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Summary. We show the integrability of infinite dimensional Hamiltonian systems
obtained by making isospectral deformations of random Jacobi operators over an
abstract dynamical system. The time 1 map of these so called random Toda flows can
be expressed by a (JR decomposition.

1. Introduction

Toda systems have been studied extensively since their discovery by Toda in 1967.
Since then, several approaches for their integration have been found and many gen-
eralizations have been invented.

Examples are:
o The tied or aperiodic Toda lattice describes isospectral deformations of finite dimen-
sional aperiodic tridiagonal Jacobi matrices. The integration is performed by taking
a spectral measure as the new coordinate. From this measure, the matrix can be re-
covered. The measure moves linearly by the Toda flow. For a generic Hamiltonian,
the matrices converge to diagonal matrices for ¢ — Foco. The integration of the first
flow, which has an interpretation of particles on the line, has first been performed
in [Mo 1]. For the other flows see [DNT]. There are Lie algebraic generalizations
of this Toda lattice [Bog 3,K, Sy 2] and interpretations as a geodesic flow [P] or a
constrained harmonic motion [DLT].
e The half infinite Toda lattice is an infinite dimensional generalization of the
tied lattice. It describes isospectral deformations of tridiagonal operators on [*(N).
The integration is technically more difficult and has been performed in [DLT 1],
[Ber]. It resembles the integration of the tied lattice. Again, the operators converge
in general to diagonal operators [DLT 1].
e The periodic Toda lattice consists of isospectral deformations of periodic Jacobi
matrices. The first flow describes a periodic chain of particles interacting with an
exponential potential. The explicit integration uses methods of algebraic geometry
[vM 1,vM 2]. The flow is conjugated to a motion of an auxiliary spectrum. Jacobi’s
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map transforms this motion into a linear flow on the Jacobi variety of the hyperelliptic
curve attached to the matrix. The system is periodic or quasiperiodic.

o A rapidly decreasing case of the Toda lattice is a situation with free particle bound-
ary conditions at infinity. The integration is done by an inverse scattering transform
[F,FT]. It is an isospectral deformation of doubly infinite Jacobi matrices decaying at
infinity.

In this article, we discuss the Toda lattice with a new boundary condition: a so-
called random boundary condition. 1t is a generalization of both the periodic and
the aperiodic system and consists of deformations of random Jacobi operators. This
generalization is a special case of an abstract generalization found by Bogoyavlensky
([Bog 1,Bog 2, p.172], who suggested to consider such differential equations in an
associative algebra.

Another suggestion for investigating such random systems is offered in [CL p.
436], where it is motivated by the problem of finding a complete inverse spectral
theory for random Jacobi operators, a project initiated by Carmona and Kotani([CK]).

The random Toda lattice is a discrete version of the Korteweg de Vries equation
defined over a flow. A special case of such a KdV equation leads to an isospectral
deformation of almost periodic Schrddinger operators. In the work of Johnson and
Moser [JM] the Floquet exponent for such Schrédinger operators is introduced and
the Floquet exponent is shown to be an invariant of the KdV deformation. It is natural
to ask for analogous results in the discrete case.

The paper is organized as follows: In the second section, we define isospectral Toda
deformations of random Jacobi operators. Random Jacobi operators are selfadjoint
elements L = a7 + (a7)* + b in the crossed product X’ of the commutative Banach
algebra L°°(X) with an abstract dynamical system (X, 7, m). The multiplication in
X is just the convolution multiplication of power series > L, 7™ in the variable 7
with the additional rule that 7*L,, = L,(T%)7* for all k,n € Z. The random Jacobi
operators form a Banach space £ C X. For almost all z € X, one gets stochastic
Jacobi matrices [L(x)]mn = Lp_m(T™x). We are interested in deformations of Jacobi
operators which are given by a differential equation L = [By (L), L], where By (L)
is skew symmetric in & and depending on a Hamiltonian H. These Toda flows
generalize periodic and aperiodic finite dimensional Toda flows. The periodic case is
obtained when the cardinality of the set X is finite. If a(z) = 0 on a set of positive
measure one gets the aperiodic case. There is a trace in the C* algebra A’ and for
each continuous function f : C — C there is an integral tr(f(L)) of the Toda flow.
Another integral of the deformations is the mass exp(/’ « log(a) dm(x)). This integral
cannot be written in the form tr(f(L)).

In the third section we give an integration of the random Toda lattice in the
following sense: There is a mapping ¢ from £ to an infinite dimensional vector space
G, in which the flow is linear. The mapping ¢ has a left inverse ¢ and the time
one maps Expy, Expy of the flow in the old and new coordinates are related by
Expy(L) = ¥ o Expy o ¢(L). The idea is to approximate the random Toda flow by
finite dimensional aperiodic Toda lattices which are known to be integrable. This
approximation is due to a lemma which says, roughly speaking, that a differential
equation £ = f(z) in a Banach space gives a flow which is also continuous in a
weaker topology, if f is continuous with respect to this weaker one.
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There can be transient behaviour for the random Toda lattice: The random Toda
flow splits into infinitely many aperiodic finite dimensional flows, provided that a(x)
is zero on a set of positive measure and the underlying dynamical system is ergodic.

In the fourth section, we show that QR decompositions generalize to the infinite
dimensional case. Such a generalization is known for half infinite Jacobi operators
[DLT 1]. The QR decomposition for invertible matrices can also be used to express
the time 1 map for each flow.

In the fifth section it is shown that random Jacobi operators L have a determinant
det(L — E) which is an integral of motion for the Toda flows. The Floquet exponent
w(FE) satisfying det(L — E) = exp(—w(F)) is related by the Thouless formula to the
Lyapunov exponent and to the rotation number of the transfer cocycle of L. These
functions as well as the Taylor coefficients of w(F) calculated at a point Ey outside
the spectrum of L are also integrals. Random Jacobi operators appear in a natural way
for twist diffeomorphisms. They are the second variation of a Percival functional.

