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Abstract. In view of [1, 2] any bounded admissible module si over the Virasoro
Lie algebra Ψ* is a finite length extension of irreducible modules with one-
dimensional weightspaces. To each extension of finite length n are associated n + 1
invariants (al9 Aί9. . . , Λn). We prove that we have Λt — Aj-e {0,1, . . . 6(n — 1)}
for all (ί, ) with 1 ^ i ^ j< <* n. In the case n = 2 this result allows us to construct all
the indecomposable bounded admissible Y modules, where the dimensions of the
weightspaces are less than or equal to two. In particular we obtain all the
extensions of two irreducible bounded iΓ-modules.

I. Introduction

The Virasoro algebra Ψ* is the complex Lie algebra with basis {C, xn9 neZ} and
commutation relations:

ixi9xj2 = U - i)xi+J + h-j3-^- C Vi5 V/eZ ,

[C, x,] = 0 .

We set also β i = — XχX-χ + Xo — χo-
A iΓ-module is said to be admissible if it satisfies the two conditions:

a) x0 acts semi-simply.
b) The eigenspaces of x0 (also called weight-spaces) are finite-dimensional.

Recently, the classification of irreducible admissible f^-modules has been
achieved in [1, 2]. Besides the highest or lowest weight f-modules, it furnishes
a second class of iΓ-modules where the weightspaces are one-dimensional. These
latter are the following:

- The -^-modules of Feigin-Fuchs A{a, A) with (α, Λ)e<C2 and 0 <£ Reα < 1
(a = 0 => A φ 0,1), whose action is given on a basis {υn9 neZ} by:

XiVn = (a + n + iA)vn + i Cvn = 0 Vn, Vi . (1.1)
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- The trivial iΓ-module, called D(0).
- The maximal proper f-submodule of ,4(0,1), called A (,4(0, Ϊ)/A ~ D(0)

and ,4(0,0)/D(0) ~ A) whose action is given on a basis {i)n,ne2*} by:

XiVn = (n + ί)vn + i Cvn = 0 Vn, Vi . (1.2)

Similarly to the irreducible case and as it is proved in [3], two classes of indecom-
posable admissible iΓ-modules emerge which are sufficient to describe all other
ones:

a) the bounded i^-modules (the weightspace dimensions are bounded),
b) the ^-modules where the weights set is upper or lower bounded.

In this paper we are interested in the indecomposable admissible iΓ-modules of the
class a) which^appear as finite-length extensions of the irreducible i^-modules of
type A(a, A), A or D(0). Our aim is to prove that many such f-modules do exist
and to describe them by giving necessary conditions on the possible irreducible
components of the finite-length extensions.

The main results of this paper are the following:

1. In any indecomposable bounded admissible ^-module, n-length extension
of irreducible iΓ-modules, the invariants {Λt ί = 1 . . . p9 p S n] must verify:

In the case n = 2, we obtain a complete precise result.
2. a) There exists, up to equivalence, a unique admissible extension of A (a, Ax)

by A (a, A2) if and only if (Al9 A2) verifies:

Aί-A2 = 0 (Al9A2) +(0,0) and (l91),

A1-A2 = 5 with (Al9A2) = (1, - 4) or (5, 0) ,

Λ1 -A2 = 6 with (AUA2) =

b) There exists, up to equivalence, two admissible extensions of A(α,A) by
A(α, A) if A = 0 or 1, for all α, of ,4(0,0) by ,4(0,1) and three admissible extensions
of ,4(0,1) by ,4(0,0).

c) There exists, up to equivalence, a unique admissible extension of A by
A(α9 A) and of A(α9 1 — A) by A if and only if

α = 0, A = 0, - 2, - 3, - 4

d) Besides the extensions of A and D(0) given in [4], we obtain a unique
admissible extension of ,4(0, A) by D(0) and of D(0) by ,4(0,1 — A) if and only if
A = 0,1, 2.

For each of these extensions we calculate explicitly the action of the Lie
generators of V.

The result 1 generalizes and improves Proposition IV.5 of [2], and its
proof together with a careful study of the case n = 2 are given in Sect. II. The
result 2 gives all the admissible extensions of two iΓ-modules among
{A, D(0), A(α9 A), (α, A)e<C2}. Consequently, besides all the admissible' Extensions
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of two irreducible bounded f-modules, we also get extensions of length three or
four (for example, the extensions of A or ,4(0,0) by ,4(0, 0)). Finally, we give
a complete classification of all bounded iΓ-modules with weightspace dimensions
less than or equal to two. In particular, we have all the admissible extensions of two
f-modules given in [4].

Sections III to V are devoted to this classification as follows:

- In Sect. III. we obtain the result 2 a).
- In Sect. IV, we obtain all the admissible extensions of an irreducible if-

module A(a, A) by A9 D(0) or any indecomposable iΓ-module given in [4] (which
are extensions of D(0) and A).

- In Sect. V, we obtain all the admissible extensions of two if -modules among
A, D(0) or any indecomposable i^-module of [4]. The results 2 b) are given in
Sect. V, Proposition (V.4.1). The results 2 c) and d) are given in Sects. IV and V but
summarized in Sect. V (Propositions (V.I.I) and (V.3.2)).

Adding the ^-modules of [4], we conclude in part VI that we have all the
indecomposable admissible iΓ-modules where the weightspace dimensions are less
than or equal to two. We also remark that we obtain some results of [6].

Now, recall, for the following, the classification of the admissible Ί
with one-dimensional weight spaces given in [4]. Besides the f-modules A(a, A), A9

defined by (I.I) (1.2), appear two series Aa and Bβ, (α, j?eC) which are respectively
extensions of A by D(0) and D(0) by A. On a basis {vn,neZ} they are given by:

(i + n)vi+n VnφO

XiV0 = 0 Vi

Bβ : i XiVn = (ί + n)vn+h n + ΐ * 0 , n φ 0 ; C = 0 . (1.3)

iV-i = (β + i)v0

Remarks 1.4. Let us notice that the above parametrization AΛ9 Bβ is slightly
different from the parametrization A(oc'\ B(βf) in [4]. The correspondence is the
following:

Aa~A(aί) i f l + 2 ^ t i+ 2 α = ,
α — 1

Bβ~B(β') if 1 + 2^ = | ^ 4 *

The advantage is that the ^-modules A1 and Bγ are not obtained in [4].

II. Extensions of Irreducible Bounded Admissible ^ -Modules: First Results
and Consequences for Indecomposable Bounded Admissible V -Modules

In this section we denote by si = φ π e Z ^4+« an indecomposable bounded admis-
sible iΓ-module, where s/a+n is the weightspace relative to the weight a + n, and
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{dim £/„+„, neΈ} is bounded. We also denote si* the contragredient ^"-module
i

•<*• = Θ (•<+»)*• τ h e n •«/* = 0 (<*/*)-„+„ with (^*)_ Λ + n = K _ J * .
neZ neZ

Recall the simple following properties on si*:

Property ILL If A(a, A), A, Aa9 Bβ are defined as in (1.1), (1.2) and (1.3), we have:

a) [4(α, Λ)]* = A(l - a, 1 - A); (A)* = 1; D(Of = D(0); A* = Ba.
b) Suppose dim sia+n = p, VneZ. Then, we have:
x_! (respectively x 1)is a n n i h i l a t e d i n ^ + ^ x - i (respectively x 1)is annihilated in
( j/*)_ α + 1 _ π (respectively (.«/*)_„_!_„).

From [1] and [2] we know that any indecomposable bounded admissible
f-module si is a finite length extension of irreducible iΓ-modules of type A(a, A)
(A φ 0,1, if a = 0), A or D(0). Recall that for any ^-module s/' and sf", the first
cohomology space H1^; H o m c ( ^ " , «s/')) classifies the short exact sequences:
0 -> J ^ ^ j?/ -^ s/" -> 0, also called the extension of stf' by si".

We are only interested in the admissible extensions and they are classified by
a group of relative cohomology H1^, x0, H o m c ( j / " , si')). Actually, we prove in
the following that this cohomology vanishes on the center C if si' and si" are
irreducible bounded admissible i^-modules, except if si' or si" = D(0). From now
on, si' (respectively si") is identified with a submodule of si (respectively a factor
oϊsi).

We prove now the following proposition.

Proposition Π.2. Let si be a non-trivial admissible extension of two irreducible
Y-modules si' and si"of type A(a, A) or A: 0 -• si' -> s i -> si" ->0 (a has neces-
sarily the same value in si' and si"). Then:

1. The center C is trivial in si.
2. If si n K e r x - i Φ {0}, setting m0 = sup{n/Kerx_! r\sia+nή= {0}). Then

- i nsia+mo = si'a+mo .

3. ^ ' i J j i
4. If si n K e r x _ ! Φ {0} αnrf m0 as m 2,

Supln/Kerx. i n < + B φ {0}} ^ m0 .

Proof.
1. From Theorem (II.7) of [2], C has the only eigenvalue 0 and if C is not zero, the
trivial ^-module appears as a factor of si and we have then a proper "Γ-
submodule si3 of si such that si'/si3 = D(0). We obtain a contradiction with the
irreducibility of si' and si".
2. To prove the second assertion, we use Proposition III.l of [2] which can be
written as follows:

Proposition. Let si be an indecomposable bounded admissible i^-module with
K e r x - i Φ {0}. Let m0 defined as above. Let v be a vector of j / a + m o n K e r x _ ! .
Suppose that v verifies one of the following properties:
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a) χ?i;φ{0} VrceN,
b) 3mχ e N such that x™1 + 1v = 0, x^v Φ 0 and there exists

v'esia+mι + 1 with x_!t?; = x^v .

