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Abstract. We give a criterion for the existence of a non-degenerate quasihomo-
geneous polynomial in a configuration, i.e. in the space of polynomials with a fixed
set of weights, and clarify the relation of this criterion to the necessary condition
derived from the formula for the Poincare polynomial. We further prove finiteness
of the number of configurations for a given value of the singularity index. For the
value 3 of this index, which is of particular interest in string theory, a constructive
version of this proof implies an algorithm for the calculation of all non-degenerate
configurations.

1. Introduction

Recently, a particular class of singularities [1, 2], namely singularities of
holomorphic quasihomogeneous functions, have been found useful for the
classification of superconformal field theories (SCFT) with particular significance
for the case of N = 2 superconformal symmetry [3, 4] due to a non-
renormalization theorem. The requirement of conformal invariance implies
quasihomogeneity of degree 1 for the superpotential

W{λniΦύ = λdW(Φύ (1)

in the effective Lagrangian description, with the scaling dimensions of the chiral
superfields Φt translating into the weights qi^njd of the variables Xt of a
holomorphic function W(Xt). The local algebra of this function, i.e. the quotient of
the polynomial ring by the ideal generated by the gradients djW(X^ is isomorphic
to the operator product algebra of chiral primary states [4]. In order that this
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algebra be finite we will concentrate on isolated singularities, i.e. require that the
origin be the only solution to the equation dW=0. We will consider only
quasihomogeneous holomorphic functions with positive weights q{ > 0, which are
automatically polynomials.

In the mathematical literature isolated singularities have been classified up to 3
variables and for low values of the modality or of the dimension of the local
algebra [2]. A general tool for the investigation of degeneracy is the Poincare
polynomial P(t) = tτtdJ [2, 5], where the trace extends over a basis of the local
algebra and J = £ qiXidi gives the weight of a basis monomial, i.e. the coefficients

i

μa of tdqa in this polynomial are the multiplicities of the weights qa. For any non-
degenerate quasihomogeneous function this polynomial can be calculated from

\_td-ni

Π Ί Γ Γ ? Γ . (2)

Thus a necessary condition for non-degeneracy is that this expression is a
polynomial with non-negative coefficients. Note that the Poincare polynomial
only depends on the set of weights and not on the particular form of W. We call the
set of all polynomials which are quasihomogeneous with respect to the weights
qi = ni/d a configuration

A configuration is said to be degenerate if it has only degenerate members. A final
guidance of our interest comes from the relation between the singularity index

c = Σ ( l - 2 ^ ) (4)
i

and the central charge c in the Virasoro subalgebra of the corresponding N = 2
SCFT, which can be shown to be c = 3έ [4].

In this note we will supply tools for the classification of non-degenerate
configurations with a given singularity index. In Sect. 2 we start with some
definitions and examples and then give a criterion for non-degeneracy of a
configuration. We also show how this criterion is related to the necessary
condition that the r.h.s. of (2) is a polynomial (PP-condition). In Sect. 3 we prove
that for any given value of the singularity index there is only a finite number of
non-degenerate configurations. Then we consider the cases of low integer index
c^3 more explicitly. In the conclusion we summarize our results and briefly
comment on their implications for the classification of SCFTs.

2. Non-Degeneracy Criterion

A necessary condition for a quasihomogeneous polynomial to be non-degenerate
is that every variable X occurs either in the form Xa or XaY. We will use a graphic
representation in which every variable is represented by a dot, and a term of the
form X°Ύ is indicated by an arrow from X to Y. We will sometimes say "X points at
Y." If no arrow originates from a variable X, then there is a term of the form Xa in
the polynomial. Note that, as compared to the book by Arnold et al. [2], we omit
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o
Fig. 1. Graphic representation of X\XX2 + Xa

2

2 + X%*XA

2 4
Fig. 2. Graphic representation of the degenerate polynomial X\ι.