At last, in the sixth section, we look at generalizations of random Toda flows, for
example at isospectral deformations in the crossed product of any Banach algebra with
a dynamical system. In the same way as the random Toda lattice, random singular
decomposition flows can be defined.

2. Random Jacobi Operators and Random Toda Flows
2.1 Random Jacobi operators.

A dynamical system (X,T,m) is an automorphism 7" of a probability space (X, m).
Consider the set of sequences K,, € L°°(X), where K, # 0 only for finitely many
n € Z. This forms an algebra with the multiplication

(KM)n(@)= Y Kx@Mu(TFz) .

k+m=n
The algebra carries an involution given by
(K*)n(@) = K_n(T"z) .
We denote by X’ the completion of this algebra with respect to the norm
KN = E@| o
where K () is the bounded operator in [>(Z) given by the infinite matrix
(K (@)lmn = Kn-m(T™x) .
The multiplication and involution in & is defined such that
K € X — K(z) € BI*(Z))
is an algebra homomorphism:
KL(z) = K(x)L(z), K*(x) = K(x)*.

The algebra &’ is a C*— algebra called the crossed product of L°°(X) with the
dynamical system (X, T, m). Elements in X are called random operators. For K € X
we define the trace by
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tr(K):/ Ko dm .
X

For all K, M € X,

= / 3" Mo K_o(T™) dm = (MK) .

It follows that for any invertible U € X" and every K € X,
w(UKU ™Y = u(K) .
In order to simplify the writing and the algebraic manipulations, we will write elements
K € X in the form
K=Y K"
n

and think of 7 just as a symbol. The multiplication in & is the multiplication of power
series with the additional rule 7*K,, = K,,(T*)7* for shifting the 7’s to the right and

the requirement that 7* = 7~ !, If we interpret 7 as a shift operator f — f(T") in L?(X)
and K, as a multiplication operator, we have a representation of X’ in B(L*(X)):

Kf=) K.f(I™.

If the dynamical system (X, 7T, m) is ergodic, there exists for each K € X a set of
full measure such that for z in this set, the operators K(z) have the same spectrum
Y (K (z)) denoted by 3/(K). This is a version of Pastur’s theorem. The proof ([CFKS]
p- 168) which is written for a parallel case proves it. In general, when no ergodicity
is assumed, define

Y(K)={EeC|m({ze X |E e X(K()}) >0}.
A selfadjoint element L € X of the form
L=ar+(ar)" +b

is called a random Jacobi operator if a,b € L*°(X,R). Denote by L the real Banach
space of all random Jacobi operators in X. We call

M(L) := exp( / log(a) dm)
X

the mass of the operator L.

Remark . C* algebra techniques for random Jacobi matrices were promoted in [Bel].

2.2 Random Toda flows.

We define the projections
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oo
K= Z K,m"— K* = Z K,m™
n=—00 +n>0
which yield the decomposition K = K~ + Ky + K*. For a Hamiltonian
H € C¥(L) :={L > tr(h(L)) | h entire, h(R) =R},

the differential equation .
L=[Bu(L),L],

with By (L) = (L)t — h/(L)~ defines a flow which we call a random Toda flow or
a random Toda lattice.

Theorem 2.1. For each H(L) = tr(h(L)) € C¥(L), the flow
L=[W({L)" - K@), L1=[Bu(l),L]

defined on L is Hamiltonian, isospectral and every G € C¥(L) as well as the mass
exp( f log(a) dm) are integrals. The flows are globally defined and commute pairwise.

Proof . Invariance of the spectrum and local integrals: In X, the differential equation
Q = —ByQ with Q(0) = 1 has a unitary solution Q(t), because By is skew sym-
metric. The formula Q)L(t)Q(t)* = L(0) shows that the flows leave invariant the
spectrum X'(L). For each g € C(X(L)) we have

G(L(®)) = w(Q* (1) g(L(0))Q(?)) = tr(g(L(0))) = G(L(0))
giving the local integrals G(L) = tr(g(L)) for g € C(X(L)).

Global existence: The local existence of the Toda flows follows from Cauchy’s exis-
tence theorem and the fact that

fo:L— L, L fg(L)=[Bg(L),L]

is Fréchet differentiable: denote with By the ball with radius R in the Banach space
L and with Dfy(L) the Fréchet derivative of fg : £ — L. The operator norm in
B(L) is written as ||| - [||1.

Claim . fg is differentiable and VR > 0 3C'y g > 0 such that for all L € Bg,
eIl < Cr,r, |IDfaDIll < CH,r -
Proof . For L € Br we have necessarily |a|oo, |blcc < R and we obtain the rough
estimate |[(L™);]oo < 3"R™, leading to |||h(L)*||| < 3RR'(3R) and
Ilfa@l| < 12R*H'(3R) .
Similarly we obtain with
D(MLY* = (L))U = (R'(L)U)* = (K'(L)U)~

the estimate .
1D fear(L)||l1 < 12R*(h"(3R) + W (3R)) =: Cy.r -
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[}

Since X'(L) is invariant by the flow, the norm ||| L(¢)||| is constant. This assures global
existence of the flow.

Hamiltonian character of the flow: We will show that £ is a Poisson manifold and
that the Toda lattice with the Hamiltonian H can be written in C*(£) as F' = {F, H}.
Define the projection A : X — L by

o0
K= Z K,m"—» KA =K_ 177 '+ Ko+ Ki7 .

Given G =tr(g(L)) € C¥(L), we denote with
VG=g(L)*eL

the functional derivative of G : L — R. The Fréchet derivative DG satisfies
DGLY)U =u(VG(L)U) for all U € L.

Claim . The following formula of Moerbeke ([vM 1]) holds:
(W' (L) = W(L)~, L1 = [L* = L™, k(1)1

Proof . By linearity in h, it is enough to check this formula for h’(L) = L™: For
|k| > 2 we have
(L™ = (L™, Lk =[L", L1k =0.

