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Abstract. The two-dimensional self-dual Chern-Simons equations are equivalent
to the conditions for static, zero-energy solutions of the (2 + l)-dimensional
gauged nonlinear Schrodinger equation with Chern-Simons matter-gauge dy-
namics. In this paper we classify all finite charge SU(N) solutions by first trans-
forming the self-dual Chern-Simons equations into the two-dimensional chiral
model (or harmonic map) equations, and then using the Uhlenbeck-Wood classi-
fication of harmonic maps into the unitary groups. This construction also leads to
a new relationship between the SU(N) Toda and SU(N) chiral model solutions.

1. Introduction

The study of the nonlinear Schrodinger equation in 2 + 1-dimensional space-time
is partly motivated by the well-known successes of the 1 + 1-dimensional nonlin-
ear Schrodinger equation. Here we consider a gauged nonlinear Schrodinger
equation in which we have not only the nonlinear potential term for the matter
fields, but also we have a coupling of the matter fields to gauge fields. Furthermore,
this matter-gauge dynamics is chosen to be of the Chern-Simons form rather than
the conventional Yang-Mills form. Such a choice is motivated by the fact that the
resulting Schrodinger equation is related to a non-relativistic field theory for the
many-body anyon system.

The theory with an Abelian gauge field was analyzed by Jackiw and Pi [11]
who found static, zero energy solutions which arise from a two-dimensional notion
of self-duality. The static, self-dual matter density satisfies the Liouville equation
which is known to be integrable and, indeed, solvable in the sense that the general
(real) solution may be expressed in terms of an arbitrary holomorphic function
[14]. The gauged nonlinear Schrodinger equation with a non-Abelian
Chern-Simons matter-gauge dynamics has also been considered [8,4, 5], and once
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again static, zero energy solutions (referred to as self-dual Chern-Simons solitons)
have been found to arise from an analogous, but much richer, two-dimensional
self-duality condition. These two-dimensional self-duality equations are formally
integrable and as special cases they reduce to the classical and affine Toda
equations, both well-known integrable nonlinear systems of partial differential
equations [21, 16, 7, 15, 1]. For the classical Toda equations one can exhibit
explicit exact solutions with finite charge [8, 4, 5] using the results of Kostant
[12] and Leznov and Saveliev [13] concerning the integration of the Toda
equations.

In this paper I classify all finite charge solutions to the self-dual Chern-Simons
equations. This classification is achieved by first showing that the self-duality
equations are equivalent to the classical equations of motion of the (Euclidean)
two-dimensional chiral model (also known as the harmonic map equations). One
can then make use of some deep classification theorems due to K. Uhlenbeck [22]
(see also subsequent work by J. C. Wood [26]) which classify all chiral model
solutions (for U(N) and SU(N)) with finite classical chiral model action. The chiral
model action is in fact proportional to the net gauge invariant charge Q in the
matter-Chern-Simons system, and so the classification of all finite charge solutions
is complete.

Another harmonic map result, due to G. Valli [23], shows that the charge Q is
actually quantized, in integral multiples of 2πκ (where K is the Chern-Simons
coupling strength) - a fact already observed for the special case of the classical
Toda solutions found in Ref. [4].

The explicit description of SU(N) chiral model solutions rapidly becomes
algebraically complicated, even for N ^ 3. Wood [26] has given an explicit para-
metrization involving sequences of holomorphic maps into Grassmannians and
an algorithm involving only algebraic and integral transform operations. The
SU(3) and SU(4) cases have been studied in great detail in Refs. [18, 26]. The
harmonic maps into individual Grassmannians (also known as the CP1*'1 model)
have been known for some time [2, 20] - for a review see Ref. [28]. In this paper
I present the explicit "uniton" decomposition of a class of solutions to the SU(N)
chiral model equations for any N. The matrices are expressed in terms of (N — 1)
arbitrary holomorphic functions, and this class of solutions has the remarkable
property that when the matter density is diagonalized it satisfies the classical
SU(N) Toda equations. At first sight, such a direct correspondence between
the Toda equations and the chiral model equations seems very surprising, but
within the context of the self-duality equations the correspondence arises quite
naturally.

