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Abstract. In view of [1, 2] any bounded admissible module ./ over the Virasoro
Lie algebra 7~ is a finite length extension of irreducible modules with one-
dimensional weightspaces. To each extension of finite length n are associated n + 1
invariants (@, 44, . . ., 4,). We prove that we have 4; — 4;€{0, 1,... 6(n — 1)}
for all (i, j) with 1 < i < j < n. In the case n = 2 this result allows us to construct all
the indecomposable bounded admissible ¥ modules, where the dimensions of the
weightspaces are less than or equal to two. In particular we obtain all the
extensions of two irreducible bounded ¥ -modules.

1. Introduction

The Virasoro algebra 7" is the complex Lie algebra with basis {C, x,, ne Z} and
commutation relations:

i3

=

[xi, ;] = ( — D)xi4 5+ 5;‘,—ch Vi,VjeZ,
[Caxi] =0.
We set also Q; = — x;X_; + X3 — X,.

A ¥ -module is said to be admissible if it satisfies the two conditions:

a) xo acts semi-simply.
b) The eigenspaces of x, (also called weight-spaces) are finite-dimensional.

Recently, the classification of irreducible admissible ¥"-modules has been
achieved in [1, 2]. Besides the highest or lowest weight ¥ -modules, it furnishes
a second class of ¥"-modules where the weightspaces are one-dimensional. These
latter are the following:

— The ¥ -modules of Feigin—Fuchs 4(a, A) with (a, A)e C? and 0 < Rea < 1
(@ =0=>4 % 0,1), whose action is given on a basis {v,, ne Z} by:

xivp=(@+n+id),+; Cv,=0 Vn,Vi. (1.1)
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— The trivial ¥"-module, called D(0). - N
— The maximal proper ¥ -submodule of A(0, 1), called 4 (4(0, 1)/4 ~ D(0)
and A(0, 0)/D(0) ~ A) whose action is given on a basis {v,, ne Z*} by:

Xi0g =+ 1)v,+; Cv,=0 VnVi. (I.2)

Similarly to the irreducible case and as it is proved in [3], two classes of indecom-
posable admissible #"-modules emerge which are sufficient to describe all other
ones:

a) the bounded ¥ -modules (the weightspace dimensions are bounded),
b) the ¥"-modules where the weights set is upper or lower bounded.

In this paper we are interested in the indecomposable admissible #"-modules of the
class a) which appear as finite-length extensions of the irreducible ¥"-modules of
type A(a, A), A or D(0). Our aim is to prove that many such ¥"-modules do exist
and to describe them by giving necessary conditions on the possible irreducible
components of the finite-length extensions.

The main results of this paper are the following:

1. In any indecomposable bounded admissible ¥ -module, n-length extension
of irreducible ¥"-modules, the invariants {4;i=1... p, p < n} must verify:

IAE—Aj|E{0, 1,. .. ,6(”- 1)} .

In the case n = 2, we obtain a complete precise result.
2. a) There exists, up to equivalence, a unique admissible extension of A(a, 4,)
by A(a, A,) if and only if (44, 4,) verifies:
Ay —A;=0 (44, 45)*(0,0) and (1, 1),
A1 —4,=123,4,
Ay — A, =5 with (4, 4,)=(1, —4) or (5,0),
T+e/19 —5+&/19
2 ’ 2 '
b) There exists, up to equivalence, two admissible extensions of A(a, A) by
A(a, A)if A =0or 1, for all a, of A(0, 0) by A(0, 1) and three admissible extensions
of A(0, 1) by A(0, 0).

¢) There exists, up to equivalence, a unique admissible extension of A by
A(a, A) and of A(a, 1 — A) by A if and only if

a=0, A=Oy_2s_37_4

Al —Az =6 Wlth (AI,A2)=

d) Besides the extensions of A and D(0) given in [4], we obtain a unique
admissible extension of A(0, A) by D(0) and of D(0) by A(0, 1 — A) if and only if
A=0,1,2.

For each of these extensions we calculate explicitly the action of the Lie
generators of ¥

The result 1 generalizes and improves Proposition IV.5 of [2], and its
proof together with a careful study of the case n =2 are given in Sect. II. The
result 2 gives all the admissible extensions of two 7 "-modules among
{4, D(0), A(a, 4), (a, A)e C?}. Consequently, besides all the admissible extensions
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of two irreducible bounded ¥"-modules, we also get extensions of length three or
four (for example, the extensions of A or A(0,0) by A(0, 0)). Finally, we give
a complete classification of all bounded ¥"-modules with weightspace dimensions
less than or equal to two. In particular, we have all the admissible extensions of two
¥ -modules given in [4].

Sections III to V are devoted to this classification as follows:

— In Sect. III. we obtain the result 2 a).

— In Sect. IV, we obtain all the admissible extensions of an irreducible 7"-
module A(a, A) by A, D(0) or any indecomposable ¥"-module given in [4] (which
are extensions of D(0) and A)

— In Sect. V, we obtain all the admissible extensions of two ¥ "-modules among
A, D(0) or any indecomposable ¥ "-module of [4]. The results 2 b) are given in
Sect. V, Proposition (V.4.1). The results 2 ¢) and d) are given in Sects. IV and V but
summarized in Sect. V (Propositions (V.1.1) and (V.3.2)).

Adding the ¥ -modules of [4], we conclude in part VI that we have all the
indecomposable admissible ¥"-modules where the weightspace dimensions are less
than or equal to two. We also remark that we obtain some results of [6].

Now, recall, for the following, the classification of the admissible ¥"-modules
with one-dimensional weightspaces given in [4]. Besides the ¥"-modules A(a, A), 4,
defined by (I.1) (1.2), appear two series 4, and By, («, € C) which are respectively
extensions of 4 by D(0) and D(0) by A. On a basis {vn, n€Z} they are given by:

: XU, = (‘z + n).vi+,, Vn %+ O; c=o0,
X;vo = i(o + i)v;
XiUg = 0 Vi
Bg i< xi0,=({+Mvps;,n+i+0,n+0,C=0. (1.3)

xiv—; = (B + i)vo

Remarks I.4. Let us notice that the above parametrization A,, By is slightly
different from the parametrization A(a’), B(f’) in [4]. The correspondence is the
following:

A~ AW) if 1+ 20 =Li
By~B(B) if1+2p =%

The advantage is that the ¥~ -modules 4 1 and B; are not obtained in [4].
II. Extensions of Irreducible Bounded Admissible #"-Modules: First Results
and Consequences for Indecomposable Bounded Admissible #"-Modules

In this section we denote by & = (—D,,e z ,+, an indecomposable bounded admis-
sible #"-module, where «, ., is the weightspace relative to the weight a + n, and



468 C. Martin and A. Piard

{dim <, . ,, neZ} is bounded. We also denote o/ * the contragredient ¥"-module
of o:

* = @ (o+n)*. Then o/ * = @ (L *)-y1, With (%) g4 = (Lo-p)*.

neZ neZ

Recall the simple following properties on .7 *:

Property I1.1. If A(a, A), A, A, By are defined as in (I.1), (I.2) and (I.3), we have:

a) [A(a, A)]* = A(1 — a,1 — A); (A)* = 4; D(0)* = D(O); Af = B,.

b) Suppose dim <7, ., = p, Vne Z. Then, we have:

X - (respectively x,)is annihilated in <7, ;, <> x_ | (respectively x, ) is annihilated in
(4 *)-a+1-n (respectively (o *)_,—1-,).

From [1] and [2] we know that any indecomposable bounded admissible
¥ -module «/ is a finite length extension of irreducible ¥"-modules of type A(a, 4)
(A %0,1,if a =0), A or D(0). Recall that for any ¥"-module &' and /", the first
cohomology space H!(¥"; Homg(of"”, &/')) classifies the short exact sequences:
0- o - o - " —0, also called the extension of &/’ by /.

We are only interested in the admissible extensions and they are classified by
a group of relative cohomology H(¥", xo, Homg(/”, «/')). Actually, we prove in
the following that this cohomology vanishes on the center C if &/’ and «/” are
irreducible bounded admissible ¥ -modules, except if o7’ or &/” = D(0). From now
on, &/’ (respectively o/”) is identified with a submodule of o (respectively a factor
of o).

We prove now the following proposition.

Proposition IL2. Let </ be a non-trivial admissible extension of two irreducible
¥ -modules o/’ and /" of type A(a, A) or A: 00— 4" — of - A" — 0 (a has neces-
sarily the same value in o/’ and /"). Then:

1. The center C is trivial in .
2. If o nKerx_q =+ {0}, setting my = sup{n/Kerx_; N, , * {0}). Then

Kerx_1Nnyim =L oim -

3. &' nKerx_; # {0} <« nKerx_; + {0}.
4. If o nKerx_; + {0} and mq as in 2, then

Sup{n/Kerx_; Ny, +{0}} <my.

Proof.

1. From Theorem (IL.7) of [2], C has the only eigenvalue 0 and if C is not zero, the
trivial ¥ -module appears as a factor of &/ and we have then a proper ¥ -
submodule /3 of &7 such that o/ /.</; = D(0). We obtain a contradiction with the
irreducibility of o/’ and 7"

2. To prove the second assertion, we use Proposition III.1 of [2] which can be
written as follows:

Proposition. Let </ be an indecomposable bounded admissible ¥ "-module with
Kerx_; % {0}. Let m, defined as above. Let v be a vector of <, +mo O Kerx_;.
Suppose that v verifies one of the following properties:
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a) x1v+ {0} VneN,
b) Im, eN such that x""“v =0, xTv + 0 and there exists

VEALyim +1 With x_v' = xTv.

