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Abstract. We prove that the free energy of the Hopfield model with a finite number
of patterns can be represented in terms of an asymptotic series expansion in inverse
powers of the neurons number. The series is Borel summable for large temper-
atures. We also establish mathematically some other interesting properties, partly
used before in a seminal paper by Amit, Gutfreund and Sompolinsky.

1. Introduction

One of the first papers in which the critical temperature of the Hopfield model and
the properties of the overlaps were intensively discussed is “Spin-glass models of
neural networks” by D.J. Amit, H. Gutfreund and H. Sompolinsky [1]. In the first
part of that paper the expression of the free energy was deduced in the limit
N — oo applying heuristically the saddle point technique to the expression of the
partition function, for N < oo . The results of that calculation were very interesting
and many of them have been checked also by numerical simulations. Obviously it
was not the aim of that paper to prove mathematically the results presented. In the
present paper, besides providing mathematical proofs, we also deduce new stronger
properties of the free energies. Let us briefly describe our main results, referring to
Sects. 2 and 3 for proofs. Consider the Hamiltonian of the Hopfield model [8] with
p patterns:

—1 2 N
Hy(¢) = W Z Z f?fj"aiaj s (1.1)
p=1i+jij=1
where 0;, i =1, ..., N are the neuronal activities, o; = + 1, and
b, i=1,...,N, &= +1
is the codification of the u™ pattern which we want to memorize, u =1, ..., p.

All the &4 are considered to be random variables independent and equally
distributed with probability E{¢# = + 1} =3. The retrieval property of the
Hopfield model corresponds to the fact that the “mean value” of the “spins” is
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aligned with some of the p patterns &%, i=1,..., N. By “mean value” of the
“spins,” by definition, we mean that the variables g;,i=1,..., N are random
variables whose probability distribution Py is described by the Gibbs distribution
defined by the Hamiltonian Hy(&), for finite N and a given inverse temperature f3,
and that we take the average of o; with respect to Py.

It is interesting to have information also about the property of retrieval
averaged with respect to all possible choices of &#,i=1,..., N and so one
looks for an equation which determines the values of the overlap (order) para-
meters:

1 N
mu=ﬁE Z ¢t <aoiy, (1.2
i=1
where E here means expectation with respect to the probability distribution of the
variables ¢# and {-) is the expectation with respect to the Gibbs distribution

defined above. We say that the system retrieves a pattern when

m,=1. (1.3)

Let us define as usual the neural dynamics for the discrete time t =0, 1, 2, . . . by

J

O'i(t + 1) = Slgn< 3 Jwa'j(t)> (1.4)
=1

with given o;(0) and where the couplings (“synaptic efficacities”) J; ; — the same as
in the Hamiltonian (1.1) — are given by Hebb’s rule as follows:

1 2
Ji,j=N#§1 grey . (1.5)

The pattern &/ are expected to be invariant (stable) with respect to this dynamics
only in the thermodynamic limit N — oo, hence it is interesting to compute
the above quantities (1.2) in the thermodynamic limit. In particular one tries
to compute the mean free energy of the system as a function of the temperature
and of the m,. The determination of its local minima should yield then the physical
values of the patterns overlap m,. Let us introduce the partition function of the
system:

) =3% Y. exp(— BHy(() (1.6)

with a positive constant f, and then compute the averaged free energy in the
thermodynamic limit N — o0

f=lim EFy(¢), (1.7)

N-w

where

Fu(®) = 10 Zy().
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F ollowing'[lj, one can express the partition function Zy(¢) as a p-dimensional
integral using the properties of Gaussian integrals:

Zn(8) = et L Qn)-?> (dm" . . . dm?
2N

B & al
m+ =3 m* Y, aiéi‘} I (1.8)
N n=1 =1
In [1] the last sum in the exponential is substituted “by the expectation E with
respect to all the &* in the limit N — c0,” i.e. in [1] the following quantity Zy is
studied

Zy=e PP2Qu) P2 [ dm! ... dmP

xexp{ —% 21 (m*)? + NEIn cosh( % gp:l m“f“>}. (1.9)

The legitimation for replacing Zy(¢) in (1.8) by Zy in (1.9) is not given in [1]. In
Sect. 2 we shall provide this legitimation; in fact we prove the E-a.e. convergence of
the free energy associated with the partition function defined in (1.8) to the free
energy associated with Zy (Theorem 2.1). Let us note that part a) of the results in
Theorem 2.1 also follows from results obtained by a different (large deviation)
method by van Hemmen, see [16]. (See also [17, 9] and references therein for
further interesting discussions, and some extensions to other related models; see
also [5,15] and [11, 12, 18].) A further result, proven in Sect. 3, is that the free
energy can be expanded in an asymptotic series in the parameter 1/N. The same
results hold for the free energy of a system with additional symmetry breaking field
(necessary to consider for computation of expectations {a;» used to define the
overlap parameters in (1.2)). In Sect. 4 we prove the Borel summability of the
expansion for 0 < § < 1. The notations used in this paper are introduced in Sect.
2 and are motivated by the formulas used in the Introduction.

i

2. A Convergence Result for Free Energies
Let us define, for ¢ =(¢Li=1,...,N), &e{—1,+ 1}*,meR”:

N
Sy(m, &) = %mz - % Y’ Incosh (8'/2m- &) @2.1)

i=1

with m? = m-m,-being the scalar product in R?. ¢ stands for (£%, ..., V). The
space { — 1, + 1}” consists of 27 points which we indicate by &,,a =1... 2% Let

1 N
4o, n(8) = ) Oze, 22)
N Ni=zl &e
with 6z ¢, = 1 for &' =&, and 0 if &' + &,. Thus g, y is the frequency with which
a given &, appears in (¢, .. ., &¥). We have
1 2r
Sn(m, &) = 3 m* — Y qon(€)Incosh(f?m-&,) . (23)

a=1
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Let

2P

S(m) = 1m - iln cosh(B?m-¢&,) . (24)

14
a12

Let E(-) be the expectation with respect to the variable £ Then

1
E(bs,¢,) = 7 (2.5)
the 0. ¢, being independent identically distributed. Define
() ——lnfdm exp(— NSy(m, &)) = Fy(£) ——lnN (2.6)
and
~ 1
fNENInjdmexp(—NS(m))=FN—WlnN 2.7

Lo 1
with Fy = NIHZN'
Remark. Since
1
Sy(m, &) 2 Emz — B2p%|m|,
we have that fy(¢) is uniformly bounded in N and &; see Proposition 2.5 below.
The main result of this section is formulated in the following theorem.

Theorem 2.1. For any 0 < f < o0,

a)
lim |fy(¢) —fy| =0, E-as. 2.8)
N-w

b) Moreover, there are positive constants cq, ¢,, y such that

E| /(") Il S 517 + S exp( = 7N) 29)

= N1/2
for any N e N.
c) If0< B <1, then

lim fy =0, (2.10)

N—-oo

and additionally, if 0 < Bp < 1, then for any (e { — 1, + 1}?

lim fy(&)=0. @.11)

N- o
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Proof. The proof of Theorem 2.1 a) and b) is based on the following lemma:

Lemma 2.2. For any 0 <e < 1
1 C
In(@) -y § dmy(Im| < R,) exp(— NSy(m, £))| < yep(—rN) 212

for some constants 0 < C,y < oo independent of NeN and £€{ — 1, + 1}?, and
where

2ﬁ1/2p1/2

R ="L""F | (2.13)
&

Here y(|m| < A) denotes the characteristic function of the set {meR?, |m| < A}.
The same bound holds with fy replaced by fy and Sy replaced by S. O

The proof of Lemma 2.2 will be given later. Using Lemma 2.2 we see that

(&) ~ il <1 l&) —Foal + o exp(— 9) (2.14)
with
fud® = I dm x(Im| < R)exp( — NSy(m, €) @.15)
and
Jua= 3710 [ dmx(im] < R exp(— NSm) (2.16)
Writing

exp( — NSy(m, ¢)) = exp( — NS(m))exp( — N(Sy(m, &) — S(m))

in the definition of fy .(£) and using the fact that for |m| < R,

2p

|Sn(m, &) — Sm)| = | X <qa,~(€) - %,) In cosh (ﬂ”zm‘éa)'

a=1
28p 2 1
R S P @17)
a=1 21)
we obtain:
. 28 2 2 1
Fuem 225 Jan® — | Sh@ <huc+ 22 S an@— 55| @19)
a=1 a=1
This implies that
28p 2°
TR MEL ) PG 219)
a=1
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Using the fact that for anya =1, ..., 27 we have

lim =0, E-as. (2.20)