The outline of this paper is as follows. In Sect. 2, I describe the derivation
of the self-dual Chern-Simons equations as the conditions (in fact, necessary
and sufficient) for the static, zero energy solutions to the 2 + 1-dimensional
gauged nonlinear Schrόdinger equation with Chern-Simons coupling. In Sect. 3,
I show how the self-duality equations reduce to the integrable Toda equations
in special cases. The equivalence between the self-dual Chern-Simons equations
and the chiral model (or harmonic map) equations is demonstrated in Sect. 4,
and in Sect. 5 I show how to classify all solutions using the results of Uhlenbeck
and Wood. Finally, in Sect. 6 I present a special class of explicit harmonic
maps which correspond (via a unitary transformation) to the known classical
SU(N) Toda solutions of the self-dual Chern-Simons equations. A brief con-
clusion is devoted to comments and suggestions for further investigation.



Chern-Simons Solitons 521

2. The Self-Dual Chern-Simons Equations

The gauged non-linear Schrόdinger equation reads

iD0Ψ = - -D2Ψ + -[Ψ\ W] Ψ , (1)

where the gauge covariant derivative is Dμ = dμ + \_Aμ, ], and both the gauge
potential Aμ and the matter field matrix Ψ are Lie algebra valued: Λμ = Aa

μ Ta,
ψ = ψaTa τ h e L i e a i g e b r a generators satisfy:

[T\ Γ 6 ] =fabcτc, Γ α t = - Ta, tr(TaTb) = - -δab. (2)

Our .results are presented for the Lie algebra of SU(N\ but the formulation
generalizes naturally for any compact Lie algebra. In 2 + 1 dimensions we choose
to couple the matter and gauge fields via the Chern-Simons equation

•* μ v SμvpJ ? W/
K

where Fμv = dμΛv — dvAμ + \_Aμ, Av~] is the gauge curvature, K is a coupling
constant and Jp is the covariantly conserved (DμJ

μ = 0) matter current

J* = \&Ψ\ DtΨl - l(DtΨ)\ !P]) . (4)

We can also define the scalar current Vμ,

V* = ^tr(Ψ*DiΨ - (Dtψyψ), (5)

which is ordinarily conserved (dμ V
μ = 0).

Note that the Schrodinger equation (1) and the Chern-Simons equations (3) are
invariant under the gauge transformation

Aμ->g γAμg + g ιdμg , (6)

where geSU(N). Furthermore, the Schrόdinger equation (1) may be expressed as
the Heisenberg equation of motion

δH

where the Hamiltonian H is

H = - $d2xΐr((D+ψt)D-Ψ) = ^d2x(D+Ψ^)a(D-Ψ)a . (8)

Here D± = D1±ιD2 and the gauge fields A+ appearing in D+ are determined by
(3)-(4). Note that the simple, manifestly positive, form (8) for the Hamiltonian relies
on the fact that we have chosen the nonlinear coupling coefficient in (1) to be 1/τc,
the same as the Chern-Simons coupling strength in (3).

We begin by seeking solutions which satisfy the self-dual Ansάtz

D-Ψ = 0. (9)
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From (8) we see that such solutions minimize the energy and thus, by (7), must
correspond to static solutions. This fact, together with the self-dual Ansάtz (9), leads
to the following concise form of the Chern-Simons equation (3):

h (10)

Here A+ = Ax ± ίA2, d± = dx ± id2, and A+ = - (A + y. Equations (9) and (10)
are referred to collectively as the self-dual Chern-Simons equations. From the above
discussion we see that solutions of these equations yield static, minimum (in fact,
zero) energy solutions to the gauged nonlinear Schrόdinger equation (1) with
Chern-Simons coupling (3). In fact, owing to a remarkable dynamical SO (2,1)
symmetry of (1) and (3), it is possible to show that all static solutions of (1) and (3)
must be self-dual [4].

To conclude this summary we recall that the self-dual Chern-Simons equations
(9) and (10) have arisen previously in another context [9, 3] - they are the
dimensional reduction (from Euclidean four dimensions to Euclidean two dimen-
sions) of the four-dimensional self-dual Yang-Mills equations [8,4, 5].