Then v belongs to a Ψ*-submodule of si, all of whose weightspaces are one dimen-
sional, except, maybe, the weightspace relative to the weight 0.

Here, any vector v of Ker x_ x n sia+mo satisfies the hypotheses of the preceding
proposition. Indeed, if it is not true, in view of Theorem (III. 8) of [2], we have
a + m0 = 0 and thus xλv = 0. We deduce, from [x- i , x2liv = 0, that v generates
the trivial submodule D(0) of Ψ*. We obtain a contradiction with the hypothesis of
irreducibility of si' and si". Thus, we can apply the preceding proposition:
v belongs to a iΓ-submodule s/3 with one-dimensional weightspaces except maybe
the weightspace relative to 0. The irreducibility of si' implies:

s/'ns/3 = {0} or si' r\ si3 = si' .

If / n i 3 = {0}, si3 is a submodule of si/si' = si", and thus si" = s/3. We
obtain a contradiction with the indecomposability of si. Necessarily, we have
si' nsi3 = si' and from the irreducibility of si", we deduce: s/3 = si' and thus

m o = sia+mo.

3. Suppose si' n Ker x_ γ φ {0}. Then x_ x is annihilated in si and consequently in
and si'* (Property Π.l.b). We can look at si* as the following extension:

In view of II. 1.a si* satisfies the hypotheses of Proposition II.2, Part 2 and thus, we
have:

where m*, = sup{neZ/Kerx-1 n(s/*)a+n + {0}}.x-1 vanishes in si"* and conse-
quently in si". Applying the result to si*, we obtain the third assertion of
Proposition II.2.
4. From parts 1 and 2 of Proposition (II.2), we deduce that Kerx_x is not trivial in
si". Set:

mγ = sup{neZ/Kerx_! n si'Un * {0}} .

Thus, there exists in sia+mi SL vector v in a supplementary subspace of si'a+mί, with
x-ivesi'a+^-i. Necessarily we have: Kerx_! n i α + m i Φ {0} and thus mί ^ m0.

Remark. We obtain an analogous proposition with the condition Kerxj Φ {0}.

Proposition Π.3. Let si be a nontrivial admissible extension of two irreducible
^-modules si' and si". Suppose: si" = D(0) and si' of type A(0, A) (Λ Φ 0,1) or A,
or the contragredient hypothesis. Then, Qt has either the unique eigenvalue 0 or two
eigenvalues 0 and 2, and the center C is zero. In the second case, si is either the unique
extension 3F of ^4(0,2) by D(0) or the contragredient extension !F* of D(0) by
A(0, - 1).

Proof. We suppose: si" = D(0)

• If si' = A, we have Qγ = 0 and C = 0, [4, 5].
• If si' = ,4(0, A) A Φ 0,1, βi has the eigenvalue A(A - 1) φ 0 in si'. We
write si = @nez^n with dimsin=l ΊneTL* and dim si0 = 2. There
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exists v'oesio(v'oφsi') such that xίv'o = 0. Thus x1x-1υ
/

0 = 0. As
QiX-iv'o = Λ(Λ — l)x-ίv'o = x-iQιv'o = 0, we deduce x-χv'o = 0 In view of
the indecomposability of si,x2v'o is different from zero. Thus [x-iX2]v'o = 0
implies x-i(x2v'o) = 0 and Qi(x2v'o) = 2x2v'o = A(Λ — \)x2v'o. We get A = 2.
C is trivial: indeed if Cv'o φ 0, Cv'o is in si'o, QiCv'o = 2Cv'o = 0, and we obtain
a contradiction.

So, there exists a unique extension of ^4(0, A) by D(0) for A = 2. It is denoted by
J*\ Up to equivalence, we can choose a basis of #", {vn9 neZ, v'o} such that:

XiVn = {n + 2ι>w + 1 , Vn, VieZ; xo^o = Xî Ό = x-i^'o = 0 >

x2v'o = v2, x-2v'o = -v-2 ,

Ct;,, = Ct/0 = 0 VneZ .

All other cases are the contragredient cases of the previous ones. In particular,
there exists a unique extension of D(0) by ^4(0, Λ) for A = — 1 which is the
contragredient extension &* of 3F. Up to equivalence, we can choose a basis of
J^*{v0 9v

f

neZ} such that:

XiV0 = 0, V i e Z ,

-ii?; = (n + l K - i , x-2v'n = (n + 2)υ'n-2 - δna

Cvo = Cυn =

Corollary 11.4. Let srf be a nontrivial admissible extension of stf' by J / " , where srf'
and stf" are of type A(a, A){A Φ 0, 1, if a = 0), A or D(0).
1. // j/nKerx- i Φ 0 or j / n K e r * ! Φ 0, then Qλ has, at most, two eigenvalues
A1(A1 - 1),A2(A2 - 1) with A1 - A2eZ.
2. // Kerx_! = KerXi = 0, then Q^ has at most two eigenvalues A1(A1 — 1),
A2(A2 - 1) with Λx ± A2eZ.

The first assertion results from Proposition II.2 and Proposition Π.3. The
second assertion was proved in [2] (§IV.2). In this case the condition Ax + A2eΊL
cannot be a priori rejected if we choose in stf' and stf" a basis of Feigin-Fuchs type
(I.I) (1.2) (a condition which was not imposed in [2]).

We can generalize the results (II.3) and (II.4) as follows:

Theorem IL5. Let srf be an indecomposable bounded admissible Ψ -module. Then the
eigenvalues {A^Ai — 1), i = 1,. . . , p} of Qi verify At — AjeZ or At + AjeΈ,
Vί, V;.

Proof We look at si as a finite length extension of irreducible bounded admissible
1^-modules and we prove the result by induction over the length n of the extension.

For n = 1 the result is obvious. For n = 2 it is given by Corollary II.4. Then, the
result is easily proved by induction over n.

Now we want to improve Corollary II.4 and Theorem II.5. Let
si = ©nez^a+n be an indecomposable bounded admissible ^-module with an
asymptotic dimension 2. From [1, 2] (Theorems (III.9) and (IV. 13)), si contains
a submodule si' with an asymptotic dimension 1 and si" — si I si' has also an
asymptotic dimension 1. Thus there exists an integer noeZ aiϊd a basis
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{vH, v'n, n = n0} of φn^no^a+n such that:

v = (a + n + M , ) ^ γ . ^ „ + ^ ^ ( I L 6 )

ϋ» = (a + n + ιΛ2)v'n+i

where ίt?n, n = n0} (respectively -fiJ'Λ, n = n0}) is a basis of 0 M ^ W O <*/«+„ (respec-
tively 0π^B oΛ/β + l l).

Remark II.7. si' is necessarily of type ^4(α, τl), 4, AΛ9 Ba or an extension of D(0) by
one of these iΓ-modules. The choice of the parametrization of these f-modules
given by (I.I), (1.2), (1.3) implies that Λ1 is unique except for si' — A(a9 0) or
si' = (A(a, 1) and α φ O . We have the same conclusion for the choice of A2 in si".

In such a iΓ-module s/9 as xx and x-i are one-to-one from s/a+nto s/a+n+ίoτ
s/a+n-x for enough large n, we have only the two following possibilities for Qx:

• either Q1 is diagonalisable on 4 + « for n^ No

• or β i is not diagonalisable on j / f l + n for n^. No.

Definition Π.8. Such a Ψ-module stf is asymptotically Qx-dίagonalisasble (respec-
tively asymptotically non-Q^diagonalisable) if there exists ΛΓoeN such that <2i is
diagonalisable (respectively non-dίagonalίsable) on j / Λ + n Vn ^ No.

Theorem Π.9. Let si be an indecomposable admissible bounded Ψ -module, asymp-
totic extension of si' by si". Aγ and A2 are their invariants defined by (II.6) and
Remark (II.7).

A. If Qι is asymptotically diagonalisable, we have necessarily:

1. a = 0: Λ± = 0 A2 = 0, or A1 = 1 A2 = 0, or A± = 0 A2 = 1, or A±=A2 = 1.
2. a = 0, Ax = A2 = 2.
3. a + ^Aί=A2=i
4. α φ O , ^ ! =yl2 = 0.
5. Aί = 29A2 = l or A1=09A2 = - 1.
6. Λi - ^ 2 = 2,^! Φf.
7. ili -Λ 2 = 3,^! +2.
8. A1-A2 = 49AίΦl
9. A1 = 19A2= -4 or Λx = 59A2 = 0.

l n , 7 + V19 - 5 + V19 7-V19 -5-^/19
10. ^ i = ^ — , yl2 = ^ — or Λ± = ^ — , >12 = ^ ^ .

B If δ i ί S asymptotically non-diagonalisable we have necessarily:

1. ^ = ^ 2 .

2. ^ = 1 - ^ ^ ^ ^ = 0 , 1 , 1 , 2 , 1 .
Proo/
A. Qi is asymptotically diagonalisable.

We can thus choose the basis defined by the formulas (II.6) as follows

= (a + n + Aί)vn+ί \x-ivn = (a + n - Λ1K-1

v'n = {a + n + A2)v'n+1 lx-ii?Ή = (a + n — A^v'n-x

\x2vn = (a + n + 2A1)vn + 2 [x-ivn = (a + n - 2A1)vn-2

[x2v'n = (a + n + 2^2)^+2 + αnt;M+2 [x_2t;
/

M = (a + n - 2A2)v'n-2 + j8πt;n_2

(11.10)



472 C. Martin and A. Piard

From the relations [_x-iX2~]v'n = 3xiu'n and [_x-2Xι~\v'n = 3x-iv'n we get:

(a + n + 2- ΛJa, -(a + n- Λ 2 K-i = 0 ,

(a + n + Λ2)βn+1 -(a + n-2 + ΛJβ. = 0 .