We use the notation L™ = Y"1 1,7F to verify also
(L™ = (L™, Lo = [T, (@)*] = [l-17",a7]
= [, 171 = [(a7)*, [y 7]
=[L" = L™,(L""

and
(L™ — (L™, L1i = [T, b] + [l7?, (a7)*]

= _[ZO) U/T] = [0/7', lO]
=[L" - L™, (L1,
where we used the identity

0=[L™ Ll = [l47, b + [b7%, (a7)*] + [lo, aT] .

With the Poisson bracket
{F,G}:=2-t(VF(L* - L7)VG) =w(VF[L* - L™ ,VG)]),

C“(L) is a Lie algebra. An observable G = tr(g(L)) € C*(L) is evolving according
to

G= %tr(g(L)) =tr(Dg(L)L) = tr(VGL)
=t(VG(L)[L* — L™, VH))) = {G,H} .
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Since every G € C*¥(L) is a constant of motion, we have {H,G} =0 for all H,G €
C¥(L) and so all these Hamiltonian flows commute: with the notation Xy F = {F, H}
one has using the Jacobi identity

[Xu, XglF = XpXg — XgXg)F = {{F: G}’H} - {{F,H},G}
= {{H, G}, F} = X{H’G}F = 0 .
Conservation laws for mass and momentum: The differential equation L=[B w(L), L]

is equivalent to

d
dt log(a) = h'(L)o(T) — h'(L)o ,

& b= ah/ (L ~ o@D D@
These are discrete conservation laws for the mass integral log(M) = f « log(a) dm
and the momentum integral [ b dm. O

Remark . To approach the common notation for Hamiltonian systems, one could use
the notation Jp K := [L* — L=, K] for K,L € L and < K, L >=tr(K L). The Toda
flows can then be written as

L=J,VH(L),

and the Poisson bracket is
{F,G}L =< VF,J VG > .

One can show that the 2-form wp (K, M) =< K, J, M > is degenerate. Like this, £
is not a symplectic manifold but only a Poisson manifold.
Example . (The first Toda lattice). For H(L) = tr(LTZ) one obtains the differential
equation L = [L* — L~, L]. Expressed in the coordinates a, b, this gives

a=aMT)-b),

b=2a% —2a*(T7").
For fixed z € X we write a,, = a(T"x), b, = b(T™x); this leads to

Gn = an(bpe1 — by)
bp =2 —a:_)),

and reduces to the periodic Toda lattice in the case when | X| is finite.

The Toda flows can sometimes be interpreted as a Hamiltonian flow in the new
coordinates ¢, p (see Flaschka [F]) defined by:

402 =e1D79 2b=p.

To introduce these coordinates ¢, p € L>(X), the function a> must be a multiplicative
coboundary: there must exist f € L>°(X) such that a? = fz(T)f~!. Not every a
satisfies this. A necessary condition is for example that [ « log(a) dm = 0. The Toda
differential equations transform into the Hamilton equations
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q= Hp 5
p =—H, q»
where H(q,p) = H(L) = tr(h(L)). The first flow, given by h(F) = ETZ, describes an
infinite chain of particles with position g, = ¢(T"z) moving according to:
2
_d.t_zqn = edn+174n _ gdn—4qn-1

On the Banach space L*°(X) x L°°(X) there is a symplectic structure. With z =
(g,p) € L*(X) x L*°(X), the flows can be written as 2 = JVH(2).

3. Integration of the Random Toda Lattice

If (X, T, m) is periodic, the integration of the random Toda lattice is known. In the
case of positive mass one has a collection of periodic Toda lattices and in the case of
zero mass one has a collection aperiodic Toda lattices. In the following, we examine
the case of an aperiodic dynamical system.

Denote with Expy : £ — L the time 1 map of the flow given by H. We want to
find new coordinates in an infinite dimensional vector space G where the time 1 map
Exp is easy to calculate.

Theorem 3.1. Assume (X, T, m) is aperiodic.
a) There exists an injective map ¢ : L — G = (L=(X) x L®(X))N,

a, b € LOO(X) g ()‘7 T) = {(/\’L, ri)}’iGN
which has a surjective left inverse 1 defined on the flow invariant subset
H = {Expy(¥(L)) | H € C*(0)} C G

The flow given by the differential equation L = [By (L), L] has in the new coordinates
the form

Exp, (N, 1) = O, € V) = {0, e O0r) iy

and is conjugated to the flow in L:

Expy(L) =1 o Expy o (L) .

b) Assume (X, T,m) is ergodic. If L € L is given such that 'Y = {a(z) = 0} has
positive measure, then there exists a generic set in C¥ (L), such that for H in this set,
L(t)(x) converges in the weak operator topology to a diagonal operator for almost all
z e X.

3.1 Proof of Theorem 3.1 in the case when {a(z) = 0} has positive measure.

Proof .
a) Call Ty the induced mapping on Y = {a(z) =0},
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Ty (y) =T"¥(y) ,

where n(y) = min{n > 0 | T™y € Y'}. By Poincaré recurrence, n(y) is finite for
almost all y € Y. For fixed y € Y, we write a,, = a(T"y), b, = b(T™y) and call the
aperiodic Jacobi matrix

bl aq 0 . . 0
a’l b2 az . . .
Ly — 0 a2 . . . .
I : Un(y)-2) 0
Anm-2  Dnw)-1)  Anm)—1
o - - 0 Un)-1)  bn

a block. Tt evolves independently from the other part of the matrix L(y). We have
like this a measurable matrix-valued function

yeY —1L,.

The spectrum A{) < ... < MA@ of L, is simple. We can label each z € X with a
value A(z) by defining

(m(z))
A@) = ’\y(Z) ’

where m(z) = min{n > 0 | T~"z € Y} and y(z) = T-™®z. The mapping
x +— A(x) is measurable and because A(z) < [||L]|| for almost every z € X, we
have A € L*°(X). Call

n(y)
dE, =Y ANT'y)P(T'y)

i=1

the matrix-valued spectral measure of Ly, = f AdEy (M), where P(z) is the projection
on the eigenspace of A(z). Define for y € Y the probability measure

py = [dEy]11 -

If 6(z) denotes the Dirac measure at z € R, the measure can be written as

n(y) g
V=3 s,
i=1

?/

where
n(y)

Ry(r)=Y_r(T*y).
k=1
The function 7 € L°°(X) is uniquely defined when we require Ry(r)=1fory €Y.
We have so a map

¢:(a,b) = (A, € G =L>X) x LX) .

