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Abstract. For classical Hamiltonian systems containing an harmonic oscillator of
high frequency, one has the problem of controlling the energy exchange between
the oscillator and the remaining "slow" degrees of freedom; under very general
conditions, such an exchange turns out to be exponentially small with the fre-
quency of the oscillator. In the Jeans-Landau-Teller method, one aims to prove
the exponential dependence, and to estimate the coefficient of the exponential, by
exploiting the analyticity properties of the solution of the differential equations
describing the motion of the system. However, in practice, since the exact solution
is not known, such properties are inferred from those of an approximate solution,
with no control of the difference; this fact might a priori even invalidate the
exponential dependence itself. In the present paper a rigorous treatment is given,
for a particular model of interest in the domain of atomic collisions, by keeping
control of the difference between the exact and the approximate solution.

1. Introduction

The problem of estimating the exchanges of energy for systems containing har-
monic oscillators of high frequency is a very relevant one in many domains of
physics. A rigorous mathematical treatment was given, rather recently, by
Neishtadt [1] and by Benettin, Galgani and Giorgilli [2, 3], by adapting the
methods of classical perturbation theory developed by Nekhoroshev [4, 5]. A typi-
cal result is that the exchange of energy between a system of harmonic oscillators of
the same angular frequency ω and another system is, under quite general condi-
tions, exponentially small with ω:

ΔE^Ce~aω, C , α ^ 0 , (1.1)

if ω is sufficiently large. Unfortunately, as is typical of perturbation theory, the
estimates one gets for the constants, in particular for α, which is the most relevant
one, are terribly pessimistic and, as could be seen by numerical computations [6]
(see also [7] and the papers there quoted), very far from being realistic. Moreover,
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the exponential law comes out in a somehow unnatural way, as the result of
a rough estimate for the remainder of an asymptotic series; in other words, the
mathematical mechanism leading to the exponential law is not really transparent
there.

On the other hand, qualitative results of the form (1.1) are well known to
researchers in several domains of applied physics, such as atomic collisions [8, 7]
and plasmas [9]. The method used, which goes back to Jeans [10, 11] and to
Landau and Teller [12] (and perhaps even to Rayleigh), is based on the fact that the
energy exchange ΔE is simply related to the Fourier transform of a convenient
analytic function u(t\ directly constructed from the solution of the differential
equations describing the system (see below). Thus, the exponential law comes out
rather directly as a consequence of the standard estimate on Fourier transforms; in
particular, the distance of the closest singularity of u from the real axis plays
a crucial role, as it gives the coefficient a. However, we were not able to find in the
literature a rigorous implementation of this scheme. The problem is that usually
one is not able to control the singularities of u itself, since it depends on the exact
solution, which is not known; so one replaces the exact solution by a convenient
first order approximation, supposing that the corresponding functions have essen-
tially the same singularities; but a clear justification of this point is, as far as we
know, lacking. Moreover, one is confronted with the general problem of under-
standing the relationship between the two methods, namely that of classical
perturbation theory and that of Jeans and Landau-Teller.

In the present paper we address the first of the two problems mentioned above,
at least in the case of a particular model. In fact, we prove rigorously the
exponential estimate (1.1) by the Jeans-Landau-Teller method, by controlling the
relevant singularities for the exact function u; this is done in a particular case for
a model of interest in the problem of atomic collisions. We hope to be able in the
future to give a general theorem of such a type, and also to give the general
connection with the method of classical perturbation theory.

In Sect. 2 we briefly recall the model and the standard heuristic method. In Sect.
3 we formulate our main proposition, and deduce from it a corollary with the
exponential estimate. The proofs are given in Sects. 4 and 5. In the Appendix, a short
description of the Hamiltonian considered here, introduced by Rapp [8], is given.