3. Algebraic Reduction to Classical and Affine Toda Equations

Before classifying the general solutions to the self-dual Chern-Simons equations we
show that certain simplifying algebraic Ansάtze for the fields reduce (9) and (10) to
familiar integrable nonlinear equations. First, choose

(lla)

(lib)

where the sums are over all positive, simple roots α of the algebra (for SU(N) we
may take α = 1 . . . N — 1), and iία, Eβ are the Cartan subalgebra and step
operator generators (respectively) in the Che valley basis [10]. In this Lie algebra
basis, the commutation relations have an especially concise form (for α, β simple
roots):

Here Kaβ is the (classical) Cartan matrix for the Lie algebra. For SU(N)9 K is the
(N — 1) x (JV — 1) symmetric tridiagonal matrix
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which is familiar from the discrete approximation to the second derivative in
numerical analysis.

With this choice (11) for the matter and gauge fields, the self-dual
Chern-Simons equations combine to yield the system of equations

2
V2lnpa = --Kaβpβ ( α = 1 . . . N- 1 ) , (14)

K

where pα = \ψa\2. This system is known as the two-dimensional classical Toda
equations. For SU(2), (14) becomes the Liouville equation

4
V2lnp = p , (15)

K

which Liouville showed to be integrable and indeed "solvable" [14] - in the sense
that the general (real) solution could be expressed in terms of a single arbitrary
holomorphic function / = f(x ~):

Kostant [12], and Leznov and Saveliev [13] showed that the two-dimensional
Toda equations (14) are integrable (with K the Cartan matrix of any simple Lie
algebra), and that the solutions are intimately related to the representation theory
of the corresponding Lie algebra (see also Ref. [16]). The general (real) solutions for
pα may be expressed in terms of r arbitrary holomorphic functions, where r is the
rank of the algebra. Indeed, explicit formulas may be given expressing the p α as
a matrix element of certain path-ordered exponentials in the α th fundamental
representation [13]. In Ref. [4] the SU(N) Toda solutions were expressed in an
equivalent but simpler form, more reminiscent of Liouville's solution (16) for the
SU(2) case:

p α ^ F 2 l n d e t ( M l M α ) (α = 1 . . . N - 1), (17)

where M α is the N xoc rectangular matrix

Mα = (u d-u d-2u . . . daS 1u), (18)

with u being an JV-component column vector

u = (19)

involving (N — 1) arbitrary holomorphic functions fa(x ). For N = 2, this trivially
reduces to Liouville's solution (16). We shall discuss the general SU(N) solution
(17)—(19) in more detail in Sect. 6 in relation to the chiral model.
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By extending the algebraic Ansάtz (lib) for the matter fields (while retaining
(lla) for the gauge fields) to

Ψ= (20)
positive

α = simple
roots

where E_M is the step operator corresponding to minus the maximal root, the
self-dual Chern-Simons equations (9) and (10) combine into the affine Toda
equations

2

P a = -~KabPb, (21)

where Kab is the (r + 1) x (r + 1) affine Cartan matrix. For SU{N)9 Kab is the N x N

symmetric matrix

/ 2

ab -
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(22)

The affine Toda equations (23) are integrable, but it is not possible to give
convergent expressions for the general solutions in terms of a certain number of
arbitrary functions.

4. Equivalence between Self-Dual Chern-Simons Equations
and Chiral Model Equations

In Ref. [4] it was shown that it is possible to make a gauge transformation g ~x (as
in Eq. (6)) which combines the self-dual Chern-Simons equations into a single
matrix equation

where

- 1

(23)

(24)

The existence of such a gauge transformation g x follows from the following
zero-curvature relation. To see this, define

f+=A+- -ψ,
V

(25a)

(25b)
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Then the self-dual Chern-Simons equations imply that

δ_j/+ - δ+j/_ + [ j/_, j * + ] = 0 , (26)

which means that we can (locally) write st ± as

^±=g-1d±g, (27)

for some g e SU(N). Then, defining χ as in (24), we see that (25) and (27) imply that

D-Ψ= fcg-Hd-χ-[χ\xl)g, (28)

and

d-Λ+ - d+Λ. + lΛ-9 >i+] - -[Ψ\ y ] = ̂ ( S - X + 5+χt - 2[χt, χ ] ) ^ . (29)
tc

This shows that the self-dual Chern-Simons equations (9) and (10) are equivalent
to the single equation (23).