Then v belongs to a ¥ -submodule of o/, all of whose weightspaces are one dimen-
sional, except, maybe, the weightspace relative to the weight 0.

Here, any vector v of Ker x_; N o7, 4+, satisfies the hypotheses of the preceding
proposition. Indeed, if it is not true, in view of Theorem (IIL.8) of [2], we have
a + mg = 0 and thus x,v = 0. We deduce, from [x_, x,]v = 0, that v generates
the trivial submodule D(0) of ¥". We obtain a contradiction with the hypothesis of
irreducibility of &' and «/”. Thus, we can apply the preceding proposition:
v belongs to a ¥"-submodule «7; with one-dimensional weightspaces except maybe
the weightspace relative to 0. The irreducibility of &/’ implies:

' Nnady={0} or ' Nny=

If o' N5 ={0}, o is a submodule of &/ /o' = &/”, and thus /" = of;. We
obtain a contradiction with the indecomposability of /. Necessarily, we have
o' N oAy = o' and from the irreducibility of /", we deduce: o/; = o/’ and thus
Kerx_1 N Aoimg = ALasmo

3. Suppose /' " Ker x_; =+ {0}. Then x_ is annihilated in .« and consequently in

o * and o/'* (Property IL.1.b). We can look at o/ * as the following extension:
0o A"* > of* > f'* 0.

In view of I.1.a o/ * satisfies the hypotheses of Proposition I1.2, Part 2 and thus, we
have:

Kerx_; n(«*)

*
atm,

= (") s>
where m§ = sup{ne Z/Kerx_; N («/*),+, # {0} }. x_; vanishes in &#"* and conse-
quently in «/”. Applying the result to /%, we obtain the third assertion of
Proposition I1.2.

4. From parts 1 and 2 of Proposition (I1.2), we deduce that Ker x_ , is not trivial in
" Set:

m, =sup{neZ/Kerx_, sl + {0}}.

Thus, there exists in &/, +,,, a vector v in a supplementary subspace of &+, With
X_10€ A 1 m, —1. Necessarily we have: Kerx_; N o, 1, + {0} and thus m; < m,.

Remark. We obtain an analogous proposition with the condition Ker x; # {0}.

Proposition IL.3. Let o/ be a nontrivial admissible extension of two irreducible
v -modules </’ and o/". Suppose: /"' = D(0) and o' of type A0, A) (A * 0, 1) or A,
or the contragredient hypothesis. Then, Q, has either the unique eigenvalue 0 or two
eigenvalues 0 and 2, and the center C is zero. In the second case, o/ is either the unique
extension & of A(0,2) by D(0) or the contragredient extension F* of D(0) by
A, — 1)

Proof. We suppose: o = D(0)

e If o' = 4, we have O, =0 and C =0, [4, 5].
o If o'=A4(0,4) A+0,1,Q,; has the eigenvalue A(A—1)+0 in /. We
write o/ = Pz, with dime, =1 VneZ* and dimsf =2. There



470 C. Martin and A. Piard

exists v'oeLy(Voé ') such that x0o=0. Thus x;x_;00=0. As
Qix_1Vo=AA—-Dx_1vg=x_10,0¢ =0, we deduce x_;v'y = 0. In view of
the indecomposability of <, x,v’, is different from zero. Thus [x_;x,]vo =0
implies x_1(x,0"9) =0 and Q(x,0"g) = 2x,0'g = A(A — 1)x,0y. We get A = 2.
C is trivial: indeed if Cv’y + 0, Cv'y is in &5, Q; Cv’y = 2Cvy = 0, and we obtain
a contradiction.

So, there exists a unique extension of 4(0, A) by D(0) for A = 2. It is denoted by
Z . Up to equivalence, we can choose a basis of #, {v,, neZ, vy} such that:

X0, =+ 20,41, Vn,VieZ, XoUp = X1Vp =X_105=0,
X2Vp =102,  X-2Up= —V-_3,
Cv,=Cvy=0 VneZ .

All other cases are the contragredient cases of the previous ones. In particular,
there exists a unique extension of D(0) by A4(0, A) for A = — 1 which is the
contragredient extension & * of &#. Up to equivalence, we can choose a basis of
F*{vo, v,€Z} such that:

x;v0=0, VieZ,
XgUp == Dvptr1, X0 =(n—2)0p12 + Op-200 ,
XoqUp =+ Dvp-1, X320, =@+ 2)vp-2 — Op,200,
Cvy=Cv,=0,YneZ.

Corollary 11.4. Let o/ be a nontrivial admissible extension of ' by A", where s’
and " are of type A(a, A)(A £ 0, 1,if a=0), A or D(0).

1. If / nKerx_; £0 or o nKerx, £ 0, then Q; has, at most, two eigenvalues
Al(Al — 1), Az(Az — 1) with A1 — AzEZ.

2. If Kerx_; =Kerx; =0, then Q, has at most two eigenvalues A;(A; — 1),
Ay(A; — 1) with A + A, €Z.

The first assertion results from Proposition 1.2 and Proposition IL.3. The
second assertion was proved in [2] (§IV.2). In this case the condition A; + A,€Z
cannot be a priori rejected if we choose in &/’ and /" a basis of Feigin—Fuchs type
(I.1) (I.2) (a condition which was not imposed in [2]).

We can generalize the results (I1.3) and (I1.4) as follows:

Theorem IL5. Let o/ be an indecomposable bounded admissible ¥"-module. Then the
eigenvalues {A;(A; —1),i=1,...,p} of Q; verify A, — A;eZ or A; + A;€Z,
Vi, Vj.

Proof. Welook at &/ as a finite length extension of irreducible bounded admissible
¥ -modules and we prove the result by induction over the length n of the extension.

For n = 1 the result is obvious. For n = 2 it is given by Corollary IL.4. Then, the
result is easily proved by induction over n.

Now we want to improve Corollary II4 and Theorem ILS. Let
oA = C—D,,e z 4,4+, be an indecomposable bounded admissible ¥"-module with an
asymptotic dimension 2. From [1, 2] (Theorems (II1.9) and (IV.13)), &/ contains
a submodule &/’ with an asymptotic dimension 1 and /" = &//«/’ has also an
asymptotic dimension 1. Thus there exists an integer noeZ and a basis
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{On, Vpy 1 210} Of @P<no Hu+n such that:
XU, = (a +n+ iAl)vn+i
XUy =(a+n+idy)v'yy;
where {v,,n = no} (respectively {¢',,n = no}) is a basis of P, p, Lb+n (respec-
tively nno ‘l,l+ n).
Remark I1.7. o' is necessarily of type A(a, A), A, A,, B, or an extension of D(0) by
one of these ¥"-modules. The choice of the parametrization of these ¥"-modules
given by (L.1), (I.2), (I.3) implies that A; is unique except for &/’ = A(a, 0) or
' = (A(a, 1) and a + 0. We have the same conclusion for the choice of A, in &7/".

In such a ¥"-module &, as x, and x_, are one-to-one from ./, ;, t0 &, 4, .+ OF
o, +n-1 for enough large n, we have only the two following possibilities for Q,:

Vn,Viwithn+i=ny,n=ng, (IL6)

e cither Q, is diagonalisable on </, , for n = N,
e or @, is not diagonalisable on </, ,, for n = N,.

Definition IL8. Such a ¥ -module of is asymptotically Qi-diagonalisasble (respec-
tively asymptotically non-Q,-diagonalisable) if there exists NoeNN such that Q, is
diagonalisable (respectively non-diagonalisable) on <f,.,Vn = Ng.

Theorem I1.9. Let </ be an indecomposable admissible bounded ¥ -module, asymp-
totic extension of o/’ by o”. A, and A, are their invariants defined by (I1.6) and
Remark (I1.7).

A. If Q, is asymptotically diagonalisable, we have necessarily:

1.a=0:4,=04,=0,or4; =14, =0,or 4, =04, =1,or Ay =4, =1.
2.a=0,/11=A2=2.
3.a=|=%,/11=/12=%.
4.a=|=0,/11=/12=0.
5. A1=2,A2=10r/11=0,/12=—1.
6. AI—A2=2,A1='=%.
7. AI_A2=3,A1=|=2.
8. AI—A2=4,A1=.=%.
9. A1=1,A2=—40r/11=5,/12=0.
7+ /19 —5+.,/19 7—J19 -5-19
8 = A = A = —— A -
10. 4, ) > A2 2 or A, 2 > Aa )
B. If Q, is asymptotically non-diagonalisable we have necessarily:
1. Al =A2.
2. A2=1—A1, with A1=0, 1,%,2,%.
Proof.

