af}, M 2 ) . If
K is sufficiently large, we deduce from (3):

(v-vj<ε± on BR(x)

for |.τ| > K.
The conclusion of the lemma yields the statement of Theorem 2.

Acknowledgement. I would like to thank Prof. W. von Wahl for drawing my attention to this problem.
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