Define ¢(L) = (¢1, b1, ...) € G. (Infinitely many coordinates in G will be necessary
only in the case a(x) > 0, a.e. which is treated in Sect. 3.3.) In these new coordinates
the flow is linear: A does not change and the weights r(T"y) of the measure du,, are
evolving according to
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H(Thy) = K \T'y) - r(TPy), i=1,...,n(@y) .
(See [Mo 1] for the first flow and [DLT 1] for all the Toda flows.) Therefore
@), (1) = (A, eV 7).

From Expy (), ) € H the operator Exp (L) € £ can be reconstructed: Take a point
y € Y. The values . '
MT*y), r(Ty)i=1,...,0(y)

determine the measure dy,, and from this measure, a(T"y), b(T"y) for i = 1,...,n(y)
can be recovered. We have thus an inverse ¥ on H C G and by construction

Expgy(L)=1o E_po og(L) .

b) The spectrum X(L(zx)) is countable, and because of ergodicity, X'(L(z)) = X'(L)
for almost all z € X. There exists a generic set of entire functions h which are
injective on X'(L) because & is injective on X'(L) if and only if it is in the countable

intersection
| {h|hE)#E"}
E' E"e3(L)

of open dense sets. Denote with X, be the spectrum of the block L,,. If b’ is injective
on X(L), it is injective on X, and L,(t) converges with the Hamiltonian H(L) =
tr(h(L)) to a diagonal matrix for |t| — oo [DLT 2]. Because this happens for all
blocks L, with y € {a(z) = 0}, the operator L(z) converges to a diagonal operator
in the weak operator topology. O

3.2 Weak continuity of a flow in a Banach space.

The rest of the proof of Theorem 3.1 uses an approximation argument which is based
on the following technical result:

Given a Banach space (M, || - ||) endowed with a second topology which is weaker
than the norm topology and metrizable on each ball Bg = {]|z|| < R} C M. Call
Df the Fréchet derivative of a differentiable map f : M — M.

Proposition 3.2. Assume that a differentiable function f : M — M satisfies
(i) f restricted to the ball Br C M is continuous in the weaker topology.
(ii) There exists a constant C € R, such that for z € Bg

IIDf@I < C, [IDfRfI < C.

(iii) The flow given by % = f(z) leaves each ball By invariant.
Then, for each T € R, the time T map ¢, : Brp — Bpgr of the flow given by the
differential equation % = f(z) is weakly continuous on Bp.

The next simple lemma will also be useful.

Lemma 3.3. Given a sequence of mappings gn : Bgr — Br/ C M converging
uniformly to a mapping g for N — oo:
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sup ||gn(2) — 9(2)|| = 0.
ZEBR

If all the gn are weakly continuous on Bp, then g is weakly continuous on Bg.

Proof . Denote with d the metric on Br U Bgr C M giving the weak topology. Take
a sequence z, € Bgr which is converging weakly to z € Bgr. Given € > 0. Because
the norm topology is stronger than the weaker topology

d(9(2), gn(2)) < €/3, d(gn(zn), 9(2n)) < €/3

for all n € N if N is big enough. Because gy is weakly continuous, we have
d(gn(2), gn(2n)) < €/3 for n big enough and thus

d(9(2), 9(2r)) < d(9(2), gn(2)) + d(gn (2), gn (2n)) + d(gN(2n), 9(2n)) < €.
d
Now to the proof of Proposition 3.2:

Proof . Assumptions (ii) and (iii) together with Cauchy’s existence theorem assure
that a unique solution of % = f(z) exists for all times. Divide the interval [0, 7] into

N intervals,
kt (k+ D1

[k, teet] = [—]\—,, N

of length h = 7/N and define recursively the Euler steps

1, k=0,....N—1

241 = 2k + hf(2r), 20 = 2(0) .

Using the Taylor development

(298]
2(tke1) = 2(tk) + hf(2(k)) + / (¢ = te)Df(2()f (=) dt ,

tg

the deviation ey, := 2z, — 2(tx) from the orbit after k steps can be estimated as follows:
we have ||eg|| = 0 and from the estimates (ii), we obtain

C C
llers1]] < |lerl| + AC|lex]] + —2—h2 = (1 + hO)||ex|| + -2-h2 =: Allex||+ B,

and 50 ||eg|| = 0, ||e1|| < B. Inductively, ||ex|| < (A*~'+ A*~2+...+ A+1)B. This
yields to

th’_l h

Ak 1 1+hC)Y -1 C e
llex]| < p=UHRO7 =1 o 2

- A-1 hC 2~ C

as long as zjy stays in Bg. The error after N Euler steps is

'%hg(eCT—ly

— = < (7 — 1)
I267) = 21| = [len]] < €7 = D37
This estimate is uniform for z € Bg. (If N is so large that

;
@7 = D55 < B—|lall
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also the linear interpolation of the points {zj }iv, (the Euler polygon) is contained in
Bpg, so that the estimates hold for these points also.)

The orbit ¢t € [0, 79] — 2(t) is now approximated in norm by a piecewise linear
Euler polygon. A simple Euler step z — z+h f(z) is continuous in the weak topology
if f is continuous in the weak topology. So also the mapping ¢y : 2z — 2y, which is
a composition of finitely many Euler steps is weakly continuous. For N big enough,
we have

() — b @)|| < (€57 — 1)%

uniformly for y € Bg. Lemma 3.3 shows that ¢ is weakly continuous. O

3.3 Proof of Theorem 3.1 in the case when a(x) > 0 almost everywhere.

From Proposition 3.2 we get

Corollary 3.4. Given H(L) € C“(L). The flow on B(*(Z)) defined by the differen-
tial equation L(x) = [By(L(x)), L(x)] is continuous in the weak operator topology
restricted to each ball B C B(*(Z)).