2. The Jeans-Landau-Teller Method for a Particular Model

The model we study is a Hamiltonian system with two degrees of freedom, with
Hamiltonian

H(x, y, pX9 py) = \{p2

y + ω2y2) + \vl + e~x(l + y), (2.1)

and variables (x, y, px, py) e R 4 . Such a Hamiltonian describes, in some approx-
imation [8], the collinear collision of a diatomic vibrating molecule, with proper
angular frequency ω, with a point-mass coming from + oo, the point-mass and the
closer atom of the molecule being supposed to interact via a repulsive exponential
potential; equivalently, one can think of a molecule colliding with a fixed wall (for
more details, see the Appendix). The corresponding equations of motion are

x-e-χ = ye~x

9 y + ω2y = - e~x . (2.2)
Denote by
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(2.3)

the unperturbed energies of the particle and of the oscillator respectively. We are
interested in the energy acquired by the oscillator after the collision, more precisely
in the quantity

ΔE = lim (Ey(t) - Ey{t0)) . (2.4)
ίo~» — oo

t~*CO

The method used is essentially as follows: denote by xω(ί), yω(t) the solution of (2.2),
and introduce the complex amplitude Aω = yω + ίωyω, so one has that
Ey = j\Aω\2. From the second of (2.2) one easily obtains the integral expression

Λω{t) = Λω(t0)e iωit-to)

so that one gets

E>(t) - £»(ί0) = - ,-x.mgtωtfo \A(to)\ ,-xΛt)elondt cos φ0 , (2.5)

φ0 being a suitable phase. Introducing now the Fourier transform of e Xω(ί):

ύω(v) = j e~xAt)eivtdt

(v is here conjugate to ί, while ω is a parameter), from (2.4) and (2.5) one gets for ΔE
an expression of the form

ΔE = -\ύω(ω)\2 \A(- co)\\ύω(ω)\cosφo (2.6)

with suitable φ^.
The problem is thus to estimate |wω(ω)|. To this end, one assumes that the

solution xω(z), thought of as function of the complex time z, is analytic in the strip
|Imz| < τ, for a suitable τ. Then, by standard arguments (shift of the integration
path by iτ)9 one gets the estimate

C= J \uω(t + iτ)\dt, (2.7)

so that in particular, taking v = ω, one obtains (1.1) with a = τ and suitable C.
This argument is certainly correct, but does not in fact constitute a proof of the

exponential dependence of ΔE on ω. Indeed, it is clear that the quantities τ and
C depend parametrically on ω, and, for example, a dependence of the form τ ~ 1/ω
would completely invalidate the exponential dependence of ΔE on ω. So one still
needs a concrete estimate on τ, in order to bound it away from zero; on the other
hand, τ is defined through the analyticity properties of the solution xω(ί), which is
not effectively known.

The approximation usually made (see ref. [8, 9]) is that of replacing the true
solution xω(t) of (2.2) by a "first order" solution ξ{t\ independent of ω, obtained by
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neglecting the interaction, namely, in the present case, the solution of the equation

ξ - e - < = 0 . (2.8)

The general solution of (2.8) can be written explicitly in the form [8]

(2.9)

T and v0 being free parameters; precisely, T represents the inversion time (defined
by ξ(T) = 0), while υ0 is related to the initial data, at some initial time t0, by

\υl = )fl + e-*» = Eo

x, (2.10)

E° being the initial value of Ex. One easily checks that the right-hand side of (2.9) is
analytic in the strip | Imz | < τ, with

π
τ = —

t>o

this constant is then taken as an approximation for the coefficient τ appearing in
(2.7). For what concerns the energy exchange, given by (2.6), one thus obtains (1.1)
with in general a = τ; in particular, for vanishing initial energy of the oscillator, one
obtains a = Iτ.1 This is the essence of the scheme which we call the
Jeans-Landau-Teller method in its heuristic version.

