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Abstract. We establish from local hypotheses some results concerning the final state
topology of black holes. We show that the surface of a black hole must have
2-sphere topology and that the topology of space in its vicinity is simple.

1. Introduction

The classical theory of black holes (as elucidated, for example, in [HE]) imposes at
the outset numerous global asymptotic conditions. For instance, spacetime is
required to be weakly asymptotically simple and empty (which implies the exis-
tence of past and future null infinity J ±) and future asymptotically predictable
from a partial Cauchy surface S (which asserts that cosmic censorship holds).
Certain global topological assumptions are imposed, as well (cf. [HE], p. 317).
Although the purpose of these conditions is to model the region of spacetime in the
vicinity of an isolated, or quasi-isolated, gravitating system, mathematically, they
are conditions on all of spacetime. Since the formation of a black hole due to the
gravitational collapse of some stellar object is viewed as a rather local phenom-
enon, it would seem to be of interest to consider what properties of black holes can
be derived from purely local hypotheses (i.e., from assumptions made on an
arbitrarily small region of spacetime in the vicinity of the black hole). The aim of
this paper is to establish from local hypotheses some results concerning the final
state topology of black holes. We show that, in the steady state limit, the surface of
a black hole must have 2-sphere topology (thus recovering Hawking's result ([HE],
p. 325) in the static case from local hypotheses) and that the region of space in the
vicinity of the black hole is correspondingly simple. Before giving a precise
statement of these results we briefly describe the philosophy behind them. Numer-
ous examples and theorems (e.g. [G, L, FG, MA]) indicate that nontrivial spatial
topology cannot support a state of gravitational equilibrium, and, in fact, tends to
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induce gravitational collapse. In the standard collapse scenario, the collapsing
region crosses an event horizon which forms during the creation of a black hole,
and the region outside the event horizon settles down into a steady state. One then
expects the topology outside the event horizon to be simple, for, otherwise, further
gravitational collapse would ensue. This reasoning suggests a notion of "topologi-
cal censorship," in which nontrivial topology becomes hidden behind the event
horizon. We proceed to a detailed description of our results.

Let V be a compact 3-dimensional Riemannian manifold with boundary dV
isometrically imbedded as a spacelike hypersurface into a spacetime M. Assume
dV = dH u dE, where dH (the "black hole boundary") consists of k ^ 0 compact,
possibly nonorientable surfaces and dE (the "external boundary" surrounding the
black holes) is orientable with at least one component topologically a 2-sphere. We
make some comments about these assumptions.

(1) Physically, V is to be thought of as a finite region of space (at some instant
of time) surrounding (but exterior to) k black holes. Since we will permit the
presence of arbitrary matter and electrostatic fields and do not make any asymp-
totic assumptions, we allow for the possibility of multiple black holes in equilib-
rium.

(2) In the most direct interpretation of our model, we think of dE as consisting
of a single 2-sphere surrounding the k black holes. However there are a couple of
reasons for allowing a priori dE to have more than one component. One reason is
that the method of proof used to rule out nonorientable black holes forces us to
consider the situation in which dE is not connected. Another reason is that we can,
if we like, think of the components of dE as corresponding to the ends of space. Our
results then have the added benefit of ruling out multiple ends.

In order to study the final state topology of the exterior region V9 we take the
usual approach of invoking the existence of a timelike Killing vector field X de-
fined, in our situation, in a neighborhood of V\dH in M. We make the additional
simplifying assumption that X is orthogonal to V\dH. By conservation of vorticity,
it follows that X is actually irrotational (i.e., hypersurface orthogonal) in a neigh-
borhood of V\dH, and hence that M is static in this neighborhood. A study of the
more general stationary case (in which X has nonzero rotation) is deferred to the
future.

By introducing coordinates adapted to the vector field X, the metric of M near
V\dH can be written in standard static form as,

ds2= - φ2 dt2 + dσ2 , (1)

where X = —, φ — y/ — (X,X) is independent of ί, and dσ2 is the induced

Riemannian metric on V. We assume that φ satisfies the following standard (for
static black hole spacetimes) regularity conditions.

(1) φ: V\ dH -> R extends smoothly to dH, and
(2) φ = 0 and dφ * 0 along dH.

