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Abstract. We prove that quasiperiodic tilings of the plane, appearing in the strip pro-
jection method always admit local rules, when the linear embedding of R2 in R4 has
quadratic coefficients. These local rules are constructed and studied. The connection
between Novikov quasicrystallographic groups and the quasiperiodic tilings of Eu-
clidean space is explained. All the point groups in Novikov's sense, compatible with
these local rules, are enlisted. The two-dimensional quasicrystals with infinite-fold
rotational symmetry are constructed and studied.

Introduction

Quasicrystals (QC) are the quasiperiodic tilings of the Euclid space Rk by a finite (up
to translations) number of polyhedra. For the history and reviews we refer to [2-7].
By now, several approaches have been suggested.

One of them, initiated by S. P. Novikov in 1986, is based upon the following
definition of the quasicrystallographic group:

Definition. We shall call a finite-generated abelian subgroup T cRk, which gener-
ates Rk as a linear space the quasilattice in R^.

Definition. A subgroup G of the group Ek of all isometries of k-dimensional Euclid
space is called a k-dimensional quasicrystallographic group, iff its intersection with
the subgroup Rfe C Ek of all translations is some quasilattice T c Rfc.

Definition. The above defined quasilattice T c Rh is called the subgroup of trans-
lations of the quasicrystallographic group G, and the factor-group R = G/T is
called the point group, or the group of orthogonal parts of the quasicrystallographic
group G.
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The quasicrystallographic group is called crystallographic in usual sense, if its
subgroup of translations T has rank k (or, equivalently, T is a lattice in Rk).

In the paper [1] it was proved that if the point group R = G/T is finite, then
G is isomorphic to some n-dimensional crystallographic group. An example of two-
dimensional quasicrystallographic groups, containing rotations of infinite order, was
there constructed. The first example of such a group was constructed by A. Veselov.

Another aspect of (quasi)crystallography is the problem of what kind of the QC
order might appear in nature as a property of real materials. It seems sound to require
the "physical" QC to admit restoration by means of only information of its local
structure [i.e., on the finite number of admissible configurations of (possibly decorated)
tiles]. The well-known example of such Local(matching) Rules are the deBruijn'
arrowed rhombi for the Penrose tilings. According to [2], quasiperiodic is any tiling
of the plane by these rhombi, providing the obvious matching condition is met (that
the common edges of neighboring rhombi are to have definite arrows on them).

The term "Local Rules" (LR) was suggested by Katz [8] and Levitov [9] for the
matching prescriptions, enforcing quasiperiodicity.

We fix standard Euclidean coordinates in M4 and R2. Let Θ:R2 -> R4 be a linear
embedding. For a generic θ, there is a quasiperiodic tiling on Θ(R2) that appears from
the so-called strip projection procedure [5]. Levitov has proved that if the embedding
is quadratic (that is, all coefficients of θ are in Z [ V ^ ) and is "non-degenerate" then
the tiling admit "weak" LR, and he proved that if the embedding is not quadratic
and "in a general position" then "strong" LR do not exist. He conjectured if the
embedding is not quadratic then there are no local rules. In this paper we prove
that if the embedding is quadratic, then the tilings admit LR, even in degenerate
cases. There is a crucial difference between our and Levitov's concepts: we refine the
structure of the quasiperiodic tilings by coloring their prototiles, so some prototiles
are regarded as different, but in Levitov's sense are the same. This is the reason why
Burkov's result [11] does not contradict ours.

Levitov [9] proved that a quasicrystal, having LR, can admit (finite-fold) rotational
symmetry only of order 10, 12. We prove here that the quasilattice (the support of
Fourier coefficients) of the quasicrystal, having local rules, can also admit infinite-fold
rotational symmetry with the basic rotation on the angle φ, where

m , / G Z ;

We wish to stress that this is the property of the quasilattice. Any particular qua-
sicrystal of this type (for instance the amplitudes of Fourier coefficients) doesn't
admit infinite-fold symmetry.

The group of orthogonal parts here submerges naturally in SΌ(3,1, Z) instead of
SΌ(4,Z) in the case of 5-, 8-, 10- or 12-fold symmetry.

To show the connection between these two approaches to QC, we enlist here
all the types of rotational symmetry, compatible with quadratic embeddings. The
quasiperiodic tilings with these types of rotational symmetry are studied in more
detail.

The paper is organized as follows:
In Sect. 1 the definitions and notations are introduced.
In Sect. 2 we recall the cut method and the strip projection method and explain

how to define matching rules.
In Sect. 3 we study 2-planes in R4, they are important in our construction
In Sect. 4 the local rules are constructed.
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In Sect. 5 the connection of the quasicrystallographic groups in Novikov's sense
and the quasiperiodic tilings of A -dimensional space is explained.

In Sect. 6 all types of rotational symmetry, compatible with the quadratic embed-
dings are classified.

In Sect. 7 some interesting examples are given.

1. Basic Definitions and Notations

1.1. Suppose P\yP2, . . . , Pk a r e convex polygons in R2. A polygon P is called
congruent to P' (we write P = P') if P' = P + a, a G R2. A tiling of R2 with
prototiles P\, . . . , Pk is a partition of R2 by polygons, congruent to Pi, . . . , P^, such
that intersection of two polygons having non-empty intersection is either a common
edge or a common vertex. This means that the plane R2 has a polyhedral structure.
Polygon Pi is colored by i, some of Pi may be congruent but they are distinguished
by colors. The set of colors is {1,2, . . . , k}.