As discussed above, it is clear that such a method requires a careful justification;
otherwise, the result given by first order approximation might even be misleading.
A justification sometimes adduced to support the above procedure is that the
right-hand side of the first of (2.2), being proportional to y, is "small" for ω large;
this however is not sufficient because, during the collision, one can only guarantee
\yω\ ~ 1/ω, so that the quantity neglected in the approximation turns out to be, so
to speak, much larger than the result one wants to prove.

In the present paper we estimate the quantity τ for the solution of the complete
problem (2.2), for the particular case in which the initial energy Ey

0 of the oscillator
is negligible. We prove that one has

W J
so that the coefficient τ turns out to be, for ω large, as close as one likes to the "first
order approximation" τ.

1 The same result is also obtained if one takes the average over the phase φ^ appearing in (2.6);
this procedure is physically meaningful since (within the approximation used) it corresponds to
taking the average over the initial phase of the oscillator, which can be treated, within a statistical
approach, as a random variable. So, if one is concerned only with statistical properties, it is
sufficient to consider the case of vanishing initial energy. It is not completely clear to us whether
the same conclusion holds also independently of the approximation; anyway, this consideration
can be a motivation to begin the study of (2.2) in the particular case Ey

0 = 0
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3. Statement of the Results

Our main result is contained in the following

Proposition. Consider the system of equations

x = e~x(l + y\ y = — ω2y — e~x ,

with given initial data x0, x0, y0, y0 at initial time to; denote

2 ' 2

and furthermore let v0, x and τ be defined by

i 2_

2

Assume

- υ = x + 2τω, Ey

o^Voe , ω ^ 2 D0

325

Λ — X

e =
π

(3.1)

(3.2)

(3.3)

(3.4)

Then the solution2 x(z), y(z) of system (3.1), as a function of the complex time
z = t + ϊ'σ, is analytic in the strip \ Im z | ^ τ, wiί/z

τ =

ί/ιef e satisfies the estimates

\e-x(t + iσ)\ <8"Hω

moreover, one has

lim |
ί->- ±oo

= 0,

-1/2

-2τcα .

^ τ .

(3.5)

(3.6a)

(3.6b)

(3.6c)

(3.6d)

(3.7)

Concerning the assumptions (3.4), let us remark that the third one just establishes
a threshold for the "small parameter" vo/ω. In fact, the only really restrictive
assumption is the second one, which essentially requires the oscillator to be initially
at rest; according to the first assumption, "initially" just refers to any time t0 at
which the point-mass and the oscillator are sufficiently far apart.

2 The functions x(t\ y(t), here introduced, coincide xω(ί), yω(t), appearing in the previous section;
the subscript is omitted, from now on, just for notational simplicity
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From this proposition one easily deduces a corollary, which provides a bound
for the energy exchange.

Corollary. Within the same notations and assumptions of the above proposition, the
energy of the oscillator

satisfies the inequality

l im I
ί-> ± oo

(3.8)

(3.9)

As already indicated in Sect. 2, this estimate is obtained by rewriting the second of
(3.1) in an integral form, valid for all complex times, which will be used several times
in this paper. Introduce the complex time z = t + iσ, \σ\ < τ, and denote

(3.10)

(3.11)

(3.12)

= y(z)±iωy(z)\

then the second of (3.1) is equivalent to

A±(z) = e±ίω{z-to)A(t0) - J e±iωiχ-zg)e'x{zt)dzf ,
fo

with any integration path in the analyticity domain. The obvious relation

will also be used.

Proof of the Corollary. For real t one has clearly

so one finds

Έ?{t) = \\A + {t)\2

le~iωse~x{s)ds

(3.13)

Assume, for definiteness, ω > 0; shifting the integration path to Im s = — τ, one can
write

ίl y-x(s-iτ) \ds
H*\dσ,

and the result then immediately follows from (3.6c, d), also using (3.7). Q.E.D.