Equation (23) may now be rewritten as the chίral model equation:

d+{h~1d-h) + d-ih-'d+h) = 0 , (30)

where h e SU(N) is related to χ as:

h~1d+h = 2χ9 (31a)

h-γdΛ = -2χϊ . (31b)

Note that if we define J+ = 2χ and J_ = — 2χf, then (23) (and its conjugate)
become

δ+J_+δ_J+=0, (32a)

d-J+ - d+J_ + [J_, J+] = 0 , (32b)

which express the fact that J has zero divergence and zero curl (in the non-Abelian
sense). For this reason, the chiral model equations (30) are also known as the
harmonic map equations. Equation (32b) shows that J is a pure gauge, which
justifies (31a, b) - then the chiral model equation (30) is simply the zero divergence
equation (32a) expressed in terms of h.

We conclude this section by stressing that given any solution h of the chiral
model equation (30), the matrices χ and χ* defined in (31a) automatically solve (23).
We thereby obtain a solution

= Jlx> (33a)
= χ , (33b)

^ = - χ t , (33c)

of the self-dual Chern-Simons equations.
In order to compare these solutions with the Toda solutions discussed in the

previous section we note that, with the algebraic Λnsάtze (11) and (20), the
(Hermitian) non-Abelian charge density p = [_Ψ9 ?

/ t] is diagonal (it is also traceless
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and so it may be decomposed in terms of the Cartan subalgebra elements). In
contrast, the solutions obtained from the chiral model have charge density
p{0) = τc/2[χ, χ1"] which need not be diagonal. However, p ( 0 ) is Hermitian and so it
can be diagonalized by a unitary matrix g. This diagonalizing matrix is precisely the
gauge transformation relating Ψ and χ in (24). It is an algebraically non-trivial task
to construct explicitly this gauge transformation and obtain the diagonal form of
p{0) - however, we shall present such an explicit diagonalization in Sect. 6, relating
certain chiral model solutions to the classical SU(N) Toda solutions (17)—(19).

5. Classification of Solutions

The main point of exhibiting the equivalence of the self-dual Chern-Simons
equations (9)—(10) to the chiral model equation (30) is that all solutions to the latter
have been classified (subject to a finiteness condition which has direct physical
relevance in the Chern-Simons language). Recall that this amounts to classifying
all zero-energy static solutions to the gauged nonlinear Schrόdinger equation (1)
with Chern-Simons coupling (3).

In the two-dimensional Euclidean chiral model the "classical action" or "energy
functional" is

S{h) = - ij^xtrίfc-^.ΛΛ-^+fc), (34)

which is manifestly positive. The classification (to be described in detail below) of
solutions to the chiral model equation (30) is achieved subject to the finiteness
condition

ι< oo . (35)

Such a finiteness condition is appropriate in the 2 + 1-dimensional non-relativistic
matter-Chern-Simons system ((1) and (3)) because

g(h) = 2jd2xtr(χχt) = -$d2xti(ψψi) = -\d2x V° = -Q , (36)

where Q is the net gauge invariant charge, and we have used the relations (31), (24)
and (5). Thus, the "finite energy" condition (35) of the chiral model is precisely the
"finite charge" condition of the Chern-Simons system. As well as being physically
significant, the finiteness condition (35) is mathematically crucial because the
classification results of Uhlenbeck [22], Wood [26] and Valli [23] are actually
formulated for chiral model solutions on S2, rather than on R2. However, when the
"charge" (or "action") in (36) is finite, h extends to the conformal compactification
R 2 U{oo} = iS2of R2, and so the classification of finite charge solutions on R2

is equivalent to the classification of solutions on S2 [25, 18]. This fortuitous
correspondence permits us to take over directly the following results from the
mathematical literature regarding the classification of solutions to the chiral
model equations.

Theorem (K. Uhlenbeck [22]; see also J. C. Wood [26]). Every finite action solution
h of the SU(N) chiral model equation (30) may be uniquely factorized as a product

m

h= ±hoγ\ (2Pi - 1), (37)
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where:

a) h0 eSU(N) is constant;
b) each pt is a Hermitian projector (p\ = pt and pf = pt)\

3

c) defining hj = hoγ\ (2pf — 1), the following linear relations must hold:

Each factor (2pt — 1) is referred to as a "uniton" factor [22].
The + sign in (37) has been inserted to allow for the fact that Uhlenbeck and

Wood considered the case of U(N) rather than SU(N). However, since
det(2/?i — 1) = ( — l)N~di if p. is an NxN Hermitian projector onto a ^-dimen-
sional subspace, we see that we can obtain a solution heSU(N) simply by
choosing h0 eSU(N) and the appropriate overall + sign.