N-w
together with (2.19) and (2.14) we conclude the first part of Theorem 2.1.
To show part b) of Theorem 2.1 we observe that by taking the expectation with

respect to the measure E of both sides of (2.19) and using the fact (proven in Lemma
A.3a of the Appendix) that for anya=1,..., 27,

1
9a, N(i) ~ Ap

1 1 1\ 1
Eqa,N(')_? é(ﬁ_?_p> N2> (221
we get
Zﬂp 11721

E'fN s( ) fN s[<T [?’_Z_ZP:] N1/2 . (222)

This, together with (2.14) yields:

2 1 C

BN~ =P ape 2 Cep(—on), 02
which ends the proof of part b) of Theorem 2.1. O

Remark. Let us note that also in [9] one may find some different arguments
showing part a) of Theorem 2.1.
Now we shall prove c). To prove (2.10) let us observe that

Elncosh(BY*m-¢&,) = } dt j dt BE[(m* &y)? (cosh(t’' B1?m~ &y)) 2]
0 o

< 3 BE(m-Co)* = 3 224

N =

Therefore the action S(m), used to define fy in (2.7), satisfies the following inequali-
ties:

1 1
5(1 — Bym* < S(m) < 7 m? . (2.25)
Hence, if 0 < f < 1, we get
14 = P
—_ < < - —
AN In2n/N) < fy £ N InQ2n/N(1 — B)). (2.26)
This implies (2.10). To get (2.11) we write

2p

1
Sy(m, &) = —m — Z a,n(&)In cosh(B'?m+ &,)

= Z 4a, N(€)< m? — In cosh(B'/2m- é)) (2.27)
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and observe that

1
m? — In cosh(B?m+ &,)

2
me = —
-2

N —

= %mz - f ds j ds' B(m+&,)? (cosh s’ BY/2m-€,)"% = %(1 — Bp)m?. (228)
o 0

Hence we get

m?, (2.29)

1 1
SU—ppm < Sy <5

whence
S5 In(2n/N) < f4(8) S 50 Inr/N (1~ Bp)) - (230)

If 0 < fp < 1, this shows that for any £ e { — 1, + 1}? we have

lim fy(&)=0. (2.31)
N—-
This ends the proof of Theorem 2.1. |

Now we give a proof of Lemma 2.2.
Proof of Lemma 2.2. Introducing a partition of unity 1= y(|m|<R,)+
x(Im] > R,) into the integral in (2.6) we get

1

(&) = Nlnfdmx(lml = R,) exp(— NSy(m, <))
+11n[1 . Jdmx(Im| > R,)exp(— NSy(m, ¢))
N fdmy(Im| < R,)exp( — NSy(m, &))

From this we see that in order to prove Lemma 2.2 it suffices to show that

fdmy(Im| > R,)exp(— NSy(m, &)) -
[dm 1(Im| = R,)oxp( = NSy(m, &)) = € XP(—N7) (2.33)

for some 0 < C,y £ oo, independent of N e N and &. The inequality (2.33) follows
from Lemma 2.3 given below by taking

exp<2(1 s_2 8)ﬂp>§dmexp< — (l—zi)m2>
C=

— 12
fame(imi = (2525 )

1 —
y=! g 9 gy (2.35)

] . (232)

(2.34)

and

This ends the proof of Lemma 2.2. |
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Lemma 2.3.
§dmy(lm| > R,)exp(— NSy(m, &))

<f dmexp< - (—1;—8)m2> exp(— (N — 1)(1 — ¢)28p/&?) (2.36)

and
Jdmy(Im| < R,)exp( — NSy(m, £))

_ 12 —
gjdmx[lml§<2(128)ﬁp> ]eXp<—N(1828)ﬁp>- 237)
@)

e

Proof of Lemma 2.3. To prove the first inequality we remark that for |m| > R, we
have

1 2° 1
S = 3 dan(€)Incosh(B7m-E) 2 sem® — B |m 2 0. (238)
Therefore

fdmyx(jm|> R,)exp(— NSy(m, &))

a=1

1—
<= g - 5

1—
2

8R§>jdmexp<—N1;8m2> (2.39)

éeXP( —(N-1)

which is the first inequality in Lemma 2.3.
To get the second inequality in Lemma 2.3 we observe that for any 0 < « < R,
we have

fdmy(Im| < R,)exp(— NSy(m, &))

2 [dmy(Im| <) exp( — N max Sy(m, f)) . (2.40)
im| <a
However
1 2 z 1/2 1 2
Sn(m, &) = m - Y. dan(¢) In cosh (B2m-&,) éim . (241)
a=1
So taking
_ 1/2
as[l gxg] , (242)
2
we get
l—¢
max Sy(m, &) < 2 By (2.43)
Im| <a

This together with (2.40) yields the second inequality in Lemma 2.3. |
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Remark. If = 1, one can show that there exists an open set U < R? independent
of £ such that for any me U we have Sy(m, £) < A < 0 for some 0 < [4| < 0.
This allows to improve, in this case, the second estimate in Lemma 2.3.

In the following Propositions (2.4)—(2.6) we shall derive some additional in-
formation about the free energies. The first one shows that the mean free energy Efy
is always not less than the free energy fy.

Proposition 2.4. For any Ne N

1 “NSwm &) > NESy(m, &)
N In{dme 25 ln fdme™ (2.44)
Proof. Let us introduce for t € [0, 1] an interpolating action O
Sy =tSy + (1 — t)ESy. (2.45)
We have
d1 -NS,
E(fy — Ejdt——lnfdme w
d 1 d2 1
=Ed_ n [ dme NS, _ 0+jdtjdt’Ed ,lenjdme NSw.e
d d d
= —Ep,—o| =S N t'E .
pt—0<dt N,t) t=0+ gdtgd Pr (dt SN“dt SN,I>9
(2.46)
where
NSy,
Jdm(e ™) 2.47)

PO = i

It follows from the definition of p, and of Sy , that the first term from the rhs of
(2.47) vanishes.

On the other hand, as follows from the Holder inequality, the second term
from the rhs of (2.47) is always nonnegative. This ends the proof of Proposition
24. |

Now we show that the free energy fy(&) is uniformly bounded in & We have

Proposition 2.5. There is a constant 0 < Cy < oo such that for any N e N and
ée { - 1> + I}Pa

| fn()] < Co . (248)
O

Proof. Since
Incosh(B?m-&y) < BH?p*?|m|, (2.49)

SO

1
Sn(m, &) 2 5 m? — p12p'2|m| . (2.50)
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On the other hand

1 1 5

N In [ dm exp( — NSy(m, &) = N In { dm exp(— Nm?/2)

[ dmexp(— NSy(m, £))

1 [ dmexp(— Nm?/2) ~’

(2.51)
and, by Gaussian integration,

1 1

N In [ dmexp(— Nm?/2) = N In(N ~?22m)P/?) . (2.52)

Using (2.50) we can estimate the second term from (2.51) as follows:

1 fdmexp(— NSy(m, é)) [ dmexp(— N(Gm? — p*?p'/?|m|))

< 1
0=y [dmexp(— Nn?/2) =N [ dmexp(— Nm?/2)

L, [Jdmexp( = NG@ey — B72pH2 me ) P

=N [dmexp(— N(m*)?/2)
1 2 pln2

< < In[2exp(BpN/2)1° = pp*/2 + —— (2.53)
N N

This yields Proposition 2.5. |

Proposition 2.5 together with some large deviation estimates allows us to conclude
that to get the essential information about the free energy for large N it is enough to
consider only “good” configurations of £’s, a fact which will be useful later on. We
have

Proposition 2.6. For 6 > 0, let

X,jzx<qa,N—%, <6 Va=1,...,2">. (2.54)

Then
|Efn() — E(xsfw(€))] < CoE(l — y5) = CoCexp(— IN'/?) (2.55)
for Cyq as in Proposition 2.5, and some constant C > 0. O

Proof. We use

Efy(&) = Exs fu(&) + E(1 — x5)fn(8) (2.56)
Proposition 2.5, and the large deviation estimate
E(1 — z5) < Cexp(—6N'?), (2.57)

which can be deduced from the definition of g, y(&); see Lemma A.1 in Appendix.
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3. Asympidtic Expansion for the Free Energy

In this section we show that the free energies fy and Efy(*) have asymptotic series
representations in powers of N ~%. Let us mention that a general method exists, see
e.g. [3], for investigating the Laplace integrals like those used to define the free
energies. In principle one could use this method (together with a result of [6]) to
obtain an asymptotic expansion for fy. Application of this procedure for explicit
computation of corresponding coefficients of the series, in general, can be very
complicated.