Proof . We can apply Proposition 3.2 to the Banach space B(I*(Z)). As a Toda flow
is isospectral, it will leave each ball By invariant. We check first the weak continuity
of the mapping

L(@) = fa(L(z)) := [Bu(L(z)), L(z)]

on BR.

For polynomials h, the weak continuity is evident inductively, since the multipli-
cation B(1?) x L(z) — B(I?) is jointly weakly continuous: each matrix entry of the
product LM is the sum of only three elements. If h is analytic, it can be approximated
by polynomials h,, — h. Then fg, (L(z)) — fu(L(x)) in norm, uniformly on each
ball Br. With Lemma 3.3 also L(z) — fg(L(x)) is weakly continuous.

The right-hand side of the differential equation L = fg(L) satisfies the boundedness
conditions of Proposition 3.2: We have seen in Sect. 2, that there exists a constant C
dependent only on |||L||| and h such that

fa L@l < C; IIDfaDi < C.

We prove now Theorem 3.1 in the case a(z) > 0 almost everywhere:

Proof . Construction of sets with arbitrary big return time: Rohlin’s lemma (see [CFS])
implies that there exists for each N € N a measurable set Zy C X of positive measure
such that

T=N@N), ..., 2N, T(ZN), ..., TV (ZN)

are pairwise disjoint and such that

N

Yw=X\ |J T'2n
i=—N
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has measure m(Yy) < 1/N. The countable set
Y={",2,¥5...}

has the property that for almostall x € X andall N € NwecanfindY =Yy, € YV
such that 7"(z) ¢ Y forn=—-N,...,N.

A countable set of random Jacobi operators with zero mass. Given L € L with
m{a(x) = 0} = 0. Define for each Y € ) the new random Jacobi operator

Ly =(lyc)ar + ((1ye)ar)* + b,

where 1yc is the characteristic function of the set Y¢ = X \ Y. The random
Toda flow for Ly can be integrated according to the already proved case because
Y = {(Ly)1(z) = 0} has positive measure.

Construction of ¢: There exists a mapping

¢y : L Ly = §(Ly) € L=(X)?
which linearizes the flow. Define
¢={by}vey =@y, dy;;-. ) LG .

Construction of the left inverse y: Take Expg (A, ) € H. For almost all z € X there
is a sequence N +— k(N, ) such that

T (@) & Y o)
for = —N,..., N. Proposition 3.2 implies that for N — oo
Y, Expy (A, m)(@) — Exp(L)(@)
in the weak operator topology, where 1;(\', ) is the operator L}, calculated from
the spectral data (A}, r}) satisfying 1; o [&(Lg,i ) = Ly, Define
YEXpH (A, M)(@) = Nh—r»noo Ve, Expg (A, M) (@)

where the limit is taken in the weak operator topology.

Conjugation of the flow: Assume ¢(L) = (A, 7). In the weak operator topology we

have o
Expy(D)(@) = lim_ v Expp (A, m)(@)

= Y(Exp (A, ))(x) = Y 0 Bxpyy 0 ¢(L)(x)
and so o
Expy(L) =y oExpy o p(L). O

4. QR Decomposition

For a real n x n matrix M, there exists a decomposition M = QR, where @ is
orthogonal and R is upper triangular. For aperiodic Jacobi matrices, Symes [Sy 1]
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found that the QR decomposition of exp(tL) integrates the first Toda flow L(t). This
was worked out further in [DNT] leading to the observation that the time 1 map of
the Hamiltonian H(L) = tr(L - log(L) — L) is just one step in the QR algorithm,
an algorithm which is used to diagonalize a matrix numerically. More generally, the
following fact is known:

Proposition 4.1. Given h € C*(R). In the matrix algebra M(d,R), the solution of
L =[By(L), L], L) = Lo
is given by L(t) = Q*LoQ, where Q is obtained by the QR decomposition
exp(th’(Lo)) = QR.
Proof . We can write
6th’ (Lg) - Q R

in a unique way, because et L0 is invertible. The dependence of Q,R on ¢ is
differentiable. Differentiation gives

R(Lo)QR=QR+QR
and after multiplication from the right with R~! and multiplication from the left with
Q*, we get _
Q" W(Lo)Q=Q*"Q+RR™,
where Q*Q is skew symmetric and RR~! is upper triangular. Call L(t) = Q*(t)LoQ(t)
with Q(0) = 1. It follows
K(IL®) = QW (Lo)Q =Q*Q+RR™ .
We can compare this with the unique decomposition
W (L)) = —=h'(L@)* +h' (L)~

+ 21 (L)t + K (L))o

into a skew symmetric and an upper triangular part to get
Q*Q =K L) +h L)~ =-Bul).
Now p
2 L0 = Q" OLoQ®) + Q" () LoQ(®)

= (" MRMNQ* M) Lo(HQM + Q* () LoQIQ* (1)Q(?))
= Q" ®OQW)LE®) + LNQ* QM)
= [W'L@)*" = k'La)~, L®)] = [Ba(LEt), L#)] -
Because L(t), L(t) satisfy the same differential equation as well as the same initial
conditions L(0) = L(0), they must coincide. O
This can be generalized to the random case:

Theorem 4.2. For L € L and H(L) = tr(h(L)) € C¥(L), there exists a unitary
QeXandR=3, 5 R,m" € 77YX* such that exp(h'(L)) = QR.
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If L(t) satisfies L = [Bg(L), L], one obtains L(t) = Q* L(0)Q with a QR decomposi-
tion exp(th'(Lg)) = QR.

Call 7 the Banach space of selfadjoint real tridiagonal matrices in B({%) and

7 ={p(L) | p polynomial, L € 7},

T ={ ML) | hentire, L € T}.
We call the weak operator topology on B(I?) in the following also the weak topology.
Denote with Bg the ball with radius R in the Banach space B(I?) and 7z = 7 N

Bgr,Tr =T NBg,Tr =T N Bg. The weak topology is metrizable on each ball Bg.
We denote this metric by d.