Note that Uhlenbeck's theorem tells us that for SI/(2) all finite action solutions
of the chiral model have the form

h = - ho(2p - 1), (38)

where p is a holomorphic projector

( l - p ) 3 + p = 0. (39)

(These, then, are essentially the CP1 model solutions of Din and Zakrzewski
[2] - see also the work of Sasaki [20]. Here we spell out these solutions in order to
clarify the relationship with the self-dual Chern-Simons solutions, and to set the
stage for the general SU(N) results presented in Sect. 6.)

Since p2 = p, condition (39) is equivalent to d+pp = 0. All such holomorphic
projectors may be written as the projection matrix

p = M{M^M)~1M^ , (40)

where M = M(x~) is any rectangular matrix depending only on the x~ variable (so
M 1 = M f (x + ) is a function only of x+). It is straightforward to verify that such
a projector satisfies (39). In order to obtain an h in the defining representation of
St7 (2) we choose

so that

(42)

(Note that in general one should consider projection onto the space spanned by

M = [ x _ I, but since only the direction is important for p, this reduces to
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either (41) or to I 1. The formulas in the latter case are analogous, and we

shall in fact see that in the final result (48) there is no distinction - a single function
f(x~) suffices to determine the diagonal form of [χ, χ t].)

The corresponding solution χ of the self-dual Chern-Simons equation is given
by (see (31))

χ = -h~1d+h = -(2p- l)'2d+p = 2pd+p -d+p = d+p

_f { ] • (43)

The corresponding matter density is

r •-, djd-f tt-ff 2/

This may be diagonalized using the unitary matrix

which also diagonalizes p:

o°).

= 3+δ_ln ( !+//) ' l

_ J . (48)

But this is precisely the classical SI/(2) Toda solution (16). Thus we see that the
SI/(2) element # in (45) is the gauge transformation which converts between the
classical Toda solution obtained using the Ansάtz (11) (compare with (47)) and
Uhlenbeck's chiral model solution (38) with p as in (42). Interestingly, Uhlenbeck's
result tells us that this classical Toda solution is the only one with finite charge for
SI/(2) (note that the charge is gauge invariant). In particular, as was argued in Ref.
[4], there is no finite charge solution for the SU(2) affine Toda equation arising
from the algebraic Ansάtz in (20) (this is consistent with the index theory analysis of
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Ref. [27]). In the next section we will construct the analogous gauge transformation
relating a particular solution of the SU(N) chiral model equations in Uhlenbeck's
factorized form (37), with the explicit SU(N) Toda solutions (17)-(19).

It becomes significantly more involved to describe systematically all possible
uniton factorizations of solutions to the SU(N) chiral model equations for N ^ 3.
Wood [26] has given an explicit construction and parametrization of all SU(N)
solutions in terms of sequences of Grassmannian factors. These Grassmannian
factors are the fundamental building blocks, and are modelled on the original
CPN~1 solutions of Din and Zakrzewski [2,28] and Sasaki [20]. Wood's para-
meterization involves an algorithm which uses only algebraic, derivative and
integral transform operations. The N = 3 and N = 4 [18, 26] cases have been
studied in great detail. In the next section we present the uniton factorization of
a general class of harmonic maps for any N.

To conclude this section we quote a result due to Valli:

Theorem (G. Valli [23]). Let h be a solution of the chiral model equation (30).
Then the action

is quantized in integral multiples of 8π.

Given the relation (36) between the chiral model action and the Chern-Simons
model charge Q, we obtain, as a corollary of Valli's theorem, the result that the
charge is quantized in integral multiples of 2πκ. This fact had been independently
noted (see Appendix of Ref. [4]) for the classical SU(N) Toda solutions.

6. Toda Solutions and the Chiral Model

In this section we generalize the single uniton SU(2) solution discussed in (38)—(48)
to a multi-uniton SU(N) solution. This solution to the chiral model equation (30)
has the remarkable property that it is gauge equivalent to the SU(N) Toda
solutions in (17)—(19). Let us first state the result, and then prove its validity.