We deduce the existence of two constants α+ and β+ such that:

Γ(a + n + 1 - Λ2)

Recall that the center C is zero on <e/a+n, n^N1 ([2], Theorem (II.7)). Then, the
relation [x2> x - 2 ] ^ = 4xot/π together with the formulas (11.11) gives:

Γ(a + n - 1 - Λ2) Γ (A± - Λ2 - l)(At - Λ2 -

Γ{a + n + 1 - Λ ^ L a + n + 1 - Λt

| Λί(Λ1-Λ2-2)(Λ1-Λ2-3)~

a + n + 2 — Λ1

Γ(a + n-2 + Λ1)\~ _2 + (Λt - Λ2 - l)(A, - Λ2 - 2)Λ2

a + n + A2

{\-Λ2){Λί-Λ2-2){Λι-Λ2-ϊ)

a + n + ί+Λ2

From Theorem (II.5) we know that Ax ±A2 = p e Έ. Let us discuss the solutions of
(11.12):

- Either α + = β+ = 0 . Then the two ̂ -submodules generated by vNί and υ'Nί have
both an asymptotic dimension 1. To get an indecomposable iΓ-module s/9 these
two submodules must have an intersection which is necessarily either the sub-
module D(0) or D(0)φD(0). Using Proposition IL3, we only have the following
possibilities:

a = 0, Λ1 = 0, A2 = 0 (case 1 of Theorem II.9),
a = 0, Aγ = A2 = 2 (case 2 of Theorem II.9)
a = 0, Aγ = 2, A2 = 0 (case 6 of Theorem II.9)

- Oroc+-β+ +0.

1st case. A1-\- A2 = p. From (11.12), we immediately get that p = 1. We want to
prove that necessarily: Λ 1 = 0 o r l o r Λ 1 = i and a φ \. We use Theorems 11.10
and III.2 of [2]. They claim that the iΓ-submodule generated by an eigenvector of
Qί9 ves/a+n (n ̂  JVΊ) such that x2v = λx\υ, has an asymptotic dimension equal to
1. Setting v'^ = v'Nl + kvNl, the equation x2v'^ = λxjvN^λefc, together with
11.11, imply:



Indecomposable Admissible Modules over the Virasoro Lie Algebra 473

If Λι=1=0,1,^, there exists υ'^ which generates a submodule sί\ with an
asymptotic dimension 1. Necessarily, we have / n i j = D(0) or D(0) 0D(0) and
we are again in the preceding case α+ = β+ = 0.

If Λ1 = 0 or 1, we are either in case 1 of the theorem, or in case
4(A(a, 1)~ A(a,0)iϊ αφO).

If Aγ = Λ2 = 2 the diagonalisability of β x implies Kerx-x n i 1 / 2 = Λ / I / 2 .
Then, using [x_ i x 2 ] = 3xχ and the injectivity of x_! on <stf1/2 +n f° r nεN*, the two
vectors v0, v'o of «a/1/2 verify the condition x2ι; = Λxfi?. Consequently, each of them
generates a ^-module with an asymptotic dimension 1, and s/ is decomposable.
Thus, we have necessarily a Φ ̂  if A1 = A2 = 2 (case 3 of the theorem).

case, yli — Λ2 = peΈ. Setting x = a + n in (11.12), we obtain a polynomial
identity. We first deduce in all cases β+ = — oc+. Then, we look at the zeros of the
right and left members. We have to discuss according to the hypotheses p < 4,
p = 4, p > 4, and we get the necessary condition 0 ^ p ^ 6. For p = 2,3,4 Ax is
arbitrary (cases 6, 7, 8). For p = 5, 6 we have only two values for A1 (cases 9 and
10). For p = 0,1 all solutions are listed in the cases 1 to 5.

B. Qi is asymptotically non-diagonalisable:
As <2i has a unique eigenvalue A(A — 1), we only have the two following

possibilities: A1 = Λ2 or Λ2 = 1 — At. Suppose A2 = I — Aλ. We can choose the
basis defined by formulas (II.6) for all n ̂  sup(n0, No) = N^.

+δHυn + 1 I +ynvn-ι

x2vn = (a + n + 2A1)υn + 2 r x-2vn = (a + n -

1
+βnVn-2

(11.13)

From the relation [x_i, X\~\vn = 2xo^M, we get:

(α + n + 1 - ΛOίy.+i + 5.) - (a + n + ̂  - l)(yn + ̂ . J = 0 Vn ̂  ΛΓX + 1 .

As <2i is not diagonalisable on s/a+n (Vn ̂  A/Ί + 1), yπ + δn-1 =t= 0 and we obtain

V « ^ 1 + l,e + 0 . (11.14)

From the relations [x_ 2, Xi] = 3x_! and [x~i, x 2 ] = 3xx applied on v'n, follows
the relation:

(a + 7i + 2 - ΛJία + n + 1 - /li)(αM + jSM+2)

- (α + n - 2 + A)(0 + π - 1 + Λ ) K - 2 +

Γ(a + n+ 1 -
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where

F(n) - 8 + 1AM, ~

,

From [x_2, x2]v'n = 4xo^
;« we have:

(a + n + 2- 2A1)(ocn + ft,+2) - (a + n - 2 + 2Aί)(an.2 + A.) = 0 Vn ^ Nί .

These two inducing relations lead to the following necessary compatibility condi-
tion:

i _J__Ί
α + n + 1 - Λx α + n - 2 + y l i J '

D(n + 2) (a + w + 2 - ΛJία + n + 1 - ΛJία + n - 2 + 2

+ π + 4 - 2A)(a + n + 1 4- ^i)(α + n + >4i)F(n + 2),

where D(n) = 2{a + n)2 + 4(^4! - l)2{Λί - 2). A careful study of the poles of this
last equation shows that it is generally impossible except for the particular values
Λ1 = 0, Λι = 1, Λ1 = I, Λ1 = 2, Λ1 = f. The proof of Theorem II.9 is achieved.

We can deduce the following corollary:

Corollary 11.15. Let s/' and stf" be two irreducible Y-modules of type A(a, A) (if
a = 0, A Φ 0,1), A (a = 0, A = 1) or D(0). We denote by H1^, x0, H o m c ( ^ " , si'))
the first group of relative cohomology of Y with values in Hom c ( j/" , si'). Then:

1. Ifsi' = A{a, Λ±) or A(A1 = 1), and sέ" = A(a, Λ2) or A{A2 = 1):
R\Yy x0 , Horned", J*')) Φ {0} =>A1-A2e {0, 1, 2, 3,4, 5, 6}.

2. // s/' = D(0), si" = A(a, A2) or A,
HX(Y9 x0, HomcK 7, si1)) Φ {0} => si11 = .4(0, - 1) or si" = A.

3. If si' = A(a, At) or A, si" = D(0),
Hγ(Yy x0, Horned' , si')) Φ {0} =>s/' = A(0, 2) or si' = A.

Proof The first assertion results from Theorem Π.9. Indeed, in Theorem II.9 we
have always A1 — A2 eTL with 0 ^ Ax — A2 ^ 6 except in the cases Al and B2, for
A1 = 0, A2 = 1. For these values of A1 and A29 the irreducibility of si' and si"
implies α + 0. Thus, the hypothesis Ax = 0, A2 = 1 is equivalent to ^ = τl2 = 0.
The second and third assertions result from Proposition Π.3.

Now we can improve Theorem II. 5 as follows:

Theorem 11.16. Let si be an indecomposable bounded admissible Y -module.

1. Then the eigenvalues {A^Ai — 1)} of Qx verify At — AJEΊL, Vi, V7.
2. Moreover if si is a n-length extension of irreducible bounded admissible Y-
modules (n ^ 2), the eigenvalues {A^Ai — 1)} o/βi verify.

0^\Λt- Aj\ ^ 6(n - 1) with Λt - AjeZ .

The proof is the same as in Theorem II.5, substituting the induction .hypothesis
At ± AJEZ by Λt - A}eΊL with \At - Λj\ ^ β(n - 1).
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III. Non Trivial Admissible Extensions of Two Irreducible iΓ-Modules, Λ(α, Λx)
byΛ(α,Λ2)(α = 0 ^ A Φ 0 , l )

Let .a/ = © w e Z J&a+n be such a ^-module. Then, dimj/ a + n = 2, VneZ. In view of
Theorem II.9, we distinguish the following cases:

• Aγ = A2 and Q1 is asymptotically non-diagonalisable except:

Λ
t
 = A

2
 = 0 and α φ 0,

Λi = Λ
2
 = - and α + - ,

Λx = Λ
2
 = 2 and a = 0 ,

where we can have, a priori, the two possibilities for g ^

• A2 = 1 - Λx with Ax = f, Aγ = 2 or yli = •§ and Qx is asymptotically non-
diagonalisable.

• Aί=2,A2 = l;A1=0,A2=-l(aή= 0).
Φ Ax-A2 = 2,3,4,^ +yl 2 Φ 1.

, ε = ± 1.

In the four latter cases, Qi is asymptotically diagonalisable.