Color of a vertex of a tiling is the collection (zi, i2, , fcm), defined up to cyclic
permutations, of colors of the polygons surrounding this vertex in the counterclock-
wise direction (we suppose that orientation on R2 is fixed). Let A be a finite set of
such collections. A tiling is called satisfying A-rules if color of any its vertex is in the
set A. A-rules are called quasiperiodic local rules (QPLR) of a quasiperiodic tiling if
i) this tiling satisfies these ^4-rules,

ii) every tiling satisfying A-rules is quasiperiodic.
Note that local rules defined by Levitov [9] are more general, but it is enough for

us to use this special type of local rules.
Two tilings T with prototiles Pi, P 2 , . . . , P/~ and T with prototiles Qu Qi-> ,

Qk are topologically equivalent if there exists a piecewise-linear homeomorphism
φ'.M? —» R2, that transfers the first polyhedral structure to the second. This means
that the orders of tiles in the two tilings are the same, only shapes of prototiles are
different. If the first tiling admits QPLR, then the second obviously admits the same
QPLR.

1.2. In R4 we fix the standard basis £i,£2>£3j£4 and the standard Euclidean scalar
product. A point in R4 is also regarded as a vector, so that we can define x + y,
where x, y are points in R4. If X, Y are subsets of R4 then we denote X + Y the set
{x + y,x G X,y G y } , -X the set {-x,x e X}. Let Z 4 be the integral lattice, 7
be the unit hypercube:

1
xτ G [0,1], i = 1,2,3,4 >.

i=l J
For / = (zi, z2), 1 < i\ < ii < 4 let

7/ = {xnεn + ^2^2} , ^ 1 , ^ 2 G [0,1].

7/ is a 2-facet of the unit cube. Let Γ = {1,2,3,4}//.
We shall always have things to do with two 2-dimensional planes (or briefly

2-planes) E and E' going through 0 in R4, such that E Π Ef = {0}. Denote π
the projector along E' on E and πf the projector along E on E'. Put ê  = πfe),
ê  = π'(εi), i = 1, . . . , 4. Let E 1 1 be the 2-plane perpendicular to E and pr be the
projector along ϋ^on E.
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If υ e R4, v $ E, v φ E' then let F(v) be the 2-plane generated by π(υ) and
πf(v). The plane F(v) goes through v and intersects E and E' by lines.

A 2-plane E going through 0 is called irrational if there is no integral point
belonging to E except 0. We always suppose that E and E' are irrational". We shall
call a prism any set of the type 1 + 7 , where X c E, Y C E'. For example F(i>)
is a prism (2-dimensional):

More generally \/ξ e R4, F(i>) + ξ is a prism.

2. The Cut Method, Strip Projection Method and Matching Rules

2.1. Let us briefly recall these methods used to construct quasiperiodic tiling. The
reader is referred to [5, 8] for full expositions on these subjects.

Let E be an irrational 2-plane. We construct a strip in R4 by shifting the cell 7
along an affine 2-plane parallel to E\

Sa = E + Ί + a, aeR4.

It is proved in [5] that for translation a such that the boundary of the strip does
not contain any point of Z 4 (i.e. a is generic), the strip Sa contains exactly an unique
2-dimensional continuous surface Πa built up of 2-dimensional facets of the lattice
Z 4 lying in Sa. This surface Πa goes through all the vertices of the lattice Z 4 falling
inside Sa Π& has an obvious polyhedral structure. The tiling of E is the projection
pr (Πa) along EL on E of the surface Πa with its polyhedral structure. The prototiles
are the projections of a 2-dimensional facet of the lattice Z 4 . Note that there are no
overlaps: the restriction of pr on 77Q is bijective. Vertices of the tiling are projections
of all vertices of Z 4, falling inside Sa.

If instead of projection along EL we take projection along E'-.πiΠa), overlaps
may happen. In this case the local rules, similar to those constructed in this paper,
can also be constructed. But if there are no overlaps (for example when E1 is near to
EL) we get a new quasiperiodic tiling of E, which is topologically equivalent to the
old one: only shapes of prototiles are changed.

Let's now consider another construction of these tilings, known as the cut method
[5]. Put

Cι = τr(7 /) - π'( 7 /c), Cj,ξ = Cι + ξ,

where / = (ii,£2), 1 < i\ < h < 4, and A — B denotes the set {x — y,xeA,ye B}.

J , r e M = {(1,2), (1,3), (1,4), (2,3), (2,3), (2,4)}.

Denote Pi = π(7/), Pj = 7/(7^).
Each Ci is a prism. If a 2-plane E + a (a e E') intersects with a prism C/, ξ then

the intersection is congruent to Pj. Consider the collection {C/^,/ 6 M, ξ € Z4}.
If E = EL then this collection covers the whole M4 without overlaps and holes, i.e.
( U Ci ξ\ *s a Partition of R4. This partition is called an "oblique periodic tiling"
V/,ξ ' /
of R4 in [5] because it is invariant under translations of Z 4 . The union of the six
prism C;, / G M, is a fundamental domain of the group Z 4, one can regard it as
a rearrangement of the unit cell 7. Every 2-plane E + α, where a e E' is generic,
inherits a unique quasiperiodic tiling from the oblique periodic tiling. This tiling is
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exactly the tiling obtained by projecting the surface Π with its polyhedral structure
on E + a.