A. Q, is asymptotically diagonalisable.
We can thus choose the basis defined by the formulas (I1.6) as follows
(n = sup(ng, No) = Ny ):

{x10n=(a+"+/11)0n+1 {X—1Un=(a+n_/11)vn—1
X1Vp=(a+n+ A;)0'41 Xx_1v'y=(a+n—A;)v'-y
{xzv,,=(a+n+2A1)v,,+z X_sUp=(a+n—24,)v,_,
XaV'y=(a+n+24)0" 42 + “n”n+2{x—2l"n =(a+n—24,)04-2 + Puvn-2

(IL.10)



472 C. Martin and A. Piard

From the relations [x_;x,]v', = 3x;v’, and [x_,x;]v’", = 3x_10', we get:
@+n+2—-A)a,—(@a+n—A)a,-, =0,
@+n+A)ppey—(@a+n—2+4,)8,=0.

We deduce the existence of two constants o, and . such that:

. =F(a+n+1—/12)
" Tla+n+3—4y)
_Tla+n-2+4,)
bn= T(@a+n+ A4;)

o4 Vn g N1
(IL11)

ﬁ + Vn z N 1 + 2
Recall that the center C is zero on &, ,,, n = N, ([2], Theorem (IL.7)). Then, the
relation [x,, x_,Jv", = 4x,0’, together with the formulas (IL.11) gives:

o F(a‘l"n—l—/lz) _2+(A1—A2—'1)(A1—/12—2)(1—/11)
+1"(a+n+1—/11) a+n+1—4,

LA = A = A — 4 — 3)]

a+n+2—/11

——ﬁ F(a+n—2+/11) _2+(A1—A2—1)(/11—A2—2)A2
T T T@+n+ 4y) a+n+4,
+(1—Az)(/11—Az—2)(/11—/12—3) ' (IL12)
at+n+1+4,

From Theorem (II.5) we know that A, + A, = peZ. Let us discuss the solutions of
(IL.12):

— Either a* = B* = 0. Then the two ¥ -submodules generated by vy, and vy, have
both an asymptotic dimension 1. To get an indecomposable ¥"-module 7, these
two submodules must have an intersection which is necessarily either the sub-
module D(0) or D(0) ® D(0). Using Proposition II.3, we only have the following
possibilities:

a=0,4, =0,4, =0 (case 1 of Theorem I1.9),
a=0,4, = A, =2 (case 2 of Theorem I1.9)
a=0,4, =2, 4, =0 (case 6 of Theorem I1.9)

- Orat-g*+0.

Ist case. Ay + A, = p. From (I1.12), we immediately get that p = 1. We want to
prove that necessarily: A; =0 or 1 or A; =% and a #+ 3. We use Theorems I1.10
and I11.2 of [2]. They claim that the ¥ -submodule generated by an eigenvector of
Q:,veA,+,(n = Ny)such that x,v = Ax?v, has an asymptotic dimension equal to
1. Setting vy, = vy, + kvy,, the equation x,vy, = Axivy,, AeC, together with
I1.11, imply:

I'l@a+ N, + 4,)

—2kA;1(A; — 1)Q2A — 1) = oy Ta+N,—4,)
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If A;#0,1,%, there exists vy, which generates a submodule </, with an
asymptotic dimension 1. Necessarily, we have &/’ N «/; = D(0) or D(0) @ D(0) and
we are again in the preceding case o™ = g% = 0.

If A;=0 or 1, we are ecither in case 1 of the theorem, or in case
4 (A(a, 1) ~ A(a, 0) if a *+ 0).

If A; = A, =% the diagonalisability of Q; implies Kerx_; Ny, = o4,.
Then, using [x_; x,] = 3x,; and the injectivity of x_; on /5 +, for n€ N*, the two
vectors vy, v of 7y, verify the condition x,v = Ax}v. Consequently, each of them
generates a ¥"-module with an asymptotic dimension 1, and &/ is decomposable.
Thus, we have necessarily a + % if 4, = A, = % (case 3 of the theorem).

2nd case. Ay — A, = pel. Setting x = a + n in (IL.12), we obtain a polynomial
identity. We first deduce in all cases f, = — a .. Then, we look at the zeros of the
right and left members. We have to discuss according to the hypotheses p < 4,
p =4, p >4, and we get the necessary condition 0 < p < 6. For p=2,3,4 A, is
arbitrary (cases 6, 7, 8). For p = 5, 6 we have only two values for A; (cases 9 and
10). For p =0, 1 all solutions are listed in the cases 1 to 5.

B. Q, is asymptotically non-diagonalisable:

As Q, has a unique eigenvalue A(A — 1), we only have the two following
possibilities: A; = A, or A, =1 — A;. Suppose A, =1 — A;. We can choose the
basis defined by formulas (I1.6) for all n = sup(ng, No) = Ny:

-

X10,=(@+n+ A1)+ X_qvpy=(a+n—A;)v,—4
{xlv’n=(a +n+1—A W, {x_lv’,,=(a +n—14+A4)0,—
+ OnUn+1 + VnVn-1
) Xovp,=(@+n+24,)v,4, X_sv,=(@a+n—2A4)v,-,
{xzv;,=(a +n+2-=24 W42 {x_zv',, =(a+n—2+424,)v,-,
+ 0y Un+ 2 + Butn-2

(IL.13)
From the relation [x_;, x;]v, = 2x,v,, we get:
@+n+1—A)Gps1+6)—(@+n+ 4, — @y, +6,-1)=0 Va2 N, +1.
As @, is not diagonalisable on &, , (Vn = Ny + 1), y, + d,-1 + 0 and we obtain

F(a+n+/11)

Vn=N;+1 . .
81"(a+n+2—/11) n2N;+1Le%0 (I1.14)

5n + Yn+1 =
From the relations [x_,, x;] = 3x_; and [x_,, x,] = 3x, applied on v',, follows
the relation:
(a+n+2—/11)(a+n+ 1 _Al)(an+ﬁn+2)
—(a+n—2+A1)(a+n— 1 +A1)(an—2+ﬁn)

_ Tla+n+4y)
TTa+n+1-—4y)

F(n)’ VngNla
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where

1 1
a+n+2—-A; a+n—1+ 4,

F(n) =8 + 24,(4, — 1) [

1 1
+a+n+1—A1—a+n—2+A1]‘
From [x_,, x,]v', = 4x,0", we have:
(@+n+2—=241)(n + Burz2) —@+n—2+4241)(0-2+ ) =0 VnzZN;.

These two inducing relations lead to the following necessary compatibility condi-
tion:

Dn+2@+n+2—A)a+n+1—A)a+n—2+24,)F(n)
=Dma+n+4—24)@a+n+1+A4)@+n+ A)Fn+2),

where D(n) = 2(a + n)® + 4(A; — 1)2(A4; — 2). A careful study of the poles of this

last equation shows that it is generally 1mposs1b1e except for the partlcular values

Ay =0,4, =1, 4, =%, A, =2, A, = 3. The proof of Theorem I1.9 is achleved
We can deduce the following corollary

Corollary IL15. Let o/’ and /" be two irreducible ¥ -modules of type A(a, A) (if
a=0,4%+0,1), A (a= 0,4 = 1) or D(0). We denote by H*(¥", xo, Homg (", '))
the first group of relative cohomology of ¥~ with values in Homg(s/", o/'). Then:

1. If o' = A(a, A;) or A(A; = 1), and " = A(a, A,) or A(A, = 1):
HY(Y, o, Homg(e", ")) * {0} = A; — A,€{0,1,2,3,4,5,6).

2. If o' = D(0), 4" = A(a, A;) or 4,
H'(¥, xo, Home (", o)) % {0} = " = A0, — 1) or " = A.

3. 1f o = Ala, Ay) or A, " = D(0),
HY\(", xo, Home(&", ') # {0} = o/’ = A(0,2) or o' = A.

Proof. The first assertion results from Theorem II.9. Indeed, in Theorem IL.9 we
have always A; — A, €Z with 0 £ A; — A, < 6 except in the cases Al and B2, for
A, =0, A, = 1. For these values of A 1 and A,, the irreducibility of </’ and 7"
implies a # 0. Thus, the hypothesis A; =0, 4, = 1 is equivalent to A; = A, = 0.
The second and third assertions result from Proposition I1.3.

Now we can improve Theorem IL5 as follows:

Theorem 11.16. Let </ be an indecomposable bounded admissible ¥ -module.

1. Then the eigenvalues {A;(A; — 1)} of Q, verify A; — A;eZ, Vi, Vj.
2. Moreover if o is a n-length extension of irreducible bounded admissible ¥ -
modules (n = 2), the eigenvalues {A;(A; — 1)} of Q; verify:

0<|A4i— A S 6(n— 1) with A, — A;eZ .

The proof is the same as in Theorem ILS, substituting the induction hypothesis
A; £ AjeZ by A; — A;€Z with |A4; — A;] < 6(n — 1).
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III. Non Trivial Admissible Extensions of Two Irreducible ¥ -Modules, 4 (a, Ay)
by A(a,4;)(a=0=4;%+0,1)

Let o = Ppcz Fy+n be such a ¥ -module. Then, dim o/, ,, = 2, VneZ. In view of
Theorem I1.9, we distinguish the following cases:

e A, = A, and Q, is asymptotically non-diagonalisable except:

Ay=A4,=0and a=+0,

1 1
A1=A2=§anda=|=§,

A;=4,=2anda=0,

where we can have, a priori, the two possibilities for Q;.

e Ay =1— A, with A4, =3, A, =2 or A, = $ and Q, is asymptotically non-
diagonalisable.