Remark. If a Φ 0, the cases Ax = 2 A2 = 1 and yli = 0 yl2 = — 1 are respectively
equivalent to the cases A^ = 2, A2 = 0 and A1 = 19A2 = 1 and are included in the
case Aί — A2 = 2.

III.l Extensions of A(a A) by A(a, A) (a = 0 => A Φ 0,1).

A) Qi is asymptotically non-diagonalisable:
Then, g i is non-diagonalisable o n < + π for all n in Z. Thus we can choose the

basis defined by (II.6) for all n in TL as follows:

x1υn = (a + n + Λ i K + 1 f x2t?π = (α + n + 2A1)vn+2

XiVn = (a + n + A K + i + ^»^+i 1^2^ = (α + n + 2 Λ 1 K + 2 + απι;π+2

x . ! ^ = (α + w - ^ x ) ^ - ! U - 2 ^ = (α + π - 2A1)vn_2

j - 2 ^ = (a + n- 2A1)vf

n.2 + βnvn.2

(IΠ.1.1)

From [x-iXi^(v'n) = 2x1υ'n we deduce:

(a + n + A1)yn + ί + (α + n + 1 -

= (α + n - 1 + ^ ) 7 n + (α + n - ^1)
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and we also have:

Q^'n = ΛMi ~ I K -l(a + n-l+ A±)γH + (a + n - Λ^δ^^v, Vn .

The non-diagonalisability of g i on s/a+n implies:

(a + n - 1 + A±)γn + (a + n - Λί)δn-1 Φ 0, Vn .

- If Λι = i , this condition together with the relations [x-iX 2 ] (K) = 3*i (*>!•)>
[*-2*i](t>i) = 3 x - i K ) , [x 2 ^-2] K ) = 4x0 (v'n) (c = 0, Proposition II.2) leads to
a contradiction.

- If Λί Φ ̂ , the basis of J / defined by (III. 1.1) can be chosen so that {υn, v'n} is
a Jordan basis of β i on <stfa+n (VneZ) and:

5 V

2 2
Writing απ = — + oc'n, βn= - — + β'H, the relations

2Λ1 — 1 2Λ1 — 1

3x ! i4 lx-2xι]v'n = 3x-±vr

n9 [x-2^2] v'n = 4xov'n imply:

α'B(α + n + 2 - ilO - α . ^ α + n - y^) = 0 ,

ft+1(α + n + Ay) - β'n(a + n-2 + Λ1) = 0,

a'n(a + n + 2 - 2 ^ ) + j?U2(α + n + 2AX) - β'n(a + n - 2 +

By a straightforward calculation, we prove that this system only admits the
trivial solution oc'n = β'n = 0, Vn, except in the particular cases a = 0, Aλ = 0 and
a = 0, A1 = 1. But, these latter are not considered in this section.

Thus, if 61 is non-diagonalisable and Aί φ \ we get a unique non-trivial
admissible extension si of A(a, A) by A(a,A) (a = 0 => A Φ 0,1) defined by the
formulas (III. 1.1) with

2A1 — 1 2Λ.! — 1

B. 61 is asymptotically diagonalisable:
As either x_ x or xx is one-to-one from j4a+n to j / α + M _ 1 or ^ α +«+i»6 i is

diagonalisable on s/a+n, ΊneTL. The basis given by (II.6) and (11.10), (11.11) can be
defined for all n in Έ. Equation (11.12) gives us α + + β+ = 0.

a) Λi = Λ2 = 2, α = 0. We have α + = jS+ = 0 and si is decomposable.
b) A1 = A2 =^,aή= \. Up to equivalence, we get a unique non-trivial admissible
extension of A(a, i ) by ^ί(α, i ) defined by the formulas (11.10), (11.11) for all n in
TL with:

α" = (α + n + |)(α + n + i ) ' A = " (α + n - i)(α + n - f)1' ( Π L L 3 )
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c) Λx = A2 = 0, a φ 0. Up to equivalence, we get a unique non-trivial admissible
extension of A(a, 0) by A{a9 0) defined by the formulas (11.10) (11.11) with:

α " = (α + n + 2)(α + n + l ) ? βn = ~ (a + n - 2)(a + n - 1) * ( I I L L 4 )

We can thus claim the following theorem.

Theorem ΠI.1.5. A(a, A) is an irreducible Y*-module of Feigίn-Fuchs (defined by I.I)
(a = 0 implies A Φ 0,1). JFe ftαz e:

1. / M φ O , i Vα, or Λ=ϊ,a*±:

dim Jf1 [1T, x0, Homcμ(α, Λ), Λ(α, /I))] = 1 ,

and the cocycle is defined onxlίx-ί,x2, - x2 either by (III.l.l) and (III. 1.2) if Λ is
different than ± or by (11.10) and (III. 1.3) i M = ±, β * ±.

2. / / 4 = 0 (α Φ 0):

dim f̂x [1T, χ0, Homcμ(α, 0), ^(α, 0))] = 2 .

We have a basis of two independent cocycles, one defined by (III.l.l) and (III. 1.2)
for Λx = 0 and one defined by (11.10) and (III. 1.4).

777.2. Extensions of A(a, A) by A(a,A — p) p = 2, 3, 4.
Although A(0, A) (respectively A(Q,A — p)) is not irreducible when A = 0,1

(respectively Λ = p, p + 1), we also consider here these cases which are not different
from the general case.

1st case, p = 2.

A) β i is asymptotically diagonalisable: necessarily, from Theorem (II.9), we have
(A, A — 2) Φ (2,2)- As either x-1 or x1 is one-to-one from stfa+n on j/ α +«-i or
j / α + π + 1 , for all n in Z, Qi is diagonalisable on j / α + n , for all n in Z.

Then we can choose, up to equivalence, a basis of s/ where x x , x _ x , x 2 > * - 2 are
defined by the formulas (11.10), (11.11) for all n in Έ with:

*n=-βn=l ΊneTL. (IΠ.2.1)

B) β i is asymptotically non-diagonalisable: (A, A — 2) = (f, i). For the same rea-
sons as in A) Qx is non-diagonalisable on 4 + « 5 for all n in Z.

Thus we can choose a basis {vn, v'n, neZ} of jz/ so that the formulas (11.13) are
true for all n in Έ.

From the relation (11.14) we get:

+ n + - j , ε Φ 0 .

Using [x-iX2]^« = 3xxi;^ and \_x-2Xι~\v'n = 3x_!i;^, we obtain:

2 ) t ( a w + ^ M + 2 ) ~ ( a " ~ 1 + j S n + l ) ] = 4 V + Ά + 2

From |>2, x - 2 ] ^ = - 4xo^n» we deduce:

(a+n- l)(aM + βn+2) - (a + n + l)(aπ_ 2 + jSJ = 0 .
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For all values of α, these two equations admit a unique solution:

In other respects, it can be proved that, on a given reference level n, δn and
<xn can be chosen independently (by taking a suitable basis). Therefore we can fix
ε = 1. We get:

yn= U + n--\; βn = 2(a + n-l). (IΠ.2.2)

The formulas (11.13) for all n with Λx = | , together with (IΠ.2.2), define a unique
non-trivial admissible extension of A(a, \) by A(ay j).

2nd case, p = 3.

A) Qi is asymptotically diagonalisable: Necessarily from Theorem II.9 we have
(A, A — 3) Φ (2, — 1). As in the preceding case, β x is diagonalisable on sia+n9 Vne
Z. Then we can choose, up to equivalence, a basis of si9 {vn,v'n9neZ}, where
Xi,x-i,X2>x-2 a r e defined by (11.10), (11.11) for all ninZ with:

an = (a + n-A + 3) βn = - (a + n + A - 3) VneZ , (IΠ.2.3)

and we obtain a unique non-trivial admissible exstension si of A(a,A) by
A(a,A- 3).

B) Qi is asymptotically non-diagonalisable: (Λ, A — 3) = (2, — 1). (^ is non dia-
gonalisable on sia+n, ΊneTL. We can choose a basis {vn, υ'n, neZ} of J / so that the
formulas (11.13) are verified for all neΈ.

The arguments used in case 1 B) (A = | ) lead to the following result:

n = ha + π)(α + n + 1), αn = 2(α + n)(α + n + 2),

(III.2.4)

y« = j(fl + π - l)(fl + π), βn = 2(a + n- 2){a + n).

We get a unique non-trivial admissible extension «s/ of A (a, 2) by yl(α, — 1), Vα.

5 r d case. /? = 4.

A) β i is asymptotically diagonalisable: necessarily, from Theorem (II.9), we
have (A, A — 4) Φ (f, — | ) . As in the preceding cases, Qx is diagonalisable on
stfa+n9 MneZ. Then, up to equivalence, we can choose a basis of si: {vn,v'n9neZ},
where xl9 x - i , x 2, x-2 a r e defined by (11.10), (11.11) for all nin Z with:

απ = (a + n + 3 - A)(a + n + 4 - A)9

j S π = _ ( α + n - 3 + A)(a + n - 4 + A) VneZ (IΠ.2.5)

B) Qi is asymptotically non-diagonalisable: (Λ, A — 4) = (f, — | ) . We always get
that Qx is non-diagonalisable on s/a+n, VneZ. We can choose a b^sjs {î M,Un,

so that formulas (11.13) are verified for all n in Z. The same arguments and
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a similar calculation as in case 1 B) and 2 B) lead to choose up to equivalence:

αB = 2(β + n + 3)(α + n + l)(α + n - 1)

ft, = 2(β + n + l)(α + B - l)(α + n - 3) " l " ' }

We get a unique non-trivial admissible extension of A(a, f) by /l(α, — f) defined by
(11.13) and (IΠ.2.6).