When E1 φ EL in the union |J C/^ there may be overlaps. For every a G E'

we cover the plane E -\- a by its intersection with {C/5ξ, / G M, ξ G Z 4}.

Theorem A. Suppose a is generic. The cover of E + a by intersections with the
collection {Ci^,I G M, ξ G Z4} w exactly the cover TT^Π^) <?« E -\- a: if an inter-
section Ci}ξ (Ί (E + α) w «<9ί empty then this intersection is the projection of some
2-facet of Πa, and inversely every projection of some 2-facet of Πa is an intersection
(E + a)Π Cj, ξ for some (/, ξ).

The proof is actually contained in [5]. Note that the existence of Πa has been
proved in [5]; after this we need only repeat the arguments in [5, Chap. V].

Note. This cover may have overlaps. This is an actual tiling iff the collection {C/5£,
/ G M,ξ G Z4} covers R4 without overlaps.

The set —P'j + π'(ξ) is called the existence domain of the tile Pj + π(ξ).
Let us denote dC the boundary of Cj\ it is a cellular complex of dimension 3. We

decompose dCi into two parts:

- PP) U (Pj - φPΓ).

Denote the first by d'Ci, the second by dyC/: Put

, B'=
B= ( U

The set of plane-cuts, which do not intersect B, is generic. B is called the forbidden
set. Each generic plane-cut E + a defines a quasiperiodic tiling: the intersection of
E + a with Br is the set of boundaries of tiles in this tiling.

Remark. If a is not generic then the plane E + a defines not one but several tilings.
We shall call them the quasiperiodic tilings defined by this non-generic cut.

2.2. From now till Sect. 5 we always suppose that overlaps don't happen.
We construct matching rules as follows. We divide each prism Cj into smaller

prisms by dividing the existence domains into a number of convex polygons: Pj =
U Pj, then Cj = (J (Pi ~ P-) = U (Pj - P*3\ where P, = Pj. Let Cj = Pj - P'y
3 3 3

Instead of six prisms C/,/ G M, we have the refined collection {Ci}, i =
1, . . . , k. Of course k > 6. One can divide the boundary of d into two parts as
before:

Oi = -P^ +

Put
T1) I I r\ s~i ^. ^ 4 ~Γ)I
it — I I KJ\\W7 "1 ZJ . i) -

\J II % '
% i

A cut E + a is called generic if (E + α) Π 5 = 0. We suppose a G E\ then α
is generic if a £ π'(B). We color the prototile Pi by color i. Note that each Pz is
congruent to one of six projections P/ = TΓ(7J). Note that 5 ' = i^.

We shall call a section a graph of some function ρ:E —> E1'. We denote the graph
by Ω and the point £>(#)+£ by Ω(x). If a section Ω does not intersect the forbidden set
B then i? defines a unique tiling of E by the projection τr(i? Π 5') of its intersection
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with & on E. This tiling may not be quasiperiodic, but if Ω is a generic 2-plane
parallel to E then the tiling is quasiperiodic. Let W be the strip consisting of all
prisms Ci + Z 4 having non-empty intersection with Ω. The tiling is uniquely defined
by the strip W. A section Ω c RΔ\B is called reduced to a plane section Ω1 = E + a
if for every x G E the segment [Ω(x), Ωf(x)] does not intersect B or intersects at
Ω'{x). The plane section Ω' is not necessarily generic. Obviously if Ω is reduced to
a plane section 4?' then the tiling defined by Ω is the same as that of Ωr.

We shall construct matching rules such that any tiling satisfying these rules is a
tiling defined by some section Ω C R 4 \ S . These matching rules are easy to construct.
Then we shall choose partitions of the prisms Cj such that every section Ω C R4\ί?
is reduced to a plane section. This is the second part, more difficult.

The first problem is solvable for any partition of the prisms C/. We fix a generic
cut E + a and consider its quasiperiodic tiling with prototiles Pi, . . . , P/-. Denote A
the set of all colors of its vertices. It is easy to see that A is the same for all generic
plane cuts E + β: all plane-cut tilings satisfy A-rules.

Theorem 1. Every tiling satisfying A-rules is a tiling defined by some section
Ω c R4\B.