4. Strategy of Proof, and Two Lemmas

Throughout the proof we will use the notation

ε = vo/ω . (4.1)
For definiteness, we shall implicitly refer, in the proof, to the case x 0 < 0; the case
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x0 > 0 (corresponding to a collision occurring before ί0) could be treated in an
analogous way.

Concerning the strategy of proof, let us make the preliminary remark that the
functions appearing at the right-hand side of (3.1) being entire, the solution
(x(z), y(z)) is certainly analytic, as a function of the complex time z, as long as e~x{z)

and y(z) are bounded; thus, it is sufficient to prove the inequalities (3.6) to get, as
a byproduct, also the analyticity of the solution.

In turn, the proof of (3.6) is organized as follows: first of all, we prove in a first
lemma some preliminary estimates on e~x{t) and y(t), for real t; then, in a second
lemma, we deduce inequality (3.6d), together with some other useful estimates.
Afterwards, we come to the heart of the proof, namely we deduce, at the same time,
inequality (3.6b), and two other inequalities, stronger than (3.6a, c), namely:

\e— x(s (4.2a)

where

$\e-χ(s+iσ)\ds

η(ε,σ) =

2t? 0 (l

1 + 2 ^

, σ) , (4.2b)

(4.3)

To see that inequalities (4.2) are indeed stronger than (3.6a, c), it is enough to show
that, for ε < 2~8 and σ ^ τ, one has

(4.4)

To check (4.4), let us notice that, from σ ^ τ = —(1 — 2ε1/4), one gets

- ε 2ε 5 / 4 ),

and consequently

cos( -σv 0 V I + 4ε ) ̂  sinπ(ε 1 / 4 - ε + 2ε 5 / 4 ).

It then easily follows that, for ε satisfying the above assumption, the right-hand side

is larger than 2ε1 / 4 ^/l + 2 ^/ε; inequality (4.4) is then immediately obtained.
In the course of the proof we shall use in several occasions a technique,

sometimes called the "bootstrap method," which is similar in a sense to the one
based on the induction principle in the discrete case. It goes as follows: let / be
a continuous function of the real variable s, and suppose one wants to prove an
inequality of the form/(s) < K, in a closed interval / (possibly coinciding with the
whole real axis). To this end it is sufficient to prove that: (i) there exists a point
s0 e /, such that /(s0) < K; (ii) in any closed interval [s0, 5χ] c / (or [ s l 5 s 0] if
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Si < s0), the weak inequality/(s) ^ K implies the strict inequality/(s) < K. The
proof is totally elementary: assume, in contradiction, that the strict inequality is not
satisfied, for example, for some s > so; let sί > s0 be the first value of s, such that
/ ( s j = K. Since in the interval [s 0, Si] one has f(s) ^ K, one deduces from (ii)
/ ( s j < K, which is a contradiction. The method clearly applies also in the case of
more than one simultaneous inequalities.

In the remaining part of this section we state and prove the two lemmas
mentioned above.

Lemma 1. Consider the system of equations (3.1), and assume

Eϊvl β£±, (4.5)

where E denotes the total energy, E = Ex + Ey + ye~x, and ε is defined by (4.1). Then
for any t e JR. one has

\y(t)\ <y/2ε, (4.6a)

Ex(t) — -VQ < 2vlε , (4.6b)
2

and moreover

J e~x(t)dt <2vo(l + 4 ε ) . (4.7)
— 00

Proof Both inequalities (4.6) are easily proven by the bootstrap method. Concern-
ing the former one, one immediately deduces, from (4.5),

\y(to)\<e

Take now any tl9 for example tγ > tθ9 and assume that in the interval [ ί 0 ? t{] the
inequality \y(t)\ ^ ^Jlε holds. Then one has (1 + y)e~x > 0, and the strict inequal-
ity (4.6a), in the same interval, immediately follows from energy conservation. Then
(4.6a) holds for any ίe lR.