2 4 2 4
Fig. 3. Dressing of the graph in Fig. 2: (a) by the link X\X% and (b) by the pointer

the "loops" indicating such terms *. For example, a polynomial of the form XΐX2

+ Xa

2

2 + Xa

3

3X4 + Xl4X3 is shown in Fig. 1.
A possible danger for the non-degeneracy of the polynomial arises when two or

more arrows end at the same point, such as in the polynomial Xa

1

1X2 + X2

2

+XC£X2 + XC4, depicted in Fig. 2. The reason for the problem is that when we
calculate dWjdXi and set X2 to 0 we are left with only one equation for the two
variables Xγ and X3. Therefore, we have to introduce extra terms in W that yield
terms in Xί and X3 in dW even when all other variables are set to zero, as in
XΫXz + Xf + Xl^ + XΪ + εXlXl or in XγX2^Xa

2

2-\-X^X2 + Xl^εXp

1X
q

3X4.
The graphic representation of these polynomials is shown in Fig. 3. We use dashed
lines and pointers originating from dashed lines to indicate such extra terms. We
shall call the graph without these additional lines "skeleton graph." It should be
noted that all weights can be calculated only with the knowledge of the skeleton.
As we have already mentioned, a necessary condition for the existence of a non-
degenerate quasihomogeneous function is that the r.h.s. of (2) is actually a
polynomial. For configurations with up to three variables, but not in general, this

1 In our graphical representation of polynomials the important issue will be the pointer structure,
to which "self pointers" do not contribute (see below). Thus, in particular for complicated
structures, we think it is more transparent to omit this redundant information
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condition is also sufficient and identical to the condition for the existence of the
terms represented by dashed lines [2].

Definition. We call a variable X a root if the polynomial W contains a term Xa. A
monomial YaZ is called a pointer at Z. a is called the exponent of X or Y,
respectively. We recursively define a link between two expressions, which may
themselves be variables or links, as a monomial depending only on the variables
occurring in these expressions. A link may further be linear in an additional
variable Z, which does not count as a variable of the link. In this case we say that
the link points at Z, thus extending the previous definition of a pointer. Of course,
a specific monomial occurring in W can have more than one interpretation as a
link or pointer. Given W, we call any graph (not necessarily the maximal one)
whose lines allow the above interpretation in terms of monomials in W a graphic
representation of W.

Theorem 1. For a configuration a necessary and sufficient condition for non-
degeneracy is that it has a member which can be represented by a graph with:
1. Each variable is either a root or points at another variable.
2. For any pair of variables and/or links pointing at the same variable Z there is a
link joining the two pointers and not pointing at Z or any of the targets of the
sublinks which are joined.

Before proving this theorem, we shall illustrate the ideas on which it is based
with some examples.

Example 1. A polynomial of the form

+ Xa

2

2 + X2Xf + Xa

4

4X5 + Xa

5

5 + X5X*6* + xγ + &1XγXγXΊ + ε2Xl4Xp

6*X7

(5)

2 3 4 5

Fig. 4. The pointers (13)->7 and (46)-»7 require the link ((13)(46)) drawn in boldface

Fig. 5. The monomial X\X%X\ provides all three links ((23)(34)), ((34)(42)), and ((42)(23)) required
by the pointers (23)-+5, (34)-+5, and (42)-*5
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is degenerate, as one can see by calculating dW and setting X2,X5, and XΊ to 0. By
adding the "missing link" ε3Xj1X|3X4

4X|6 we obtain non-degeneracy. The
translation into our graphic language is given by Fig. 4.

Example 2. Fig. 5 shows the graphic representation of a polynomial where more
than two arrows end at the same point. Distinct "links for links" are realized by the
same monomial.

Example 3. W= X\ + (X\ + X\ + Xl)X1 + εX2X3X4. Note that the last monomial
fulfills three tasks at once: pointer from X2 and X3 to XA, pointer from X2 and X 4

to X3 and pointer from X3 and X 4 to X2.

Proof of Theorem 1. A) "Necessary": Calculating dW\dXi yields n equations in
n variables. Non-degeneracy means that they can be fulfilled only by the trivial
solution. Obviously, a necessary condition is that by setting k variables to 0 no
more than k equations can be fulfilled identically. Starting with k = n — 1, we find
that for each Xt monomials in this variable must occur in dW/dXp which means
that each variable has to be a root or has to point at another variable. (This was the
first condition of the theorem.)