Proof. Let T be a tiling of R2 = E, satisfying A-rules. Fix a tile P of this tiling;
we may suppose that P = Pi, and π(CΊ) = P. We recall that R4 is covered by the
collection Citξ9i= 1, . . . , k, ξ G Z 4 . If (i, ξ) φ (j, η) then the projection (C\^) with
its color is not equal to π(Cιjη) because both E and E' are irrational. This means
that there is at most one prism from the collection (C\^) that projects on a fixed
colored tile of T. We call this prism, if it exists, the lifting prism of this tile. The tile
P, for example, has a lifting prism. Now we prove that every tile of T has a lifting
prism. If Qι and Q2 are two neighbour tiles in T and Q\ has lifting prism, then by
definition of A-rules, Q2 also has lifting prism. So all tiles of T have lifting prisms. If
v is a vertex of the tiling T, Qi, . . . , Q\ are tiles surrounding this vertex, then their
lifting prisms have a common point ϋ (precisely their intersection is a 2-dimensional
convex set). This follows from the definition of A-rules and the uniqueness of the
lifting prisms. We have also π(υ) = υ. It is easy to see that an appropriate simplicial
2-dimensional complex, generated by all lifting vertices {ϋ} is a continuous section
and is contained in the union of all the lifting prisms. Theorem 1 is proved. D

2.3. Now we find partitions of the existence domains that solve the second problem.
Recall that we have fixed 2-planes E, E1. So we can define 2-planes Fi — F(βi),
i = 1,2,3,4. It will be shown below that if E is quadratic and irrational and E1 is
algebraically conjugated to E, then these four 2-planes are always integral. We also
have the oblique periodic tiling of R4 with prototiles Ci = Pi-P'l91 € M = {(1,2),
(1,3), (1,4), (2,3), (2,3), (2,4)}.

Let F5, . . . , Fn be some integral 2-planes going through 0 and intersecting E and
E' by lines. Because dim(F,n#) = dim (FiΠE') = 1, we have: Fi = π(Fi) + π'(Fi),
i = 1, . . . , n, i.e. all Fi are 2-dimensional prisms, and so are all Fi + ξ, Vξ G R4.

We also have: dim(i^) = 3, where Ki = Fi + E.
Let d = max (lengths of e£) and Zd be the 2-dimensional ball in E with center

\<i<4

at 0 and radius d (Zd is the closed ball). Put Ki = Fi + Zd.
Of course Kτ D Ki, and Ki is the unique 3-plane containing Ki. Let Gi be

subgroups of Q 4 such that Z 4 c <?». \G{ : Z 4 | < 00, i = 1, . . . , n. We shall call a
wall any set of the type Ki 4- ξ, i = 1, . . . , n, ξ G Gi.



Local Rules for Quasicrystals 29

n

Proposition 1. The set of all walls (J (Ki + Gi) is discrete in R 4 : every compact
i=\

intersects with only a finite number of walls.

Proof. At first note that the set Fi

J\-Gι is discrete in R4. This follows from rationality
of Fi (i = 1, . . . , ή). If X is compact in R4, then X + Zd is also a compact, and
X + Zd intersects with only a finite of number of 2-planes from (Fi -\-Gi). This means
that X intersects only a finite number of walls. D

Let &ί = Fi + d, fo = K% + Gi. The set fo, J*Γ depend on the 2-plane Fi and
group Gi.

We construct partitions of prototiles of the oblique periodic tiling as follows: Fix
/ G M, the prism Cj intersects with only a finite number of walls W},Wj, . . . , Wf.
Each wall Wj is contained in a unique 3-plane W\ (i = 1, . . . , s). These 3-planes
W} (i = 1, . . . , s) divide the prism Ci into smaller pieces: Cj = | J C{. It's easy to

3

see that these pieces are prisms (because all 3-planes W\ contain a 2-plane parallel
to E), and they have the same projection on E as Cj has: τr(CV) = τr(Cj'). This is
the required partition of C/; / G M. And this partition defines matching rules.

We see that these matching rules depend on the choice of F$,Fβ, . . . , Fn and
Gi, G2, . . . , G n . Denote the forbidden set by B.

The following lemma follows immediately from the definitions:

Lemma 1. If X is contained in Fi + Z4, then X + Zd is contained in B.

Proof. X + Zd is contained in the union of all walls, they all belong to B. D

We shall prove that if F\, F 2 , . . . , Fn, G\, G2, . . . , G n satisfy some requirements,
then every section Ω c M 4 \5 is reduced to plane sections.

3. 2-Planes in W4

Each 2-plane E, going through 0 in M4 can be defined by a pair of linear equations:

= 0,

= 0 .

Here OL^βi G R, x̂  are coordinates in R4 with basis εi, £2,^3,54.

Put E1^ = det ( J a ) , then £ ^ = —Eji9 Eij Φ 0 for some (i, j), and

E12E34 +0EuE23 — E13E24 = 0. (*)

Conversely, every collection of six numbers E^, 1 < i < j < 4, satisfying (*)
4

defines a plane E in R4, given by four linear equations J ] Eijχo — 0 (i = 1,2,3,4).
3=1

There are only two independent among these four equations, and so they define a
plane. This construction is the inverse to construction of six numbers by the equations
of the plane. If (E^) and ( i ^ ) define the same plane then there exists a number
λ G R\{0} such that E^ = XFij. In other words, the Grassmannian G(4,2) (the set
of all 2-planes in R4) is a 4-dimensional hypersurface in R P 5 , defined by (*).
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The projective coordinates on G(4,2) are useful to check whether two planes are
in general position: two distinct planes E with projective coordinates {Eij} and F
with coordinates {Fij} intersect along a line iff

El2F34 + #34^12 + #14^23 + #23^14 ~ El3F24 ~ #24^13 = 0 . (**)

All these facts about 2-planes in R4 can be found in [12].
A plane E = {Eij} is called integral (respectively quadratic) if there is a non-

zero number λ such that XEij £ Z (XEij £ Z,yp, for some natural number D,
respectively).