Lemma 4.3.
a) Given an entire function f and R > 0. The mapping

Tr — B, L~ f(L)

is weakly continuous.
b) B x Tgr — B(®), (L,K) — L - K is weakly continuous.

Proof .

a) Because multiplication 7 x B(I*) — B(I/?) is weakly continuous, one obtains
inductively that L — p(L) is weakly continuous for every polynomial p. Applying
Lemma 3.3 gives that L — f(L) is Weakly continuous for an entire function f.

b) The multiplication B x 7z — B(1?) is weakly continuous. We can approximate
L € T in norm by elements in 7 and this approximation can be made uniform in the
ball Bg. Use again Lemma 3.3. ]

We prove now Theorem 4.2:

Proof . Fix x € X. We can approximate L(x) in the weak operator topology by
tridiagonal aperiodic N x N Jacobi matrices L™, For such matrices we can form

exp(h/ (LM (2))) = QM (2)RM(z)

where Q™)(x) is orthogonal and R")(z) is tridiagonal and we know also that
QM (z)y* LM (2)QWM)(x) is the time 1 map of the Hamiltonian flow

L) = [Bu (L™ @), LY @)] = fa(L™) .
We are deforming L(z) with the same Hamiltonian flow
L(z) = [Bu(L(z)), L(x)] = fu(L)

to get Expy L(z) = Q*(z)L(z)Q(z).
Claim . Q™) (z) — Q(z) in the weak operator topology.

Proof . Consider in addition to the above differential equations for L") and L also
the differential equations
QM (@) = ~Ba LM @)Q™ (@) = gu@L™,Q")
Q(x) = =B (L@)Q() = gu(L, Q).
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We can apply Proposition 3.2 to the system

d

in B(I*(Z))? in order to show that Q¥)(z) — Q(z) in the weak operator topology. The
assumptions of Proposition 3.2 are readily checked: Because L — Bpy(L) is weakly
continuous, we can apply Lemma 4.3 b) to conclude that g is also weakly continuous.
There are for L € Bg C B(I*(Z)) also the estimates ||g(L(z), Q(z))|| < Cx r and
[|Dg(L, Dl|l2 < 2Cu,r, where ||| - |||2 is the norm in £ x X. Because By is skew
symmetric, the norm of Q(t) is a constant. 0

From Lemma 4.3 a) we have

N EMN@) _, h (L)
With this, the just proved claim and Lemma 4.3 b) one gets

QM) @e" EV@ = RV (@) - Q@) ) = Ria)

in the weak operator topology. It follows that R(z) is also upper triangular and
et L@) = Q(z)R(z) with Q*(z)Lo(z)Q(z) = Exp 1 L(z). We have now constructed
Q(z) and R(z) pointwise for z € X. There is an upper bound for [R(x)];; due to the
fact that the Toda flows are isospectral. By Lebesgue dominated convergence theorem
applied to each function [Q(x)];;, [R(z)];; we get also random operators Q, R € X
which satisfy QR = exp(h'(Lo)) with Q*LoQ = Expy L. a

Remark . Theorem 4.2 is not yet very helpful in order to understand more about the
qualitative behaviour of Toda flows. It has been pointed out to us by a referee that
the QR decomposition in X is not unique: For example, 7 = 7 -1 = 1 - 7 because
7 is unitary and upper trigonal. We have used the Toda flows to construct a QR
decomposition for certain elements in X and we don’t know how to find and perform
directly the right QR decomposition which leads to an integration of the Toda flow.

Remark . Having the right Q) R decomposition for infinite matrices, one could calculate
the time 7 map of the periodic Toda lattice by a QR decomposition of an infinite
but periodic matrix. As the solutions of the periodic Toda lattice can be expressed by
Theta functions (see for example [T]), it would be interesting to know whether the
@R decomposition is a reasonable way to calculate Theta functions numerically.

5. Density of States, Lyapunov Exponent and Rotation Number, Floquet
Exponent, Determinant. Entropy and Index of Monotone Twist Maps.

5.1 The Floquet exponent as an integral of the Toda flow.

The functional calculus for a normal element K in the C* algebra X defines f(K)
for a function f € C(X'(K)). The mapping

[ = u(fK)
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is a bounded linear functional on C(X(K)), and by Riesz representation theorem,
there exists a measure dk on X' (K) with

W)= [ JEkE).
Z(K)
This measure dk is called the density of states of K. Because of
1 =/ 1dm=tr(1) = dk(E) ,
X Z(K)

the measure dk is a probability measure. For selfadjoint elements K € X, the density
of states dk has its support on R. The integral

E
k(E) = / dk(E")

is called the integrated density of states of K. To an operator L € L, we attach a
complex valued function by means of

w(E) := —tr(log(L — E)) ,

which is a priori defined only for Im(E) > 0. Here the branch of the logarithm is
chosen so that log(1) = 0. The function w is called the Johnson-Moser function or
Floquet exponent. This gives also a determinant

e~ WE) = ologL=B) _ dey( — E) .
For the transfer cocycle

E — b(z) —a2(T-1x)>

Ag(z) :=a YT '2) ( 1 0

of L = ar + (at)* + b the Lyapunov exponent is
Ng) = lim 17! [ tog 43| dmo),
n—oo X

where A%(z) = Ap(T" 'z)... A(Tz)Ag(x) and the rotation number is given by
p(Ag) = mk(E). The rotation number can be defined by the cocycle Ag alone [DS].

Theorem 5.1. In the case when a(x) > 0 almost everywhere, the Floquet exponent
w(FE) = —tr(log(L — E))

as well as for E € R the Lyapunov exponent A\(Ag) and the rotation number p(Ag)
are integrals of the Toda flows.

Proof . The Thouless formula relates the mass M and the Floquet exponent w(F)
with the Lyapunov exponent A(Ag) and the rotation number p(Ag):
if L has positive mass then

~MAg) +ip(Ag) = w(E) +log(M) .
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For the proof see [CL]. In the case of zero mass, both sides are —oo.