Main Result. The following matrix
N-l

1 (2pα - 1), (49)
α = l

where pa is the Hermίtίan holomorphic projector pa = M^MIM^'^^MI for
the matrix Mα in (18), is a solution of the chiral model equation
d+(h~ίd-h) + d-(h~1d + h) = 0. Furthermore, with χ and χ1" related to h as in (31),
(i.e. x ^ i A ' ^ + f t , χ* = — %h~1d-h) there exists a unitary transformation g which
diagonalizes the charge density matrix [χ, χ*] so that

9'1ίχ,χΊg= Σ {d+d-lndet(MlMx)}Ha> (50)
a = l

where Ha are the CSA generators ofSU(N) in the Chevalley basis for the defining
representation. Recalling (11) and (17) we recognize this diagonalized form (50) as the
SU(N) Toda solution to the self-dual Chern-Simons equations.
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Proof. The matrix h in (49) is clearly unitary, and the ( — I ) 2 factor ensures
that h eSU(N). The matrix g appearing in (50) (the SU(N) matrix which provides
the gauge transformation between the chiral model and Toda solutions) is simply
the unitary matrix

= (e1e2 . . . (51)

which simultaneously diagonalized all the pa. Thus the column vectors {ea} are just
the orthonormal basis elements constructed by the Gramm-Schmidt process
beginning with the column vectors w, <3_w, δ l u , . . . , dNJ~ιu (which are assumed to
be linearly independent). Since the vectors eί9 . . . , ea span the same space as the
vectors w, δ_w, . . . , das1u it is clear that

where M α = (e1e2 . ea). And since the eα's are orthonormal {e\eβ =
a simple expression for pa:

(52)

β) we find

8=1

(53)

Note however that the column vectors ea depend on both x and x+ (unlike the
column vectors da-u which only depend on x~) - this dependence enters through
the Gramm-Schmidt procedure:

(54)

where p0 = 0. The unitary matrix g in (51) diagonalizes each pa projection matrix.
In fact, due to the orthonormality of the columns it is easy to see that

I

\o

\

(55)

where the first α entries on the diagonal are 1, all other entries being 0. (This is
hardly surprising, as pa is a projector onto the α-dimensional subspace spanned by
βi , . . . ea.)

To verify that h in (49) does indeed solve the chiral model equation (30) we first
show that

(56)
α = l
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Then, since h is unitary and each pa is Hermitian, we deduce that

531

(57)
α = l

~1dh) + d(h~1from which the chiral model relation d + (h~1d-h) + d-(h~1d + h) = 0 follows im-
mediately.

To prove (56) we first note that each pa is a holomorphic projector: i.e.
pad+pa = d+pa for each α = 1 . . . N — 1. Therefore, from (49) we have

^ - 1 ) . . . ( 2 p β + 1 - l ) ( 2 P β - l ) 2 d + P β ( 2 p β + 1 - 1 ) . . .

= Y {(2pN-t - 1 ) . . . ( 2 p β + ί - l)2d+Pβ(2pβ + 1 - 1 ) . . . ( 2 p N ^ - 1)} .
β = i

(58)

The result (56) follows now if we can prove that

[δ+pα,P/ J] = 0 Vα<)8. (59)

From (55) we have that d + (g~ίpag) = 0, or equivalently:

g~\d+Pa)g = ίg'^^g-'p^ , (60)

and we note the particularly simple form of g~1pag as in (55). Now g~xd+g is an
NxN matrix whose (α/?)th entry is eld+eβ. From the Gramm-Schmidt procedure
(54) it is clear that d+eβ is a linear combination of eγ . . . eβ, and so, by the
orthonormality of the basis,

eld+eβ = 0 Vα>jS. (61)

Similarly, since d + (eleβ) = d+(δaβ) = 0,

= -d+eleβ

= 0 Vj? > α + 1 , (62)

where in the last step we used the fact that d-ea is a linear combination of
e 1 } . . . , β α + 1 . Thus, the matrix g~ιd+g has the following simple form, with
non-zero entries only on and immediately above the diagonal:

e\d+e1 e\d+e2
0

eld+ea eld+et•a+l

I

(63)
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Equations (60) and (55) then imply g ί {d+pa)g has only one non-zero entry, in the
(α(α + l))th place:

(

/° \
0

0

\

(64)

0 /

It follows that [_g 1 (d+p^g, g 1pβg~] = 0 for α < β, which is just the statement (59).
This completes the proof that the matrix h in (49) does indeed satisfy the chiral

model equation. We now proceed to prove the diagonalization formula (50).
Observe that

~1 ~\h~ldh)