In the static case, the notions of event horizon, apparent horizon, and stationary
limit surface (or infinite red shift surface) coincide. Hence, in the static case, the
vanishing of φ becomes the defining condition for the black hole boundary. The
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static field equations (specifically Eq. (9) in Sect. 3) and the vanishing of φ along dH

imply that dH is totally geodesic, a fact that will be used in Sect. 2.
A compact Riemannian manifold with boundary V which satisfies the condi-

tions of the previous paragraphs shall be referred to as a static body surrounding
k blackholes. In our main theorem it is assumed that the external boundary dE of
the body V is mean convex, i.e., has negative mean curvature with respect to the
outward pointing normal, HΘE < 0. (We use the sign convention in which the mean
curvature is minus the divergence of the outward pointing normal.) This mean
convexity assumption can be thought of as a mild (and realistic) asymptotic flatness
condition. Let us say that V is standard if it has mean convex external boundary.
The truncated Flamm paraboloid consisting of all points in the slice t = 0 in
Schwarzschild spacetime with 2m ^ r S r0 (r0 > 2m) is an example of a standard
static body surrounding one black hole. A similar example occurs in the
Reissner-Nordstrom solution.

The following theorem shows that, provided appropriate energy conditions are
satisfied, the topology of a standard static body surrounding k black holes is as
simple as possible.

Main Theorem. Let Vbea standard static body in M surrounding k ^ 0 black holes;
hence, in particular, dV = dH u dE, where dH has k components, and dE is mean
convex, orient able and has at least one 2-sphere component. Assume that the energy
condition (EC1), or, more generally, the energy condition (EC2) {stated below) is
satisfied. Then dE is connected (and hence consists of a single 2-sphere), each
component ofdH is a 2-sphere, and Vis diffeomorphic to a closed 3-ball minus k open
3-balls.

EC1 (matter fields only). For each nonzero null vector K along V,

Ric(K, K)^0 and = 0 iff Ric = 0 (i.e., the full Ricci tensor vanishes),

where Ric = RicM is the Ricci tensor of spacetime.
In the case of a perfect fluid with mass density p and isotropic pressure p, EC1

becomes: p + p ^ 0 and = 0 iff p = p = 0. EC1 is a perfectly reasonable energy
condition for ordinary matter fields having nonnegative stresses. However for fields
with negative stresses, such as an electrostatic field, EC1 does not in general hold.
(For such fields, Ric(K, K) = 0 does not necessarily imply Ric = 0). The energy
condition EC2 applies to the case in which both matter fields and an electrostatic
field may be present. In order to state EC2, it is more convenient to make explicit
use of the Einstein equation.

EC2 (matter fields plus electrostatic field). The Einstein equation,

Ric -]-Rg = %π3r (2)

holds in a neighborhood of K\δFin M. The energy-momentum tensor F consists
of two parts, ZΓ = JK + S, where Jί, the energy-momentum tensor for the matter
fields and S, the energy-momentum tensor for the electrostatic field, satisfy the
following conditions.

(1) M obeys EC1, i.e., for each nonzero null vector K along V, Jί(K, K)^.O
and = 0 i f f , # = 0.
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(2) $ is related to the electromagnetic field tensor &F in the usual way,

(3)

and & is such that observers comoving with the Killing field X measure a time
independent electric field E and zero magnetic field, B = 0.

(3) If Jί vanishes in some region of V then 3F obeys the free space Maxwell
equations in that region.

Remark. In physical terms, condition (3) of EC2 simply requires that particles in
V carrying charge also carry gravitational mass.

The proof of the theorem consists of a topological lemma and a variational
argument. The topological lemma, which is presented in Sect. 2, shows that if
a standard static body V surrounding k black holes does not have the desired
simple topology then there exists in V\dVa minimal surface Σ which has least area
in a certain class. The proof of this lemma relies heavily on various aspects of the
paper of Meeks, Simon and Yau [MSY] concerning minimizing area in isotopy
class. Section 2 includes a summary of the relevant parts of their work. In Sect.
3 a variational argument is used to show that if EC1 holds then V\dV cannot
contain such least area surfaces Σ. In Sect. 4 this argument is extended to the case in
which EC2 holds. For reasons discussed in Sect. 4, the proof in the electrostatic
case is rather more complicated.

The author is indebted to Leon Simon for several helpful conversations during
the course of this work. The author would also like to express his thanks to Ted
Frankel for helpful discussions concerning the extension to the electrostatic case.
Part of the work on this paper was carried out during a visit to the Centre for
Mathematical Analysis in Canberra. The author wishes to express his thanks to the
Centre for its hospitality and financial support.