We can summarize the results of this paragraph as follows:

Theorem (ΠI.2.7). Let A(a, A) and A(a, A-p)(p = 2, 3,4) be two Y-modules of
Feigin-Fuchs defined by (I.I). We have:

1) For p = 2, dim J f ^ i r , χ0, Hom€(A(a, A - 2), A(a, Λ))] = 1 VΛ, Vα and the
cocycle is defined onx1,x-1,x2,x-2 either by (11.10) for all n and (IΠ.2.1) if A φ | ,
or by (11.13), (IΠ.2.2) if A = \.
2) For p = 3, dim .if1 \Ψ~, x0, Hom€(A(a, A - 3), A(a, /I))] = 1 VΛ, Vα and ίfte
cocycle is defined on x1,x-1,x2, x~2 either by (11.10) and (HI.2.3) if A φ 2, or fcy
(11.13), (IΠ.2.4) if yi = 2.
3) p = 4, dim . T 1 ΓjT, x 0, H o m c ^ ί a , /I - 4), y4(a, /I))] = 1 VΛ, Va and ίnc cocycte
is defined either by (11.10) and (ΠI.2.5) i/ yl φ f or fty (11.13), (IΠ.2.6) if A = f.

///J. Extensions ofA(a, 1) fey A(a, - 4 ) and A(a, 5) by A{a, 0)(a Φ 0).
Having two different values, Q1 is diagonalisable on each J / 0 + Π , Vn e Z, in these

two cases. As A{a, 1) and A(a, 0) are equivalent (α Φ 0), these two contragredient
extensions are respectively equivalent to the extension of A(a, 0) by A{a, — 4) and
to the extension of A(a, 5) by A(a, 1). They are included in III.2, case 3. The case
a = 0 is studied in Sect. IV.

Ill .4. Extension of AU + ^ 1 9 ) by AU 5 + εV 1 9\ ( ε = ± 1 }

β j is always diagonalisable on each stfa+n, 'insΈ. The relations (11.10), (11.11)
are defined for all n in Z with

/ 5 - εVl9\ / 3 -
= α + l a + n+ 2 ) (

( l + ε J l 9 V l ε V l 9 \ / 3 -
βn= - α + ί α + n + ψ— jί a + n ^χ)\a + n 2 ~ J
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Up to equivalence we can fix α+ = 1 and we have a unique non-trivial admissible

extension si of s/l α, - ^ — j by s/ί α, — - — I, (ε = ± 1), for each a.

IV. Non-Trivial Admissible Extensions si of an Irreducible ^-Module
,4(0, A) (A Φ 0,1) by sf' (Where s/' = A,A® Z)(0), Aa9 Bβ,

(0,1), Λ(0, 0), Z)(0)) and Their Contragredient ^-Modules

I V.I. Extensions ofA(0, Λ)(Λ Φ 0,1) by si\
In the following, we suppose si1 of type A or A © D(0) or Aa or Ba, or ,4(0,1) or

,4(0,0) or D(0). They are all the f^-modules with one-dimensional weightspaces,
where β i = 0.

In view of Proposition II. 3 and Theorem II.9 we have the only following
possibilities: A = 2 or A = 3 o r Λ = 4 o r y l = 5. Thus Q1 is diagonalisable on

Case 1. Extensions of ,4(0, A) (A = 2, 3,4, 5) by A. In all cases, we can define a basis
of si, according to (11.10) and (11.11) by:

x1vn = (n + A)vn+u Vn, Γ xxO'n = (n + 1 K + 1 , Vn φ 0 ,

x_1ι;M = (n-y l ) t ; n - 1 , Vn, I x _ i ^ = (n - l)v'n-l9 Vn φ 0 ,

x2vn = (n + 2A)vn + 2, Vn, 1 x2ι>iι = (n + 2)v'n+2 + ocnvn+2, Vn φ 0, - 2 ,

x _ 2 ϋ w = {n- 2Λ)vH-29 Vn , [ x_2ι>; = (n - 2 K _ 2 + j?ni>«-2, Vn Φ 0, 2 ,

(IV.1.1)

where αw (respectively βn) is given by (11.11) for n ^ 1 (respectively n ^ 3) and by
analogous formulas for n ^ - 3 (respectively n ^ - 1 ) , with another constant
α_ (respectively /?_).

• If A = 2, si is the direct sum ,4(0, 2) 0 A.
• If Λ = 3,4, 5, let us set:

x2v'-2 = #_2ι;o, X-202 = ^2^o (IV. 1.2)

Writing the commutators [x iX- 2 ] , [ x - i ^ 2 ] and Dx- 2 x 2 ] , we obtain: α+ = α_.
Up to equivalence, we can write (IV.1.1) and (IV.1.2) with:

• if A = 3 an = — βn = 1 Vn φ 0

: 4 αM = n - 1 ft, = - (n + 1) Vn Φ 0

= 5 ocn = (n~2)(n- 1) ft = - (n + 2)(n + 1) Vn Φ 0 . (IV.1.3)

We obtain a unique non-trivial admissible extension of ,4(0, A) by A for A: 3, 4, 5.

2. Extensions of ,4(0, A) (A = 2, 3,4, 5) by A 0 D(0). All these extensions are
reducible.

Case 5. Extensions of ,4(0, A) (A = 2, 3, 4, 5) by Aa. We can use the results of case 1.
If A = 3,4, 5, we can choose a basis of si{υn> v'n, neZ} such that the formulas
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(IV. 1.1), (ΪV.1.2) and (IV.1.3) are verified. Now, we must add the following relations:

fxii/o = (1 + Φ Ί ίxiv'o = 2(2 + Φ i + ot0v2

\x-1Ό'0 = (l-φL1 \x-2υ'0 = 2(2-φ'-.2 + β0υ-2

 l " '

We apply the commutators [x-i, x 2 ] , [xί9 x - 2 ] , [x2, x-2] on ι/0. For A = 5, we
only get a reducible ^-module. For A = 3,4 we get:

α0 = α - 1, β0 = - (α + 1). (IV. 1.5)

Thus for /L = 3,4 we have, up to equivalence, a unique non-trivial admissible
extension si of ,4(0, A) by ,4α defined by the formulas ((IV.1.1) -> (IV. 1.5)).

For A = 2Jϊom case 1 and Proposition (II. 3), we can also look at si as an
extension of A by the affine f-module J*. Up to equivalence, this extension is
defined on a basis {vn9 v'n9 neΈ} of si as follows:

xivn = (n + 2ί)vn+i Vn, Vi

x X = (n + i K + ί V;,Vnwithn + i φ O ; n φ O (IV 1 6)

Xî 'o = (1 + Φ Ί , x - i t ? Ό = (1 - φ ' - i

x2i/0 = 2(2 + φ'2 + 2ι>2; x_2ι/0 = 2(2 - φ ' _ 2 - 2ι>_2 .

. Extensions of ,4(0, A) (A = 2, 3, 4, 5) by ,4(0, 1). For A = 3, 4, 5, this case is
included in III.2 for A — p =J. and p = 2, 3, 4. If Λ = 2 we obtain, as in the
previous case, an extension of A by the affine ^-module 3F. Up to equivalence, we
can define a basis of this extension si by the formulas (IV.I.5) except:

f Xiϋ'o = v\ f X-I^'O = - ^-i

\x2v'o = 2v2 + y2 \x-2v'o = — 2ί;'_2 — v-2 '

Case 5. Extensions of ^1(0, A) (A + 0,1) by Bβ. If A = 3,4, 5, Proposition (II.3)
implies that ^(0, vl) 0 D(0) is a iΓ-submodule of si. From case 1, for each of these
values of A and each /?, we have a unique, non-trivial, admissible extension of
,4(0, A) by #0. It is defined on a basis {fM, υ'n9 neZ} by the formulas (IV.1.1) and
(IV.1.3) except x2, V2, x-iv'i, XivΊ, x-i^ί given by:

'-x =(β+ ί)Vo9 X2v'-2 = (β + 2)l/ 0 + OC-2V0 ,

x - i ^ ' i = (j9 - l)vΌ, x-2v'2 = (β- 2)v'o + β2v0 ,

Xίϋ'o = 0 ,

where α_2 and β2 also satisfy (IV. 1.3). If A = 2, we only get the direct sum

,4(02) 0 ^ .

Case 6. Extension of ,4(0, A) (A + 0,1) by ,4(0,0). If A = 2, 3, 4 this case is in-
cluded in (III.2) for A - p = 0 and p = 2, 3, 4. I M = 5, Proposition (II.3) implies
the existence of the jmbmodule ,4(0, 5) © D(0) in si. Thus si ixs an extension of

(0, 5) 0D(O) by A From case 1, we obtain a unique extension si, which is
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defined by:

n = (n + 5i)vn+i V
/ = nv/

n+1

'n -=nvf

n-1 x-2v'n = nv'n-2 + βnυn-2 Vn

with ocn= - βn = n(n - l)(n - 2) Vn.

Case 7. Extensions of ,4(0, /I), (A = 2, 3,4, 5) by D(0). Recall that there exists
a unique extension of ,4(0, 2) by D(0) denoted by ^ , given by Proposition (II.3).

IV2. Extensions of s/' by ,4(0, A) (A Φ 0,1).

s/' is always either A, or 1 0 D(0), or /4α, or ^ or ,4(0,1) or /4(0,0) or D(0). In
view of Property (II. 1), these extensions are necessarily exactly all the contragredi-
ent ^-modules of the preceding ones (Sect. IV. 1).