In the case Im(E) > 0, the function g(z) = —log(z — E) is continuous on the real
axis and w(F) = tr(g(L)) is an integral of the Toda flows. The function E — w(E) is
a Herglotz function. Because w(E) is time independent for £ in the upper half plane,
it is also time independent on the real axis.

5.2 Monotone twist maps.

Random Jacobi operators appear in a natural way when embedding an abstract
dynamical system in a monotone twist map. Assume we have given a generating
function | € C*(R?) and r > 0, such that

/ _g_i /
llZ(x:x)_ 631? 8x,l(x7x)2 r,

lz,2)=lx+1,2' +1).
If we define P
y(-’E,IUI) = ll(ﬂf, :B,) = —'l(x’ 113/) 3
oz
0
y/(%l’,) = _lZ(xa :L'/) = _%l(xa IE/) 3
z’ can be expressed as a function of z and y. The mapping

S:(z,y)— @, Y)

is called a monotone twist map. It leaves invariant the Lebesgue measure dxdy on the
cylinder T X R where T = R/Z. Given an abstract dynamical system (X, T, m). In
order to have a critical point g of the Percival functional

L@ = /X (g, q(T)) dm

on the Banach manifold L°°(X, T), we must have

§L(q) =1i(q, qT) + L(g(T™1,¢9)=0.

If there exists a ¢ which satisfies this Euler equation, we have embedded a factor of
the given dynamical system inside the twist map. The second variation of L is the
random Jacobi operator

L(q)=8L(g)=ar +(aT)* +be L,

where
a(z) = l1p(g(x), ¢(T'x))

b(@) = Li1(g(2), ¢(T'T)) + Lo(g(T ™' 2), g()).

The twist condition implies that L has positive mass. The random Jacobi operator L
obtained as a second variation of the Percival functional and the Floquet exponent
w are carrying information about the embedded system. It follows for example with
a result of Mather [Ma 1] that the embedded system is a hyperbolic set if and only
if L is invertible, because in the resolvent set of L, the cocycle Ag is uniformly
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hyperbolic. In this case there is by the implicit function theorem also a neighborhood
of generating functions such that the Percival functional has a critical point near the
given critical point.

Examples .

e Assume X is a bounded subset on the cylinder T x R which is invariant under the
twist map S and has positive but finite Lebesgue measure. Call 7T the restriction of .S
on X and m the normalized measure on X induced from the Lebesgue measure. There
is a critical point g(z) = mjz, where m; is the projection on the angle coordinate of
the cylinder. The real part of log(M) — w(0) is the entropy of the twist map restricted
to X. The imaginary part of w(0) is an index.

For generating functions of the type

(@ — x)?

N —
l(z,z) = 2

+V(z),

the twist map S can be defined on the torus X = T2. The system (X, T,m) with
T = S and m = dxdy can then be taken as the abstract dynamical system and the
Floquet exponent w(E) gives

w(0) = —entropy +1i - index .

because M =1 in this case.

o A finite dynamical system is just a cyclic permutation T of a finite set X . The Jacobi
operator is then periodic of period |X|. Finding critical points of the functional L is
equivalent to finding periodic points. Periodic points of period | X| always exist. The
rotation number of the Jacobi operator is related to the Morse index of the critical
point [Ma 3]. When the Jacobi operator is restricted to the finite dimensional Hilbert
space of | X |— periodic sequences in [2(Z), it is just a periodic Jacobi matrix.

o If (X,T,m) is an ergodic automorphism of the circle, nontrivial critical points
correspond to invariant circles or Mather sets. Mather’s result [Ma 2] proves the
existence of nontrivial critical points. There are examples, where the corresponding
random Jacobi operator is invertible because a Mather set can be hyperbolic (see [G]).

e If X is a closed bounded S invariant set of the cylinder and 7 is the restriction of
S onto X there exists a T invariant probability measure on X. Again, a(z) = m;(x)
is a critical point of the functional. An example: if the twist map has a transverse
homoclinic point xy coming from a hyperbolic fixed point, then X can be chosen
as the closure of {S™(zp) | n € Z}. Again one has a hyperbolic system and the
corresponding random Jacobi operator is invertible.

Remark . Toda deformations and twist maps are still unrelated. Our motivation to
study random Toda systems was the hope to make deformations of cocyles appearing
in twist maps like the standard map in order to gain more information about the
Lyapunov exponents. It is thinkable that there are deformations which lead to cocy-
cles, where Wojtkowski’s cone criterion [W] (a necessary and sufficient condition for
positive Lyapunov exponents) is applicable to prove positive Lyapunov exponents.
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6. Generalizations and Questions
6.1 Toda lattices over noncommutative dynamical systems.

Let A be any C* algebra and 7' : A — A,a — a(T') be an automorphism of this
algebra. Assume 4 has a trace satisfying trace(ab) = trace(ba). The crossed product
X of the algebra A with the dynamical system is again a C* algebra. Elements in X
can be written as K =Y K, 7", where K,, € A. On X there is also a trace defined
by

tr(K) = trace(K) .

Define the Banach space L ={L € X | L, =0 |n| > 1,L = L*}. For H € C¥(L),
the differential equation

L=[h(Ly" = k'(L)~, Ll = [Bu(L), L]

is a Hamiltonian flow in the subspace £ C X'. It has the Hamiltonian H (L) = tr(h(L)).
Let Q(t) be defined by the differential equation

Q=-Bu(L)Q

with initial conditions @Q(0) = 1. In X, the equality L(t) = Q(t)*L(0)Q(t) shows
that the flow is isospectral. It has the integral tr(f(L)) for each f € C(R). Given a
representation = : A — B(H), which means that x(a) is a bounded linear operator
on the Hilbert space H for all a € A. If we use the notation z(a) = a(z) and
z(a(T™)) = a(I™z), each element K € X has a representation K(z) in the Hilbert
space [2(Z, M) defined by the matrix

[K(x)]mn = n—m(me) .

The matrix K(z) is a Jacobi matrix where the entries are linear operators on H.

Examples .
o If A= L°°(X) we are in the case discussed already because an automorphism T
comes from a dynamical system (X, T, m).
e Assume X is a compact topological space and A = C(X). We have then a defor-
mation in

Lo={L=ar+(@r)*+b|la,be CX,R)}CL.

