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Abstract. We show that solutions to the modified Dirac-Klein-Gordon system in
standard notation

(-iyμdμ + M)ψ = 0

(-Π+m2)φ = g(tψy°ιl/

in two space dimensions with complex-valued initial data ^(0, x) eL 2 (R 2 ;C 4 ) ,
real valued φ(0, x) e WU2(ΈL2) and φt{0, x) e L 2 (R 2 ) have regularity

Here j f £,C(R3) denotes the (local) Hardy space, and g(t) is assumed to be in C*(R)
and g(0) = 0. Consequently nonlinear terms φφ which appear in the classical
coupled Dirac-Klein-Gordon system (with the modification g = g(t)e C1 and
0(0) = 0) can then be defined in Lj?c(Ri; L^R 2)). We hope these results will be
useful in establishing the existence of weak solutions to the classical coupled
Dirac-Klein-Gordon system in the framework of compensated compactness.
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1. Introduction

We are interested in establishing the global existence of weak solutions to the
Cauchy problem of arbitrary initial data for the (classical) coupled Dirac-Klein-
Gordon system of equations

( - iγ"dμ + M)ψ = gφφ (M, g > 0),

x CD
I—I i in, jκ[s yiψ ψ I '—I i—* Λ 9 ' '

or

Here φ is a real scalar, ^ belongs to a complex four-dimensional space in three
space dimensions, i is such that i2 = — 1. {yμ}^=0 are Dirac matrices. ^ = t/^y0,
where i/Λ denotes the complex-conjugate transpose of φ and y° is a diagonal 4x4
matrix with diagonal entries 1,1, — 1, — 1. Later, we will be more specific on the
notations which are consistent with our references.

The Cauchy problem for system (1) is well-posed in short time for arbitrary
initial data and globally well posed for small smooth initial data (see [1,15,19]). In
[7], Chadam and Glassey found a special set of global solutions in three space
dimensions. Bachelot [2-4] recently proved, among other things, global existence
of solutions for initial data being perturbations of the special solutions found in
[7]. One of the main difficulties in the global existence theory with arbitrary initial
data in two or three space dimensions is that the energy estimate for the system is
not positive definite. In one space dimension, Chadam [6] established the global
existence of a classical solution with arbitrary initial data by a boot-strapping
method in Sobolev spaces. A similar boot-strapping method does not seem to work
in two or three space dimensions. In two space dimensions, however, the method is
borderline (i.e., involves critical Sobolev exponents). By employing the Hardy space
Jf \ we hope to make the boot-strapping method work within the framework of
compensated compactness [22] where the energy estimate is not necessary. We
shall address some successful applications of 2tf1 and BMO of bounded mean
oscillation on harmonic maps at the end of this introduction.

There is a conservation of charge

JI φ | 2 dx = const, in time (2)

for the DKG system (see [13], for example). Inverting the coupled KG equation
with zero initial datum, we find

sup $\φ\pdx£CTtP (3)

for all 1 ^ p ^ 2 in two space dimensions, and for p = 1 in three space dimensions.
The nonlinear term φφ would be defined in L °° ((0, T\ L1 (Rw)), n = 2 or 3 if φ were
in L°°((0, Γ);L2(Rn)). We prove that φ is indeed in L_°°((0, T\ L 2(R 2)) if we let
g depend on t smoothly and g(0) = 0 provided that φφ is in JfΊoC(R + ) in two
space dimension (Theorem 2). By applying the quantified compensated compact-
ness of Mϋller [17] and Coifman, Lions, Meyer and Semmes [8], we show that φφ
is indeed in J f ioC(R +) if φ satisfies the homogeneous Dirac equations (Theorem 1).