As a byproduct of inequality (4.6a), one deduces that there is just one inversion
time, i.e. a time i such that x(i) = 0; indeed, this immediately follows from

Let us now come to (4.6b), which is obviously satisfied for t = t0. Assume then
\Ex(t) — 2^o I ̂  2VQS9 up to some t1; one immediately gets

~~ ~ 2

(for the last inequality, the assumption (4.5) on ε is fairly sufficient). On the other
hand, from the energy theorem applied to the equation of motion for x, one can
write

Ex(t) - Ex(t0) = J y(s)e-χ(s)x(s)ds
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considering, for definiteness, the case t0 < i < t (which turns out to be the worst
one), one then gets

\Ex(t) -Ex(t0)I ^ sup|y(s)| ί e~x{s\ - x(s))ds + \ e~x(s)x(s)ds
seR L ίo ί J

S sup\y(s)\(2e-χ{ί) - e~x{to) - e~x{t)) .
selR

Using (4.8) and (4.6a) one has thus \Ex(ή - Ex(t0)\ < 2VQS, and inequality (4.6b)
follows.

Finally, concerning estimate (4.7), one first writes the obvious inequality

\χ(t')-x(t")\ =
t"

y(t))dt ^ ( 1 -sup\y(ή\
ίeIR /

Vί.-
for any pair t', t", with t' < ί"; on the other hand, one has

x(t') - x(ί")| ^ 2sup|x(ί)| ^ 2 sup
ί e R f e R

and finally

7J e < 2υ0

using assumption (4.5) on ε, inequality (4.7) follows immediately. This concludes the
proof of the lemma. Q.E.D.

Lemma 2. Under the assumptions (3.4) of the Proposition, one has

| e-*(io + i«r)| <υ2e-2τω ^

\y(to + iσ)\ < ε

for any σ with \σ\ ̂  τ = π/vθ9 and moreover

<4voe
— 2τco

(4.9a)

(4.9b)

(4.10)

Proof The pair of inequalities (4.9) is proven by the bootstrap method, with respect
to the real variable σ in the interval [ — τ, τ], using the fact that they are true for
σ = 0. Take any σγ with |σx | ^ τ, say σ1 > 0, and assume both inequalities (4.9) are
satisfied for 0 ̂  σ ^ σγ, with " ^ " in place of " < ."

Consider first inequality (4.9b). From the expression (3.12) for y, we can write

\y(to

1 Γ
iσ)\ ^ — \A + (t0)\e

Zω\_

+ \A-(to)\e + ω
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Recalling that |̂ 4 *(£(>) I ̂  -Jlv^e"1™ by hypothesis, and that (4.9a) is assumed to
hold with " S ," then one has \y(t0 + iσ)\ S 2ε£?" 2 τ ω < r ( τ - σ ) ω < e, so that the (4.9b)
is achieved.

In order to prove (4.9a), one has to estimate Rex(ί0 + iσ) By twice integrating
the first of (3.1), using also Imx(ί0) = 0, one finds

Rex(ί0 + iσ) = x(t0) - ]dσ' ] R e ^ - ^ + ̂ C l + y(t0 + iσ")])dσ" .
o o

Then one gets

|Rex(ί0 + iσ)\ > x(t0) - 2π2e-2ΐω > x(t0) - In2 ,

which gives immediately the desired inequality.

Finally, inequality (4.10) is proven by a direct computation, namely

S τ sup \e-
χ«° + iσ)\ ^ πvoe-2ΐω . Q.E.D.

0< σ ^τ

5. Proof of the Proposition

As remarked above, in order to prove the proposition we have to prove, for \σ\ ^ τ,
inequalities (4.2), (3.6b, d) and (3.8). In fact, (3.6d) turns out to be weaker than the
already established inequality (4.10), and so is already proven.