It is easy to prove that the plane E is integral (respectively quadratic) iff it is
defined over the field Q (respectively, over the field Q. ̂ , ) , that is, diniQ (EΠQ4) = 2

(respectively, d i m Q ^ (E Π (Q^)4) = 2).

If E is quadratic, E^ — α^ + bijy/D , α^ , bi3 £ Z, then Ei3 = α^ — bi3\fΌ also
satisfies (*) and so defines some plane. We shall denote it by E. If υ £ (Q[V^J) 4 ,
then we can define ϋ in the same way.

We shall call the 2-plane E irrational, if E Π Q 4 = {0}.

Proposition 2. If E is irrational and quadratic, then E is also irrational and

Proof.

L(£nι
Let

zero (ί

Since both E and F, are defined over

«VDj)4JnL£ΓI(QL v Έ

us suppose the opposite,

2Ly5j)-subspace F C (<

ϊj)4J = {0}.

, that (E Π (QL v

Q L V S J ) 4 . Then

(Q

F

ι4)

^,) it's sufficient

ncEn(QL v/^j)4)

F, because (E1 Π

to

is

prove

some

KvD\y

that

non-

*> =

E n W L V ^ J ) 4 a n d ( ^ Π ( Q L ^ j ) 4 ) = EΠ ( Q L ^ j ) 4 . Since ((I)) = A, V̂ L G ^ j
then F is decomposed in direct sum F + 0 F_ of invariant and anti-invariant rational
subspaces with respect to algebraic conjugation. Since either F+ or F_ are non-zero
subspaces and F+ = F Π Q4; F_ = F Π \/DQ4; then either F Π Q 4 φ {0} or
F Π V ^ Q 4 φ {0}. So, S Π E Π Q 4 ^ {0}, which contradicts the fact that E is
irrational. Proposition 2 is proved. D

We shall always suppose that E is quadratic and irrational. From now, let E'' = E.
Until Sect. 5 we shall suppose that overlaps do not happen.

Proposition 3. If v £ Q 4 c M4, then the 2-plane F(υ), generated by υ and π(v), is
integral.

Proof If v = ε\ =(1,0,0,0), then υ lies on the plane F, given by equations

^13^3 + CI14X4 = 0

+ 613^3 + 614X4 = 0

Since Fiό = det ( °,li °,lj ) , when z, j = 2,3,4 and F u = 0, then
V 0H ^lj /

an au α1 4

6l2 613 &14 /

which means, using (**), that F intersects with E and with E' along lines. This fact
implies that F contains with each vector its projections on E and E'. So, π(υ) £ F
and for v = ε\ we have F(υ) = F and the proposition is proved.



Local Rules for Quasicrystals 31

Now iΐ* υ G Q 4 is arbitrary, there exists φ G GL(4, Q) such that φ(v) = ει. Since
φ is rational, φ(E) = φ(E) and this case is reduced to the case υ = ει. D

A collection Hi, . . . , H^ of 2-planes is called independent if their coordinates
(Hι)ij, . . . , (Hk)ij (regarded as lines in R6) are linear independent.

Proposition 4. There exist four rational vectors vι, v2, v3, V4 such that F(υι), F(v2),
F(v3), F(VΔ) are linear independent.

Proof. Each quadratic irrational 2-plane E in R4 is generated by two vectors ξ and
77, where ξ = ξι + VDξ2; η = 771 + VDη2; {ξύ ξ2', ηύ η2} C Z 4 . Let us prove that
the vectors {ξι\ ξ2', ηύ η2} are linear independent. Suppose the opposite that rriiξi +
^2^2 + 1̂̂ 71 + 2̂̂ ?2 = 0 for some {mι,m2\nι,n2} C Z. Then the nonzero vector
w e E; w = (m2 + y/~Dmι)ξ + (n2 + VDnι)η is equal to

(m2 + λ/Dmι)ξι + (\/^m2 4- Dmι))ξ2 + (n2 + \ΓDnγ)ηι + (\^Dn2 + Dnλ))η2

+ ^2^2) + (^26 + Dπiιξ2 + n2^i H- Dnιη2)

Dnιη2) G Z 4 ,

which contradicts irrationality of E. So, the vectors {£1; ξ2; 771; 772} are linear indepen-
dent and we can take them as a new basis in Q4. Let y\, y2,2/3,2/4 are the coordinates
of vectors of R4 in this basis and let

Hi = {2/1 = ?/2 - 0}; H2 = {ys = VA = 0};

#3 = {2/1 +2/3=2/2 + 2/4 = 0}; #4 = {2/1 + £>2/4 = 2/2-2/3=0}.

One can check by direct calculation that Hi Π Hj — {0}; ^ intersects E and E

along lines; {Hi} are independent. If Vi E H^ Vi E Q4, then .F(ι?2) = Hi. D

Let H\\H2\H?> be integral 2-planes, lying in a general position and intersecting
E and £"; by lines.

Proposition 5. Let v\,v2, 3̂ G Q4.
i) If TΓ*(Hi +vι) = πf(Hι + ^2) , then Hι+vι=Hι+ v2;

ii) Ifπ'(Hι +υι)Π πf(H2 + υ2) Π ̂ (if3 + v3) w nonempty, then (Hi +υι)(Ί(H2 +
v2) Π (ϋΓ3 + ^3) w α/̂ 6> nonempty.