Also if X is a compact manifold and A = C"(X, R), the space
Lr={L=ar+(@n)* +b|a,be C"(X,R)} Cc L. CL
for r=1,2,... is kept invariant by the Toda flows.

o A = L>®(X,M(,R)) gives a quite natural noncommutative generalization of the
Toda lattice. A suggestion to study such systems is in [C3]. In the case | X | < oo, this
gives new finite dimensional systems which are candidates for being integrable. The
flow can be written as an isospectral deformation of operators called stochastic Jacobi
matrices on the strip [KS]. They arise as second variations of higher dimensional twist
maps like the Froschle map (see [KM]). A nonabelian Toda lattice for half infinite
matrices is proposed in [BGS].
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6.2 More general Hamiltonians.

We have chosen Hamiltonians which are defined by entire functions h € C“. Like this,
we could use Cauchy’s existence theorem for differential equations in a Banach space.
One has to be careful in doing generalizations by choosing functions h which are only
analytic in a neighborhood of the spectrum X(L): it can happen that, for a bounded
operator K on [2(Z), the operator K*— K~ is no more bounded [DLT 1]. Nevertheless
one can consider functions A’ € L°°(X(L)). The functional calculus defines then
h' (L) € X. Even if By (L) = h'(L)* — h'(L)~ is unbounded, one can obtain like this
Toda flows in a weak sense ([DLT 1]): For all u,v € {u € I¥(Z) | Ing > 0 u, =
0, V |n| > no},

d
T <u,Lv >=— < Bg(L)u,Lv > — < Lu, Bg(L)v > .

6.3 Deformation of complex Jacobi operators and deformations with complex time.

We considered only real Jacobi operators and deformations where time is real. If
a,b € L*®(X,C) then
L=ar+7*a+be Lc

is no more selfadjoint in general. Even if we make isospectral deformations, the norm
can blow up. There are actually isospectral operators to a given operator which have
arbitrary big norm. Given an arbitrary entire function h, the differential equation

L={h@)y -hw, L

in the complex Banach space L¢ has locally a unique analytic solution ¢ — L(t) for
t in a disc D,.(0) C C.

If we restrict to real time, one can define deformations of complex finite di-
mensional Jacobi operators (see [C 2]): Also for the random version, the differential
equation )

L=[Bu(L),L]

with
By(L) = h'(Ly* — (h'(Ly*)* +i-Im(h'(L))

defines an isospectral deformation in £¢. Exactly in the same way as before, one can
decompose exp(t - h'(L)) = QR into a unitary ) and upper triangular R such that
L(t) = Q*(t) L(0)Q(t). The flow does not extend to a flow with complex time.

6.4 Random Singular-Value-Decomposition flows.

Toda like deformations have been generalized to arbitrary matrices [DLT 2]. Given
any real n X n matrix A and a real entire functions h, one can define the so called
Singular-Value-Decomposition (SV D) flow (see [DDLT])

A=Byp(AA*)A — ABy(A*A) .

Under the map A — L = A*A the flow goes over in the Toda like flow
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L=[r@y -n@)y ,L].

Both flows have a unique global solution and preserve the singular values of A
respectively the spectrum of L. The flow can be integrated explicitly as follows: With
the QR decompositions

et A — 0 DR (@),
eth/(AA*) = Q2(t)R2(t) )

one gets A(t) = Q5 AQ;.
Given now any element A € X’ where X in the C* crossed product of the Banach
algebra L°°(X) with a dynamical system. The deformation

L = By(AA*)A — ABg(A*A)

is a random version of the singular decomposition flow. The qualitative behaviour
could be investigated in the same way by approximation in the weak operator topology
by finite dimensional SVD flows.

6.5 Deformation of operators with no boundary conditions.

Why is it useful to study deformations of operators with random boundary conditions?
The Toda deformations can also be done for any tridiagonal bounded operator L on
12(Z) and the flow given by the differential equation

L =[Bu(L), L]

can be approximated in the weak operator topology by finite dimensional Toda flows.
The advantage of looking at random operators is the existence of a finite trace which
is the ergodic average of the diagonal of the operator. Most integrals can be expressed
by this trace. Such integrals are invariant by the shift

Lij = Livi,j41 -

Considering random operators instead of general operators gives an important sym-
metry, in that shift invariant “macroscopic quantities” exist.

6.6 Some questions.

e The spectral and inverse spectral problem for random Jacobi operators is not solved.
How does the isospectral set look? For which dynamical systems do random operators
with the same mass M and the same Floquet exponent w(F) form a group? Does the
determinant of the resolvent (L — E)~! determine the isospectral set? What spectra
do occur over a given dynamical system? What kind of spectra do occur generically
in £ for fixed dynamical system (X, T, m)?

o Can one find the explicit solutions of the random Toda lattice? The integration
proposed in this paper here is somehow artificial. The hope is that the solutions can
be written in terms of generalized theta functions. What are the properties of the
transcendental hyperelliptic curve

y?=det(L — B)=e P,
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where w(F) is the Floquet exponent? Especially interesting would be some knowledge
about infinite dimensional Jacobians. Is there an infinite dimensional generalization
of the Jacobi map?

e What is the asymptotic behaviour of the random Toda lattice? What happens for
t — 00 in the case when {a(z) = 0} has positive measure? To our knowledge, the
general asymptotic behaviour of the tied finite dimensional Toda lattice analogous
to the first flow [Mo 2] is not known. What happens for Hamiltonians outside the
generic set where one has convergence to diagonal operators? (See [C 1].)

Is there recurrence in the weak operator topology in the case when a(z) > 0 almost
everywhere?

e Is it possible to deform a random Jacobi operator in a way to make the spectral
problem or the problem of calculating the Floquet exponent more easy? Can one
deform a twist mapping in a way such that the corresponding random Jacobi operator
is deformed in an isospectral way?

e Is any isospectral deformation in the crossed product of any Banach algebra with
any dynamical system integrable?
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