In our work we provide another way, by which we are able to determine in
a simple way the required coefficients. Therefore our method can be useful also for
numerical studies, which are important in the domain of neural networks. Addi-
tionally, with some small modification, our method applies as well to the investiga-
tion of the free energy Efy(*). As the reader may have noticed from Sect. 2, the
behavior of free energies is essentially different in the high temperature, 0 < f < 1,
and in the low temperature, § > 1, regions. To get our expansions we need also to
apply different considerations in both regions (although both cases rely on a com-
mon basic idea). Therefore we present them in two subsections beginning from the
high temperature case.

3.1. Asymptotic Expansions: High Temperatures. In this subsection we prove the
following result.

Theorem 3.1. Let 0 < f < 1. Then for any K € N we have

a)
fv= —%ln(N(l — B)/2m) + Z(K) + Rgs1 (3.1
where
K
SK)= Y N-C*D, (3.2)

n=1
with the coefficients ¢, satisfying the bounds
|&,] < Cn! (3.3)
for some constant 0 < C < oo, and the remainder §K+1 satisfying
|Rgr1] < Cgut N7EF2) (34)
for some constant 0 < 6K+1 < 0.

b) Similarly we have
Efy(')= — V(L = B)/2m) + £(K) + Z(K) + Reer s (39)

where the sum X (K) is defined by

I(K)= f ¢, N+ 1) (3.5a)

n=1
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with some coefficients c,, and the remainder Ry, satisfying the corresponding
bound (3.4) with some positive constant Cg ., replacing Cg ;. O

Proof of Theorem 3.1. a) For 0 < f < 1 it is convenient to split the action S(m)
from the definition of fy as follows:

1 1-—
S(m) = Emz — Elnch B*?m- ¢, = Tﬁmz + U((1 — B)*m). (3.6)
Then changing the integration variables m — ((1 — B)N)~ /2, and denoting by
po a Gaussian measure on IR? with mean zero and unit covariance we get

Ji= = V(1 — B)/2m) + <10 po (e 00N ) (3.7)

(for any measure p and p integrable function g we use the notation p(g) = j'gdp).
We will show that the second term from the rhs of (3.7) has an asymptotic
expansion in powers of N ™. To do that we introduce a parameter ¢ € [0, 1] into
the exponential in the expectation with measure po. Then using Taylor’s theorem
we obtain the following expansion of the K™ order of the second term from the rhs
of (3.7),

1 —_ =12y
T
K (= 1Nk-? UN"m), ..., UN""2m
L G L) P TSR]
k=1 * k-times
= 2o(K) + 0,(K + 1) (3.8)

with the remainder

0,(K + 1)
1 ty tx

E(— 1)K+1NKjdt1 I dtz e jldtx.p.l
0 0 0

UN~Y2m), ..., UN"m
X .. ( ( ) ( ),>‘ (3.9)

2\
K+ 1-times

Here we denote by p, the probability measure on IR? given by

po(e—tNU(N‘”’m) ,)
pt(') = —tNU(N-uzm)')‘ .

(3.10)
Pole

We used also the notation

) <\U(N‘1/2m), . UWN"m)
t Y

k
) =(—N)™* d—kln po (e INUNT2m) (3.11)
k-times dt
for the corresponding semi-invariants (cumulants, truncated correlation
functions) of the k'™ order. Setting ¢t = 0 in formula (3.11) we get the semi-in-
variants, which appeared in the sum on the rhs of (3.8), defined with the Gaussian
measure p. ‘
Let us find an estimate for the remainder 0;(K + 1).
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Lemma 3.2. There is a constant 0 < Dg.; < oo such that

|01(K + 1)| £ Dgy N™E2, (3.12)

Proof of Lemma 3.2. Using the definition (3.11) one may easily check that
lo(UNTm), ..., UN"2m)| < 2*klp,(JUN ~m)[) . (3.13)
Since by (3.6) and Taylor’s theorem we have

UN~12m) = %I—E—B(N‘”Zm)z — Elnch <<1Tﬁﬁ>”2 (N‘l/zm)>

=N72(B/(1 = p)*[dt ... fdt4E((m‘fo)4u4(N'”2m)) (3.14)
0 0
with

|u4(N'”2m)|E‘gzlnchZ(Z=(ﬁ/N(l—ﬂ))”zm'éo) <C (313

for some constant 0 < C; < o0, so the expectation from the rhs of (3.13) can be
estimated as follows:

C,p?

k
m) pe(| E(m= Eo)* (") . (3.16)

p(JUN2m)]*) < (

Using Brascamp-Lieb inequalities [2] for the measure p,, (defined in (3.10) by
perturbation of the Gaussian measure with a log-concave function), together with
the Holder inequality to estimate the expectation from the rhs of (3.16), we obtain
the following bound:

C1 2,2 k
pIUN~2m) ) < (m_ﬂszm) po(|m[*)

Cipp? V[ @0 L\ .
= <4!(1 = ﬁ)2> (2‘“‘(21«)! P k>N :

=27kD,- N2, (3.17)

This, together with (3.13), shows that the remainder term 0, (K + 1) given by (3.9)
satisfies the bound

|O(K + 1)| £ Dgyy N™E+?

with the constant 0 < Dg,; < oo defined in (3.17) for k = K + 1. This ends the
proof of Lemma 3.2. O

The above considerations (3.13)3.17) show also that each particular term in the
sum on the rhs of (3.8) is of order N ~**1 respectively. (Note however that (3.17)
would imply too fast-growth of the coefficients in k.)
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Now, to get _the expansion described in point a) we have to analyse in more
detail the sum X O(K ) from the rhs of (3.8). First we use the representation

U(N~?m) = Z ayN'E(m-&o)* + ri+1(m) (3.18)
1=2
coming from the Taylor expansion to the K'* order. Let us note that, as follows
from the properties of the function In ch x, the coefficients a,, from (3.18) satisfy the
bound .

a* < lay| £ 4% (3.19)

for some constants 0 < a < 4 < 0. Inserting the expansion (3.16) into the semi-

invariants, we obtain the following representation of the sum Xy (K) from the rhs of
(3.8):

- K (___ l)k K k
Zo(K)= ), Nk ) <Hazzi)N_”‘+'”“")
k=1 k! | ST =2 \i=1
“po(E(m-&)*", ..., E(m- &)™) + OK + 1), (3.20)

where by O(K + 1) we denoted a sum of terms with the function ry , , (m) appearing
in at least one of the truncated correlation functions. By similar arguments as those
used to estimate @, (K + 1) from (3.9) (given in the proof of Lemma 3.2), we easily
get that

|O(K + 1)| £ D+ N~&*2 (3.21)

for some constant 0 < D1 < 0.
Now by rearranging the terms in the sum on the rhs of (3.20) we obtain

K
2o(K)= Y ¢, N~®*D 4 0,(K + 1) (3.22)
n=1
with
— 1)/ K Em- &), ..., E(m- &)™
Cp = Z ( k! ) <1—[ a21i>p0<g( ) Y ( ) J) >
ksn{l,..., Lz 2} : i=1 k-times

(3.23)

and with 0,(K + 1) denoting the sum of O(K + 1) and all other terms from the sum
on the rhs of (3.20) which are of order N~®*1 or smaller. Clearly 0,(K + 1)
satisfies a bound of the form (3.21) for some other constant 0 < Dk,; < 0.
Denoting the first sum from the rhs of (3.22) by z (K) and using (3.22) and (3.8) we
get the representation

1 -1/2 g ~
w7 10po (70N M) = S(K) + Ry (3.24)
with
Rei1=0,(K+ 1)+ 0,(K +1). (3.25)

Since @;(K + 1) and 0,(K + 1) satisfy bounds as in (3.17) with corresponding
constants Dg.; and Dk4;, SO0 Rg ., satisfies the bound (3.4) with the constant

~ J— ”
Cx+1=Dgs1 + Dkoy -
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Now to finish the proof of part a) we have only to prove the bound (3.3) for the
coefficients ¢, given by (3.23). In the proof of this bound, the central role is played
by the following lemma, which is a special case of corresponding results proven in
[4] (see also [7, 10]) and providing us with estimates of (general) semi-invariants of
a Gaussian measure.