Proof i) Suppose π ;(ίfi + vι) = π'(Hx + ^ 2 ) , υuυ2 e Q4, then ^(v 2 - vι) G ^
Because kerπ' = E we have v2 - v\ e Hi + E and so f2 — i>i e Hi + E but
^ 2 — vi = ^ 2 - tΊ, ffi =_H\, and we have t>2 — v\ G (i/i + E) Π (iϊ"i_+ E).

_ _
dim (iJi + ^ ) = dim (Hι+E) = 3 . We prove that dim (Hλ + J5) Π dim (#1 + £ ) < 3.
In fact if [dim (ίZΊ + E) Π dim (fZΊ + 15)J = 3 , then fli + E1 = H{ + £? and
(ίfi + £7) D £ . This means (Hi + E) D E + E, but E Π E = {0}, £ + E = R4.
This is a contradiction.

So dim(12Ί + E) Π άim(Hι + 5 ) = 2, i.e. (iίi + £ ) Π (ffi + E) = Hu and
2̂ — ̂ 1 G H\. This means that ^1 + H\ = υ2 + Ui.

ii) π'Cf/Ί + v\), π;(H2 + f2), ^(773 + υ3) are 3 lines of different directions in E\ if
they have nonempty intersection, then this intersection is a point.

Put X3 = (Hi + vι) Π (H2 + v2), X2 = (Hi + υx) Π (ίf3 + υa), Xx = (ff2 +1^) Π
(£Γ3 + υ3), then π;(Xι) = π'(X2) = π'(X3). We have Xx - X2 e E, Xx - X3 G E.
But Xι - X2, Xι - X3 G Q4, so Xι - X2 = Xι - X3 = 0. This means that
(Hi -\-υι)Π (H2 + v2) Π (H3 + υ3) is a point. D
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Let Γι\Γ2\ A be subgroups in Q4, containing Z 4 , in which the group Z 4 has finite
index and let 3@i = Hi + Γi, i = 1,2,3. Each 3@i is a discret system of parallel
affine 2-planes in M4.

We shall say that the system 3&\ is bootstrapped by the systems β@2 and 3$3 if
(ffi + Γi) n (ff2 + r 2 ) = (if! + Γi) n (H3 + r 3 ).

e. if Γi = r2 = r3 = z 4 = ( ^ n z4) e (H2 n z4) = (H{ n z4) e (# 3 n z4),
then the system 3@\ is bootstrapped by the systems S$2 and ^ 3 , because (iϊΊ + Z 4 ) Π
( # 2 + Z4) = (ffi + Z4) Π (H3 + Z4) = Z 4 in this case.

Proposition 6. Let Γγ = (H2 + Z4) Π (#3 + Z 4 ); Γ2 = (Hλ + Z4) Π (ff3 + Z 4 );
Γ3 = (if2 + ̂ 4 ) Π (Jϊi + Z4). Then the system 3&\ is bootstrapped by the systems β%2

Proof. Because the systems S$2 and 3$$ are here symmetric, it is sufficient to prove
that (Hi + Γί) Π (H2 + Γ2) c (ίfi + Γ\) Π (ίf3 + Γ3) (the opposite inclusion is proved
by changing the indices 2 and 3 in all places of this proof). So, we have to prove that
for each two vectors v\ e Γ\ and v3 e Γ3 there exist some vector υ2 £ Γ2 such that
(ffi + vi) Π (JΪ2 + V2) = (Hi + υi) Π (H3 + 1*) - X.

By definitions of Γi and Γ3 we have ^i = (H2 + α2) Π (if3 + α3); ^3 = (H\ +
61) Π (iί 2 -h ^>2); for some α2, α3,61,62 G Z 4 . We shall prove that one can take υ2 =
(H\ + b2 + α2 — 61) Π (if3 + 62 + a2 — a3). To prove it, we shall need the following:

Lemma about Parallelograms. Let F and G be 2-planes in a general position in M4,
fuh,9u92 e M4. Then the vectors xi3 = (F + ft) Π (G + gά) (ij = 1,2) are the
vertices of the parallelogram, i.e., x\2 — x\\ = x22 — x2χ.

The proof of the lemma is based on the fact that the vector x\2 — x\\ has the
unique decomposition f + g, where / G F, g G G and / = #12 — x\u g = χi\ —x\u
which implies the statement of the lemma.

Now let us apply the lemma about parallelograms, when F = H3; G = H\\
ft = gι = υ3; f2 = g2 = υ\, and we shall obtain

X — v3 = v\ — w\ (1)

where w\ = (Hi + 61) Π (H3 + α3). If we take F = H2; G = Hλ\ ft = gx = v3\
f2 = g2 = υ\, we shall obtain

w3 — υ3 = v\ — w2 , (2)

where w2 = (Hλ + bx) Π (H2 + α2); w3 = (Hι+vι)Π (H2 + b2). Subtracting (2) from
(1), we obtain

X — w3 = w2 — w\ (3)

Put w4 = (Hi +b2 + a2- 61) Π (H2 + b2) and z = (Hx + b2 + α2 - 61) Π (jff2 + ̂ )
Then, if we take F = Hύ G = H2; ft = g\ = w^\ f2 = g2 = z, we shall obtain

z — W4 = X — w3. (4)