2. The Topological Lemma

Our work relies on several aspects of the paper of Meeks, Simon and Yau [MSY]
concerning the problem of minimizing area in isotopy class, namely, the funda-
mental result establishing the existence and regularity of a minimizer for a given
isotopy class, the description of the topological relationship between the minimizer
and the elements of the isotopy class, and the characterization of handlebodies. We
begin this section by paraphrasing these results, tailoring them, when convenient,
to our needs. Later in the section we will use these results to prove what we refer to
as the topological lemma.

Let N be a compact 3-dimensional Riemannian manifold with boundary dN
(possibly empty) which is mean convex, HdN < 0. Let S be a connected two-sided
compact surface in N\dN, and let <f{S) denote the (ambient) isotopy class of S. (A
surface is two-sided if it admits a smooth unit normal.) Suppose,

inf A{Sf) = δ>0,
S'eJ(S)

where A = area. Let {Σk} be a minimizing sequence for J*(S\ i.e. {Σk} a J>(S) and
Hindoo A(Σk) = δ. Then MSY establish the existence of a subsequence {Σh>} which
converges in a suitable sense to a finite collection of compact minimal surfaces
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), . . . , Σ(R) (none of which need be in *f(S)) with positive multiplicities
nl9. . . , nR, such that each ΣU) has least area in an appropriate class. For example,
if ΣU) is two-sided then its area is less than or equal to the area of any surface
isotopic to it provided the isotopy leaves Σik\ k Φ , fixed. If ΣU) is one-sided then it
also minimizes area, but in a slightly more complicated sense (cf. [MSY], p. 635,
p. 645). Since the one-sided case can occur, let us state explicitly the area minimiz-
ing property of ΣU) we shall require.

Let Σ be a compact ̂ urface in N. Recall, if Σ is one-sided, there is a standard
two-sheeted covering (N,π) of N such that Σ = π~1(Σ) is a double covering of
Σ and Σ is two-sided in N. Let us say that Σ is locally of least area provided the
following holds.

(1) If Σ is two-sided then for any normal variation u -+ Σu of Σ, Σ satisfies:
Λ(Σ) ^ Λ(ΣU) for all u sufficiently small.

(2) If Σ isj3ne-sided then for any normal variation u^>Σuoϊ the two-sided
double cover Σ c N, with each Σu to one side of Σ, Σ satisfies: Λ(Σ) ^ Λ(ΣU) for all
u sufficiently small.

Each ΣU) is locally of least area in this sense.
Due to "bubbling off", the minimizer (as realized by the Γ(J)'s) will not, in

general, belong to the isotopy class <f(S). However, by their minimization proce-
dure, MSY are able to provide a detailed description of the topological relationship
between the minimizer and S. For example, they obtain a relationship between the
genera of the Γ ( J ) 's and the genus of S, which when the ΓO ) 's are all two-sided
becomes,

R

X nj genus(Σ ω ) ^ genus(S) . (4)
j=i

MSY ([MSY], Proposition 1, p. 650) obtain a useful geometric characteriza-
tion of handlebodies. A handlebody is a 3-dimensional manifold with boundary
which is diffeomorphic to a handlebody in R 3 , i.e., a solid in R 3 bounded by
a compact surface of arbitrary genus.

Lemma 1 ([MSY]). A 3-dimensional compact Rίemannian manifold with boundary
is a handlebody if and only if the isotopy class of some surface S parallel to a boundary
component contains surfaces of arbitrarily small area. (Take "parallel" to mean
nudged in slightly along the normal geodesies to the boundary component).

We are now prepared to state and prove the topological lemma.

Lemma 2 (The topological lemma). Let N be a 3-dimensional orientable compact
Riemannian manifold with boundary δN = dA u dB such that

(1) dB is t o t a l l y geodesic and h a s k ^ O c o m p o n e n t s .
( 2 ) dΛ is mean convex, HQA < 0, and has at least one component diffeomorphic to

S2.

Then either there is a compact minimal 2-sphere (or projective plane) Σ contained in
N\dN which is locally of least area as described above, or else dA and each
component ofdB are 2-spheres, and N is diffeomorphic to a closed 3-ball minus k open
3-balls.
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Comment. The MSY minimizing procedure applied to a surface parallel to a com-
ponent of dΛ can produce a minimizer contained in dB. The example of the
truncated Flamm paraboloid mentioned in Sect. 1 clearly illustrates this possibility.
The essential point of Lemma 2 for our purposes is that unless the topology of AT is
sufficiently simple, the MSY minimizing procedure will produce a minimizer which
is contained in the interior of JV.