Now we concentrate on (4.2) and (3.6b), using the bootstrap method; by Lemma
2, they are clearly satisfied for t = ί0. So, let us assume they are satisfied with " ^ "
in place of " < ," in some interval [ί 0 , ί x ] , and prove that in the same interval the
strict inequalities hold. For the case of (3.6b), the proof is a consequence of the
following

Lemma 3. Under the assumptions (3.4) of the proposition, if inequalities (4.2) and
(3.6b) hold with " :g " in place of" < " in a closed interval [ί 0, t{], then the strict
inequality (3.6b) holds there, and for any t in that interval one has

]\y(t + iσ')e-^'+i^\dσ'<^-voε. (5.1)
o i L

Proof. By (3.11) and (3.12) we can write

y(to + iσ) = ̂ [ ^ ( ί o ) ^ - ' 0 * - h(z) - A-(to)e-1^-^ + /2(z)j , (5.2)

where z = t + iσ,

I^z) = ]e-
iω(z-2Ίe-χ^dz' (5.3a)

I2(Z) = ]e + iω(z-z')e-χiz')dzf , (5.3b)
ίo

and the integration paths are inside the rectangle |σ| ^ τ, t e [t0, t{].
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For definiteness let us consider the case σ > 0. In the first integral Ix we choose
the integration path y as the union of the real interval / = [ ί 0 , t] and the "vertical"
interval y" = [ί, t + iσ]. Correspondingly we have I1= I\+ /'/, and we find the
estimates

\I\{z)\ S e-ωσ]e-χis)ds < 2υo(ί + 4ε)e~σω ,

\I'ί(z)\ ^ ]e-ωiσ-σ>)\e-χit + iσt)\dσf <\voεη(ε, σ) ,
o 2

which are established using Estimate (4.7) of Lemma 1 for the first one, and (4.2a)
for the second one.

In the second integral I2 we choose instead the integration path y as the union
of the "vertical ascending" interval / = [ί 0, ί0 + zτ], the "horizontal" interval
y" = [t0 + fTj ί -i- f τ]5 and the "vertical descending" interval y3 = [t + iτ, ί + iσ].
Correspondingly we have I2 = l'i + I'ί + /'ΓJ and we find the estimates

\r2(z)\ ^ j'
0

.,2 Λ - τ

|/'2"(z)| ^ ]eω{σ-σ')\e-χ{t + iσ')\dσf <-voεη(ε, τ) ,

which are established using Estimate (4.9a) of Lemma 2 for the first one, (4.2b) for
the second one, and (4.2a) for the third one.

Moreover, from Assumptions (3.4) we have

\A + (t0)eίωz + Λ-(to)e-iωz\ < 2voe~τω ,

so that, collecting terms, one gets

\y(t + iσ)\ ^ ^ε[2(l + Aε)e~σω + εη(ε, τ) + (2 + ε)e~τω

+ 2(1 + 4ε)f/(ε, τ)e~ω{τ-σ)~\ . (5.4)

This inequality implies immediately inequality (3.6b), as claimed.
Coming to inequality (5.1), one first writes

J \y(t + iσf)e-χ{t + iσf)\dσ' ^ \v2

oη(ε, σ) ] \y(t + iσ')\ dσ' .
o ^ o

One then makes use of (5.4), as well as the bootstrap assumption for η; noticing that
the dominant term in right-hand side of (5.4) is the last one, and that the integration
over σ gives an extra factor ω " 1 , the result is easily found. Q.E.D.

Coming back to the proof of the proposition, we have to show that (4.2) are also
satisfied as strict inequalities in the interval [ίo» ί i ] The strategy of proof is the
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following: for any ίe[ί o >£i]> we introduce a convenient approximation ξt(z)
(described below) to the solution x(z), and prove that: i) ξt satisfies the inequalities