Proposition II.3 and Theorem II.9 imply the only following possibilities for A:

A = - 1, / I = - 2, A = - 3 9 A = -4.

Case 1. Extensions of A by ,4(0, A)(A = — 1, — 2 , - 3 , — 4). For A = — 2 or — 3
or — 4, we have unique non-trivial admissible extensions j / , contragredient of
those defined in IV. 1, case 1, for A = 3 or 4 or 5. Up to equivalence, s/ is defined on
a basis {vn, υ'n9 neZ} by:

*iVn = (n + 0ϋ«+i if n + i φ 0

'n = (n + > 1 K + I (x 2^n = (π + 2A)v'n+2 + ocnvn+2

.xv'n = (n - y l K ( x ^ ; (π 2 Λ K + jSt; '

where

>iΐA=-2:ocn = n + 2,βn=-(n-2) Vn

> if A = - 3: απ = (n + 2)(n + 3), ft, = - (π - 2)(n - 3) Vn

> if /I = - 4: αn = (n + 4)(n + 3)(n + 2), βn= -(n- 4)(n - 3)(n - 2) Vn .

(IV.2.2)

2. Extensions of Aψ D(0) by A(0, A) (A = - 1, - 2, - 3, - 4). In view of
(IV. 1), case 2, there is no indecomposasble admissible iΓ-module s/, extension of
A Θ D(0) by ,4(0, yl) (yl Φ 0,1).

Case 3. Extensions stf oΐBβ by /4(0, A)(A = - 1, - 2, - 3, - 4). In view of (IV.l)
case 3, .a/ is indecomposable if and only if A = — 1 or — 2, or — 3. Up to
equivalence, we can choose a basis {vn9 v'n} of si such that

= (n + l)uM +i, n Φ 0, - 1 Γ x_ii;M = (n - l)υn-u n Φ 0,1

i =(j8+l)ι>o
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x2vn = (n + 2)vn+2, n Φ 0, - 2 Γ x-2vn = (n - 2)vn-2, n φ 0,2

= 0 I X-2^0 = 0

= (n + A)v'n+1 (x2v'n = (n + 2A)v'n+2 + otnvn+2

x_λυ'n = (n - Λ)υ'n-1 \x~2υ'n = (n - 2A)v'n-2 + βnvn-2 '

where

• if yl = — 1 αw = 0 V n φ - 2 , α_ 2 = l ,

J8» = 0 Vn Φ 2, jβ2 = - 1 ,

• if/I = - 2 αn = (n + 2) Vn Φ - 2, α_ 2 = β - 1 ,

& = - ( ! ! - 2 ) Vn + 2 , i 5 2 = - ( i 5 + l ) ,

• if yd = - 3 αM = (n + 2)(w + 3) n φ - 2, α_ 2 = β - 1

jSn = - (n - 2)(n - 3) n Φ 2, β2 = - (β + 1).

Remark. We can also consider the case A = — 1 as an extension of the affine
^-module &* (Prop. II.3) by the iΓ-module A.

Case 4. Extensions s/ of ^(0,0) by ^(0, A) {A = - 1, - 2, - 3, - 4). The cases
A = — 2, A = —3,A= — 4 are included in III.2. If A = — 1 we obtain as in the
previous case another extension of the affine f-module J^* by A, defined up to
equivalence by:

XiVn = nvn + i9 Vn, Vι

xlΌ'H = (n- l)v'n+ί

. Extensions s/ oϊAa by ^(0, yl) (A = - 1, - 2, - 3, - 4). In view of (IV.l)
case 5 and Proposition II.3, if A = — 2 or — 3, or — 4 we have an extension of
A by D(0) φ ^4(0, A). For each value of A and each α we get a unique indecompos-
able admissible ^-module si defined on a basis {vn,v'n,neZ} by the formulas
(IV.2.1) and (IV.2.2) and:

= (1 + <ήvl9 x2v0 = 2(2 + oί)v2 ,

x-iVo = (1 — α)t?_i, x~2v0 = 2(2 — α)ι;_2 .

If yl = — 1 in view of (IV.l) case 5, si is necessarily the direct sum Aa ® /4(0, — 1).

Case 6. Extensions si of A(0, 1) by A(0, A) (A = - 1, - 2, - 3, - 4). The cases
A = — 1 or A = — 2 or /lj= — 3 are included in III.2. For A = — 4, si can be
looked as an extension of A by D(0) © /4(0, - 4) (Prop. III.3). From (IV.2) case 1,
we obtain a unique non-trivial admissible extension si, which is defined by the
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formulas (IV.2.1) and (IV.2.2) and:

x1v0 = v1 x2v0 = 2v2

X-iVo = - t?_! X-2^0 = - 2t?-2

Case 7. Extensions of D(0) by 4(0, A) (4 = - 1, - 2, - 3, - 4).
Recall that, from Proposition (II.3), there exists a unique extension of D(0) by
4(0, - 1) which is the contragredient ^-module J^* of & (case 7 of IV. 1).

Now we can summarize the results of Sect. IV:

Theorem IV.3. Set si' = D(0), A, A® D{% 4α, 4(0,1), Bβ, 4(0, 0).
a) The only non-trivial admissible extensions of 4(0, A) (A + 0 , 1 ) 6 ^ ' are the

unique following ones:

/' = D(0) and A = 2
i' = AandA = 3,4, 5
i' = 4 α and A = 2, 3,4
i' = Bβ and A = 3, 4, 5
/ ' = 4(0, 1) or 4(0,0) and A = 2, 3,4, 5.

b) 77ιe on/y non-trivial admissible extensions of si' by 4(0, 4) are ί/ie contra-
gredient extensions of the previous ones.

V. Indecomposable Admissible ^"-Modules si = © w e Z es/w such that
^ 2 Vn, S/>(x0) = Z and β? = 0

A iΓ-module Λ/ = 0 π e Z ^ / n with dim stn = 1 Vn and βi = 0 may be D(0) φ 4,
4(0,1), 4α, 4(0,0), β^. If si contains a trivia^-submodule £(0), it is D(0) 0 4,
4(0, 0) or #0. In other cases, namely D(0) φ 4, 4(0,1), 4α, si contains an irredu-
cible iΓ-module «s?. In order to be able to discuss at once the three first cases or the
three other ones, we use the following notations:

-γi)v0{xiv0 = 0 Γχ2ί;0 = 0 {x1v-l =δ-xvo {x2v-2 =

' \x-xVo = 0 [x-2^o = 0 \x-1v1 = yxv0 \x-2v2 =

with δ-ί=γ1=O forD(0)θ4,

5-i = yi = l for 4(0,0),

' \x-iVo = γov-x (x-2^o = (<5o + 3yo)^-2 \x-iVt = 0 jx-2ι?2 = 0

with δ0 = y0 = 0 for D(0) 0 4 ,

<5o = - 7o = 1 for 4 ( 0 , 1 ) ,

<50 = 1 + α 70 = 1 ~ α for 4 α .

V.L Indecomposable admissible Ψ-modules si = φ n e Z j / n swc/ί that d\τη,sin = 1
Vn + 0. We are interested here in affine i^-modules: d i m j / π = l VnφO,
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dim J/Q = 2 For all n Φ 0, {vn} will be a basis of stfn and {v0, v'o} a basis of J / 0 Let
us first recall that we already got in part II (Proposition II. 3) two inequivalent
affine f-modules with Sp(x0) = Z and β i ( β i - 2) = 0. They are the extension
& of ,4(0, 2) by D(0) and its contragredient iΓ-module J^*.

From Proposition (II.3), we deduce that all other affine iΓ-modules verify
Sp(x0) = Έ and Q\ = 0. Thus we shall get the complete classification of affine
iΓ-modules after the following discussion according to the three assumptions:

(a) XiU-i and x-χv1 are independent vectors,
(b) xx v-i =x-ίv1 = 0,
(c) Xi^-i and x - i t Ί are dependent vectors which are not both equal to zero.

(a) xίv-1 and x-1v1 are independent vectors. We get an indecomposable affine
iΓ-module defined by the relations:

KtΌj = (i + j)vi+j Vj φ 0 and i + j φ O ,

Wo = 0 Vi,

WO = 0 Vi,

KtΌ-i = (1 + i)v0 + (1 - ι>'o Vi Φ 0 ,

where we have cv'o = 0.

(b) XiΌ-x = x-1vί = 0. We get an indecomposable affine iΓ-modules defined by
the relations:

V j φ O ,

XiV0 = ί(i + 1 ) ^ Vi,

XivΌ = i(ί - ί)Vi Vi,

where we have cv'o = 0.

(c) XiV-i and x-i^i are dependent vectors which are not both equal to zero. It
appears that three cases may occur:

- The iΓ-submodule generated by vx is Bβ and the quotient ^-module stf/{v0} is
A1/β, β Φ 0. For each β Φ 0 we get a unique indecomposable affine iΓ-module
defined by the relations:

Όt+j V / Φ 0 a n d i + φ O ,

ί)v0 Vi,

XtΌΌ = 0 Vi ,

Vi,

where we have cv'o = — 24v0.

- The iΓ-submodule generated by vγ is Bo and the quotient iΓ-module s//{υ0} is
,4(0,1). We get a unique indecomposable affine f-module defined by the relations:
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XtVj = (i + J)vί+j V7 * 0 and i + j Φ 0

XiV-i = iυ0 Vi,

XiV0 = 0 Vi,

X/ί/o = ivt Vi,

where we have cv'o = 0.