Lemma 3.3. There is a constant 0 < ¢ < 0o such that for any k e N,
k .
lpo(E(m= &), ..., E(m+&,)*™)| < k! [ (po(E(m*E,)*)*)Y* . (3.26)
i=1
O

Using this lemma together with Holder inequality and simple inequalities for
factorials we get the following estimate:

Lemma 3.4.

lpo(E(m=&)™, .. ., E(m-£)*™)| < c*@2p*)" ™ Tkl ﬁ @& (327
i=1

O
From Lemma 3.4, the estimate (3.19) and the definition of ¢, in (3.23) we get
k
leal £ Y c(242p?)tat ot ( I1 li!> . (3.28)
k= i=1

Changing the summation variables [; — [; + 1, one may rewrite (3.28) in the form

k

leal < ) Y, APy F T i+ 1. (3.29)
k<n Iy, ..., IxeN i=1
L+ +he=n
Since for Iy, ..., LeN,l; + -+ + L, =n we have
k k k
[TG+D=T] W] G+ 1) <nle", (3.30)
i=1 i=1 i=1
s0 (3.29) implies the bound
leal < (2e4%p*-(1 + 24%p*c))'n! Y, Y 1. (3.31)
k<n lij,..., lLeN
L+ - +h=n

The sum on the rhs of (3.31) is just the number of all possible representations of
a positive integer n as a sum of elements of IN, which, as is known, equals to 2"~ 1,
Combining this information with (3.31) we get the inequality (3.3)

lc,] < C"*n! (3.32)

with a constant C satisfying the bound
C < 4eA?p*(1 + 24%p?). (3.33)
This ends the proof of Theorem 3.1a). O
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Proof of Theorem 3.1 b). We consider now the free energy
1
Efy = 5 Eln [ dme~NSvtm& (3.39)

defined with the action

1 Ca
Sn(m, &) = Emz = 2 don(@Inchf2m-&, . (3.39)

a=1
Let us note that when 0 < 8 < 1, it is not true in general that the point m = 0 is
a maximum point of the action for all configurations £. (As one may see from the
proof of Theorem 2.1¢), this is the case only when 0 < fip < 1.) Nevertheless we will
make the expansion similarly as before, but additionally taking into account that
the probability of “wrong” configurations is small. We begin by splitting the action

Sy(m, &) as follows:
1-§

Sy(m, &) = Tmz + Ugn (1 — B)*m) . (3.36)

Then changing the integration variables m — N 2(1 — B)?>m we get
— L _ l —NUn(N~'2m)
Efy = AN In(N(1 — B)/2r) + N Elnpg(e ). (3.37)
Similarly as before we expand the second term to the K'® order. We get

—~NU, y(N- lﬂm))

1
NElnpo(e

1 X (=1 NU y(N"1?m), ..., NU, y(N 1™
TNE R ;
k=1 :

—k+1t tx NU; n(N~Y2m),...,NU y(N~/2
+_( N jdtl o jdtK+1Eptk+1< el m) v e r’n)>
0 0

k-times

k+1—times

(3.38)

The probability measure p, , in (3.38) is defined similarly as in (3.10), but now with
the action Uy y.

Let us denote the first sum from the rhs of (3.38) by 2((K) and the remainder
term by 0 (K + 1). We begin by proving the following bound

Lemma 3.5. For any k € N there is a constant C, = C,(k) such that

|01(k)| < C;N "% (3.39)
O

Proof of Lemma 3.5. Using the definition of truncated correlation functions we get

\NUg’N(N—l/Zm), ey NU(:,N(N-I/Z"‘)}
Ep, g

k-times

S KE(pINU n(N ™ 2m)[") . (3.40)
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For further purposes it is convenient to introduce the splitting

2r
NU (N~ 2m) = =55 5 Gunton 7 4 NVe ™ m) 341

with

_ 1

da,N = qa,n(S) — ?’
and

NV N~ Pm)= 3 g Mé)(il(m'i ?
: S =2

— Nlnch i>1/2N_1/2(m'~f )>>
1-5 i )

Now the expectation from the rhs of (3.40) can be estimated as follows:

Ep(INUgn(N~?m)|F) < zk_l{ ( 1 fﬁ2 Z Jan(m=&,)? )
+ Ep,(INV n(N~"?m) I")}- (342)
Let
Xon = Xo,n(8) = X{'q-a,N| <éda=1,..., zp}
with

d=N"14,

Let us first bound the part of the rhs of (3.42) corresponding to the integration over
¢ for which |g, x| > 6. To get a bound corresponding to the second term in the
curly bracket in (3.42) we use the Taylor expansion of the function V; y to the
fourth order (similarly as in (3.13)—(3.15)). In this way we obtain

E(1 — 15,)P(INVen (N~ 2m)[*)

2,2 k
< E(1 —m)( T N ) sup p,(Im[*). (3.43)
¢

To estimate p,(|m|**) we insert into the integral the partition of unity similar to the
one used in Sect. 2. Then we get

p(Im|*) = p,(x(Im| < NY2R))|m|*) + p,(x(Im| > N'R,)|m|*)
S N*R + pi(x(lm > N12R,)|[m|*) . (3.44)

Using similar considerations as in the proof of Lemma 2.3. one can show that

supp,(x(Im| > N'2R,)|m|*) < C§(2k)IN?* (3.45)
Le
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for some constant 0 < C, < oo independent of N and k € N. This together with
(3.43), (3.44) and Lemma A.2 proven in the Appendix gives us

sup E(1 — 15,w)p: (INVe (N ™12m)|*) < C5QIIN>*E(1 — z5,n)
1€[0,1]

< CE(2k)INZke™ N (3.46)

with some constants 0 < C3, C, < oo independent of N and k.

The corresponding estimate for the part of the first expectation in curly bracket
of the rhs of (3.42) is obtained by using a simple algebraic inequality, translation
invariance of E and similar arguments as before. We get

< (L2t ) Bt = ampime 2o
l—ﬂ X5,N) Pt 0

< CEkIN*ke~N™ (3.47)

with some constant Cs independent of N and k. The inequalities (3.40)—(3.47) give
the following bound:

NUg’N(N_llzm), ey NUg,N(N_I/Zm))>
Y

k-times

-0 | L5535 duntm-c?|

< C¥(Sk)le~ /PN
(3.48)

with some constant C¢ independent of N and k. Let us now bound the part of the
lhs of (3.40) corresponding to the integration over &’s for which | g, x| < 6. For this
we use (3.40)(3.42) together with the fact that if we have | g, y| < d with § = N ~1/4,
then as shown in Lemma 3.8 (at the end of the Sect. 3) the action Sy(m, &), for f < 1
has the unique minimum at zero and differs from a Gaussian action $am?, defined
with some positive constant «. This last implies (by simple change of integration
variables and use of Brascamp-Lieb inequalities) the following bound:

pi(Im|*) < Chk! (3.49)
with some constant C, independent of k. From that we obtain
EX&,NP:(|NV@,N(N_llzm”k)

Eﬂ‘X«s,zv)P:(‘

< ﬂ—N‘2 ksu {p:(Im|*):t€[0,1], E e su }
= 4!(1 _ﬁ)z p pt . ) s pr&,N

< Ch(2k) N2 (3.50)
1z

with some constant Cg and
ﬁ k
EX&,NPt(’ Z Ga,n(m-&,)? )
< <% B ) (E1Go,nI**)" " (Exs,np: (Jm+ Eo| )1/