We have not been able to show that φφ is in Jf !oC(R +) if φ satisfies the coupled
Dirac equations. Instead, what we have done is the regularity of weak solutions to
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the following modified DKG system:

= o
(-B+m2)φ = g(t)φφ (4)

Φ\t = o = Ψo(x), Ψ\t = o = ΦoM, Φίlί = o = <Pi(x) ,

where φo(x) e L2(R2), φ 0 and φx are assumed smooth, and g(t) is as stated above.
In view of the full system (1), the assumption i^ 0 (x)eI 2 (R 2 ) is natural and
appropriate compared to better assumptions such as φoe Wlt2(WL2)9 since the
energy estimate involving the derivatives of φ are not positive definite, as men-
tioned earlier. We believe that the assumptions φo(x)e L 2(R 2), φ0 and φ1 are
smooth should be sufficient in establishing the global existence of a weak solution
for system (1) by the compensated compactness method. The regularity of
φφ e 3tfloc{Wi\) and φ e L00((0, T); L2(R2)) that we obtain here for (4) should be
useful in obtaining a priori estimates for the full system (1) by a boot-strapping
method.

It is worth mentioning that our approach here does indeed yield global
existence of weak solutions (Theorem 3) for the full system (1) in one space
dimension with weaker assumptions on the initial data than Chadam [6].

Finally we point out that Jff* and BMO have been successfully used in some
borderline problems of harmonic maps. F. Helein [12] showed that any weakly
harmonic mapping from a two-dimensional surface into a sphere is smooth. Soon
afterwards, L.C. Evans [9] generalized Helein's result to higher dimensions, assert-
ing in effect that a stationary harmonic mapping from an open subset of Rn (n ^ 3)
into a sphere is smooth, except possibly for a closed singular set of (n — 2)-
dimensional Hausdorff measure zero. The key ingredient of their proofs is that the
right-hand side of the equations

- Δu = \Vu\2u

belongs to the Hardy space Jf1 (R") when u is constrained to a sphere | u\ = 1. This
fact and Wente's earlier work [24] on inverting the Poisson equation

imply immediately that u is continuous, and therefore smooth in the case of the
harmonic map. For n ^ 3, Evans noted additionally that certain monotonicity
inequalities provide bounds for u in BMO and Fefferman's [10] duality theorem
(Jf x )* = BMO was then used.

2. Preliminaries

In this secrtion we recall the definitions of various spaces and the relevant basic
facts which will make our subsequent presentation clearer.

2.1. Localization ofjf1 (Rw): j f J,c and ft1. Let h be in Cc°° (RM), with support in the
unit ball and Jft = 1. For any/e L1(Win)9 we set

/ * ( * ) = sup
oo > r > 0
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The Hardy space

with norm

is defined to be

") = {/e L ^ R

= 11/*

Observe / e j f 1 ( R " ) implies JR./dx = 0. This makes it nontrivial to localize
$eγ (Rw) onto a subset of IRΠ, as compared to the localization of L1 (Rw). We shall
for our purposes define J^loc as

sup
l>r>0

x-j;
dy

Notice in ffl loc the "su]5" is taken over 1 > r > 0 only. A more refined version was
introduced by Goldberg [14]. It is the space h1(Win):

sup
1 x-y dy

One of the many properties that Λ1(R li) has is the following duality theorem

Proposition 1. (ft1)* = {f?eBMO|φ*ί> eL°°(Rw)} /or some φ e S (the Schwartz
class of rapidly decreasing functions) such that

\\f-φ*f\\*>£c\\f\\hl9 V/e/z1. (5)

A sufficient condition for (5) is given by

Proposition 2. If φ e S, Jφ = 1, ί/ien (5) /ιo/ds.

Proposition 1 is a direct quotation from Goldberg [14]. Proposition 2 is from
Lemma 4 of the same paper restricted to the case p = 1, and one uses the fact that
I α I S N = 0 from the proof of the lemma.

In the next proposition we present a local version of a result of R.R. Coifman,
P.L. Lions, Y. Meyer and S. Semmes [8] on Jf 1(Rn) spaces. For completeness, we
also present a proof which follows from one of the ideas introduced in [8].