Let us now consider k = n — 2, i.e. we set to 0 all variables except two (which we
shall call X x and X2). According to the above, monomials X\ι and X2

2 must occur.
There are two possibilities: either these monomials occur in different equations,
meaning that there are at least two equations that are not automatically fulfilled by
setting all variables except Xx and X2 to zero, or they both occur in the same
equation. In the latter case a necessary condition for non-degeneracy is the
occurrence of a monomial in both variables in one of the other equations, i.e. either
one of them points at the other or there must be a link between them.

We proceed inductively in /=n — k: We construct the graph by adding just the
lines that we need in each step. Assume we have all the lines up to level /—I.
Suppose there are two links pointing at the same variable Z. Let them have lx < I
and l2 < I variables, of which they have q variables in common, and I = l\ + l2 — q
variables together. Setting all other variables to zero, the links and pointers we
have drawn until now correspond to/1 + /2 — q — 1=/—1 equations, as dW/dZ and
q additional equations are double counted due to the overlap in the variables. So
we need one more equation in the / variables, i.e. we need the link implied by the
second condition of the criterion.
B) "Sufficient": We show that no degenerate configuration can fulfill our
conditions. Let W= £ Mμε

μ represent a degenerate configuration, where the Mμ

are monomials in Xh and let d( = d/dXt and dμ = d/dεμ. Further, for any choice of εμ

there are non-vanishing solutions Xf(ε) to the equations dfW=0. As these
equations are polynomial, we can choose an open set of (ε1, ...,εk) and a solution
(Xι(ε), ...,Xn(ε)) depending smoothly on the εμ in this set. Quasihomogeneity
implies that W(Xfc)) = 0. Therefore,

dεμ

 i i μ i μ μ

i.e. every monomial in W has to vanish. We now choose a point ε in this set for
which X^ε) + 0,..., X^ε) φ 0, but Xt+ί =... = Xn = 0 in some neighbourhood of ε
(we are, of course, free to choose the labels for the Xt). Differentiating dtW with
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respect to εμ we find

-^dtw= Σ diδjWδ.Xj+diM^o. (7)
Uo j ^ /

Due to quasihomogeneity £ qjXjdidjW=(ί—qi)diW=O9 i.e. the rank of the

rectangular matrix dfijW with j ^ I is less than /. Thus there are at least n — /+1
independent vectors c<m) with £ c^m)5ί5,PΓ=0 and hence £ c f ^ M =0. As all

monomials Mμ have to vanish, only one of the derivatives diMμ can be non-

vanishing for a given μ. Thus the sum £ c{(n)diMμ has at most one non-vanishing

contribution, and, as c(

f

m) can be 0 for all m for at most /— 1 values of ί, all variables
Xl9 ...,Xt and all links among these variables have to point at a subset of at most
/—1 variables Xj with j>l. The resulting double pointer cannot be completely
resolved, as the required link would again have to point at the same set of Z—1
variables and thereby generate a new double pointer. •

Lemma 1. The necessary condition for non-degeneracy that the expression (2) for
the Poincarέ polynomial is a polynomial (we refer to this as the PP-condition) is
equivalent to the criterion of Theorem i if one omits the requirement that all
exponents in the link monomials have to be non-negative.

Proof, f] (1 — td~ni)/(l — tnί) is a polynomial if all zeros in the denominator, counted
according to their multiplicities, are matched by zeros in the numerator, i.e. if the
set of all multiples of \jnt between 0 and 1 is a subset of the multiples of l/(d—n, ),
even when multiplicities are taken into account. The relaxed condition on the
links, which we are referring to, is that the number theoretic condition ΣPini = d
(for non-pointing links) or £ pfnf = d—nk (for a link pointing at Xk), where the sum
runs over all Xt joined by the link, is fulfilled without requiring that the pt all be
non-negative. This is equivalent to the condition that the greatest common divisor
of these nt divides d or some d—nk. To show the equivalence of these two
conditions we first note that the PP-condition implies that each Xt has to be a
pointer or a root, as ί/nt must be a multiple of some ί/(d — nk). In this context a root
is to be considered as a pointer at itself.