2

+ v ε

-ξt{s+iσ)\ds ^ 2uo(l + 4ε) ^?l°L (5.5)
1 + v ε

ii) one has

This is obviously enough for the proof of (4.2).
As to the approximating function ξt(z)9 for any t e [ ί 0 ? ί i ] this is defined as the

solution of the approximated equation (2.8), with initial data at time z = t, given by
ξt(t) = x(t\ ξt(t) = x(t). Loosely speaking, this corresponds to following the true
equations (3.1) from t0 to ί, and then switching to the approximate equation (2.8)
from t to z; in fact the approximation ξt(z\ although defined for any z, will be used
only for z = t + iσ. In analogy with (2.9), the explicit expression of ξt(z) is given by

^ , (5.7)

2 c o s h 2 ^ ( z - Tt)

with vt = sj2Ex(t) and a suitable Tt.
From the expression (5.7), inequalities (5.5) follow rather easily. Indeed one has

υ2

2cosh 2 | ( ί- 7;)-

(5.8)
2 Vt 2Vt

cos — σ cosz —σ

from this, using e x ( ί ) ^ £^(ί) and the estimate Ex(t) ^ ^ § ( 1 + 4ε), which follows
from (4.6b) of Lemma 1, one gets the former of (5.5); the latter too easily follows
from (5.8), using (4.7) of Lemma 1.

Inequality (5.6) requires instead some more work. Let us denote

δt(z) = x(z) - ξt(z) (5.9)

then one has δt = e~ξt(e~δt — 1) + ye~x, or also, emphasizing the linear part,

δt = - e~ξtδt + e~ξt{e~δt - 1 + δt) + ye~x . (5.10)

This is a non-autonomous differential equation for δt, with initial data (at time
z = t) δt(t) = δt(t) = 0, as follows from the very definition of ξt. With these initial
data, Eq. (5.10) can be rewritten in the integral form

] d w , (5.11)
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where

F(w) = e-
ξtiw)(e-δt(w) - 1 + δt(w)) + y(w)e-χ(w) ,

while G(z, w) is a family of solutions of the linearized equation

δ\=-e-ξ*δt9 (5.12)

depending on the parameter w, such that G(w, w) = 0, G(w, w) = 1. It is not difficult
to check that G is given by

G(z, w) = -^[(z - w)g(z)g(w) + g(z) - ^(w)] ,

| | - Γ t ) ; (5.13)

for z = t + zσ, w = ί + z'μ; after some work one finds

| ( 5 ί | < 2 | δ ί |
2 ε - 1 / 2 + ̂ ε 3 / 4 . (5.14)

The details of this computation are not fully reported here; the essential steps are
the following:

i) After writing (say for positive σ)

\δt(t + iσ)\ ^ ] \G(t + iσ,t + iμ)e-ξtit + iμ)\\e-M + iμ) - 1 + δt(t + iμ)\dμ
o

+ J I G(t + iσ, t + iμ)\ \y(t + iμ)e-χ{t + iμ)\ dμ , (5.15)
o

one makes for δt the bootstrap assumption |<5f(ί + iμ)\ ^ log2, which leads to the
estimate | e -*< i + W - 1 + δt(t + iμ)\ < \δ*\.

ii) By direct computation one gets the estimate

]\G(t + iσ91 + ίμ)e-ξtit+iμ)\dμ ^ 8tan 2 \
o 2

the first term in (5.15) is then properly estimated by the first term in (5.14).

iii) By direct computation one gets the estimate

6 vtsup \G(t + iσ, t + iμ)\ g - t a n -σ
Vt 2

by means of (5.1) of Lemma 3 one then concludes that the second term in (5.15) is
also properly estimated by the second term of (5.14).

From (5.14), taking into account assumption (3.4), one immediately gets

\δ,\ ί φ 1 / 2 , (5.16)

which on the one hand provides the consistency of the bootstrap procedure, and on
the other hand leads immediately to (5.6). As already remarked, this is enough to
conclude the proof of inequalities (3.6).
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To complete the proof of the proposition, we only need to prove (3.7). It would
be rather easy to generalize Lemma 2, and show that \e~

χ(t + iσ)\ decays to zero
exponentially, for t -> ± oo in fact, the simple property that the limit vanishes is
an easy consequence of (3.6c), according to which the function e~

x(t + ίσ) is summ-
able (one must also take into account that, in the analyticity strip, the derivative of
e~x(z) is bounded). Q.E.D.