Proof. If dB = 0 then Lemma 2 follows directly from Lemma 1 above and Theorem
Γ (the main existence result for manifolds with mean convex boundary) in [MSY].
Henceforth assume dB Φ 0. Let df, i = 0,. . . , / (with dA « S2) and df,
j = 1,. . . , k denote the components of dA and dB, respectively. By adding a collar
to JV along dB we can isometrically imbed JV into a compact Riemannian manifold
JV with boundary dN = dA u dc with the following properties.

(1) dN is (strictly) mean convex, Hdft < 0.

(2) N\N is diffeomorphic, via the normal exponential map along dB, to
[0, ε] x dB.

(3) Any compact minimal surface in JV is contained in JV.

Indeed, one can take the metric on JV\JV « [0, ε] x dB to be the warped product
— dt2 0G(ί)2ft, where h is the induced metric on dB and G is the function: G(0) = 1

and G(ί) = 1 Λ + e~1!\ t > 0. The fact that dB is totally geodesic guarantees that the
metric g of JV is C 1 ' 1 in a neighborhood of dB and C 0 0 on JV\d*. This degree of
regularity is sufficient for the arguments of MSY to hold (cf. [M-A]). Moreover, for
each t e (0, ε], the level surface {t} x dB is convex, and hence the maximum principle
for hypersurfaces (cf. [E] for a nice exposition) ensures that property (3) holds.

Push the boundary component dA inward slightly to obtain a 2-sphere
d a N\dN, and consider the isotopy class J>{d,N) of d in N. Since N is not
a handlebody, Lemma 1 implies,

inf A(S) = δ>0. (5)
SeS(d,N)

We now carry out the MSY minimizing procedure on d. (Strictly speaking, this
minimizing procedure takes place in a certain homogeneously regular extension of
N (cf. the proof of Theorem Γ in [MSY]). However, by the properties of this
extension, there is no loss of generality in assuming the procedure takes place in JV.)
Then, as described above, there exists a minimizing sequence {Σk} for J{d,N)
which converges to a collection of minimal surfaces Σu\ j = 1,. . . , R, each of
which is locally of least area. Moreover, by the inequality (1.4) in [MSY] (which
generalizes (4) above to include the one-sided case), each ΣU) is either a 2-sphere or
a projective plane. By property (3) of N, each ΣU) is contained in N\dA. If any ΣU)

is contained in JV \ <?JV we are done.
So suppose each ΣU) meets dB. Then, by the maximum principle for hypersurfa-

ces, ΣU) cz dB for j = 1,. . . , R. Thus, relabeling if necessary, we have,

In particular, each ΣU) is two-sided, and hence, by inequality (4), a 2-sphere.
We now make use of the more detailed information in [MSY] concerning the

relationship between d and the Σ ( j ) 's . It follows from the discussion on p. 365 in
[MSY] that there exists a surface S = (JjL t S

ij) in JV which satisfies the following.
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(1) S is a disjoint union of spheres. More explicitly, SU) = \J"J

=1 S}.j) (disjoint
union), where each S}.S) is parallel to ΣU). In fact each S$J) is obtained from ΣU) by
pushing ΣU) along its normal geodesies an arbitrarily small amount; in particular,
each S$j) is a 2-sphere.

(2) By cutting out arbitrarily small disks in S and attaching arbitrarily thin
tubes, one can obtain a surface S' e J>(d, N).

We proceed to show that N has the desired simple topology. Each component
of dN = dA u dc is an orientable surface of some genus g. Smoothly attach
a handlebody with the appropriate number of handles to each component of dN
e x c e p t ^ to obtain a Riemannian manifold Nf with boundary dA. We show that
J{d,Nr) contains surfaces of arbitrarily small area. Note that, for each
j = 1,. . . , R, df « df « S2 bounds a 3-cell (i.e., a manifold diffeomorphic to
a closed 3-ball) in N'. Since for each r = 1,. . . , nj9 5 r

(7) is parallel to df, Sr

( j ) bounds
a 3-cell in N\ as well. In fact, there exists a 3-cell B} bounded by the "outermost"
S(

r

j) (i.e., the S{

r

j) furthest from df). By shrinking Bj down "radially,"
SU) = {J"J

=ίS$j) can be shrunk down isotopically to a surface SU) of arbitrarily
small area. Thus there exists a surface S = (J jL x S

U) e J(S, N') of arbitrarily small
area. From property (2) of S, one can attach arbitrarily thin tubes to S to obtain
a surface in J(d, N') of arbitrarily small area. Hence, by Lemma 1, N' is a handle-
body. In fact, since dN' « S2, N' is a 3-cell.