There is a problem, however, if two variables Xt and Xj point at the same
variable Xk. Then the multiples of l/^nn,) are contained only once and have to be
taken care of by some further variable Xt with n^nj dividing d—nt. We thus
recover the requirement of the links implied by the non-degeneracy criterion
except for the positivity of the exponents in the monomial. If I cannot be chosen as i
or 7, i.e. if T̂ nn,- does not divide d, this link is a pointer at Xt. The roots, considered
as pointers at themselves, and the links which are no pointers, i.e. can be considered
as pointing at one of their variables, do not imply additional links. This is because
the corresponding nt (or ntnnj for pointers) are divisors of d. In the simplest case,
for example, where nt and n} divide d — nh the missing ratio l/^nn,) is a multiple of
l/(d — nj) and thus acts like a pointer at Xj with the additional feature that the
denominator divides d. In this way the missing numbers can be passed on
backwards along any pointers with ever smaller denominators until they find their
match in a free multiple of some l/(d — nk) with no other pointer at Xk or until
ntn... nnk = 1. Proceeding in the same way with the additional overlaps which may
arise due to the additional pointers in each step, we indeed find equivalence of the
PP-condition and the relaxed link criterion. •
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To illustrate this equivalence we use the following example by B. M. Ivlev of a
degenerate configuration fulfilling the PP-condition [2],

<C(1,24,33,58)[265], (8)

with the corresponding skeleton polynomial

X265+XYll+XZ8 + ZU4. (9)

To fulfill the criterion of Theorem 1 we would need a link between Y and Z, which
has to point at U as neither d nor any d—n( is a multiple of 3 = 24n33 except for
d — nv = 207 = 24p + 33q. This equation, however, does not have a solution with
both p and q positive, which explains why (2) is a polynomial although the
configuration is degenerate. It would be interesting to find out if it is possible to
construct an N = 2 SCFT with these weights.

3. On Configurations with a Given Index

Lemma 2. // a non-degenerate configuration contains n variables Xt with a given
weight qe(ί/3,1/2), then it also contains at least n variables Yj of weight q—\—2q.

Proof Let W= W(Xh Yp Zk) with weight (Xf) = q, weight (Yj) = q9 and
weight (Zk) Φ q, q. We calculate d W and set Yj and Zk to 0. Non-degeneracy implies
that at least n equations for the Xt must remain. Because qe(l/3,1/2), these
equations must be quadratic in the Xh i.e. of weight 2q = ί—q. Therefore, they
must come from dW/dYh implying that the number of l?s *s a t l e a s t n- •

We call variables trivial if they correspond to terms X2. Trivial variables have
weights q = i/2 and therefore do not contribute to c, nor to the local algebra, as
they can be eliminated by dW/dX = 0.

Corollary 1. For every non-degenerate configuration έ is greater than or equal to 1/3
times the number of non-trivial variables.

Proof Grouping variables with qe (1/3,1/2) together with q, we have
1 — 2q +1 — 2q = 2q > 2/3 the contributions of all other non-trivial variables (with
weights ^ 1/3) are at least 1 - 2/3 = 1/3. •

Theorem 2. Given a positive rational number c, there is only a finite number of non-
degenerate configurations whose index is c.

Proof (indirect). Suppose there is an infinite sequence of configurations with
index c. Due to the above corollary there is only a finite number of skeleton graphs
that can realize c, so there must be an infinite subsequence corresponding to just
one graph. Considering a specific exponent, we can find either a subsequence for
which this exponent is constant or one for which this exponent goes monotonically
to infinity. Doing this for every exponent, we end up with a sequence of
polynomials corresponding to the same skeleton graph, for which n — m exponents
are constant while m exponents tend monotonically to infinity. Of course, the
"limit configuration," which contains m variables of weight 0, also has index c. We
denote the weights in the Ith member of the sequence by qf\ ie{l,...,n} with
lim q\l) = 0 for i e {1,..., m}. We will now show that the index of a member of such a
Z->oo
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sequence is in fact smaller than the index of the limit sequence, in contradiction
with the assumed Constance of t. Consider a specific / and let ε=maxq\s) with ί ̂  m
and s^ί. We define the intervals Ik=(2~kε,2~k+1έ]. By Ak we denote the number
of points with qil) — q(co)elk, by Bk we denote the number of points with
q(co)-q(l)elk. Note that Bί=0, as for any variable q(co) = 0 or the possible target

variable has q<\. Now consider all Σ Bt points for which q(co) — qil)>2~kε.
i = l

Setting all other variables to zero in dW/dXh we see that we need at least as many
equations, coming from points with q{l) — q(oo)>2~ fe+1ε, as these equations are at

k k-ί

least quadratic in the non-zero variables. We thus have £ B^ £ Ai9 i.e.
i = l i = l

(10)

This is the contradiction we were looking for. •

Theorem 3. Given a rational number r, one can find a positive number ε such that no
number in the interval (r,r + ε) is the index of a non-degenerate quasihomogeneous
polynomial; i.e. the accumulation points in this set of indices are all approached from
below.