Let us prove that

v2 — b2 = a2 — w2 = Y. (5)

To prove it, let us notice, that

v2 — b2 = [b2 + a2 + (Hi — 61) Π (U3 — a3)\ — b2 = b2 + a2 — vι — b2 = u2 — vι

and Eq. (5) is proved.
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Now using (5) and decomposing the vector Y into the sum Y\ +Yχ, where Y\ G H\\
Y2 G Ή.2\ we shall obtain that

Yχ = W2 — W\ = V2 — W4 . (6)

Combining (3), (4), and (6), we see that V2 — W4 = z — W4, which implies that V3 = z
and (H\ + υ\) Π (H2 + ^2) = X, which is to be proved. D

Proposition 7 (Generalized Levitov's Lemma). Let Ω be the graph of a function
ρ:E —> E', satisfying the modified Lipschitz condition: 3c\m, c2 G M swc/z

,H2, # 3 , #4 ^ integral 2-planes, independent, intersecting E, E1 by lines. If Ω
= 0, wλere ϋ ζ = iJ* + Z 4, i = 1,2,3,4 then the function ρ is bounded:

\ρ(E)\ < const.

Proof (Levitov).

Lemma 2. A constant c exists such that for any H G U J ^ the function ρ maps π(H)
into the c-vicinity of some line h! parallel to π'(H) (c-vicinity ofh1 is the set of points
in E' having distance to h! less than c).

Proof of the Lemma. At first we introduce some definitions. A shadowed line in Ef is
a pair (7, E[) consisting of a line I C E' and an half plane E[ of E' separated by I. As
usual we denote a shadowed line (/ι, E[) just as I, understanding that a half plane is
bounded by /. The half plane E[ is opened (/ φ E[), and is called the shadowed half
plane of this shadowed line. A set X C M4 is called good with respect to a shadowed
line if it lies in the shadowed half plane of this line. Two parallel shadowed lines
have the same direction if the shadowed half plane of one of them contains the other.

Suppose H e 3%\. Note that π(Hx + Z4) is dense in E9 π\H\ + Z4) is dense
in Ef. Denote Uδ the ^-vicinity of h in E and Vδ = π'(β%γ Π π~ι(Uδ)). Vδ is a set
of lines parallel to h. If δ is small then the distance between two neighbor lines in
Vs is large: distance between two neighbor lines in V is of order 1/δ. If L £ 3@\
and π(L) G Us, then ρ(π(L)) doesn't intersect π'(L) because in the opposite case the
2-plane L = π(L) + π'(L) intersects with the set Ω(π(L)) = {x + ρ(x), x G ττ(L)}.

We mark this by shadowing the line πf(L) in such a way that ρ(π(L)) lies in the
shadowed half plane separated by τr'(L). All the lines in Vs are shadowed. Because
ρ is continuous not all the lines in π'(H\ + Z4) are shadowed in one direction, and
there exist two neighbour lines in Vs such that their shadows are as in Fig. 1:

Fig. 1 K i\

I/////
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Denote these lines l[,l'2 and suppose l[ = ττ'(Li), 1'2 = π'(L2). Note that π(Li), π(L2)
lie in {/$. Let ki be the lines parallel to li9 lying in the non-shadowed half planes
separated by k, i = 1,2, in a distance of ci. (5 + c2 from Zi. Then by the modified
Lipschitz condition ρ(l) lies between k\ and k2.

Proof of Proposition 6. Choose the affine coordinates (2/1,2/2) of ^ and (21,22) of ϋ?'
such that π(JEZΊ) is given by {2/1 = 0}, π(ff2) by {y2 = 0}, π(ίf3) by {yx + y2 = 0},
πΌEΓi) by {zι = 0}, τr'(#2) by {z2 = 0}, τr(#3) by {z{ + z2 = 0}. Then π(iJ4) is
given by {2/1 + ay2 = 0}, 7r'(ijΓ4) by {zγ + fo2 = 0}.

In the affine coordinates (2/1,2/2? ̂ b ̂ 2) of M4 we have

#1 = {2/1 = *i = 0} , H2 = {?/2 = ^ = 0} ,

^ 3 = {2/1 + 1/2 = 0 = zi + z2} , HA = {2/1 + α2/i = Z2 + ̂ 2 = 0} .

The projective coordinates (Hi)ki are not difficult to compute, and from the inde-
pendence of Hi, H2, # 3 , H4 we have α 7̂  0, b φ 0, α ̂  6.

Let for a pair of functions /, # on E the sign / = g means that |/ - g\ < const, β
is defined by two functions zi(2/1,2/2), 2̂(2/2,2/2)- By applying Lemma2 to ^ i and
^ 2 one sees that £1(2/1,2/2) = /(2/i)» 2̂(2/1,2/2) = (̂2/2). By applying to J%:

/(2/i) + 0(2/2) = Λ(2/i + 2/2) => / = g = h.