Proposition 3. Assume fc eL 2 (R n , Rπ), divfc e L 2(Rn) and Be WU2(WLn). Then
b-VBeh^WL^and

\\b- VB\\hiί c(\\b\\h + \\divb\\h

where c is a constant independent ofb or B.

\B\\2

wu2) 9 (6)

Proof We follow the idea of [8] (see also Evans [9]). Fix the h we mentioned at the
beginning of this section. We look at

±-n$(b'VB)(y)h(^Ady = 1 J ίb.V(B-(B)x,r)2h(^
r R" \ r / r B(x,r) \ r

dy
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where B(x, r) denotes a ball centered at x with radius r and (B)Xfr denotes the
average of B on the ball B(x, r). Upon using integration by parts, we find

V B(x,r)L
vb)(B-(B)x>r)h x-y

dy

\b\)\B-(B)x,r\dy
B(x,r)

So

sup -j(b-VB)(y)h[ '-\dyx-y

ίc sup \-^ϊ ί (|divi| + |ft|)|B-(B),.r|dyj.
oo>r>0 I ** B(x,r) J

In v
Choose any 2 < p < 2* = ^ oo and let 1 < q = —^— < 2. Then

1

B(x,r)

1 / V/P/

- ^ { B I lB-{B)*ΛPdx) ( ί
l / β

^-T^ΓTI f IB-ίB^.I'dx ) ( , / ,, f (|div6| + |6|)«dx I
— rl+n/p\ J I V /x,r\ I l o / \ J VI I ' l l / I

l/«

where p = s*, that is, s = < 2. Consequently
p + n

oo>r>0

M( ) denoting the Hardy-Littlewood maximal function. Now |DB| seL 2 / s,
2/s > 1. Thus
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and so

Similarly,

(M(\DB\s))2/sdx^C J \DB\2dx-

J (M((|div6| + \b\)q))2/qdx ^ C J (|div6|
1R" R"

Consequently we deduce

sup
l>r>0

and

sup
l>r>0

-S(b VB)(y)h x-y dy
1.1

The proof of Proposition 3 is completed.

2.2. The space BMO(1RΠ). Let/e L\oc{Win). We set

Y. Zheng

where (f)x,r denotes the average of/over the ball B(x, r). Then

BMO(R")={/eUc(lR' I ) l l l /IU< 00}

with seminorm || /1| *.

As an example, we mention that log-—- e BMO(IRn) (see Stein [20]). In Sect. 4

we will need

Proposition 4. The function

'\x\

0 otherwise,

is in B M O ( R 3 ) ; i.e., \\B\\*< oo .

Proposition 5. Let β(τ) e C2 {Wi1) be a bounded function so that

β(τ) = I smooth and decreasing, 0 ̂  τ ̂  1

I 0, τ > 1 •

ΪS given in Proposition 4 and c(t0) is finite for any finite t0 > 2.
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The proofs of Propositions 4 and 5 are computational and are given in the
Appendix.

3. An Estimate on Dirac Equations

In the standard notation of [5], the coupled Dirac system is

# 1 # 4 , . # 4 # 3 . ί Ά ,

— - = — \-ι- ι(M —
dt dx± dx2 dx3

 y

dt dxx dx2 dx3

#4 # 1 .#1 , # 2 , .ίΛ/r

= ι + + ι { M

(7)

For the two space dimensional Dirac system, i.e., when ψl9 ψ2> Ψ3, and ψ^ do not
depend on x3, the four equations decouple into two similar subsystems, one of
which is

# 2 #3 .#3

ι

(8)

dt ox ox

Let ψ2 = u2 + Ϊ t;2 and ̂ 3 = w3 + i i;3, we find the subsystem in real variables to be

du2 du* dv3

dx
0
 dx

x
 dx

2

dv
2
 dv

3
 du

3

dx
0
 dx

x
 dx

2

Bu
3
 du

2
 dv

2

ox
0
 dx

ί
 ox

2

dv
3
 dv

2
 du

2

dx
0
 dxi dx

2

(9)

where we let t = x0 for later simplifications, and we will let x = (x0, x1, x2) in what
follows in this section.