Proof. Like the previous theorem with an infinite sequence of configurations with
decreasing indices c{l)-*r instead of constant index. •

Theorem 2 has given us valuable theoretical information, but does not help us
in explicitly finding all configurations of a given index. Especially, for the case c = 3,
which is most important for string theory, one would like to have a way of
constructing normal forms for all possible configurations. We will now formulate
and prove a lemma which makes it possible to write a computer program which
calculates explicitly all configurations with έ=3.

Lemma 3. For a non-degenerate quasihomogeneous polynomial with <?=3 the
number of exponents a ;>18 or a^>84 is smaller than 3 or 2, respectively. These
limits cannot be improved, as is seen from the polynomials X\ + X\* + X\* + X)?

Proof. Let us assume that there are three exponents a f>18, corresponding to
variables with weights ql9 q2, q3 < 1/18, contributing 1 — 2qx to c. If there are also
variables with exponents α = 2, pointing at variables with qι<ί/lS, they add
1 — 2(1/2(1 — qi)) = q{ to έ. The total contribution of the variables considered so far
is therefore between 3(1 — 2/18) = 3 —1/3 and 3. It is impossible to complete this to
a polynomial with c = 3. This proves the first assertion.

Assume now that there are terms Xf or X?Ύι with at>$4, i = l,2 in the
potential, thus qt< 1/84. The contribution έ12 of these variables to c fulfills 2 — £
< έ12 = 2 — 2qί — 2q2 < 2. A "partner variable" Zt pointing at X( with exponent 2,
i.e. a term XtZf, can be disregarded as it effectively just doubles at (if aγ = a2 both
possible partner variables might point to the same Xi). According to Lemma 2
there have to be 2 or 3 more variables in order to make up for the difference to a
total έ of 3.
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Case ί. 2 additional variables U{ with weights rx. If one of their exponents is 2, it
has to point at a Z f, since U1 and U2 have to contribute more than 1. Then one can
explicitly calculate the contribution of Xγ, X2, Zγ (Z2), ί/x to be f — \qγ — (2)q2.
6=3 would then require r2 = ̂  — %q1—(j)q2i which cannot be satisfied. The
exponents of Ul9 U2 also have to be less than 7, since i +1 — f = f ί Enumeration
of all relevant singularities in 2 variables shows that the smallest possible
contribution to 6 larger than 1 is 22/21, thus the total 6 cannot be 3. If one or both
U( point at some Xt or Zh 6 can only be enlarged. So we finally have to consider the
contributions with 6=2 — 2(r1 + r 2 ) ^ l . Pointers at Xj would not make any
difference, as the decrease in rt would be r ^ , which is not sufficient to reach 6=3.
So let Ux point at Zj. This makes 1 — 2r1 larger thanf — 252 Thus U2 cannot point
at a Zk and its exponent has to be 3, so U2 cannot make up for the difference to
6=3.

Case 2. 3 additional variables 17; with weights rt. We split this case according to the
number of exponents equal to 2. If all exponents are larger than 2 this implies
rt = ^, and hence ri = $ = ̂ (1 — ^ ) , i.e. all exponents have to be 3. These variables
thus may only point at a variable with weight less than 1/14, i.e. at Xt. Examining
all cases there are 10 infinite series of polynomials with 6=3:

χa + γ6« + χ Z 2 + ^ 3 ^ + p3 jf + p̂ 3 a n (j y6α _> γ3a + y Γ 2 ?

χ « + y 4 α + χ Z 2 + L Γ 3 χ + F 3 χ + ^ 3 y a n d y4«_^yα + y T 2 j

χ Λ + y 2 « + ^ Z 2 + ( 7 3 χ + F 3 Z + ^ 3 χ a n (j y2α_>ya + y Γ 2 j

'2) and XW3-+YW3,

t-T2) and XW3->YW3.