6. Conclusions

We have shown that, for a particular model of interest in the domain of atomic
collisions, the Jeans-Landau-Teller method can be made rigorous, so that the
exponential law (3.9) for the energy exchanges is justified; moreover, the explicit
estimate (3.5) found for the coefficient for the width of the analyticity strip τ shows
that this quantity approaches, for ω large, the value τ which is obtained in the
heuristic version of the method. Numerical computations, to be reported soon [6],
show that this result is, in a sense, optimal: namely, it appears that the distance of
the closest singularity of e~x(z) to the real axis tends to τ (from below) for increasing
ω, although faster than estimate (3.5).

On the other hand, one should also stress that we were able to prove such
properties only under a very restrictive hypothesis (usually assumed also in the
heuristic treatments), namely that before collision the oscillator has negligible
energy. This assumption is essential in our approach, because without it the
amplitudes A ± (z) of the oscillations cannot be kept controlled outside the real axis;
indeed, as could be seen within perturbation theory, A± (z) does actually increase
exponentially with Imz. 3 However, this fact does not imply that, for a nonvanish-
ing initial amplitude, the Jeans-Landau-Teller method becomes useless: rather, it
indicates that some essential changes in the strategy of the proof are needed; work
is in progress in this direction. In fact, numerical computations [6] seem to indicate
that the exponential law (1.1) persists, with apparently no essential changes, even
for nonvanishing initial amplitudes.

Other problems remain open. Let us just quote the extension of the present
treatment to the case of a general class of potentials, and moreover to systems of
several oscillators. Finally, as anticipated in the Introduction, one has the problem
of establishing a connection between the present method and the general methods
of perturbation theory. We hope to be able to give some results about these
problems in the future.

Appendix

In this appendix we outline an elementary physical interpretation of the model
studied in this paper; we follow almost literally the original treatment of Rapp [8];

3 The deep reason is that the canonical transformations entering perturbation theory contain
Fourier terms of the form eιk9; during the motion one has # ~ Qo + ωz, so that these terms increase
exponentially with Imz
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only, we choose to adapt the language to the case of the collision of a diatomic
molecule with a fixed wall, while Rapp considers the collision of a point mass with
the molecule (for an illustration, see the Fig. 1).

Denote by M = m1 + m2, and μ =
m1m2 , the total mass of the molecule and

the reduced mass respectively, by X the coordinate of the center of mass, and by
Y the relative coordinate x2 — xλ. The Hamiltonian has the form

P2

2

where Ω represents the proper frequency of the molecule, Yo is its rest length, and
finally, V(X, Y) is a suitable potential, which models the interaction of the molecule
with the wall.

Following Rapp, one first assumes that V depends on the distance

r = X Y between the wall and the closer atom, and follows the very simple

law V = V0e~r/ro, with suitable constants Vo and ro; one has then

V= F^-^-^(r-F0)]/r0

= V'oe-χ"«( 1 + - Yo)

with VQ = y0e
m2Yo/Mro. Making a crude physical approximation, one then neglects

the higher order terms in the expansion of the exponential, and writes the (second
order) equations of motion

l—

Mr0

y = -Ω2{Y- γ0)

Finally, one eliminates some dimensional constants by suitably rescaling X, Y and

the time ί, namely posing X = rox, Y= Yo-\ y and f = / — ^ t (notice that all

X

Fig. 1. Illustrating the model
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variables are now dimensionless). For the particular case mγ = m2, one gets for

x, y precisely the system of equations (2.2), with ω = -rpr Φ these are canonical

equations, with Hamiltonian (2.1).
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