- The i^-submodule generated by I Ί is .4(0, 0) and the quotient i^-module
is i40. We get a unique indecomposable affine Y-module defined by the relations:

j V/ΦO a n d i + j φ O ,

-i = v0 Vi,

= ί2Vi V i ,

= 0 Vi,

where we have cvf

0 = 0.

Proposition V.I.I. Any affine Ψ -module is one of the following:

1) the Y-module & or ,
2) the unique extension of Z)(O)®D(O) by A which can be looked at as the

extension of D(0) by ,4(0, 0) or by Bo or its contragredίent (case V.I (a) and (b));
3) the unique extension of A(0, 0) by D(0) which can be also looked at as the

extension of D(0) by Ao (third subcase of case V.l.(c)) or its contragredient (second
subcase of case V.l.(c));

4) the unique extension of Bβ by D(0) (β Φ 0) which can be also looked at as the
extension of D(0) by A1/β (first subcase of case V.l.(c)).

We have c = 0 in case 1), 2), 3) and c Φ 0 (but c2 = 0) in case 4).

V.2. Asymptotic relations for all Ψ-modules stf = ©nez<stfn

 such that Sp(x0) = Z,
Q\ = 0 and dim sdn = 2 Vn φ 0. In all cases, Jhere exists a iΓ-submodule with an
asymptotic dimension one which may be A9 A φ D(0), ,4(0,1), Aa, ,4(0, 0), Bβ or an
affine iΓ-module containing D(0) (V.I) and the corresponding factor iΓ-module is
also one of these iΓ-modules. Thus, from Remarks (I.8.c)) and Sect. (V.I), we can
choose a basis {vn9 v'n} of $tn9 VneZ, such that:

= ( n + ί)vn+1 VnΦ - 1,0

υ'n = (n + 1)^^ + 1 + δnvn+1 Vn φ - 1,0

x-1υH = (n-l)vn-1 VnΦ 0,1

x-xυ'n = (n - l)ι/M_i + ynvn-ι Vn Φ 0,1

= (n + 2)Ό'Ά + 2 + ccnvn+2 Vn Φ - 2,0

x_2vn = (n- 2)vn-2 Vn Φ 0, 2

x.2v'n = (n - 2)υ'n-2 + βnυn.2 Vn Φ 0,2 .
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From the relation [x-iXi ](#'„) = 2x0(^0)5 we deduce that there exist two con-
stants ε+ and ε_ such that:

nδn + (n + ϊ)yn+1 = ε+ Vn ^ 1 ,

nδn + (n + l)yπ+i = ε_ Vn ^ - 2 .

For fixed vectors ϋΊ and t/_ l 5 we can choose v'n VnΦO such that: δn = ε+,
yπ = —ε+ Vn > 0 and <5Π = ε_yM = —ε_ Vn < —1. From the relations
[x-.1x2]{vt

n) = ixiiv'n) and [x- 2 Xi] (vf

n) = Sx-^i/J we deduce the existence of
a constant α+ such that:

= 3 'n(n + 1) n(n — 1)

A similar calculation gives a constant α_ such that:

α ^ - 3 , βn=-2ε+- "' Vn ^ -
n{n 1)

αw 2 ε + + . ; V n ^ 3 , β n 2 ε +

n(n + 1) n{n — 1)

Writing now the relations: [x-2^2] (̂ '/i) = ^Xo{v'n) + i^^'w) Vn Φ — 2,0, 2 as we
know from Theorem (1.2) that cv'n = 0, we conclude that necessarily ε+ = ε_ = ε.

As Qιv'n = εvn Vn φ 0 we see here that in all cases Qi is simultaneously
diagonalisable or non-diagonalisable on all sfn, n Φ 0. Up to equivalence we can
suppose ε = 0 or ε = 1.

V.3. Indecomposable admissible Ψ*-modules $4 = Θ n e z^« such that dimj/π = 2
Vn Φ 0, and dim s/0 = 1 and Q\ = 0. Let us first recall that we already got in part
(IV) six indecomposable f-modules satisfying dim sίn = 2 Vn Φ 0 and dim J / 0 = 1.
They verify the equations QΛQi - 6) = 0, Qί(Qί - 12) = 0 and Q1(Qί - 20) = 0.

All other indecomposable Ί^-modules such that dimj3^ = 2 Vn φ 0 and
dim s/0 = 1 satisfy Q\ = 0. We construct them as follows.

Let {v0} be a basis of J / 0

 a n d let us discuss according to the following
assumptions:

(a) f x^o + 0 (b)

Φ 0 J X-^VQ ΦO

^d x-ii o are

independent vectors

(c) (XIΌ0 = 0 (d) (xxv0 Φ 0 (e) (x^o = 0

Obviously, these different assumptions will furnish a complete classification of such
iΓ-modules and each one leads to iΓ-modules which cannot be isomorphic to the
others.
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(a) The iΓ-submodule generated by v0 may be Aa (α φ ± 1) or A(0,1). We must
add to the relations (V.2.1) the following relations:

fXii?o = δovί f^2^o = (3^o + ?o)^2 fXi^'-i = δ-iVo {x2v'-2 = oc-2v0

\x-!V0 = yov-i (x-2^o = (<50 + 3yo)^-2 \x-iv\ = yivo lx-2^2 = βovo

(V.3.1)

Writing the commutators which were not calculated in the previous asymptotic
discussion, it appears that βx must be asymptotically non-diagonalisable: e = 1.
We get two indecomposable iΓ-modules:

(i) the extension of A by v4(00): <50 = 7o = U

γ1 = δ-x = α_ 2 = β2 = - 1, α+ = α_ = - 2, α_ x = - βx = 2 .

(ii) the extension of v4(01) by A: δ0 = — γ0 = 1,

7i = — <5-i = — 1, α_2 = - J82 = 2, α + = α_ = 0, α_ x = - βx = 2 .

(b) jc-iOcit o) = 0 and Xi^x-i^o) = 0. We get a jxnique indecomposable °Γ-
module, extension of A ® A by Z)(0) (or A by A± or A by >1 _ 1) which is defined by
the relations:

i(i + ϊ)υ'i + ί(i - 1)^ Vi,

and we have α̂ - = 0 Vί, cv\ = 0 Vί.

(c) and (d): These two cases lead to reducible f-modules.

(e) There exists v± and υ-γ such that x 1 t ; _ 1 = x - 1 ι ? 1 = 0. We get a unique
indecomposable ^"-module extension of D(0) by A © A (or Bi by A or B- x by A)
which is defined by the relations:

XίV0 = 0 V i ,

Xfz;-! = ( i + l ) ϋ 0 V i ,

Xft '- i = (i - l)i?o V i ,

and we have cvt = cv\ = 0 Vi.

Proposition (V.3.2), Anj; indecomposable admissible Y*-module stf = Q)s/n such that
di = 2, VneZ* and dimj/ 0 = 1, is one 0/ the following:

1) 77ιe unique extension of ^4(0, Λ) (/or A = 3 or A = 4 or A = 5) by A or its
contragredient.

2) The unique extension of A by A(0, 0) which can also be looked at as the
extension of Ao by A (case V.3.(a) (i)) or its contragredient (case V.3.(a)'(iϊ)).
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3) The unique extension of A by A1 which can also be looked at as the extension
of A by A - Ί {case V.3.(b)) or its contragredient (case V.3.(e)).

V.4. Indecomposable admissible "V-modules stf = ( J ) n e Z J/Π

 su°h that dimj/M = 2
VneZ. This case will be discussed according to the following properties of the
^-submodule s/f = @neZ*^M Θ ^o generated by si±\

a) dim s/f

0 = 0,
b) dimj^o = 2 and s/'o does not contain a trivial f-submodule Z>(0),
c) dimj/'o = 2 and sί'o contains exactly one trivial iΓ-submodule D(0),
d) dim «s/'o = 2 and J / ' O is a direct sum of two trivial ^-submodules,
e) dim s/'o = 1 and «a/'o does not contain any trivial f-submodule,
f) dim s/'o = 1 and s/'o is a trivial 1^-submodule.

Evidently, these different assumptions furnish a complete classification of such
f-modules and each one leads to indecomposable f-modules which are not
isomorphic to the others.

(a) Dim s/'o = 0: the f"-module sf' is A 0 A

- Suppose first that any vector of J / 0 is such that x-ιVQ and x~2(^1^0) a r e

dependent vectors. Then the iΓ-module si is reducible.
- Suppose now that there exists v0Ejtf0 such that x-xvo and x-2(xiV0) are
independent vectors. The ^-submodule generated by v0 is the indecomposable
iΓ-module which we got in (V.3.b). The corresponding factor iΓ-module is D(0).
Let {vθ9 vf

0} be a basis of «s/0 and set:

x-1v'o = yov-1 +y'ov'-1 .

We can choose v'o such that <5'0 = 0.
A necessary condition to get an indecomposable iΓ-module is: yl + 4<5o/o = 0.

If δoy'o Φ 0, we obtain the unique extension of Aa by Aa, α + ± 1, and the unique
extension of ^4(0,1) by ^4(0,1) such that Qx is asymptotically diagonalisable.

For δ0 = 0 or γ'o = 0, we get the unique extensions of A-± by A-1 and A1 by
A,.