For none of these polynomials, however, do the links which would be necessary to
make them non-degenerate exist for α>84. In the first case, for example, it is
impossible to have a link between Z and U, since the weights of these two variables

add up to —I 1

Now let the first exponent be equal to 2. Uί must not point at Z( (otherwise
6> 3), so it points at U2 and the exponents of U2 and t/3 have to be 3 as above. If
the latter variables do not point further the total 6 stays below 3. They might only
point at Xx, because otherwise we would violate 6 = 3. This, however, does not help
either, because the decrease of r2 and/or r3 is sufficiently compensated by the
increase of rγ to keep 6 below 3. The proof is completed by the observation that
there cannot be 2 exponents of the l/'s equal to 2, because one of these variables
would then have to point at a Zi9 which would increase 6 beyond 3 for an isolated
configuration. •

Lemma 3, together with Corollary 1, implies an algorithm for the calculation of
all configurations with 6=3, as the only unconstrained exponent in each skeleton
graph can be calculated (and, of course, has to turn out integer to yield a solution).
It is straightforward to further reduce the number of possibilities using Lemma 2.
Consider, for example, a skeleton graph with n points of which ί have an exponent
larger than or equal to a. lϊp of these i variables are pointed at by a variable with
exponent 2, this implies

c = (n-i-p)/3 + i(l-2/a)+p/a. (11)
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If n + 2i>3έ+p this is equivalent to

a£3(2i-p)/(n + 2i-36-p). (12)

As da/dp is always positive, and obviously p g i and p^n — i,we obtain the bounds
a^3i/(n + i—36) or aS(3i—ή)/(i—£) for i^n/2 or ί^n/2, respectively. It is also
straightforward to check that not more than i variables can have an exponent
larger than a = 2ί/(i—c).

For completeness we state the following results referring to c= 1 or 2. They can
be proved with the same methods as above.

Lemma 4. Any configuration with c = \ corresponds to weights (1/3,1/3,1/3),
(1/3,1/6) or (1/4,1/4). For a polynomial with c — 2 there is at most one exponent
greater than 12 and no exponent can be greater than 42.

4. Conclusion

We have given a criterion for the non-degeneracy of a configuration which
requires the check of a recursive condition concerning the existence of certain
monomials consistent with quasihomogeneity, and have introduced a convenient
graphic representation for these monomials. The PP-condition is equivalent to
this condition except for positivity of the exponents. We have also shown that
for a given singularity index the number of non-degenerate configurations is
finite and that such a value cannot be approximated from above by non-
degenerate configurations. Finally, applications of these results provide the
necessary ingredients for explicit calculations of all configurations at least for
low values of έ.

Our results, in particular, imply an algorithm for the calculation of all
configurations with c = 3, which is straightforward to implement due to the
recursive structure of the condition of Theorem 1. According to Lemma 2 only
polynomials in up to 3έ non-trivial variables have to be considered. As the weights
of all variables are already determined by the skeleton graph, one only has to
investigate a reasonable number of such graphs, which can be constructed
recursively. The crucial point is that the combinations of exponents which have to
be checked can be restricted to a finite number even for these skeletons, as has been
done in Lemma 3 for the particularly interesting case c = 3. Non-degeneracy can
then be checked in a second step.

Such a construction would be an extension of the work by Candelas et al. [6] on
Calabi-Yau manifolds in weighted projective spaces [7]. The connection between
these manifolds and the construction of N = 2 SCFT from non-degenerate
quasihomogeneous functions has been discussed by Greene et al. in [8]. The
formulae for the calculation of the Hodge numbers from the scaling dimensions of
the superfϊelds have later been supplied by Vafa [9] and rederived by methods of
algebraic geometry in [10]. The authors of [6] have implemented 30 poly-
nomials fulfilling the criterion of Theorem 1 and have constructed some 6000
Calabi-Yau manifolds in weighted P 4 . As the number of skeleton graphs
already grows faster than 2n for polynomials in n variables, a complete con-
struction along these lines, however, appears to be difficult for larger numbers
of variables.
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