.A1=2,A2=1;A1=0,A2=—1((1:‘:0).
[ ] AI*A2=2,3,4,A1+A2='=1.

oA =1, A= —d A, =5 A, =0(a+0)
7+ ¢eJ/19 y —5+¢/19

2 s Ay = D ,8=i1.

.Al=

In the four latter cases, Q, is asymptotically diagonalisable.

Remark. If a % 0, the cases A; =2 A, =1 and 4; =0 A, = — 1 are respectively
equivalent to the cases A; =2, 4, = 0and A; = 1, 4, = 1 and are included in the
case A; — A, = 2.

I11.1 Extensions of A(a A) by A(a, A) (a=0=>4%0,1).

A) Q, is asymptotically non-diagonalisable:
Then, Q; is non-diagonalisable on </, ., for all n in Z. Thus we can choose the
basis defined by (I1.6) for all n in Z as follows:

{xlv,,=(a+n+A1)v,,Jrl {xzv,,=(a+n+2A1)v,,+2

X10p =(a+n+A)0p1 + 6Vs1 (X205 =(a+ 1+ 241)045 + AUss s

{x-lvn=(a+n—A1)vn_1 {x_zu,,=(a+n—2A1)v,,_2
X_yOp=(a+n—A)op 1+ Pplp-y (X-20p=(@+n—241)0,_ 5 + Bys—,

(ITL.1.1)
From [x_x4](v;,) = 2x, v, we deduce:
(@+n+A)ywer t@+n+1—4,)0,

=@+n—1+A)y,+(a@a+n—A4,)0,—4, VneZ,
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and we also have:
Qivy=A,(A; — Doy —[@a+n—14+A)y,+(@a+n— Ay),-1]v, Vn.
The non-diagonalisability of Q, on </, , implies:
(@a+n—1+A)y,+(@+n—A4y)6,-1 %0, Vn.

— If A, =4, this condition together with the relations [x_;x,] (v,) = 3x,(v}),
[x—2x1](;) =3x_1(vy), [x2x-2] (v;,) = 4x¢ (v,) (c = 0, Proposition 11.2) leads to
a contradiction.

— If Ay + 3, the basis of o7 defined by (II1.1.1) can be chosen so that {v,, v,} is
a Jordan basis of Q; on &, , (VneZ) and:

s L 1
"= "T T, =1

Vn.

Writing o, = + B, the relations [x_;x,] v,

i, —1 T b= T
= 3x10p, [x-2%1JUp = 3x_ 10y, [x-2%,] v}, = 4xo v, imply:

opa+n+2—A)—oap_y@a+n—A4,)=0,
Priil@+n+4)—pfla+n—2+4,)=0,
oap@a+n+2—24,)+ Ppial@a+n+24,) — Bula+n—2+ 24;)
—op—s@a+n—24,)=0.

By a straightforward calculation, we prove that this system only admits the
trivial solution oy, = B, = 0, Vn, except in the particular cases a =0, 4; = 0 and
a= 0,4, = 1. But, these latter are not considered in this section.

Thus, if Q, is non-diagonalisable and A, 4 we get a unique non-trivial
admissible extension &/ of A(a, A) by A(a, A) (a = 0= A4 %0, 1) defined by the
formulas (II1.1.1) with

M.
UM, -1 BT TP T

Op=—"Tn= VneZ . (IT1.1.2)

B. Q, is asymptotically diagonalisable:

As either x_; or x; is one-to-one from ./,;, t0 & 4,—1 OF 4,111,018
diagonalisable on &, ,, VneZ. The basis given by (I1.6) and (I1.10), (II.11) can be
defined for all n in Z. Equation (IL.12) gives us a™ + g* = 0.

a) Ay =A,=2a=0. We have a* = B = 0 and ./ is decomposable.

b) A; = A, =4, a + 4. Up to equivalence, we get a unique non-trivial admissible
extension of A(a, 3) by A(a, ) defined by the formulas (I1.10), (IL.11) for all n in
Z with:

1 1

T@+n+dHa+n+d) b= T @a+n—YHa+n-P" (IL.1.3)

oy
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c) Ay = /izy= 0, a + 0. Up to equivalence, we get a unique non-trivial admissible
extension of A(a, 0) by A(a, 0) defined by the formulas (I1.10) (II.11) with:

1 1
= arntda+rnt ) 'B"=_(a+n——2)(a+n—1)'

(ITL.1.4)

We can thus claim the following theorem.
Theorem IIL.1.5. A(a, A) is an irreducible ¥ -module of Feigin—Fuchs (defined by 1.1)
(a = 0 implies A * 0, 1). We have:
LIfA+0,4VaorAd=%a+%:
dim [V, xo, Home(A(a, A), A(a, A))] =1,
and the cocycle is defined on x4, x_;, x5, — X, either by (II.1.1) and (II1.1.2) if A is
different than % or by (I1.10) and (IIL1.3)if A =%, a + 1.
2. If A=0(a=+0)
dim # [V, xo, Homg(A(a, 0), A(a,0))] =2 .

We have a basis of two independent cocycles, one defined by (II1.1.1) and (II1.1.2)
for A; = 0 and one defined by (I1.10) and (I11.1.4).

IIT.2. Extensions of A(a, A) by A(a,A—p)p=2,3,4.

Although A(0, A) (respectively A(0, A — p)) is not irreducible when A4 =0, 1
(respectively A = p, p + 1), we also consider here these cases which are not different
from the general case.

I* case. p = 2.

A) Q, is asymptotically diagonalisable: necessarily, from Theorem (IL.9), we have
(A4, A —2) % (3,%). As either x_; or x,; is one-to-one from .., on &, ,_; Of
Ayin+1, for all nin Z, Q, is diagonalisable on <, ,, for all n in Z.

Then we can choose, up to equivalence, a basis of .« where x;, x_4, x,, X, are
defined by the formulas (II.10), (II.11) for all n in Z with:

o, =—p,=1 VnelZ. (ITL.2.1)

B) Q, is asymptotically non-diagonalisable: (4, A — 2) = (3, 4). For the same rea-
sons as in A) @, is non-diagonalisable on &/, ,,, for all n in Z.

Thus we can choose a basis {v,, v, n€Z} of o so that the formulas (II.13) are
true for all n in Z.

From the relation (II.14) we get:

2

Using [x_,x,]v, = 3x,v, and [x_,x, Jv, = 3x_,v,, we obtain:

1
(5,,+y,,+1=s<a+n+—>,s=i=0.

(a4 5 )00+ B = o+ B} =to(a 4 m 4 ).

From [x,, x5 v, = — 4xqv;, we deduce:

(a +n— 1)(“;1 + ﬁn+2) —(@a+n+1)(a,-2+ ﬁn) =0.
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For all values of g, these two equations admit a unique solution:
Oy + Burr=4de(a+n+1).

In other respects, it can be proved that, on a given reference level n, §, and
a, can be chosen independently (by taking a suitable basis). Therefore we can fix
e =1. We get:

1
5,.=—(a+n+l>; o, =2(@+n+1),

2 2
1 1
»yn=_2_<a+n__2.>; Bo=2@+n-1). (I1.2.2)

The formulas (I1.13) for all n with A4; = 3, together with (IIL.2.2), define a unique
non-trivial admissible extension of A(a, ) by A(a, 3).

2™ case. p = 3.

A) Q, is asymptotically diagonalisable: Necessarily from Theorem I1.9 we have
(4, A — 3) = (2, — 1). As in the preceding case, Q, is diagonalisable on <, ,,, Vne
Z. Then we can choose, up to equivalence, a basis of <, {v,, v, n€Z}, where
X1, X—1, X3, X_, are defined by (I1.10), (IL.11) for all n in Z with:

ap=(a+n—A+3) B,=—(a+n+A4-3) VneZ, (I11.2.3)
and we obtain a unique non-trivial admissible exstension oA of A(a, A) by
Ala, A —3).

B) Q, is asymptotically non-diagonalisable: (4, 4 — 3) = (2, — 1). Q; is non dia-
gonalisable on <, ,,, YneZ. We can choose a basis {v,, v,, n€ Z} of o so that the
formulas (I1.13) are verified for all neZ.

The arguments used in case 1 B) (4 = 2) lead to the following result:

1
Sy=s@+m@+n+), a=2a+mn@+n+2),
(I11.2.4)

y,,=%(a+n—1)(a+n), Bn=2(a+n—2)(a+n).

We get a unique non-trivial admissible extension <7 of A(a, 2) by 4(a, —1), Va.
3" case. p = 4.