(b) dimj/'o = 2 and s/'o does not contain a trivial iΓ-submodule D(0). Then it
appears that it must contain an indecomposable Ί^-submodule of type (V.l.b). We
add the relations:

'-t = δ-ίv0 + δ'-xv'o , x2v'-2 = oc-2vo + α/_2f
/

0 ,

Ί + yΊvΌ , x-2^2 = βiV0 + β'zv'o

Writing the commutators which were not calculated in the asymptotic discussion,
we get a system which, up to equivalence, admits the unique solution:

ε = 0, / 1 = 5 _ 1 = 2 , y i = 5 ' _ 1 = 0 , α / _ 2 = / ϊ 2 = - l , α_ 2 = β'2 = 3,

α+ = α _ = 2 .
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We can suppose α_ x = βγ = 0 and we get a unique indecomposable f-module,
extension of ,4(0,1) by ,4(0,0).

(c) dim s/'o = 2 and si'o contains exactly one trivial submodule D(0). The corres-
ponding factor ^-module is necessarily one of the two indecomposable TΓ-
modules which we constructed in (V.3.a). In both cases, we have the relations
(V.2.1) with δn = 1 and yn = - 1.

- First case: we use the formulas defining (V.3.a.i) and we set:

= 0 Vί.1 1 1

\^X _ \VQ = V — i [X — \V \ — — VQ ~\~ yi V§ [XiV — ± = 0 — \VQ

We can choose v'o so that y\ = 0 and we get γx = δ-ί.

• If y1 = δ-ι = 0, v0 can be chosen so that δ'- ί = 1 and we get a unique indecom-
posable iΓ-module, extension of Ao by ,4(0,0) (or any Bβ) where we have cυ'o = 0.
• If y1 = (5_! = 1, we get a unique indecomposable iΓ-module, extension of
,4(0,0) by ^(0,0) such that Qγ is asymptotically diagonalisable. It satisfies cv'o = 0.

- Second case: A similar discussion as in the preceding case gives:

• a unique indecomposable f-module, extension of ,4(0,1) by A (0,0) (or any Bβ)
where we have cv'o = 0.
• the unique extension of Bo by Bo such that Qx is asymptotically diagonalisable.
It satisfies cv'o = 0.

(d) dim ja^o = 2 and si'o is a direct sum of two trivial f-submodules D(0).

- Suppose first that there exists a trivial f-submodule {t;0} such that the corres-
ponding factor iΓ-module is indecomposable.

A similar discussion as in the case (V.4.a) gives:

• the unique extension of Bβ by Bβ for each β.
• the unique extension of ,4(0,0) by ,4(0, 0) such that g i is asymptotically dia-
gonalisable.

- Suppose now that for all trivial iΓ-submodules oίsi'0, the corresponding factor
iΓ-module is reducible. Then the iΓ-module is reducible.

(e) dim si'o = 1 and si'o does not contain a trivial iΓ-submodule. Here, we have
a trivial quotient module si/si' = D(0). The i^-submodule si' generated by
{vl9 v\} may be one among the two indecomposable f-modules of type (V.3.a).
We discuss separately the two cases in the same way as in (V.4.c):

- First case: We find here

• the unique extension of ,4(0, 1) (or any Aa) by ,4(0, 0) and
• the unique extension of AQ by AQ, such that g t is not asymptotically diagonalis-
able.

- Second case: We get

• the unique extension of ,4(0,1) (or any Aa) by Bo and
• the unique extension of J / ( 0 , 1) by ,4(0, 1), such that g x is not asymptotically
diagonalisable.
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(f) dim s/'Ό = 1 and s/'o is a trivial i^-submodule. Thus si' is either an indecon>
posable f-module of type (V.3.e) or a reducible ^-module Bβ © A or ^4(0,0) © A
and sijsi' is D(0).

- If J / ' is an indecomposable ^-module of type (V.3.e), we set:

'o = δ'ov\ + δovx

v'o = y' ot/-i + 7 o ^ - i '

Writing the commutator [x-1x1'](vf

0) = 2xoι/o> we get δ'o = — yo Thus we get
the two following possible solutions:

(i) δf

0 = — yo = hy'o = — δ0 = — ί. This gives an extension of ̂ 4(0,0) (or any Bβ)
by Λ(091).
(ii) δ'o = — y0 = 1 + α, / 0 = — δ0 = 1 — a: for each α we define a unique in-
decomposable iΓ-module, extension of ,4(0,0) (or any Bβ) by y4α. In both cases the
commutator [x-2^2]^^) gives cv'o = 0.

- If stf' is a reducible ^-module. We have the relations

x1v'-ί = 0 f Xiϋ'o = <5ô i + δf

ov\

x-iv\ = 0 Xx-xv'o = yov-i + / 0 ^-i '

Considering the iΓ-submodule sέ" ^ A generated by {υr-l9v\}9 the quotient
^"-module stf jstf" is either reducible or affine indecomposable. If this quotient
module is reducible, the ^-module si is itself reducible. Therefore we have only to
consider the case where stf'jst" is an afBne indecomposable Ί^-module. From the
relation [x-iXi](ι/ 0 ) = 2xo(t/o) w e deduce δ o y i = y o ^ - i The assumptions
^0 = ϊo = 0 or (5'Q = γ'o = 0 leads to reducible i^-modules. Thus we get the
following solutions:

(i) yx = \δ-1 = 1: it defines an extension of ^4(0,0) by A(Q, 1) (or any Aa) such that
Qx is asymptotically diagonalisable.
(ii) γx = β - 1 δι = β + 1: we get an extension of Bβ by A(0,1) (or any AΛ).

Proposition V.4.1. Any indecomposable admissible Ψ-module srf = ( J ) n e Z £#n such
that dim sin = 2, VneZ and Q\ = 0, is one of the following extensions of length
four:

1) The unique extensions of Aa, Bβ, A(0,1), ^4(0, 0) by themselves, and of A(0,1) by
A(0, 0) such that Qί is diagonalisable on srfn Vn.
2) The unique extensions of A(Q, 0), ^4(0,1), Ao, Bo by themselves, such that Qx is
non-diagonalisable on stfn Vn.
3) The unique extension of Ao by A(0, 0), of A(0,1) by Bo and two extensions of
A(0,1) by A(0, 0) such that β i is non-diagonalisable on all s/n except on s/0.
4) The unique extension of A(0, 0) by Aa {for each α), of Bβ by A(0,1) (for each β)
and two extensions of >4(05 0) by A(Q, 1) such that Q± is diagonalisable on all
stfn except on J / 0
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VI. Conclusion

Now we can conclude with the following Theorem:

Theorem VI.1. Any indecomposable admissible Y-module stf where the weίghtspace
dimensions are less than or equal to two is such that:

- either, all weightspaces are one-dimensional and si belongs to the classification
given in [4].

- or one weightspace, at least, has a dimension two and stf is one of the
Y-modules classified in the Sects. (Ill), (IV), (V).

Proof. Let us suppose that si has at least a two-dimensional weightspace.

First case. The asymptotic dimension of si is one. From Theorem (III. 8) of
[2], only the zero-weightspace is two-dimensional. Then, D(0) is either a sub-
module of si or a factor module of si, and si is an affine ^-module. Using
Proposition (II.3), si appears either in (IV. 1) (case 7) or (IV.2) (case 7) or
in (V.I).

Second case. The asymptotic dimension of si is two. From [1, 2], we know that
si contains an irreducible iΓ-module A(a, A) (a = 0 => A Φ 0,1) or A or D(0) and
hence, in all cases, a^f-submqdule si' with an asymptotic dimension equal to one.
si1 can be A (a, A), A,Aa,Bβ,Aφ D(0) or an affine if-module containing the trivial
f-module. If si1 and si I si1 is of type A(a, A) or A or Aai or Bβ or A φ D(0), then
si occurs in (III) or (IV) or (V). In the other cases, either si' is an affine i^-module
containing the trivial i^-module, or si jsi' is an affine iΓ-module which does not
contain the trivial iΓ-module. These two cases are contragredient, and it is
sufficient to prove Theorem (VI. 1) for one of them. If [si' is an affine f-module
containing the trivial f^-module, there exists two cases (Proposition II. 3):

- either in si', Q{ = 0 and a = 0. Then sijsi' is A. Necessarily we have si such
that Qi = 0, a = 0 and si appears in (V).

- or si' = #"*. Then si)si' = A and s//D(0) is an extension of A(0, - 1) by
A which is trivial (IV. 1 case 1). Thus, we can look at si as an extension of Bβ or
A(0, 0) by ,4(0, - 1) and si occurs in (IV.2), case 3 or 4.

• ί .'

Finally, let us notice a last remark:
Consider the subalgebra Wγ of Y, whose a basis is {xi9 i ^ — 1}. Each Y-

module A(a, A) verifying A — aeTL, when restricted to the subalgebra W1, contains
a Wx submodule F-Λ. F-Λ is generated by the weightspaces s/a+n verifying
a + n^ A±. All the extensions of Fμ by Fλ have been obtained by Feigin-Fuchs in
[7]. Then, consider an admissible extension of two i^-modules A(a, Λ{) and
A(a,A2) such that a — AteΈ (i = 1,2), and restrict it to the subalgebra W1.
A natural question is to ask whether it contains an extension of F-Λί by F-Λl. It
appears that all extensions obtained in (III.2) for a — A e TL, or (III.4) for a = 0, the
extension of A(0, 5) b)/yl(0, 0) and its contragredient ((IV. 1) case 6 and (IV.2) case 6)
and the extension of A by ,4(0, 0) ((V.3.a). (i)) are convenient. Moreover, we obtain
like this, all admissible extensions of two Wγ-modules, Fλ by Fμ of [7].'
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