The conservation of charge in those real variables is

J (u\ + v2 + u\ + v%)dx1dx2 = const, in time. (10)
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For simplicity, we shall assume φx = φ4 = 0. Therefore the quantity

ΨΨ = \Ψl\2 + \ψ2\
2-\Ψ3\

2-\Ψ4\2

will reduce to

ΦΦ = \Φi\2 ~ \Φs\2 = u\ + v\-u\-v\. (11)

We shall prove in this section the following:

Theorem 1. Assume g = 0 in (9) and the (initial) total charge is finite

J (ul + vi + ul + vl)dx1dx2\t=o < oo. (12)
R2

Then u\ + υ\-u\-v\e Jf ίoc(lR3) and for any β e CC°°(R3),

II β{u2

2 + v2

2-ui- υl) llfcifl̂  g Cβ || ιι | + ϋ | + u\ + ι?| 11^(^x^ = 0}), (13)

where Cβ is a constant depending on β.

Remark. The system (9) is linear with constant coefficients when g = 0. Weak
solutions exist for all time t e R provided that the initial total charge is finite. It can
be seen that the total charge remains finite for weak solutions for all time ί e R .

We prove Theorem 1 by first establishing a lemma. In this lemma we will use
the Fourier transform, which we take in the form

f(ξ)= ί/(x)e- 2 π ί * ^ x
R3

for all/(x) e L ^ R 3 ) . And the related inverse Fourier transform of a function
g(ξ) e L X ( R 3 ) that we shall use is

gv(x)= J g(ξ)eM* *dξ-
R3

The properties that we shall use are listed below. For a convenient reference we
refer the reader to Stein and Weiss [21].

(2) f(ξ) =fv{ξ) if/(x) is real valued. Over-head bar denotes complex conju-
gate from now on.

(3) ]fg = lf§ for/, g e L2(Plancherel Identity).

(5) ( j ^ ) - »..gjg with ,.,. • ( - >fn'"-,}+ I ' for any

homogeneous harmonic polynomial Pk(x) of degree k ^ 1 and 0 < α < n
(see Stein [20], p. 73. The difference between the yk>a here and that of Stein
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[20] results from different forms of Fourier transform used). In particular,
we shall use in R 3 ,

x0 i d ί ί
U2\xf = 2~dx~\\x~\)-

(14)

Lemma 1. We assume (u2, v2, u3, v3) satisfies the assumptions of Theorem 1. For any
βeC?(WL3) andqeC?(ΊίL3),q=l on the support of β, we have

- 4πβ(u2 + vl-ul- v\) = g! PfΊ + g2 VF2 + g0 , (15)

where

= (^2^3,

ί\\x\ 12\\X\J'

h,v2) Vq~\

3, -dXl,δX2)i~*lMu3q

Proof. For ξ = (ξθ9 ξu ξ2) Φ 0, we define

0

ξi ξi -ξo 0

-ξi ξi 0 -ξ0

which is a symmetric orthogonal matrix. For any η(x) e CC

CO(R3), we let

(16)

Λ2 Σ2 = 0{ξ)

\ΛA Σ4

It follows that

u2η(ξ) u2q(ξ)

υϊη(ξ) v^q(ξ)

«Q(ί) -ίhq(ξ)

w (0 - m (0

v3q = Λ1Σί + Λ2Σ2 + Λ3Σ3

(17)

By Plancherel identity, we obtain

J (ill + υl-ul- v2

3)ηqdx = f (Λ1Σ1 + Λ2Σ2

R3 R3

ΛAΣ4)dξ . (18)
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Multiplying the first equation in (9) by η and recalling g = 0, we find

d d d
^ ^ (u2,u3, -v3)-Vη. (19)
OXQ OX i O%2

Applying the Fourier transform, we obtain

2πi(ξotwi + ξiίζη - ξ2thη) = Mv^η + ((u2,u39 -v3) Vη)A .