A) @, is asymptotically diagonalisable: necessarily, from Theorem (I1.9), we
have (4,4 —4) + (3, —3). As in the preceding cases, Q; is diagonalisable on
y+n, YnEZ. Then, up to equivalence, we can choose a basis of &/ {v,, v, neZ},
where x;, x_1, X,, X, are defined by (II.10), (IL.11) for all n in Z with:

ty,=@+n+3—Aa+n+4-—4),
Bo=—(@+n—-3+A)a+n—4+A4) VneZ (IIL.2.5)

B) Q, is asymptotically non-diagonalisable: (4, 4 — 4) = (3, — 2). We always get
that Q, is non-diagonalisable on </, ,,, YneZ. We can choose a basis {v,, vy,
neZ} so that formulas (I1.13) are verified for all n in Z. The same arguments and
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a similar calculation as in case 1 B) and 2 B) lead to choose up to equivalence:

6=l<a+n+§><a+n+l><a+n—l>
"2 2 2 2

1 1 1 3\’
y,,=5(a+n+§><a+n—§><a+n—§>

{oc,,=2(a+n+3)(a+n+1)(a+n—1)

Bo=2@a+n+Da+n—-Da+n-3)" (I11.2.6)

We get a unique non-trivial admissible extension of 4(a, 3) by A(a, — 3) defined by
(IL13) and (IIL.2.6).
We can summarize the results of this paragraph as follows:

Theorem (IIL.2.7). Let A(a, A) and A(a, A — p) (p = 2, 3, 4) be two ¥ -modules of
Feigin—Fuchs defined by (1.1). We have:

1) For p=2,dim#'[¥", xo, Homg(A(a, A — 2), A(a, A))]1 =1 VA, Ya and the
cocycle is defined on x,, x_1, x5, X _, either by (I1.10) for all n and (IIL.2.1) if A + 3,
or by (IL13), (IIL.2.2) if A = 3.

2) For p=3, dim [V, xo, Hom¢(A(a, A — 3), A(a, A))] =1 VA, Va and the
cocycle is defined on x1,x_1, X5, X_, either by (I1.10) and (I11.2.3) if A % 2, or by
(I1.13), (IIL.2.4) if A = 2.

3) p=4,dim#' [V, xo, Homc(A(a, A — 4), A(a, A))] = 1 VA, Va and the cocycle
is defined either by (11.10) and (I1L.2.5) if A + 3 or by (IL.13), (I11.2.6) if A = 3.

111.3. Extensions of A(a, 1) by A(a, —4) and A(a, S) by A(a, 0)(a * 0).

Having two different values, Q; is diagonalisable on each <. ,, VneZ, in these
two cases. As A(a, 1) and A(a, 0) are equivalent (a #+ 0), these two contragredient
extensions are respectively equivalent to the extension of A(a, 0) by A(a, — 4) and
to the extension of A(a, 5) by A(a, 1). They are included in IIL2, case 3. The case
a = 0 is studied in Sect. IV.

1
111.4. Extension of A a,7—+-§—\/—9) by A(a, e==x1)

Q, is always diagonalisable on each <7, ,, VneZ. The relations (I11.10), (IL.11)
are defined for all n in Z with

man (s ) (0 TRy L)

2 2 2

x(a+n_1+g¢19>

2

ﬂ,,=—oc+<a+n+l_+i1_9><a+n_1—ﬁx/19><a+n_3—8\/19>'
2 2 —
x(a+n——5_8‘/19>

2

—5+¢/19
2
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Up to equivalence we can fix a4 = 1 and we have a unique non-trivial admissible

7 — 1
extension &/ of &/ <a, #) by &/ <a, %8\/—9), (e = 1), for each a.

IV. Non-Trivial Admissible Extensions .« of an Irreducible ¥"-Module
A(0 A) (A4 =0, 1) by o/’ (Where /' = A A® D(0), 4,, B,
A(0,1), A(0, 0), D(0)) and Their Contragredient ¥"-Modules

IV.1. Extensions of A(0, A)(A #+0,1) by <.

In the following, we suppose ¢’ of type AorA® D(0) or A, or B,, or A(0, 1) or
A(0, 0) or D(0). They are all the #"-modules with one- d1mens1onal weightspaces,
where Q; = 0.

In view of Proposition 1I.3 and Theorem IL9 we have the only following
possibilities: A =2 or A =3 or A =4 or A =25. Thus Q, is diagonalisable on
Sy, VnelZ.

Case 1. Extensions of A(0, A)(A = 2, 3,4, 5) by A.Inall cases, we can define a basis
of o/, according to (I1.10) and (II.11) by:

XUy =+ Ay, Vn, xop=m+ Do+, Yn£0,
X_10,=Mn—Av,—y, Vn, Xx_1vp=mn—Dov,—y, Yn£0,
XoUy = (1 + 24) 0y 42, Yn, XoUp =N+ 242 + 0uUys2, VRFE0, — 2,
X_U,=(n—2A4)v,—,, Vn, X_aUp=0—2)vp-5 + Bpp—2,¥Vn£0,2,

(IV.1.1)

where a, (respectively f,) is given by (IL.11) for n = 1 (respectively n = 3) and by
analogous formulas for n < — 3 (respectively n < — 1), with another constant
o_ (respectively f_).

e If A =2, o is the direct sum A(0,2) @ A.
o If A =23,4,5, let us set:

X2U’_2 = U-20p, x_2l7,2 = ﬂzvo . (IV.I.Z)

Writing the commutators [x;x_,], [x-1x,] and [x_,x,], we obtain: a, = a_.
Up to equivalence, we can write (IV.1.1) and (IV.1.2) with:

eifd=3 o,=—-—§,=1 Vn+0

eifA=4 o,=n—1 fn=—m+1) Vn+0

eifA=5 a,=n—-2)n—1) po=—m+2)(n+1) Vn+0. (V.13
We obtain a unique non-trivial admissible extension of A(0, A) by Afor A:3,4,5.

Case 2. Extensions of A(0, A) (4 = 2, 3,4, 5) by A @ D(0). All these extensions are
reducible.

Case 3. Extensions of A(0, A)(A = 2, 3, 4, 5) by A,. We can use the results of case 1.
If A =3,4,5, we can choose a basis of o/ {v,, v;, neZ} such that the formulas
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(IV.1.1),(IV.1.2) and (IV.1.3) are verified. Now, we must add the following relations:

{Xﬂib =(1+ a)v} {x;v’o =22+ a)vh + aov, (IV.1.4)

x_1vg=(1—)v_y |x_2050=202— a)v"_5 + Bov_»

We apply the commutators [x_y, X1, [X1, X—5], [X2, X-2] on vy. For A =5, we
only get a reducible ¥"-module. For A = 3,4 we get:

do=a—1, Bo=—(a+1). (IV.1.5)

Thus for A = 3,4 we have, up to equivalence, a unique non-trivial admissible
extension &7 of A(0, A) by A4, defined by the formulas ((IV.1.1) - (IV.1.5)).

For A =2 from case 1 and Proposition (II.3), we can also look at &/ as an
extension of A by the affine ¥"-module &#. Up to equivalence, this extension is
defined on a basis {v,, v,, ne Z} of o as follows:

X;v, =+ 2)v,+; Vn, Vi

X0y =M+ )vp4; Vi,Vnwithn+i+0n+0

x1vo = (1 + a)vy, x_qv5=(1 — ),

X300 = 2(2 + a)v’y + 205, X 00 =2(2 —o)v’_p, — 2v_, .

(IV.1.6)

Case 4. Extensions of A(0, A)(A =2, 3,4,5)by A(0, 1). For A = 3, 4, 5, this case is
included in IIL2 for A —p=1 and p=2,3,4. If A =2 we obtain, as in the
previous case, an extension of 4 by the affine ¥"-module #. Up to equivalence, we
can define a basis of this extension &/ by the formulas (IV.1.5) except:

X 0p = V) X_1Vp= —V_y

X0 =205 + 0, | X_05=—20_,—0_,
Case 5. Extensions of A(0, A) (A #0,1) by Bg. If A =3,4,5, Proposition (I1.3)
implies that A(0, A) @ D(0) is a ¥ -submodule of . From case 1, for each of these
values of A and each f, we have a unique, non-trivial, admissible extension of

A(0, A) by Bg. It is defined on a basis {v,, v,, n€Z} by the formulas (IV.1.1) and
(IV.1.3) except x;, V5, X_ 05, X1, X_ 1V} given by:

x0_ 1 = (B + Dvo, X205 =(B+2vo +a-300,
X101 = (B — Do, x_,05=(B—2)vo + Bavo,
X0 =0,

where a_, and B, also satisfy (IV.1.3). If A =2, we only get the direct sum
A(02) @ B;.

Case 6. Extension of A(0, A) (A % 0,1) by A(0,0). If A =2, 3,4 this case is in-
cluded in (ITI.2) for A —p=0and p=2,3,4. If A =5, Proposxtlon (I1.3) implies
the existence of the submodule 4(0, 5) @ D(0) in «/. Thus &/ i's an extension of
A(0, 5 @ D(0) by A. From case 1, we obtain a unique extension .o/, which is
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defined by:
X;v, = (n + Si)v,4+; Vn,VieZ
X1y = N0y4q XoUp =MNUpsz + Uiz V1
X 10y = N0y X_aUy =N0p—3 + Byy-2 Vn

witha,= — B, =n(n—1)(n—2) Vn
Case 7. Extensions of A(0, A),(A = 2,3,4,5) by D(0). Recall that there exists
a unique extension of 4(0, 2) by D(0) denoted by &, given by Proposition (IL3).

1V.2. Extensions of &' by A(0, A)(A %0, 1).

/' is always either 4, or A @ D(0), or A,, or Bg or A(0, 1) or A(0, 0) or D(0). In
view of Property (IL.1), these extensions are necessarily exactly all the contragredi-
ent ¥ -modules of the preceding ones (Sect. IV.1).