Thus, N is a 3-cell minus the interiors of / + k handlebodies, where / ̂  0 and
kttR. Again, byproperty (2) of 5, we can attach arbitrarily thin tubes to S to
obtain a sphere S isotopic to d. ("Arbitrarily thin" means, in particular, that the
tube together with the disks that get cut out form a sphere which bounds a ball.)
Each of the components of S surrounds one of the boundary spheres df,
j = 1,. . . , R, in N, and does not surround any other component of dN. Hence,
S can surround any of the boundary components df, . . . , δ£, but no others, d, on
the other hand, surrounds the components df9 . . . , df, δf, . . . , d% (i.e., all of the
components other than d£). It is clear from elementary homological considerations
that, under these circumstances, the only way S^can be isotopic to d is if k = R, i.e.,
dc = {Jf=! df and / = 0, i.e., dA = d^ Thus, N is a closed 3-ball minus k open
3-balls. Since N is diffeomorphic to JV, the lemma follows.

Comment. Suppose in Lemma 2 we assume that N is not orientable but that dAjs
orientable. Let N be the orientable two-sheeted covering of iV/Γhen dN = dA u dB

9

where dA covers dA and dB covers dB. Since dA is orientable, dA will consist of two
copies of dA and hence will not be connected. Consequently, we can apply Lemma
2 in the orientable ^case^to conclude that there exists a minimal 2-sphere (or
projective plane) in N \dN which is locally of least area. This observation allows us
to rule out nonorientable black holes.

3. The Variational Argument

Let Fbe a standard static body surrounding k black holes, and suppose Γdoes not
have the simple topology described in the main theorem of Sect. 1. Then, in view of
the topological lemma, and the comment following its proof, we can assume
without loss of generality (by passing to an appropriate covering manifold if
necessary) that V contains a minimal 2-sphere which is locally of least area in the
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sense described in Sect. 2. The following lemma then yields the main theorem in the
case the energy condition EC1 holds.

Lemma 3. Let Vbe a static body surrounding k black holes. If the energy condition
EC\ holds then V\dV cannot contain a minimal 2-sphere which is locally of least
area.

Proof. Suppose to the contrary that Σ is a minimal 2-sphere in V\dV which is
locally of least area. Let N be a smooth unit normal along Σ. We use the
conformally related metric, dσ2 = φ~2dσ2 to define a variation u -• Σu of Σ = Σo in
V. Let E: ( — ε, ε) x Σ -» V be the normal exponential map of Σ with respect to the
metric dσ2, i.e., E(u, q) = yq(u), where yq is the dσ2-geodesic satisfying ^(0) = q and
yf

q(0) = φ(q)Nq. Choose ε sufficiently small so that £ is a diffeomorphism onto
U_= E(( — ε, ε) x Σ). Then for each u e ( — ε, ε), define Σu = E(u, Σ) =
{E(u, q): qeΣ}. Thus, Σu is the surface obtained by pushing out along the normal
geodesies to Σ in the metric dσ2 a signed distance u. Although we have used the
auxilliary metric dσ2 to define our variation u -» ΣU9 all subsequent calculations are
in the original induced metric dσ2.

Let B = Bu be the second fundamental form of Σu; thus for vectors X, Ye TPΣU,
B(X, Y) = — < VXN, Y}, where <, > is the metric on Fand N now denotes the unit
normal field to the Σu's. A straightforward computation in Gaussian normal
coordinates w, x1, x2 (with respect to the metric dσ2) yields the following evolution
equation for B,

^f = Φ~1 Ri3j3 + Φbimbmj + φ;ij9 l£UJύ2, (6)

where R is the Riemann curvature tensor of K(sign and notational conventions as
in [ H E ] ) , bij = B(du dj), and φ;ij = HQSsvφ(dh dj). Taking the trace of Eq. (6)
gives,