< ChkIN W2 (3.51)

with some constant Cy and where in the last step we have used Lemma A3, c)
proven in the Appendix. The inequalities (3.50) and (3.51) together with (3. 40)—
(3.42) complete the proof of Lemma 3.5.
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To estitate the rest term @;(K + 1) using the above lemma, we expand it
further to the order 2(K + 1) and apply to the rest term of this expansions
inequality (3.39) with k = 2(K + 1). As follows from the considerations from the
proof of Lemma 3.5 applied to the case when ¢ = 0 the expansion of the rest term
0,(K + 1) contains terms which are of order higher than K + 1in N ! as well as
the terms which are of order less than K + 1in N ~*. Therefore it is clear that to get
a final expansion we have to redefine the sum X, and the rest term in such a way
that the final rest term contains only the terms of order higher than K + 1 with
respect to N ~1. The terms we have to discuss are of the same structure as those
from the sum X,. Let us note that as compared to the first case of Theorem 3.1,
each term of X, contains a complicated expectation with respect to &’s and
therefore we need now to carry out a more complicated analysis involving an
additional expansion of each term. We turn now to the more detailed discussion of
the sum X, from which it will also be clear how to deal with the terms obtained by
expanding @ (K + 1). For that we use the following representation of the function
NUgn(N™ Y2m),

-1/2 B 1 & 2
NU{,N(N m) = 1 — /32 Z qa N(m éa)
+ Zi ﬁ m-¢,)* — Nlnch b 1/ZN Vm-&
e qa N ﬁ2 a 1 — B a
+ NU(N~?m) = W, y(m) + NUN ~'?m). (3.52)

Inserting (3.52) into the expression of each term of the sum X;(K) and using the
definition of 24(K) in (3.8) we obtain

Zo(K) = Zo(K) + Z1(K) (3.53)

with X' (K) given by the following expression:

K —lk k k
g( k!) Z<1>NH—1

< Eps (\Wg,N(m), c oy We n(m) UN""?m),..., U(N‘”zm))> '

(3.54)

1 k-1
The sum 3 o(K) has been investigated before in the proof of point a) of the theorem.
To study the second sum from the rhs of (3.54) we use the expansion (3.18) of
W, y obtained by application of Taylor’s theorem:

K-1

2p
We n(m) = Z q_aN(é){ Z ale_Hl(m'ia)ZI + NrK,a(N—l/Zm)} (3.55)
a=1

=1

with the coefficients a,; as in (3.18) (for I > 1) and so satisfying the bound (3.19), and
the remainder functions rg ,,a=1,..., 2%
Hence we obtain the representation

ZU(K) = Z5(K) + O5(K + 1) (3.56)
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with the remainder 0,((K + 1)) and

K (_1)k [k o
%K) = Z( kt) Z('>Nk ”
k=1 R j=1\J

2» K-1 K k

Z z Z ]._.[ aazt,.E(q_bl,N e (ibj,N)

bi,..., bj=111,...0;=11i+1,..., h=2i=1

. ((m'fbl)zh, ey (m'fbj)ﬂj,
Po|\ J

A\
1

Y
k-1

L Em S, E('"'f")ﬂk’)N—<z{'=1a.-—n+zi~‘=,-+1m NEEY)

Using the definition of 0,(K), bounds for Gaussian integrals and estimates of the
moments EgZy it is not very difficult to see (by arguments used before) that

|05(K + 1)] S DN~ &*+2 (3.58)

Now we have to discuss the sum X,(K). Let us first note that to get the final
expansion it is still not enough to simply rearrange the sum (as was the case in the
proof of a)). This is because we have hidden small factors (proportional to some
powers of N ') in the expectation E(gy,,y - - - 4s,,5)- Let us note that (from the
analysis given in the Appendix) we have that each term

E(Gb,,n - - - b;,n) (3.59)

is a polynomial of order at most N 2, what follows from the Hélder inequality
and the fact that

: " d
E(q,n)™" = (2**N)™"C, < 1+ ;:vn N -k> : (3.60)
: k=1 K-
for some constant 0 < C; < oo and the constants d; , satisfying a bound
|dy,n| < D" (3.61)

for some constant 0 < D < oo. (Note however that as follows from the definition of
d..n the polynomial (3.59) contains only the integer powers of N 1)

Using the above information about the expectation Egp,,y . . . g,y W€ Can
represent the sum (3.57) as follows

Z,(K)=2Z(K)+ 05(K + 1) (3.62)
with the remainder O5(K + 1) being of order N ~®*2) and the sum
K
Z(K)= ) ¢N &0 (3.63)
k=1
with some coefficient c,. Using (3.62), (3.55)—(3.57) and (3.52)—(3.53) together with
(3.38)—(3.39) and (3.37) we obtain the representation
Efy(1)=— %m(z\m —B)/2m) + E(K) + Z(K) + Rger . (3.64)

This ends the proof of the point b) and so of Theorem 3.1. |



Rigorous Results for Free Energy in the Hopfield Model 357

By this we finished our first treatment of the high temperature case; see Sect. 4 for
the result on Borel summability of the expansion.

3.2. Asymptotic Expansions: Low Temperatures. For f > 1, let x denote the posit-
ive solution of the equation
x=pY*thpi2x . (3.65)

It follows from the analysis in [13] that the action S(m) given by (2.4) attains its
global minimum uniquely at the points m;e R%i =1, ..., 27 of the form

mi=(03""03 ixisoa"-,0)~ (3‘66)
From that it follows that the number M defined by
M?I = D*S(m,) (3.67)

(with I the unit matrix and D*S the Hessian) and explicitly given by
M?=1— B(chp'?x)2 (3.68)
is strictly positive for f > 1. In this section we prove the following result

Theorem 3.6. Let f > 1. Then for any K € N we have the following representations:

a)
fu = — min S(m) — %ln(M~N/8n) + 3(K) + Rt (3.69)
meRP
where
- K
$(K)= Y N -+ (3.70)
n=1

for some constants C,, n € N satisfying the factorial growth condition
&, < C™n! (3.71)

for some positive constant C, and the remainder Ry, is of order N~ X*2 je,
satisfies

|Rg1| < Dgsy N™E+2) (3.72)
for some positive constant 5K+1.
b)
Efy = — min S(m) — %V-ln(M'N/Sn) + 2(K) + Rgsq, (3.73)
meR4
where
K
I(K)= ) N ~®*D (3.74)
k=1

with some coefficients c,, k € N and the remainder term R , | being of order N &+ 1),
O
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Proof of Theorem 3.6 a). Let my be a minimum point of S(m). In a neighborhood
{m:|m — my| < ¢} we may represent the action S(m) in the following way:

1
S(m) = S(mg) + EMZ(m — mg)? + U(M(m — my), mg) (3.75)
with the remainder function
1 13 d 2
U(M(m - mo), mo) = ]‘dtl PN jdt4<%> S(mo + t4(m - mo)) . (3.76)
0 0 4

It will be useful to assume that ¢ > 0 is small enough, so that S(m) is negative and
the function

%Mzrh2 + U(M -, mg) (3.77)
is convex for |m| = |m — my| < &. Additionally we may and do assume that ¢ > 0 is
so chosen that the function m+— U(Mm, my) has a convergent power series
expansion with respect to m, whenever |m| < &. From now on we fix m to be
equal to (x, 0, ..., 0) and to simplify the notation we write U(Mmi) to denote
U (Mmni, my). (This function should not be confused with the function U used in the
high temperature case.)