Proposition II.3 and Theorem I1.9 imply the only following possibilities for A:

A=—-1 A=-2, A=-3, A=—4.

Case 1. Extensions of;fby AO, NH(A=—-1,—-2,—3, —4).Ford=—2o0r — 3
or — 4, we have unique non-trivial admissible extensions ./, contragredient of
those defined in IV.1, case 1, for A = 3 or 4 or 5. Up to equivalence, <7 is defined on
a basis {v,, vy, neZ} by:

Xivp, =M+ i)v,4; fn+i=*+0

{xll?;n =(n+ A)vy+q {sz; (n+ 24)0p42 + Aylpsr
n

N , (vl
X-y1Up=(n— A)v,—4 X_aUy=(n—24)0p-2 + Buu—2 ( )

where

eifA=—-2:0,=n+2,,=—Mn—-2) Vn
eifA=—-3:0,=n+2)n+3),fh=—m—2)(n—3) Vn
eifdA=—4:0,=n+4m+3)n+2,,=—m—4Hn—-3)(n—2) Vn.

(IV.2.2)

Case 2. Extensions of A @D0) by A0, A) (A= —1, —2, — 3, — 4). In view of
(IV.1), case 2, there is no indecomposasble admissible ¥"-module ./, extension of
A® D(0) by A0, A)(A 0, 1).

Case 3. Extensions o/ of By by A0, A)(A = —1, —2, — 3, — 4). In view of (IV.1)
case 3, &/ is indecomposable if and only if A= —1o0or —2, or —3. Up to
equivalence, we can choose a basis {v,, v} of .« such that

xlvn=(n+1)vn+19n*09 -1 x—lvn=(n—1)vn—13n=’:091
x10-1 = (B + 1)vo x-101 = (B —1)vo
X109 =0 X_100=0
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XoUy =1+ 2vp4,,n£0, —2 X a0y =Mm—2v,_5,n+0,2
X20-5 = (B + 2)v X_0y =(f — 2)vo
X209 =0 X_,09=0
{xlv =+ A)v,,, {xzv;=(n+2A)v;+2+oc,,v,,+2
Xoqvy=n— Ay | x-20, =0 =245 + Bulu—2
where
eifdA=—-1 a,=0 Vaf -2, a_,=1,
B,=0 Vn£2,8,=-1,
eifd=—-2 oa,=(n+2) YVn*+ —2,a_,=-1,
B=—m—-2) Vn%2B,=—-(+1),
eifA=-3 a,=n+2)n+3)n+ -2, 0_,=-1
Bo=—m—=2(n—=3)n+2,B=—(f+1).

Remark. We can also consider the case 4 = — 1 as an extension of the affine
¥ -module & * (Prop. I1.3) by the #"-module A.

Case 4. Extensions &/ of A(0,0) by A(0, A) (A= —1, — 2, — 3, — 4). The cases
A= —2,4= -3, 4= —4are included in IIL.2. If 4 = — 1 we obtain as in the
previous case another extension of the affine ¥"-module & * by A, defined up to
equivalence by:

X;Up = MUp4i, VN, Vi

x10p=(— o4y Vn XpUp = =242 n¥ —2
x_qv,=m+ Dv,_y Vn X =M+ 2v,_, n£2
Xa0_ 5 = — 405 + vo

x_zv/z = 406 + Uo

Case 5. Extensions &/ of A, by A0, A)(A = — 1, — 2, — 3, — 4). In view of (IV.1)
case 5 and Proposition IL3,if A = —2 or — 3, or — 4 we have an extension of
A by D(0) ® A(0, A). For each value of 4 and each o wWe get a unique indecompos-
able admissible ¥"-module &/ defined on a basis {v,, v,, n€Z} by the formulas
(IV.2.1) and (IV.2.2) and:

X109 = (1 + 2)vy, Xa00 =22 + a)v, ,
X_10o=(1—0)v_1, X_300=22—)v_5.
If A = — 1in view of (IV.1) case 5, o/ is necessarily the direct sum 4, ® A(0, — 1).

Case 6. Extensions & of 4(0, 1) by A(0, A) (4= —1, — 2, — 3, — 4). The cases
A=—1lorA= —2or A= —3 are included in IIL.2. For 4 = — 4, &/ can be
looked as an extension of 4 by D(0) @ A(0, — 4) (Prop. IIL.3). From (IV.2) case 1,
we obtain a unique non-trivial admissible extension .o/, which is defined by the
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formulas (IV.2.1) and (IV.2.2) and:
X10p = U1 X200 = 20,
X_1Ug= —U_4 X_aUp = — 20_,

Case 7. Extensions of D(0) by A0, A) (A= —1, —2, —3, —4).
Recall that, from Proposition (IL.3), there exists a unique extension of D(0) by
A(0, — 1) which is the contragredient ¥"-module &#* of & (case 7 of IV.1).

Now we can summarize the results of Sect. IV:

Theorem IV.3. Set o/’ = D(0), 4, A ® D(0), 4,, A(0, 1), B;, A(0, 0).
a) The only non-trivial admissible extensions of A(0, A)(A # 0, 1) by o/’ are the
unique following ones:

o /' =D0)and A =2

e ' =Aand A =3,4,5

o /' =A,and A =2,3,4

o o/ =Bgand A =3,4,5

o o/ = A(0,1) or A(0,0)and A =2,3,4,5.

b) The only non-trivial admissible extensions of </’ by A(0, A) are the contra-
gredient extensions of the previous ones.

V. Indecomposable Admissible ¥"-Modules o7 = @),z 4, such that
dim o, <2 Vn, Sp(xo) =Z and Q? =0

A ¥-module o = Pz H, with dim#, = 1 Yn and Q, = 0 may be D(0) ® 4,
A0, 1), A,, A(0,0), B;. If o contains a trivial ¥ -submodule D(0), it is D(0) @ A4,
A(0, 0) or By. In other cases, namely D(0) ® 4, A(0, 1), 4,, &/ contains an irredu-
cible ¥"-module /. In order to be able to discuss at once the three first cases or the
three other ones, we use the following notations:

1{36100=0 {le’o:O {X1U—1=5—100 {x20—2=‘21(35—1—)’1)00

X_100=0 |x_200=0 | x_1v; =700 | X-20; =3%(—0-1+ 3y1)v0
with 6_;=7,=0 for DO)@® A4,
o_1=y,=1 for A(0,0),
o =f+1 y1=F—1 for By.
) {xlv(,:éovl {xzvo=(350+yo)v2 {xlv_l =0 {xzv_2=0
X-100 =7YoU-q1 (X209 =(00 + 3y0)v-2 {X-103=0 |{x_,0,=0
with 8o =70 =0 for DO)® A,
do=—yo=1 for A0, 1),
bo=1+a yo=1—0a for A,.

V.1. Indecomposable admissible ¥ -modules of = @,,ez A, such that dim <7, = 1
Vn#+0. We are interested here in affine #"-modules: dim«f, =1 Vn=+0,
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dim s/, = 2. For all n # 0, {,} will be a basis of =7, and {v,, v'o } a basis of /. Let
us first recall that we already got in part II (Proposition I1.3) two inequivalent
affine #"-modules with Sp(xy) = Z and Q,(Q; — 2) = 0. They are the extension
F of A(0,2) by D(0) and its contragredient ¥ -module & *.

From Proposition (I1.3), we deduce that all other affine ¥ -modules verify
Sp(xo) = Z and Q% = 0. Thus we shall get the complete classification of affine
¥ -modules after the following discussion according to the three assumptions:

(a) xyv_, and x_,v, are independent vectors,
(®) x;vo-y=x_30;, =0,
(c) x;v_4 and x_, v, are dependent vectors which are not both equal to zero.

(@) x;v_; and x_v; are independent vectors. We get an indecomposable affine
¥ -module defined by the relations:

xivj=(i+j)0i+j Vj=|=0 and l+]=’=0,
XiUg = 0 Vi .
x;0'o=0 Vi,

xv_;=(1+i)vo+ (L —i)v'y Vi%0,
where we have cv’y = 0.
(b) x;v_1 = x_,v, = 0. We get an indecomposable affine ¥"-modules defined by
the relations:
xiv; =0+ j)viv; Vji#+0,
XiVg = i(l + I)Ui Vi .
xv'o =il — Dov; Vi,
where we have cv’y = 0.

(c) x;v_{ and x_,v; are dependent vectors which are not both equal to zero. It
appears that three cases may occur:

— The ¥ -submodule generated by v, is B; and the quotient ¥"-module o/ /{v,} is
A5, B+ 0. For each f 4 0 we get a unique indecomposable affine ¥"-module
defined by the relations:

xvj=0+)v+; Vi*¥0 and i4+j+0,
xv-;=(B+ive Vi,

X;iUg = 0 1 Vi s
xil)lo = i(E + i>U,' Vi .
where we have cv’'y = — 24v,.

— The ¥ -submodule generated by v, is B, and the quotient ¥"-module o//{v,} is
A(0, 1). We get a unique indecomposable affine ¥ -module defined by the relations:
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xiv;=0+jvi+; Vj+0 and i+j+0

Xib_; = iUO Vi .
XiUg = 0 Vi N
x; 0’y = iv; Vi,

where we have cv'y = 0.