Hence, the first term on the right-hand side of (18) is

1_ .

-^T2(«3^) v +7^2-(v3qV )dx

^ ί (̂ ^2?7 + (u2,u3, -v3) Vη)

—- J (Mv2η + {u2,u39 -υ3yVη)

where we used (19) in the last equality.
Similarly

J Λ2T2dξ = — J ( -
3 4 π 3

J Λ1Σ1 dξ = J —(ξ0u2η + ξ±u3η - ξ2v3η)--—(ξou2q - ξ^u3q + ξ2v3q)dξ
R 3 IR3 I Cl | ζ |

l X^-s.

= — J {Mv2η + ((u2,u3, -v3) Vη)Λ)
Zπi JR3

Λ~( ΓT )*(^2)-^—( 7-τ ) * ( ^ 3 ) - τ — (— )*{qu3) )dx

dxo\\x\J 5x^1x1/ dx2\\x\
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- 1

4π

d ( 1

dx2\\x\J )

For the third term on the right-hand side of (18), we multiply the third equation
in (9) (with g = 0) with q and use the Fourier transform to find

2πί(ξoqul + ξχqu2 + ίi^i) = - Mqυ*3 + [(u39u2,v2)* Vq]A .

If we set

Π3 = - Mqv3 + (u3, u2, υ2y Vq

temporarily, we then have

Therefore

= τ τ τ ( -
J|ς|

γ ^^ ^^ ^ \ /
Λ3Σ3dξ = τττ(- ξoWl + ξi t ί^ + ξiQ\)ir-r7-Jl^y dξ

J | | 2 π ICI

Similarly

+ ^—\ 7-7
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where

U 4

Since η e Cf is arbitrary, we find

i + vj - ul - vl)

Y. Zheng

3,v29 -u2)-Vq

3 / 1
dxΛ\x\

< d ( 1 \ d ( 1 \ d ( \\ \

dx\\x\) 2 dx\\x\) 3 dx2\\x\) 3 /

(tι3,1*2, ϋ 2 ) ' ( ~ 3 χ o , 3 X 1 , δ X 2 ) ( ( — ) * ( - Mqv3 + (M 3 , U 2 , V2)- Vq)

{v3,v2,u2)'(dxo, -dXι9dX2)\[ —

Multiplying the last identity by β on both sides, we complete the proof of Lemma 1.

Proof of Theorem 1. From Lemma 1, we have

I (til ύ ^(llflfi VF1
\\g2'VF2 \

We see easily that gl9 g2 e L2(1R3), and

= Mβv2 + (w2, iι3, - i?3)' F)S G L 2 ( R 3 ) ,

= - Mβu2 + (v2, v3, u3) Vβ e L 2 (R 3 ) .

By simple elliptic (potential) theory, we find

II Fx \\W* >(ΈL*) S CII (u2, u3, v3)q | | L 2 ( R 3 } ,

I I ^ I I ^ ' ^ R 3 ) ^ C|| (v2,v3,u3)q | |L 2 (R 3 ) .

From Proposition 3, we find

II0i VF1 ||M + | |^ 2 VF2 \\hί £ C(\\gi \\h + Hdivfl! ||22 + IIFx WW

+ WθiWh + WdivgΛh + \\F2\\2

wί,2)

^ C(\\ul + υ2

2 + ui + vl\\Li{^)) •

where C depends on β and M. For ̂ 0»it can be seen that

\\go\\L*»ύ\\(U3,U29Ό2)β\\L2

\\{p3,v2iu2)β\\L2

— * [ - M ^ 3 +(tt3,U2,l>2) Ffl]