^ = φRicv(N, N) + φ\B\2 + AΣuφ, (7)

where H = Hu = tr Bu is the mean curvature of Σu.
Let A(u) = area of Σu. The formula for the first variation of area gives,

A'(u) = - J φHdΛ = - J φ2'ζdΛ . (8)
Σu Σu Φ

TT

We obtain an evolution equation for —. The static field equations (i.e., the field
Φ

equations associated with the metric (1)) are as follows,

RicF = RicM + φ " x Hossvφ , (9)

Avφ = RicM(eθ9eo)φ , (10)

X
where eo = —. The Laplacians Δvφ and ΔΣ φ are related by,

φ

Avφ = AΣuφ + Hessvφ(N, N)-*Lψ. (11)
φ όu

Equations (10) and (11) imply,
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ΔΣuφ = </>RicM(e0, e0) - Hessvφ(N,N) + f ^ . (12)
φ όu

Substituting (9) and (12) into (7) gives,

A ^ = Ric M (Z,Z) + | 5 | 2 , (13)

where Z is the null vector field e0 + N along V.
Since Γ is minimal, Ho = 0 and ,4'(0) = 0. By EC1 and (13), Hu ^ 0 for u e [0, ε),

and hence by (8), Ar(ύ) ^ 0 for u e [0, ε). If A' ever becomes strictly negative on (0, ε)
then for some MG(0, ε), A(u) < ,4(0), contradicting the fact that Σ is locally of least
area. Thus, we must have A'(u) = 0 for all we[0, ε), and hence by (8), Hu = 0 for
ue[0, ε). EC1 and (13) now imply,

RicM = 0 and B = 0 (14)

on U n {0 ^ u < ε}. By using the same variation, but with respect to the normal
— AT, we can conclude, in fact, that Eq. (14) hold on all of U. Equations (6) and (9),

taken in conjunction with (14), imply that for all vectors X, Ye TPΣ,

φ-lηΆe&sΣφ(X, Y) = Ricκ(X, Y) = - <K(X, N)N9 7> . (15)

We have used the fact that since Σ is totally geodesic, Hessvφ(X9 Y)
= Hess2;0(X, Y) for vectors X, Y tangent to Σ.

For any peΣ, let {el9 e2, e3 = N} be an orthonormal basis of TPV, and let
K(ei9 βj) denote the sectional curvature in V of the plane spanned by {eh e,}. Since
Σ is totally geodesic, K(eu e2) = K = the Gaussian curvature of Σ at p. This
observation and (15) imply

Ricκ(βi, *i) = K(eu e2) + K{eu e3)

= K-Ricv(el9e1) .

Hence, for any unit vector e1 e TPΣ, RicF(^!, ex) = %K. By polarization it follows
that for all vectors X, Ye TPΣ,

RicF(X, Y) = l-KgΣ{X, Y), (16)

where gΣ is the induced metric on Σ. Thus, (15) and (16) show that φ\Σ must satisfy
the following tensor equation on Σ9

HessΣφ=^KφgΣ. (17)

The remainder of the proof consists of showing that there are no global positive
solutions φ to Eq. (17). With respect to coordinates {x1, x 2} on Σ9 (17) can be
written as,

^ (18)
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The Ricci identity,

Φ;ijk-φ;ikj = Rimkjgmnφ,n, (19)

where Rimkj is the Riemann curvature tensor of Σ,

Rimkj = K(gίkgmj - gijgmk), (20)

provides an integrability condition for (18). Indeed, (19) and (20) imply,

Φ ijk - Φ ikj = K(φjgik - φfiQij) . (21)

On the other hand, covariantly differentiating (14) gives,

Φ ijk — Φ-,ikj = -ΛiφK),kQij — (φK),j9ik] - (22)

Equating the right-hand sides of (21) and (22), and contracting both sides of the
resulting equation with gij leads to the equation, (Kφ3)Λ = 0, i.e. gmάΣ(Kφ3) = 0.
Thus, K = cφ~3 for some constant c. Substituting K = cφ~3 into (17) and con-
tracting we obtain, ΔΣφ = cφ~2. Integrating this equation over Σ shows that c = 0,
and hence that Σ has vanishing Gaussian curvature. Since Σ is topologically
a 2-sphere, this contradicts the Gauss-Bonnet theorem. Thus, there are no positive
solutions to (17), which concludes the proof of Lemma 3.