— The 7 -submodule generated by v, is 4(0, 0) and the quotient ¥ -module 2//{v, }
is Ag. We get a unique indecomposable affine ¥"-module defined by the relations:

Xil)j=(i+j)vi+j V]#:O andl+]=‘=0,

X;U_; =g Vi,
in6 = izvi Vi s
xivo = 0 Vl s

where we have cv’y, = 0.
Proposition V.1.1. Any affine ¥ -module is one of the following:

1) the ¥"-module F or F*; -

2) the unique extension of D(0)@® D(0) by A which can be looked at as the
extension of D(0) by A(0, 0) or by B, or its contragredient (case V.1 (a) and (b));

3) the unique extension of A(0,0) by D(0) which can be also looked at as the
extension of D(0) by A, (third subcase of case V.1.(c)) or its contragredient (second
subcase of case V.1.(c));

4) the unique extension of Bg by-D(0) (B # 0) which can be also looked at as the
extension of D(0) by A, (first subcase of case V.1.(c)).

We have ¢ = 0 in case 1), 2), 3) and ¢ % 0 (but c® = 0) in case 4).

V.2. Asymptotic relations for all ¥ -modules o/ = P,ez A, such that Sp(x,) = Z,
0% =0 and dim o/, = 2 Yn # 0. In all cases, there exists a ¥"-submodule with an
asymptotic dimension one which may be 4, 4 @ D(0), A(0, 1), 4,, A(0, 0), B; or an
affine ¥"-module containing D(0) (V.1) and the corresponding factor ¥ -module is
also one of these ¥"-modules. Thus, from Remarks (I.8.c)) and Sect. (V.1), we can
choose a basis {v,,v',} of o, VneZ, such that:

X0, =Mm~+ Dvy4q Vn+ — 1,0
X Vp=m+ D0y +6,04+1 VunE —10
X_10,=(n—1v,—,4 Vn#£0,1
X Vy=m—Dv' o1 + yuu—1 Yn£0,1
XoUp =1+ 2)Vp42 Vn+ —2,0
XUy =+ 20 y42 + 4,0, Vn+ —2,0
2 ( )0 ns2 +2 V1)
X_oUp=(n—2)v,-1 Vn+£0,2

XV ,=M—2)V -2 + Bpu—2 Yn=+£0,2.



Indecomposable Admissible Modules over the Virasoro Lie Algebra 487

From the relation [x_;x;](t",) = 2x0(v'), we deduce that there exist two con-
stants ¢, and &_ such that:

n5n+(n+1)'y,,+1=8+ Vngl,
no,+(m+ Dy, =¢6- ¥n<—2.
For fixed vectors v'; and v'_,, we can choose v, Vn = 0 such that: §, =¢,,
Y= —6+ VYn>0 and 6,=¢-y,= —e- Vn< —1. From the relations

[x-1x2]("n) = 3x,(v",) and [x_,x;] (v'n) = 3x_1(v',) we deduce the existence of
a constant o, such that:

o4+ o+
— e+ —2  Wnx1 — 2, — Vnz3.
=2ty nEh A T am—1 "=

A similar calculation gives a constant «_ such that:

o
Vvn —1.
nn—1) "=

o
= < — = — -—
o, = 26, +n(n+ 0 Yn< -3, B, ¢,
Writing now the relations: [x_,x,](v',) = 4xo(v',) + 3c(v’y) Vn + —2,0,2 as we
know from Theorem (I.2) that cv’, = 0, we conclude that necessarily ¢, = ¢_ = &.
As Q.v', =¢ev, Yn+0 we see here that in all cases Q; is simultaneously
diagonalisable or non-diagonalisable on all .<,, n & 0. Up to equivalence we can
suppose ¢ =0 or ¢ = 1.

V.3. Indecomposable admissible ¥ -modules of = @®,.z &, such that dim </, = 2
Vn % 0, and dim o/, = 1 and Q% = 0. Let us first recall that we already got in part
(IV) six indecomposable ¥"-modules satisfying dim </, = 2 Vn % 0 and dim o/, = 1.
They verify the equations Q,(Q; —6) =0,0,(Q; — 12) =0 and Q,(Q; — 20) = 0.

All other indecomposable ¥ -modules such that dim«/, =2 Vn+0 and
dim .o/, = 1 satisfy Q% = 0. We construct them as follows.

Let {vo} be a basis of o/ and let us discuss according to the following
assumptions:

(a) X109 *F 0 (b) X1Vo F 0
x_lv():’:o x_1v0=|=0
X_5(x109) = Ax_1v9 AeC X _,(x1v0) and x_ v, are

independent vectors

() {xlvo=0 (d) {xlvo#O (e) {x1v0=0

X_10o%0 X_100=0 X_10o=0"

Obviously, these different assumptions will furnish a complete classification of such
¥ -modules and each one leads to ¥ -modules which cannot be isomorphic to the
others.
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(a) The ¥"-submodule generated by vy, may be 4, (x + + 1) or 4(0, 1). We must
add to the relations (V.2.1) the following relations:

{X1UO=501’1 {x200=(350+?0)02 {X1U/—1 =0-10o {xzvl—2=“—2vo
X-100 = YoU-1 (X-200= (0o + 3y0)v-2 (X-10"1 =7100 X203 = Povo
(V.3.1)

Writing the commutators which were not calculated in the previous asymptotic
discussion, it appears that Q; must be asymptotically non-diagonalisable: ¢ = 1.
We get two indecomposable ¥"-modules:

(i) the extension of A by A(00): 8¢ = yo = 1,
y1=0-1=0a_,=f=—1, ay=a_-=—-2, a_;=—f;=2.

(i) the extension of A(01) by A:dy=— Yo =1,

yp=—0-1=—1, a,=—f,=2, ay=0_-=0, a_;=—f1=2.

(b) x-1(x1v9) =0 and x;(x_;1v0) =0. We get a unique 1ndecomposable v -
module, extension of A ® A by D(0) (or A by A, or A by A_,) which is defined by
the relations:

xil)j=(i+j)l)i+j Vj=’=0,

X0 = (i + j)v'i+; Vi%0,

Xivo = i(i + D)v'; +i(i — Dov; Vi,
and we have cv; =0 Vi, cv’; =0 Vi.

(c) and (d): These two cases lead to reducible ¥ -modules.

(e) There exists v; and v_; such that x;v_; = x_,v; =0. We get a unique

indecomposable ¥"-module extension of D(0) by A @ 4 (or B, by 4 or B_, by A)
which is defined by the relations:

xi0;=(+)vis; Vi+j+0,
xVj=0+j)vis; Vi+j+0,

XiUg = 0 Vi s
xiv—y =+ vy Vi,
in,_i=(i— I)UO Vl,

and we have cv; =cv’; =0 Vi.

Proposition (V.3.2). Any indecomposable admissible ¥ -module o/ = @) <, such that
dim &/, = 2, VneZ* and dim o, = 1, is one of the following:

1) The unique extension of A0, A) (for A=3or A=4or A=25)by A or its
contragredient.

2) The unique extension of A by A(0,0) which can also be looked at as the
extension of Aq by A (case V.3.(a) (i)) or its contragredient (case V.3.(a) (ii)).
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3) The unique extension of A by A, which can also be looked at as the extension
of A by A_, (case V.3.(b)) or its contragredient (case V.3.(e)).

V4. Indecomposable admissible ¥ -modules of = @nel oA, such that dim </, = 2
VneZ. This case will be discussed according to the following properties of the
¥ -submodule o' = P, ez, D o, generated by o

a) dim«/'( =0,

b) dim /'y = 2 and &/’ does not contain a trivial ¥ -submodule D(0),
¢) dim /'y = 2 and &/’( contains exactly one trivial ¥ -submodule D(0),
d) dim /'y = 2 and &/’ is a direct sum of two trivial ¥ "-submodules,
e) dim /'y = 1 and /' does not contain any trivial ¥"-submodule,

f) dim o/’ = 1 and & is a trivial 7 -submodule.

Evidently, these different assumptions furnish a complete classification of such
¥ -modules and each one leads to indecomposable ¥"-modules which are not
isomorphic to the others.

(2) Dim &’y = 0: the ¥"-module /' is A ® A

— Suppose first that any vector of &, is such that x_;v, and x_,(x;v) are
dependent vectors. Then the ¥"-module .« is reducible.

— Suppose now that there exists voe., such that x_;v, and x_,(x;v,) are
independent vectors. The ¥ -submodule generated by v, is the indecomposable
¥ -module which we got in (V.3.b). The corresponding factor ¥ -module is D(0).
Let {vo,v'o} be a basis of =, and set:

x10'g = Oovy + 600y,
r_ AW
X_1Vo =7YoU-1 + Yol -1 .

We can choose v’ such that ¢’y = 0.
A necessary condition to get an indecomposable ¥ -module is: 93 + 46475 = 0.
If 6076 + 0, we obtain the unique extension of A4, by 4,, & + + 1, and the unique
extension of A(0, 1) by A(0, 1) such that Q, is asymptotically diagonalisable.
For 6, = 0 or yo = 0, we get the unique extensions of 4_; by A_; and A; by
A 1 .

(b) dim /'y = 2 and &’y does not contain a trivial ¥"-submodule D(0). Then it
appears that it must contain an indecomposable ¥ -submodule of type (V.1.b). We
add the relations:

X1V oy =0-100 + & _1V'g, X0 —3 =000+ & 50,

X_10'y =100 + 7100, X_aV'y = Bavo + 20 .