Let x(|m — m;| < ¢) be the characteristic function of the set {m: |m — m;| < &}
and let y:(m) denote the characteristic function of the complement of the set
Ui=1,..., 2p{m: |m —m;| < e¢}. Using the symmetry of the action S(m) and in-
formation about its global minima we have

~ 1 B
fa= Nlnjdme NS(m)

1
= Nln {27 [ dm y(Im — mo| < )e V5" + [dm y5(m)e NS}, (3.78)

We shall now prove the following fact.
Lemma 3.7. There are positive constants C and 7y such that

Jdm g5(m)e =S

—N
fdmy(Im — my| < g)e™ N5 <Ce . (3.79)

O
Proof of Lemma 3.7. First of all let us note that for any number 4 > 1 we have

[dmyx(Im — mo| < )e ™5™ > [dmy(jm — mo| < e/A)e N5

= (s/A)"Qpexp{ — N max S(m)} , (3.80)
|m—mo|<e/A
where Q, denotes the volume of the unit ball in RZ. We may and do assume that

A >1 is large so that S(m) < —a <0 for some 0 <o < oo and all |m — my|
<g/A. '
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On the other hand we have
fdm yi(m)e™ V5™ < fdm yi(m)x(Im| < R,)*exp{ — N min y{(m)S(m)}

N(1-¢)

+ [dmy(m| > R)e 2 ™, (3.81)
where R, =2B'?p'?/¢ and we have taken into account that for any
a=1,...,2%

%mz —Inch fPm-&, > 0, (3.82)
ie.

am>%;w (3.83)

for |m| > R,. By our choice of ¢ the function S(m) is strictly convex in each set
{lm—m;| <e},i=1,..., 2" Therefore

—miny{(m)S(m) < — max S(m). (3.84)
|m—mo|<e/A
This together with (3.80) and (3.91) implies the lemma. O
Now using (3.76) and Lemma 3.7 we see that

~ 1

fN=ﬁln2demx(|m—m0| <ég)e N5M 4 04(N) (3.85)
with

|Oo(N)| < Ce™ "N, (3.86)
From (3.85) and the representation (3.73) of the action S(m), by changing the

integration variables m— M~ Y2 N ~12f + n, we obtain

12

~ 1 . .
fn = 8(mo) — %IH(M'N/%) + 0o(N) + 1n po(fe NUNTTmy o (3.87)
with po being the (0, I)-Gaussian measure on IR? and where for simplicity of
notation we have set ¥ = y(|m| < M2 N1/2¢g),

Let us now study in more detail the last term from the rhs of (3.87). Using the
property of the Gaussian distribution it is easy to see that

1 ~ -1/2 1 - -1/2 .5\ 5
Nlnpo(xe‘w‘” "‘))=N1npo(e NUNTEmI) 4 04(N) (3.88)

with the error
|O(N)| S e N (3.89)

for some positive constant y’.
By Taylor expansion to the K'" order we get

1 U= 12505
Nlnpo(e NU(N-1/2 )x)
1 X (=1 NUN~"m)j,..., NUNN~Y?m)j
=EZ(M)WC (N"12m)7, ., NU( )L>+&H
k=1 . k-times

= 2o(K) + rg+1 (3.90)
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with the remainder

d

K+1
1 172 5
) lnp (e~ txrtNUWmz) — (391)
dtg+1

1 199
Fg+1 = jdtl PPN IdtK+1(

0 0
Using our choice of ¢ so that (3.77) is true and similar considerations as used in the
high temperature case it is not difficult to show that rg, ; is of order N ~X*2) je,
[res1] < CoN ~**2) (3.92)

for some positive constant C, (depending on K but independent of N e N).
Now we shall have only to consider the sum Xy(K) from the rhs of (3.90). We
may represent it as follows:

1\
soK) =L kzl( 1) (

NU(N ') ., NUN 2 )
(N~*21) (N =12 )+"K+1

kumes
=21(K) + rk+1, (3.93)
where
, K NUN "Y2@m)y, ..., NUN " m)x*
rKHE_z(l)pO(L ( /A% 9y
I=1 I-times

(3.94)

Y
K—1 times

NU(N~"2#),..., NUN " m)j, )

We have set here y° =1 — . Using the fact that in each truncated correlation
function the characteristic function 1 — ¥ = y(|m| > M /> N/?¢) appears at least
once, together with similar estimates as in (3.13)—(3.17), we get a bound of the form

[rk+1l £ C,QK)IN"Te™"™ (3.95)

for some positive constants C, and y”, i.e. the remainder rg ., is exponentially
small. To finish the proof it is now sufficient to observe that the sum 2, (K) has the
same structure as the one on the r.h.s. of (3.8) analysed before. Therefore we can use
the similar arguments to get

ZU(K) = Z(K) + ka1 (3.96)

with the sum Z(K) as in (3.70) and (3.71) and a remainder ry., of order N ~X+*2),
i.e. satisfying

Irk+1] < C3(K)N ~K*2 (3.97)
for some positive constant C3(K).

By combining (3.88)—(3.97) and (3.87) we obtain

fN = min S(m) — ——ln(M N/8n) + Z(K) + Rg+1 (3.98)
meRP

with
Rgs1={0Oo(N)+ O (N)} + {rg+1 + rke1 + Tks1) - (3:99)
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It follows frtom (3.86) and (3.89) together with (3.92), (3.95) and (3.97) that Rk . 4 is of

order N ~%*2) je. satisfies the inequality (3.72) for some positive constant Dy ;.
This ends the proof of Theorem 3.6 a). O

Now we shall prove the second part of Theorem 3.5. Let us mention that several
detailed estimates in the proof of this part are very similar to those used in
previously considered cases. In order to keep the space necessary for exposition
within reasonable bounds, we take advantage of this fact and present below only
the essential steps of the proof.

Proof of Theorem 3.5 b). First of all using Proposition 2.6 we have
E fy(&) = Exs(&) fu(&) + O1(e ™M) (3.100)

with the characteristic function y;(¢) defined in (2.54). As follows from Lemma 3.7
given below, we can and do assume that 0 < J is small enough so that the action
m— Sy(m, £)xs(£) has exactly 2”2 minima m;(£),i =1, ..., 2Plocated at a distance
less than ¢/2 from the corresponding minima m;, (i = 1, . . ., 27), of S(m), with 0 < ¢
being the same as that used in the proof of part a).

Now we can use similar arguments as before (based on an analog of
Lemma 3.7), to drop the part of the free energy coming from integration over
me{di=1,...,2% |m—mi(£)| > ¢}. In this way we obtain

2P
Efy(&é) = EX&NI'ln _fdm( Z x(m — mi)e‘NSN(m,§)> + 0, (3.101)
i=1

with 0, being exponentially small, i.e.
Oy =0, ") + Oy(e™ V) (3.102)

for some constant 0 < y; <oo and
€
x(m—m) =y (M—mi)<§ .

Applying again Proposition 2.6 we may represent the rhs of (3.100) as follows:

1, 2
Efy(¢)=—So+ Exln Y. fdmy(m — m;)e NEnmO=S) L @0, (3.103)

i=1
where we set
So = min S(m) (3.104)

meRP

and (5 is some exponentially small remainder. Let us define now fori =1, ..., 27,
1
U;,(Mm) = UMm, my, &) = Sy(Mm + m;, &) — EMzr?z2 —So. (3.105)

Using this notation and arguments similar to those used in the proof of part a) we
obtain

p 1 1 27 ~ — (N2
Efn(8) =80 — WIH(M’N/&T) + Eﬁln'zj,i; po(x(m)e NV 4 @,
(3.106)
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with po being the (0, I )-Gaussian measure on IR?. This can be rewritten in the
following form:

1 1 1/2
Efy(&) =S80 — —zljvln(M-N/sn) + E—lnzp } po (e N U0 4 @,
(3.107)

with an exponentially small remainder 0.
Now we introduce an interpolating parameter t € [0, 1] into the exponential in
the Gaussian expectation and generate the Taylor expansion to a finite order K.
The estimate of the remainder of this expansion can be done easily in a similar way
as in the proof of part a). Then omitting the cut-off function y(m) in particular
terms of this expansion we get the representation
1 Cal ;
E—ln— o~ N2 () Ui (N~ )
N 2p L Z Po ™)
Z (— 1)k (NUO(N'”Z'), ..., NUo(N"'2+))
- Y

k 1 k-times

+ (N -&+2)
(3.108)

where for simplicity of notation we introduced the following probability measure:

2p
WFR) =55 % po i) (3.109)

i=1
Now we expand each function U;(N ~2m), with respect to N ~ /2, up to order K.
By reorganizing this expansion and similar, but quite lengthy, analysis as in the
proof of part a), one arrives at the desired asymptotic expansion in the present case.
(Let us note that the additional averaging with respect to the discrete measure is
a minor complication, due to the fact that the coefficients of the Taylor expansion
of the function U;(N ~/?m) are in fact independent of i = 1, . . ., 2P) [ |

To finish our considerations we shall now have only to prove a lemma
providing the information about minima of the random action used at the begin-
ning of the proof of Theorem 3.6 b).