+(t? 3 ,t; 2 , -
L6
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M3,ί;3)||L2 ( IR2 )(|| - Mqv3 + (u 3 , u2, v2 {

+(v39v2, -u2) Vq\\L2iΈLη)^ C \\ (u2, v2,u39

79

Let R > 0 be so large that the support of β is contained in the ball 5(0, R - 1). And
let M(gf)(x) denote the Hardy-Littlewood maximal function of g. Thus we have

sup
l>r>0

~3\0o(x-y)h(^)dy
, xeB(0,R),

So,

\\9θ\\hi(ΈL3) = sup

(O, otherwise .

-\goix-y)h\'-)dy

ύ\\M(\go\)(x)\\Limo,R))

Therefore

\\(u2

2 + vl-ul- υl)β | |Λi ( R3)

The proof of Theorem 1 is completed.

x>\ + t ι | + x>\

4. An Estimate on the Klein-Gordon Equation

Consider

Suppose/G Λ^R 3 ) and/= 0, t ^ 0. We show next

Theorem 2. 77ιe solution φ of (20) satisfies the estimate

for all t e [0, Tl T>0.

(20)

(21)

Proo/ Without loss of generality, we assume m = 0. Introduce w(ί, x l 9 x 2 ) such
that

utt ~ uxιXί - uX2X2 = F(ί, xi, x 2 ) Ξ J/(s, xl9 x2)ds
0 (22)

We observe that

φ = ut .



80 Y. Zheng

The idea is to obtain the ZΛestimate on ut which will follow as an energy
estimate of the new Eq. (22) for u. To do so, we need an Z,00-estimate on u.

Step 1. L00-estimate on u. We have formula

«(t,x) = ί JJ Ht-τ'χ-y)dydτ

= ιJLLίι
= ff F(t-τ,x-y)log-

= J ίί

\y\

IJΊ

= Sf(t-τ,x-y)W(y,τ)β(τ-t)dydτ9

where we used that/(ί, x) = 0 for t < 0, β(τ — t) is as in Proposition 5, and W(y, τ)
is

0, otherwise.

Now Wc&n be split into two parts: W= B + Z, where £ is as in Proposition 4 and

l o g ί l + / l - ^ - ) , | } ^ | ^ τ , 0 ^ τ < oo

0, otherwise,

so that | |Z||L« ^ log2. Hence »Γj8(τ - ί) is in BMO(1R3) and LX(R 3) for any
ί > 0, and therefore, φ * (FFjS) e L00 for φ e S, J φ = 1. By Goldberg's local version
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[14] of Fefferman's duality theorem [10], we find

Step 2. Multiplying (18) by ut and using integration by parts, we find

2
- Sf{t,x)udx

Integrating in the ί-direction and using the initial condition, we obtain

\ f (u? + \Vu\2)dx= J F(t9x)udx-\ Sfudxds
Z R 2 R2 OR2

^ II U(t9 ) ||z/*(IR2) II / l lz^R 2 x(0, 0)

+ SUp | | M ( S , - ) I I L - ( 1 R 2 ) " H/llL1(lR2x(0,ί))
0 ^ s ^ ί

^ Q I I / I U ^ R 3 ) ' H/llLi(R2χ(o,ί))

Thus

for all t ^ 0. As a consequence, we find

The proof is completed.

(1) The result is sharp, as can be seen by taking

/= δ(x, t) .