\
α = l

J V - 1

α = l

(65)

where Ea are the SU(N) positive simple root step operators in the defining
representation: (Ea)ab = 5aaSa+i,b. It should be noted that this is of the same
algebraic Ansάtz form as the SU(N) classical Toda Λnsάtz for the matter field Ψ in
(lib) for the Chern-Simons model. To make the comparison complete we note that

eld+ea+1 = (66)

This may be verified directly from the Gramm-Schmidt projections (54) or by
noting that

3+3_lndet(MlMα) = d+d-tτln(MlMa)

= tr((l - j α - Pa))

i+ll

where in the last step we have used (64) (and its conjugate).
It now follows immediately that the diagonalized charge density is

J V - l

= Σ {d+d-hϊdet(MlMa)}Ha,

(67)

(68)
α = l
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as claimed in (50). This should be compared with the SU(N) Toda solution (17) (see
(48) for the explicit SU(2) case). Finally, the net Abelian charge is

KN-1
K

= Λ Σ
2 α=l

= Y$d2xpx (69)
α = l

with the pα being the non-Abelian charge densities of the Toda solution (17).

7. Concluding Comments

In summary, we have shown that the static, self-dual zero-energy solutions of the
2 + 1-dimensional gauged nonlinear Schrόdinger equation (1), with Chern-Simons
coupling (3), may be classified in terms of the Uhlenbeck-Wood classification of
solutions to the chiral model (or harmonic map) equations (30). The gauge invari-
ant charge is quantized in integral multiples of 2πκ. We have also found the explicit
uniton factorization of a general class of harmonic maps into SU(N), this class
being distinguished by the fact that the corresponding matter density matrix, when
diagonalized, satisfies the classical SU(N) Toda equations.

For SU(2)9 the Toda-type solutions exhaust all finite charge solutions, while for
the SU(N) N ^ 3 systems this is not the case - there are harmonic map solutions
which are not of Toda-type. This may be seen already for SU(3) using the general
solutions in Refs. [26,18]; however, the non-Toda solutions for SU(3) are some-
what awkward to present explicitly. The simplest non-Toda harmonic map solu-
tion arises in the SU(4) model when we choose a one-uniton solution h = 2p — 1
with p being a holomorphic projector onto a two-dimensional holomorphic sub-
space. (Note that for SU(3) we can only project onto a one-dimensional subspace,
a two-dimensional subspace simply being the orthogonal complement of some
one-dimensional subspace - thus 2p — 1 just changes sign.) Thus p may be written
as p = M(M*M)~ίM*9 where M is a 4x2 holomorphic matrix whose column
space may be specified by six arbitrary holomorphic functions. Then the (gauge
invariant!) charge density V° is given by V° = d+d-lndetiM^M) also depending
on six functions. However, the 51/(4) Toda solution has V° as in (69) depending on
only three arbitrary holomorphic functions (recall Mα is given by (18—(19)). This
Toda solution is therefore less general.

The relationship between the chiral model and Toda equations is especially
intriguing when viewed in light of the importance of the two-dimensional self-
duality equations to the theory of integrable partial differential equations in two
dimensions [24]. Ward [25] has also shown that the harmonic map equations may
be understood in the setting of algebraic geometry, adapting results from "twistor"
constructions of monopoles and Yang-Mills instantons. He had concentrated on
the SU(2) case - it would be interesting to see if similar constructions for SU(N) of
the Toda-type harmonic maps presented here leads to a deeper understanding of
the Toda and/or chiral model equations.
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Yet another mysterious correspondence arises from the work of Forgacs et al.
[6] and O'Raifeartaigh et al. [17], who have shown that the Toda systems arise
as certain special cases not of the chiral model but of the Wess-Zumino-
Novikov-Witten model. It is unclear what is the connection between their results
and those presented here. The work of Piette et al. [19], which relates solutions of
the chiral model with and without the Wess-Zumino term, may hold the key to this
connection.

Finally, it would be interesting to consider the generalization of these results to
Lie algebras other than SU(N). For the compact simple algebras, the special Toda
solutions to the self-dual Chern-Simons equations are known [12, 13]. Can one
find the transformation g'1 which transforms these solutions to chiral model
solutions, thereby obtaining explicit harmonic maps into the corresponding Lie
group?

Acknowledgements. I thank Professor R. Jackiw for discussions and special thanks to Professor R.
Ward for helpful correspondence.
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