Lemma 3.8. Let 6 > 0 and let

-

For any minimum m; of S(m) and any ¢ > 0, there is 6 > 0 such that, whenever & € A;,
the function

1
9an(8) — 55

| <da=1,. 21’}. (3.110)

m +— Sy(m, &)

has a unique minimum m;(&) such that
[m; —m(&)| <e. (3.111)

Additionally if B < 1 and 6 < N ~ 12 then for any ¢ € As, the corresponding action
Sy(m, &) has a unique minimum at zero and is strictly convex for all N = N, with
some NoeIN sufficiently large. (The same is true if one replaces Sy(m, &) by
NSy(N~12m, £).) )
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0
Proof. We have easily from the definition of Sy that — am ~— Sn(m, &) exists for any

o and
2P
aaaSN(m,é =m"— Y qan(&) BV &  tanh( > m¢,) (3.112)
a=1
and
2 2P
G g SN0 £ = 07 = % gu n(O) Bleosh(FFmEN] PEm g (1Y

We see easily that (3.112) and (3.113) are continuous in m, and we have:

Sy &) = = sum, )

ZP

Sm*— MY + Y qa,n(&) BLeosh(B2mE)] ™2 |(m —m') &,
a=1

S +B) Y Im* = (m'y (3.114)

a=1
and
6725 (m f)—LS (m', &) <2837 i |m* —m"|. (3.115)
om* Om*? N om’'* Om'*2 N ’ = 1 ’ ’

For fixed m, we also see that both

0

(s &)

and
62
om*! om*?

are continuous, uniformly in m, with respect to g, y(&).
Now let m; be a point of minimum for S(m) i.e.:

0
a o

62
<(WS(’"")>>

is positive definite. By the above continuity, for any ¢ > 0, there exists 6 > 0 such
that for each £e A4; there exists a unique point m;(&) satisfying

|m; —mi($)| <6, (3.116)

SN(m9 5)

SN(mt)

and the matrix:

0
N (mi(£),8) =0, (3.117)
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62
((Ws(mi(f),5)>>

is positive definite, i.e. m;(&) is @ minimum.
To show the last statement we note that

and the matrix

2P

Sn(m, &) = S(m) + 2, da,n(&)Incosh (B12m-&,) . (3.118)

a=1
Hence clearly m = 0 is the critical point of the action. Additionally we have

0% 0%
oo M &) =

2P
S(m) + Z a,n(&) BLcosh( B2 mE,)] 28,11 E, % .
! (3.119)

By our assumption about g, y(&) the second term on the rhs of (3.119) can be made
arbitrarily small (uniformly in m) by taking N = N,, for some N, sufficiently large.
Since for f < 1 the action S(m) is strictly convex, the last statement of the lemma
follows. |

4. Borel Summability

In this section we shall study the partition function Zy given by (1.9) and show that
it has a Borel summable expansion in powers of 4 = 1/N as N —»o0. To do this we
split up the integration with respect to the variable meR? in (1.9) into an

N

integration over the set 4, = {melR”l im| < 2—}, for some 0 < a < 1 and its
a

complement A;.
From (1.9), (2.4), (2.7) it suffices to study

| dmexp(— NS(m)) = Zy,,

Aa

and

| dmexp(— NS(m)) = Z§,, 4.1)

Aﬂ.

Lemma 4.1. For any 0 <a < 1,

Zy,a S canP[ -1 - a)%ﬁ(N - 1)]

ith 1
W .= | dmexp[ - 5(1 - a)mZ:I <00 .
RP

Proof. For me A; we have, recalling the definition (2.4) of S(m):

S(m) = %mz — Elnch(BY?m¢) 2 %mz —/pBIm| = %(1 —am*. (42
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Inserting this into (4.1) we get

Zlcv‘a= j‘dme—(N—l)S(m)e-S(m)
AG

IIA

—a-a2Pen-
e A-a)yzB(N-1) j‘ dme=Sm
44

2p
e—(l —a)ﬁﬂ(N—l)c

lIA

a»

where in the last but one inequality we have used the definition of 4§ and in the last
inequality the definition of c,. |

This lemma then shows that the contribution Z% , to Zy, coming from the
integration over Ag, is exponentially small in N, for N —oo0.

The contribution coming from the integration over A, is controlled by the
following

Lemma 4.2. For any 0<f <1 and any 0 <a<1 we have, for all |1 <
. a
mm(wm 5

k
Zya= Y, (BA) [ e7*™(m)dm + [ e”*™ Ry(m)dm,
j=0 Aa Aa

with
Gm= Y = 3 [TLEm-&)>™* D] Cppsss
n=0n'm1 ..... mpeNoi=1
Z m;=]j
i=1
j+1(_ 1)1 1 1
Civ1 = ——, ieN,
m=x ko ek
Kiz1
1
Z Ki =J + 1,
i=1
Cl = 19

1 k .
Ri(m) = exp[EElnch(. /ﬁim'é)] — Y (BAYEj(m) .
i=0
The following bounds hold for all j

..~ Bp .
[ dme=12™ & (m)dm| < C2™piCie8 UtV

Aa

for some constants C, c ; (depending on a), and

< C™*|A[k!

[ dme™12™ Ry (m)
Aq

for some C' > 0.
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Proof. For 0 < 8 < 1 we have, by (2.25), 4(1 — f)m? < S(m).
Let A = 1/N, be in C. Then, for Re N > 0, for any measurable B = R?:

[dmexp[ — NS(m)] < [ dm|exp(— NS(m))|
B B

— J’dm |eReNS(m)|

B

< [dme™®Re Wi -pm?
B

< [ dme ®ReMU-hm> <o
RP

For me A, we have
4
Blal Ime &P < — B1A1p* <1,

provided

a2

[A] < W > (4.3)
Inch z is analytic in z for z such that
jchz—1]<1.
In particular this is the case when
lz| <p <1

for some p > 0.
With z = ./ BA(m &) this is satisfied, together with (4.3), when

az
M.l < min<4—ﬁ27,p>, meA,.

An easy direct expansion in power series of the functions In and ch yields

Inch /Bi(m-&) = () Y. (B (m-&)*3*VC,.
j=0

with C;; 1, C, as given in the lemma. The series is convergent for || as above. An
easy estimate yields
—2(j+1)

[Ci+1l = Cm (4.6)
for some C > 0. (Incidentally by the general Cauchy inequalities one knows already
the bound |C;4;| < p’ sup|lnch \/ﬁ(m° £)| <oo, the sup being taken over
\/ﬁmf =p, meA,, for any p < p.)

Using that exp is an entire function we then get, for m, 4 as above, the absolutely
convergent expansion

expGElnch(\//TAm-¢)>= f [f (ﬁz)f(m-z;)2<f+1>cj+1]". 4.17)
j=0

n=0 n!
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Interchanging the j and n summation we obtain
1 k .
exp (ZElnch (/BAm:* é)) = Y (BA)¢;(m) + Ry(m), 4.18)
n=0

with ¢;(m), Rx(m) as in the statement of the lemma.
Call ¢; ) (m) the series obtained by truncating ¢;(m), setting its terms equal to
0 after the M™ order in B, so that limy ., ¢; ;(m) = ;(m). We have the bounds

M pn ; . 1
C. < LA —2(j+n) 2\jtn -
1€j,m(m)] = Cn;o"!ml,;,m.,z (pm?) i1=_11 m 1)’
m;=0
m=j. 4.19)
i=1
Let
m? .

F(m?,j,n) = eXp[ - 7} (m2)7 (4.20)

defined for m?eR, 0 < n < M, jeNN. This function is monotone in m? and its
maximum is given by the m-value m,,,, such that

0<m?ia=2(G +n).
Hence .
F(m?j,n) <exp[ — (j+n)] [2(j + n)]/™". (4.21)

: 4 T
Since for me 4, we have m* < 2K, = Lzﬁ we distinguish the cases
a

j+n<K; ie m’y, <2K;, (4.22)
and
j+n2=Kg, ie m?,=2K;. 4.23)
In the case (4.22) we have from (4.21), for me A4,,
F(m?,j,n) < exp[ — K] 2K;)*% . (4.24)

In the case (4.23) we have from (2.21), for me A4,, that the bound (4.21) can be
replaced by the monotonicity of m? — F(m?, j, n) for large m? and the fact that
mzmax % 2Kﬂ lmphes mmax¢Aaa by

F(m?,j,n) < exp( — K;)(2K;)'*", (4.25)
for me A,. Hence

[ dme=¥" F(m?,j,n) < Cexp[ — K;](2K,)*¥, (4.26)
Aa

in case (4.22), for some C > 0, and

dme™* F(m?,j,n) < Cexp[ — K;](2Kz)'*", 4.27)
B B
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in case (4.23). Inserting these estimates into
.‘. dme_%mz(?j,M(m)
Aa

and exploiting

£ (2)5 3,15 £ (8T -

n=0 n=0

we get the bound
—im? i i P
[ dme ¢ y(m) < C27%piCe8 "
Aﬂ
with ~
C; = max[(2K,)™, (2K, ] exp( — Ky) ,
y = max(l, 2K,) .