/ i s not in Λ 1 (R 3 ) , but only slightly so. And a solution of (20) with m = 0 is

1
φ =

which is not in L£c((0, 00 ), L 2 ( R 2 ) ) .
(2) Similar method works to prove φ e L°°(0, Γ ; L 2 ( R 2 ) ) for

φ\t=o =

and

(3) For related Lp — Lq estimates on KG equations, we refer the reader to Peral
[18] and Marshall etc. [16].
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5. Some Remarks

(i) Existence of weak solutions in 1-D. In one space dimension, the Dirac-Klein-
Gordon system takes the form:

du3 du2

dv3 dv2

As mentioned before, Chadam [6] proved that there exists a global unique
solution to its Cauchy problem with initial data (u2, v2, u3, υ3)\t=0 e £Γ 1 (R 1 ) and
φ(0, x) e H1, φt(0, x) e L2. We can now prove

Theorem 3. There exists a global weak solution to the Cauchy problem of the 1-D
DKG system with (u29v2,u3,v3)\t=0e L2^1), φ(09x)eH1 and φt(09 x)eL2.

Sketch of proof We mollify the initial data to find a sequence of exact classical
solutions {φk, uk

2, v
k

2, u
k

39 v
k

3}k)=1 from Chadam [6] with the estimates

SUp

and

Therefore

sup |
0<t<T

^ CT.

By Tartar's [22] compensated compactness, (u2)
2 + (v2)

2 — (u3)
2 — (v3)

2 is
weakly continuous. We therefore have no difficulty to pass the limit through this
term. The other nonlinear terms φku\ etc. are also weakly continuous since {φk} is
compact in L j ^ I R 3 ) (see e.g. Peral [18]). The sketch of proof is completed,
(ii) 2-D classical coupled DKG system.

To investigate the difficulty of establishing the existence of weak solutions of
nonlinear equations, it is a common technique (see some papers of DiPerna, Lions
and Majda) to see how the nonlinear terms of the equations behave with respect to
weakly convergent sequences of exact solutions in a suitable space naturally related
to the equation. The question of how to produce approximate solutions with the
estimates that are satisfied by the exact solutions can be handled in a much easier
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way in most cases than that of how to deal with the passage of the limit through the
nonlinear terms. Here for our system (1), we shall similarly assume that we have
a sequence of exact solutions {φk, φk}j?=ί which satisfies the natural estimate

sup J \ψk\2dx£Cτ.

For {φk}fe°=i, we depend on the KG equation to give its estimate. For simpli-
city, we shall assume φk = 0 and φk = 0 at t = 0. We obtain

sup J \φk\pdxSCpT, Vp<2.
0 ^ ί ^ T JR.2

Furthermore, we assume

ψk-±ψ in L2

OC(R3) weakly,

φk-+φ inLf o c (R 3 ),Vp<2.

The strong convergence of {φk} follows from the PPfo'c
p(R3) estimate for some

0 < α < 1 (see Peral [18], for example).
In order to define {φ9 φ} to be a weak solution, we need φφ to be defined in

L1

1

OC(R3). For this purpose, it is sufficient to have estimate JJ || φk
 | | L 2 ( R 2 ) ^ ύ Cτ.

Further, we need {φkφk}k=i to be compact in ^ " ^ ( R 3 ) in order for {φkφk} to
be weakly continuous by the standard compensated compactness of Tartar [22]. In

2p

terms of the ZΛestimate, we need {φk}k=i to be in Z/((0, Γ), L 2 - P ( R 2 ) ) for some
p > f. Unfortunately, artificial examples (with f=φφe3tf?ι0C(Έί3)n
L™ ((0, T); Lx (R2)) in problem (20)) show that { φk}?= 1 need not lie in that space.
However, since we know {φkφk}k=ι is actually in L°°((0, Γ); L^R 2 )), we hope
that a modified version of Tartar's compensated compactness will require only that
{<PkΨk}?=i be compact in L°°((0, T); W^-2(K2)).

If this is the case, we need only

for some p > 2. Along this line we observe that the estimate

sup HΦIIL3'-(]R2) S C
0

for problem (20) is probably true and sharp. L3'00 denotes the weak L 3 space.
In conclusion, to establish existence of weak solutions to system (1) we may need

to prove an estimate of the form

sup ||φ||iP(R2)^CΓ sup

for some p e [2, 3) for problem (16), and establish a modified version of compen-
sated compactness of Tartar so that only {φφ} e compact set of L°°((0, Γ),
fPioclf2(lR-2)) is required for {φφ} to be weakly continuous.
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Appendix

In this appendix we shall prove Propositions 4 and 5.