Writing the commutators which were not calculated in the asymptotic discussion,
we get a system which, up to equivalence, admits the unique solution:

8=O, '))11=5_1=2, '))1=5/_1=0, a_2=ﬂ2=—l, a_2=B'2=3,

Ay =0_ =2,
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We can suppose a—; = f; =0 and we get a unique indecomposable ¥ -module,
extension of A(0, 1) by A(0, 0).

(c) dim &’y = 2 and o/’ contains exactly one trivial submodule D(0). The corres-
ponding factor ¥ -module is necessarily one of the two indecomposable ¥ -
modules which we constructed in (V.3.a). In both cases, we have the relations
(V2.1) withé,=1and y,= — 1.

— First case: we use the formulas defining (V.3.a.i) and we set:

{xva):vl {le'—1=—”6+5'—1vo {x—llJl:Ylvo

X;vo =0 Vi.
’ ’ ’ ’ ivo
X_10g=0_q |X_10] = — 0o+ Y10o X10_1 =0_10g

We can choose v’ so that y'; = 0 and we get y; = d_;.

e Ify, = 6_, =0, v, can be chosen so that &’ _; = 1 and we get a unique indecom-
posable ¥"-module, extension of A, by A(0, 0) (or any Bg) where we have cv’y = 0.
e If yy=06_; =1, we get a unique indecomposable ¥"-module, extension of
A(0, 0) by A(0, 0) such that Q; is asymptotically diagonalisable. It satisfies cvy = 0.

— Second case: A similar discussion as in the preceding case gives:

e a unique indecomposable ¥"-module, extension of A(0, 1) by A (0, 0) (or any By)
where we have cvg = 0.

e the unique extension of B, by B, such that Q, is asymptotically diagonalisable.
It satisfies cvp = 0.

(d) dim /'y =2 and /', is a direct sum of two trivial ¥ -submodules D(0).

— Suppose first that there exists a trivial 7"-submodule {v,} such that the corres-
ponding factor ¥ -module is indecomposable.

A similar discussion as in the case (V.4.a) gives:

e the unique extension of B, by B, for each B.
e the unique extension of A(0, 0) by A(0, 0) such that Q; is asymptotically dia-
gonalisable.

— Suppose now that for all trivial ¥ "-submodules of <7’ the corresponding factor
¥ -module is reducible. Then the ¥"-module is reducible.

(e) dim.«/’y = 1 and ', does not contain a trivial ¥ -submodule. Here, we have
a trivial quotient module .«///' = D(0). The ¥ -submodule /' generated by
{v;,v';} may be one among the two indecomposable ¥"-modules of type (V.3.a).
We discuss separately the two cases in the same way as in (V.4.c):

— First case: We find here

e the unique extension of A(0, 1) (or any A4,) by A(0, 0) and
o the unique extension of A, by Ao, such that Q, is not asymptotically diagonalis-
able.

— Second case: We get

e the unique extension of A(0, 1) (or any A,) by B, and
e the unique extension of .27 (0, 1) by A(0, 1), such that Q, is not asymptotically
diagonalisable.
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(f) dim =’y = 1 and &', is a trivial ¥ -submodule. Thus </’ is either an indecom-
posable ¥"-module of type (V.3.e) or a reducible ¥"-module B; ® Aor A(0,00@® 4
and &7/ is D(0).

— If o/’ is an indecomposable 7 -module of type (V.3.e), we set:

le/o = 6’0011 + 6001
X_10o =700 -1 + YoV

Writing the commutator [x_;x;](v'g) = 2x00g, We get 6’ = — yo. Thus we get
the two following possible solutions:

(i) 6o = —y0=1,99 = — do = — 1. This gives an extension of 4(0, 0) (or any B;)
by A4(0, 1).

() 0o=—90=1+0a yo=—00=1—a: for each o we define a unique in-
decomposable ¥"-module, extension of A(0, 0) (or any B;) by A,. In both cases the
commutator [x_,x,](v'y) gives cv’y = 0.

— If o/’ is a reducible ¥"-module. We have the relations

{XIU_1=5_1U0 {xll)’_}_:O {xlvlo=6ovl+5lovll

’ ’ ’ ’ *
X_101 = Y109 x_10'1 =0 (x-10'o =701+ Vo' -4

Considering the ¥ -submodule /" ~ A generated by {v'-1,v'1}, the quotient
¥ -module &/ /" is either reducible or affine indecomposable. If this quotient
module is reducible, the ¥"-module .« is itself reducible. Therefore we have only to
consider the case where o7 /<" is an affine indecomposable ¥"-module. From the
relation [x_1x;](v'g) = 2x0(v'9) We deduce doy; = yo6—-;. The assumptions
do=79=0 or &g =199 =0 leads to reducible ¥ -modules. Thus we get the
following solutions:

(i) y. = 16_, = l:it defines an extension of 4(0, 0) by A(0, 1) (or any A4,) such that
Q, is asymptotically diagonalisable.
(i) y; = B — 10, =B + 1: we get an extension of B; by A(0, 1) (or any A,).

Proposition V.4.1. Any mdecomposable admissible ¥ -module o = P,z S, such
that dim o, = 2, VneZ and Q? = 0, is one of the following extensions of length
four:

1) The unique extensions of A,, Bg, A(0, 1), A(0, 0) by themselves, and of A(0, 1) by
A(0, 0) such that Q, is diagonalisable on <, Vn.

2) The unique extensions of A(0,0), A(0, 1), Ay, Bo by themselves, such that Q, is
non-diagonalisable on </, Vn.

3) The unique extension of Ay by A(0,0), of A(0, 1) by By and two extensions of
A(0, 1) by A(0, 0) such that Q, is non-diagonalisable on all <4, except on .

4) The unique extension of A(0,0) by A, (for each a), of Bg by A(0, 1) (for each p)
and two extensions of A(0,0) by A(0, 1) such that Q. is diagonalisable on all
<, except on .
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VI. Conclusion

Now we can conclude with the following Theorem:

Theorem VI.1. Any indecomposable admissible ¥"-module of where the weightspace
dimensions are less than or equal to two is such that:

— either, all weightspaces are one-dimensional and o belongs to the classification
given in [4].

— or one weightspace, at least, has a dimension two and o/ is one of the
¥ -modules classified in the Sects. (I1I), (IV), (V).

Proof. Let us suppose that o/ has at least a two-dimensional weightspace.

First case. The asymptotic dimension of ./ is one. From Theorem (IIL.8) of
[2], only the zero-weightspace is two-dimensional. Then, D(0) is either a sub-
module of 7 or a factor module of </, and &/ is an affine ¥"-module. Using
Proposition (I1.3), &/ appears either in (IV.1) (case 7) or (IV.2) (case 7) or
in (V.1).

Second case. The asymptotic dimension of &/ is two. From [1, 2], we know that
o/ contains an irreducible ¥ -module A(a, A) (a = 0= A4 =% 0, 1) or 4 or D(0) and
hence, in all cases, a ¥"-submodule ./’ with an asymptotic dimension equal to one.
o' can be A(a, A), A, Ay, Bs, A ® D(0) or an affine ¥"-module containing the trivial
¥ -module. If o/’ and o/ /o' is of type A(a, A) or A or A,, or B; or A @ D(0), then
&/ occurs in (II) or (IV) or (V). In the other cases, either </’ is an affine ¥"-module
containing the trivial ¥"-module, or «//</’ is an affine ¥ -module which does not
contain the trivial ¥"-module. These two cases are contragredient, and it is
sufficient to prove Theorem (VI.1) for one of them. If o7’ is an affine ¥"-module
containing the trivial ¥"~-module, there exists two cases (Proposition I1.3);

— eitherin /', Q3 = Oand a = 0. Then o /" is A. Necessarily we have &7 such
that QF = 0, a = 0 and .o/ appears in (V).

_ —oro' =%* Then o/ /o' = A and o/ /D(0) is an extension of 4(0, — 1) by
A which is trivial (IV.1 case 1). Thus, we can look at ./ as an extension of B or
A(0,0) by A0, — 1) and ./ occurs in (IV.2), case 3 or 4.

. l .
Finally, let us notice a last remark:

Consider the subalgebra W, of ¥°, whose a basis is {x;,i = — 1}. Each 7"-
module A(a, A) verifying A — ae Z, when restri¢ted to the subalgebra W, contains
a W, submodule F_,. F_, is generated by the weightspaces 7, ., verifying
a + n = A;. All the extensions of F, by F, have been obtained by Feigin—Fuchs in
[7]. Then, consider an admissible extension of two ¥ -modules A(a, A;) and
A(a, A;) such that a — A;€eZ (i =1,2), and restrict it to the subalgebra W;.
A natural question is to ask whether it contains an extension of F_ ,, by F_,,. It
appears that all extensions obtained in (IIL.2) for a — A€ Z, or (I11.4) for a = 0, the
extension of 4(0, 5) by 4(0, 0) and its contragredient ((IV.1) case 6 and (IV.2) case 6)
and the extension of 4 by A(0, 0) ((V.3.a). (i) are convenient. Moreover, we obtain
like this, all admissible extensions of two W;-modules, F; by F, of [7].'
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