4. Extension to the electrostatic case

The proof of the main theorem in the case EC2 holds is complicated by the fact that
Lemma 3, with EC1 replaced by EC2, no longer holds. The following electro vac
spacetime is a counterexample.

Example. Let M = R 2 x S2 with metric

ds2 = - cosh2βrdt2 + dr2 + β~2dΩ2 ,

where dΩ2 is the metric on the standard unit sphere and β is a positive constant.
A straightforward computation shows that this spacetime satisfies the Einstein
equation, with <T = $, where S is the electromagnetic energy-momentum tensor

associated with the electrostatic field E = β—. Let V = [— 1,1] x S2 with metric
or

do2 = dr2 + β~2dΩ2. Then V is a static body surrounding zero black holes
(dH = 0) with external boundary dE = {- 1,1} x S2. Since dE is totally geodesic,
Fis not standard. V fails to be a counterexample to the main theorem only in that
dE is not strictly mean convex.

The following lemma takes the place of Lemma 3 in the electrostatic case. It
shows that the preceding example is essentially the only counterexample to Lemma
3 with EC1 replaced by EC2.

Lemma 4. Let Vbe a static body surrounding k black holes and suppose the energy
condition EC2 holds. IfΣ is a minimal 2-sphere in V\dV which is locally of least area
then there exists a neighborhood U of Σ which is isometric to ((— ε, ε)xS2,
dr2 + β~2dΩ2), where β = \E\ is a positive constant.
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Proof of Lemma 4. Let the notation be as in the first two paragraphs of the proof of
Lemma 3. With respect to the coordinates u, x = {xux2) introduced there, the
metric of V in U « (— ε, ε) x Σ has the form,

2

dσ2 = φ2(u,x)du2 + £ gij(uix)dxidxj. (23)

The proof of Lemma 4 proceeds just as in the proof of Lemma 3 up to Eqs. (14).
These equations now become,

RicM(Z, Z) = 0 and B = 0onU , (24)

where Z = e0 + N. The vanishing of B implies that the gi/s are independent of w,

—— = 0. Thus, we can write,
du

dσ2 = φ2{u,x)du2 + dl\ (25)

where dl2 = Σfj=1 gij{x)dxidxj is the induce metric on Σ.

Using the Einstein equation and property (1) of EC2, the first equation in (24)
implies,

, Z) = 0 and M = 0 on U . (26)

Let E be the electric field along Fas measured in the static frame. We show that
on U9 E must be a multiple of N. Since this is trivially true at points where
E vanishes, let p e U be a point at which E is nonzero. Introduce an orthonormal

X E
basis e0 = —, e1, e2, e3 = -^- of TPM. With respect to this basis the electromagnetic

φ \E\field

and

tensor SF

thus from

at p

Eq.

becomes,

F

(3) we obtain

/ °ί o
1 °
\ | £ |

0

0

0

0

0

0

0

0

the following

- | £ | \

0 '

0 >

o /
for the components of $ at p,

(£y) = J | ί - d i a g ( l , U , - 1 ) . (27)

Now express Z with respect to the basis {ej, Z = e0 + N — e0 + YJf=1N
iei.

The conditions: (Z9Z) = g(Z9 Z) = 0 then imply that N1= N2 = 0. Hence,
N = + e3, which shows that E is proportional to N at p.

Thus, there exists a smooth function β: U -• IR such that J? = jSiV on (7. Since
M = 0 on U9 3* obeys the free space Maxwell equations, div E = 0 and curl £ = 0

on U. Since div AT = 0, div£ = 0 implies that — = 0 and hence β = β(x) is
du

independent of u. Since (from (23)) N = φ grad M, curl £ = 0 implies grad βφxN
= 0, and hence βφ is independent of x. Thus, there exists a smooth function

λ:(— ε, ε) -> 1R such that

β(x)φ(u9x) = λ{u) for all (u,x)eί/. (28)
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Equation (28) implies that if β vanishes at some point in U then β and hence
E vanish identically on U. In this case ECl holds on U and Lemma 3 implies that
Σ cannot be locally of least area, contradicting our assumptions. Thus, without loss
of generality, we can assume β = β(x) and λ = λ(u) are strictly positive. Making use
of Eqs. (25) and (28) and the change of variable,

v = j λ(u)du

the metric dσ2 can be written,

dσ2 = β(xΓ2dv2 + dl2. (29)