By dominated convergence the same bound holds with ¢; » replaced by ¢;, which
proves the last but one estimate in the lemma. The estimate on the remainder is
easily obtained by using Taylor’s formula and the fact that integrations are on the
region A, of finite volume. |

From Lemma 4.1, Lemma 4.2, together with the fact that by the argument given
at the beginning of the proof of Lemma 4.2,

[ dm exp(— NS(m))

1 1
is analytic in A=N in the region Re—>§ for any R >0, such that

A
2
min (#, p | < R, p < 1,and we can use a Theorem of Nevanlinna, see e.g. [14],
we have then, the following
Theorem 4.3. Let Zy be as in Theorem 3.1. Then the asymptotic expansion of

1
Theorem 3.1 in powers of I is Borel summable. |

Appendix

Let E, be a probability measure on { — 1, + 1}? defined as the product of uniform
probability measures on { — 1, + 1}. Let & = (&), with '€ { — 1, + 1}? being
independent identically distributed (i.i.d.) random variables. The corresponding
probability measure on ({ — 1, + 1}?)N is denoted by E and equal to the product
of the measures E,.

For NeN and a fixed vector {oe{ — 1, +1}7,a=1,..., 27 we set

da,n(¢) = Osi,g, (A.1)

"MZ

N
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and
ANGEPINGEES (42

With the notation introduced above we have the following lemma.

Lemma A.l. For anytelR, NeNanda=1,..., 2" we have

z £ 1 N
Ee'leN=¢727( ] + E,(e‘/N -1

gexp{%’ ¥ t—N‘”“}. (A3)

s h!
O

Proof. The formula for Ee'%=~ in (A.3) follows from definitions (A.1)-(A.2) by
simple explicit calculations. To get the upper bound we use the fact that

(1 + %,(e"” - 1)>N < eXp{%,N(e"N - 1)} : (A4)

For 6 > 0, let x5 v denote a characteristic function of the event {¢&: g, (&) <
6,Va=1,...,2"}
Using Lemma A.1 we get

Lemma A.2. There is a constant 0 < C; <oo independent of 6 > 0 and N € N such
that

E(1 = g5n) S Cre V" (A.5)
O
Proof. We have
2p B
E(1l—xsn) = Z E{|qan|>0}. (A.6)

a=1
Using the following inequality for ¢ > 0,
E{|qan| > 0} = E{e!Tnl > o1}
S E{etfon 4 g7 tan > ot} A7)
together with Tschebyschev inequality and Lemma A.1 we get
E{|Gan| > 6} S 7% E(e'TN 4 ¢~1Twn)

1 n
< 26_’6exp{— Y t—N‘"“} . (A.8)

2P Son!

Now we use (A.8) with t = N'/2 to bound the rhs of (A.6). By this we get (A.5) with

C, =2P*lexp {%p(e - 1)} . (A.9)
|
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Remark. By optimalisation with respect to ¢ on the rhs of (A.8) one can get an
improved bound (A.5) with N instead N /2 in the exponent.

Lemma A.3.

a)

_ 1 1 1
E|q.nl = <§,— 55;,)7\]1—/2 . (A.10)

b) For any 0 < C, <o, there is a constant 0 < C; <oo independent of ae
{1,...,2?7}, NeN and neN such that

E|qen!" = C3nl(C,NY2)™" (A.11)
c) We have with some positive constant 0 < C, <oo,
_ n—ldkn
E(qan)" = N‘"C:i<1 + ¥ N"‘) , (A.12)
k=1 X
where the constants d, , satisfy
0 < |dy, .| < D" (A.13)
with some 0 < D <oo. O

Proof. Using the definition (A.1) of g, y we get

N 1 5 L3 1
E| | qa,n( )—5, =E Fi’je(;w)fséuéa éj,ﬁa*zﬁi; e T35

1 X 1
=E\ 4z ) O¢.¢.00.6 ~ 535 | - (A.14)

Lj=1

But using the independence of &;, &; for i # j and (J¢, ¢,)* = d¢, ¢, We get:

Py 1 ¥ ,
E{ =5 2 9,006 ) =El 3 2 06.6.00.e | + El 3 2 (0s1,2.)
N N N?,

iL,j=1 i+J =j
L3> 33
=52 & EOe,e) EQy,e) + 577 ), E(ei.e.)
Nzi*j &h e 13 Nzi:j
1 r 11

= NN = D)o + (A.15)

N2P'
Using (A.14) and (A.15) we have:

| (ast)-3) |- (5- ) (A16

From this and the Schwarz inequality, Lemma A.3a is obtained.
Let us now prove b). We have for any positive t,

E(qa,n)™" < (2n)!t 2" Ech(td,,n) - (A.17)
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Choosing t = (4C,N)'/? and using Lemma A.1 we get

E(Gan)*™ < (2n)! (4C,)™" N ""exp {2"1(;2 (45;2) } . (A.18)
Hence, by application of Hélder inequality, we obtain
E|gqnI" < C3n!(C,N)~W/2" (A.19)
with
k
C; = exp { 2p1+ - k‘éz (4%2)2} . (A.20)

This ends the proof of part b).
To show ¢) we use the explicit formula for E e~ given in Lemma A.1. We have
for te R, |t| sufficiently small

_ i 1 N
Eeln= o7 (1 + 55 (€ — 1)> =expfRTPN"2r), (A2

where

f PN~ l/zt)_zp Z k'N kH1 4N Z 1W(%,(e'“v_ 1)>m. (A.22)

me2 m!

Using (A.21)—(A.22) we have

2n 2n

tda, N — (92PN )1
(dt)z"Ee (2°PN) @

exp f(2)]z=o- (A.23)

E(q-a,N)zn =

We expand the exponential exp f(z) in powers of f(z) and use the formula

T ) y Gn) rk[ & /) (A24)
Z)|,=0 = - o= .
(dz)2n 0 Jlsenos Jk=2 Jl" LRI ,]k i=1 o
£ i
Now using (A.22) we get for j = 2,
d’ (=1 P "
= 9pi-1 1/2j+1 27, /N2
(dzp! Dlemo=2"7"N" +dszm§2 ! <2Pe l)) oo
(A.25)
Since
d‘ 217 /NIIZ m
(dz)_]( 1) |z=0
0 for j<m
(A.26)

— Jj! 2p(i—m) N —1/2) >
DI nz 1 for j=zm
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so we get for j = 2,

d’
! @m0 = 277N 12
i(=1nm j! . ,
N —J ori-mpN-1/2)
N kl,”;kmglkll...km!
Z"’ ki=j

1aT—1/2] J (__ l)m
= QPimIN-L2i+1 Jy Z
m=2 m!
X j! pom+1
Kiveoos oz 1 K1! k1
z:" 1k‘_J
= 2WTINT2It g, (A27)

Let us note that the sum g; (in the curly bracket on the rhs of (A.27)) is bounded by
2ie=@77"h, Insertmg (A. 27) into (A.24) we obtain

@n! £

fk( )lz — - QPi—1 N 1251,
(dz)zn ° j.-,..;jkgz Jit il 11_11 K
Z:1“=1j'—2n
R Qn)!  k
_2p2 kN ok Z < -|].—Iafi
Jiseees ]k>2.]1"".’k~i=1
Z?:lj"=2m
= 2Pk D L (A.28)

As follows from the bound on g; the coefficients b, , are bounded by 24" e ~*Z7"",

Summing over k < n we obtain

d2n n
ef(z) — 2p2n kN—n+kb
(dz)* z=0 kzlk'
5 n—1 1 L k
— 22m 27rTkp N~
kZO<(n— k)! " k>
n—1
=z(2v-wnb,,,n{1 +3 21’7—1\1} (A.29)
k=1 nn

This together with (A.20) and the estimates on the coefficients b, ; yields Lemma
A3 o). |
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