Proof of Proposition 4. We prove this proposition by verifying that for any cylinder
g c R 3 centered at any point (y0, τ0) with middle cross section B(y0, τo; R) and
height 2R, there exists a number aQ (not necessarily the mean of B over Q) such that

sup -1-f \B-aQ\dydτ^C. (Al)
Q \Sl\ Q

For the equivalence of this condition to the aforementioned definition of BMO, we
refer the reader to Torchinsky [23], Stein [20] or Fefferman and Stein [11].

Before we get involved in heavy computation, we notice that log -—- e BMO (R*)

and log—-eBMO(R2) (see Stein [20], for example) and therefore log-—-e

BMO(R3). But none of the functions jĝ log-—- and /J^log—, where β<$

denotes the characteristic function for the cone

is in BMO(R3).
We verify (Al) by considering each of the cases:

Case (i). τ 0 ̂  0. In this case we take aQ = 0. Notice B ̂  0 and suppose R > — τ0

(the case R ̂  — τ0 is trivial). Then the right-hand side of (Al) becomes

ΐ έ i J J W τ ^ J Bdydτ
\Q\Q \Q\«{ }

i R + τo R + τo

< ? Γ f Bάτrάrln

~2πR3 I I
1 (R+τoΓ 1

- r)log-+ (R + τ0)log(R + τ0)

τ0) - rlogr + r \rdr>

I- + r2 + rl(R + τ0)log(R + τ0) - (R + τ 0)] \dr

Case (ii). τo> 0,\yo\ > τ0, R S 2 ^ ~ τ ° . We also take aQ = 0. Then

in Q.
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This is because Q does not intersect with the τ axis. More specifically, log-—- takes

its maximum in Q at the corner (\yo\ — R, τ 0 + R) and the maximum is an

increasing function of R in 0, ^- . At JR = ^- , we have

\yo\-R
= 2 ,

so

—
\sl\ Q

Case (iii). τ 0 > 0, \yo\ > τ 0 , R >

Similarly to (i), we find

. So R>^ξ. We take aQ = 0 again.

1 1 τo + R

iBdydτϊ- J J Bdyάτ

Case (iv). τ 0 > 0, τo/2 <\yo\ <τ0, R< τo/4. Similar to (ii) we find

B-log^C inβ.

Case (v). τ 0 > 0, τ o /2 <\yo\ <τOί R^ τ o /4. Similar to (iii), we have

ιeι 12 = 12

Case (vi). τ 0 > 0, | y0 \ < τo/2, R < τo/4. In this case we have

So

sup—— J \B-aQ\dydτS
Q \\l\Q

l o g R i BMOίlR1) BMO(R 2 )

Case (vii). τ 0 > 0, \yo\< τo/2, R ^ τo/4. It is similar to (i). So the proof of
Proposition 4 is completed.

Proof of Proposition 5. We verify that

for any cylinder Q with cross section B(y0, τo',R) and height 2R.
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Case(i). R>%. We have

• ίo+1

f β(τ-to)logί-dydτ
l ^ τ \y\

f T

= C(ί0)

Case (ii). # < \, τ0 > 1. So τ0 — # > i We have

-±-S\Bβ-(Bβ)Q\dydτ
\\C\ Q

1 , 1 / 1 \
= —- β\og— + j51ogτ — βlog— —(βlogτ)n

161 έ bl V l3>l/β

dydτ

l o g w
<_Lf

IQlJ

dydτ + 21og2

dydτ + 21og2

l o8T3

-(;β) Q (log—

Tei Q

21og2

Case (iii). K < \ and τ 0 < 1. Thus R + τ 0 < 2. This case is then covered by
Proposition 4. The proof of Proposition 5 is completed.
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