The remainder of the proof consists of showing that β is constant and (Σ, dl2)
has constant curvature K = β2. From the Einstein equation and the form of $ (cf.,
(27)) we observe that the spacetime Ricci tensor obeys,

RicM(ΛΓ,iV) = - j? 2 , and (30)

RicM(X, Y) = β2gΣ(X, Y\ *> Yε TPΣ . (31)

By making use of (31) and modifying the arguments in Sect. 3 in a straightfor-
ward way, Eqs. (15), (16) and (17) become for X, Ye TPΣ9

φ-1 HessΣφ(X9 Y) = RicF(X, Y) - β2gΣ{X, Y) = - (R(X, N)N, 7> , (32)

RicF(X, Y) = 1-{K + β2)gΣ(X, 7), and (33)

HessΣφ = ̂ (K-β2)φgΣ. (34)

By suitably modifying the argument in Sect. 3, we obtain the following integra-
bility condition for Eq. (34),

from which it follows that there exists a constant a such that,

K = aβ3-β2. (35)

Equation (7), and the trace of (34) imply,

Ricv(N,N) = β2-K.

Combining the previous equation with (9) and (30) gives,

, N) = 2β2 - K . (36)

On the other hand, noting that N = β—9 one calculates,
ov

1 d2λ I VΣβ\2

λ dv2 β2

where VΣ = grad^.
By equating the right-hand sides of (36) and (37) and using (35) we obtain,

— | τ aβ — constant (38)
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on Σ. We now differentiate both sides of (38) along Σ; with respect to an arbitrary
vector X e TPΣ we have,

1

= " jϊ(K ~ β2)QΛX, VΣβ) (cf. Eq. (34))

= (l-a"jX(β). (39)

Thus, from (38) and (39) we arrive at,

which implies that β is constant. Hence, the left-hand side of (34) is zero, and so
K = β2. Thus, dl2 = β~2dΩ2, and (29) becomes,

dσ2 = dr2 + β~2dΩ2 ,

where r = - . This concludes the proof of Lemma 4.
β

Finally, we indicate how Lemma 4 is used to prove the main theorem in the case
that EC2 holds. Suppose Fdoes not have the desired simple topology. Then, by the
topological lemma in Sect. 2, we can assume V contains a minimal 2-sphere
Σ which is locally of least area. By Lemma 4, Σ is a totally geodesic round sphere,
and a neighborhood U of Σ is isometric to a metric product (— ε, ε) x Σ. Let y be
a shortest geodesic from Σ to dE

9 and let Σ' be the component of dU which meets γ.
It is easy to see that the product structure of U extends to Σ' and hence that Σ' is
metrically parallel to Σ. Moreover, since Σ arises from minimizing area in isotopy
class (i.e., Σ equals ΣU) for some j), the area minimizing properties of the Γ o ) ' s
guarantee that Σ' is locally of least area. Lemma 4 applied to Σ' implies that the
product structure of U can be extended beyond Σ'. Hence, by a straightforward
continuation argument, the product structure of U extends all the way along y out
to a component of dE

9 thereby forcing this component to be totally geodesic. But
this contradicts the assumption that dE is strictly mean convex.

Concluding remarks. In this paper we have shown from local hypotheses that,
provided appropriate energy conditions are satisfied, the steady state topology of
space (i.e. the topology of space in the static limit) in the vicinity of black holes must
be simple. Even in the no black hole case (dH = 0), our main theorem improves
certain aspects of results obtained in [FG] and [M-A]. The next logical step in this
approach to studying black holes is to extend the present work to the stationary
(rotating black hole) case. It may be possible to refine the technique used in [ F G ]
to study the topology of stationary fluid bodies to make it applicable to this
situation.

Of course, if the energy conditions are violated, it is possible to have equilib-
rium states with nontrivial spatial topology, such as worm holes. Whether certain
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quantum mechanical processes can produce the necessary violations has been
considered, for example, in [MTY].

Finally, our main theorem has some bearing on the classical black hole
uniqueness theorems (cf. [BM] and references cited therein). These theorems
require the assumption of asymptotic flatness. In order to express the fall-off of the
metric in precise terms, one imposes a priori the existence of Euclidean coordinates
at infinity. Using the topological fact that a manifold which can be expressed as the
increasing union of open balls is diffeomorphic to R3, our main theorem provides
mild geometric conditions for the existence of such coordinates.
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