It's easy to see that f(ax) = af(x) for a fixed α G R. At last applying Lemma2 to
^ 4 we see

f(yύ + bf(y2) = f(y{

Because α / 6 w e have / = 0. This means that the function ρ is bounded. D

4. Construction of QPLR

Recall that we have defined FUF2,F3,F4, F{ = F(βi\ i= 1,2,3,4. They may be
dependent. Choose some new integral 2-plane F 5 , . . . , Fn such that each intersects
E and E1 by lines and there exist four independent 2-planes in F\, F 2 , . . . , Fn. By
Proposition4 we can always do that. If F i , F 2 , F 3 , F 4 are independent we need not
add any 2-plane to this collection. Let H\ = F\, H2 = F2, iJ 3 = F 3 and define Γ{
as in Prop. 6, i = 1,2,3. For i > 4 let Γ* = Z 4 . Put iζ ' = F^ + Γim iξ' is a system of
parallel 2-planes. These systems satisfy the following conditions:
a) J% is discrete in R4: every compact in IR4 intersects with only a finite number of
planes in Jξ". Fi intersects E and E' by lines, Fi P\ Fj =0 if i ^ j .
b) Each of i T , i ? , i ^ is bootstrapped by the other two (cr. Proposition 6).
c) If ρ\E —> £^r is a function satisfying the modified Lipschitz condition and its

n

graph doesn't intersect (J Jξ' then ^(-E) is bounded in E.

d) If F € ^Γ, i > 3 then the set π '(F Π i i Π ̂ ζ) is dense in the line π r(F) (because
Γi D Z 4, Γ2 D Z4).

We construct the partitions of the existence domains as indicated in 2.3. We denote
the forbidden set by B,

B= ί [j ^ σ Λ + Z 4 ; B C B

JIeM
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Of course the set &% is contained in B. We shall prove that if Ω is a section, Ω c
R 4 \ i5 , then Ω is reduced to a plane section. This solves the second problem. Fix such
a section Ω. Ω is the graph of a function; ρ:E —• Ef.

Ω = {x + ρ(x), xe E}, ΩΠB = 0 .

It is easy to see that if Ω is a section, J? C R4\B, then 4? satisfies the modified
Lipschitz condition and we have:

Corollary. If Ω C R4\B is a section then π\Ω) is bounded. D

Let F be a plane in ^ / = π(F), / ' = π'CF), G = π~ι(f). G is a 3-plane,
F C G. Because i? f l i ^ = 0 the intersection (J? Π G) lies in one half of G separated
by F, and τr(i? Π G) lies in one half plane of 25' separated by / ' = π'(F). We
shadow the line / ' in such a way that π(Ω Π G) lies in the shadowed half. All lines in

n \ n

U J ξ j are shadowed. Note that by Proposition 5 no two 2-planes in |J iξΊiave

/ n \

the same projection on £7'. The set TΓ' (J J ^ is a dense set £ ' . A set of shadowed
\i=\ J

lines is called compatible if there exists a point good with respect to all of them. A
set of points is called good with respect to a shadowed line if all of its points are
good with respect to this line. If this set is connected then it is good with respect to
this line iff one of its points is good.

/ n \

Lemma 3. If 3 lines /(, / ^ f$ £ π' ( (J Jζ J intersect by a point then they are com-
patible. \i=l J

n

Proof. Suppose HUH2, H3 e \J iξ'and π'(Hi) = f, then by Proposition 5 H\, H2,
2 = 1

H3 intersect by a point N. Let E'N be the 2-plane going through N and parallel to
E'. This plane intersects i/i, iJ 2 ,^3 by lines and the point Ω(N) does not lie on
these lines. Its projection πr(Ω(N)) = ρ(N) is a point good with respect to all

Lemma 4. // h\, h!2 e π'(3\ U Jξ), h\ is parallel to h2, then there is a point x good
with respect to h\ and h2. This means that two lines indicated in Fig. 2 are impossible

Proof Suppose h\ and h'2 belong to ττ'0^) and are as in Fig. 2. By Proposition
6 there exist lines of π ; ( i? U Jξ) located as indicated in Fig. 4: each intersection
point is triple, here the two shadowed lines are h\ and h2, the non-shadowed are
from πf0ζ U Jξ). Now consider possibilities of shadowing lines from π'0% U iζ) .
According to Lemma 3 there are only 3 variants of shadows of lines going through
the point A in Fig. 3:
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Fig. 3 /

These variants are introduced in Fig. 4:

Λ\\\\\\\\\\\\\\

Fig. 4

Let's consider the first variant. At the point B (in Fig. 5) there is a unique shadowing
compatible with Lemma 3. In A\ the shadowing is unique, too. We can continue this
process and see that ρ(E) is not bounded. This contradicts Proposition?. The other
variant of Fig. 4 is analogous.

\\w\\\\ \\\m! \\\\ wwwww
A/N, A<

Fig. 5

Lemma is proved. D

Corollary. There exists a point N G E' such that for every shadowed line f in
πf(β\ U Jζ) either N lies on f or N is good with respect to f.

Proof. By Lemma 4 every pair of shadowed lines in π'C^Γ) are compatible. For
h! e π'(&\) we denote E'(h!) the shadowed half plane of E' separated by h! plus the
line h! itself. Then

E\h\) Π E'(h'2) φ 0VΛ;, ti2 e π

It's easy to see that there are only two possible cases:
a) There exists a line fei C f| E'(ti).

b) All the shadowed lines from πf0^) have the same direction. But case b) means
that ρ(E) is not bounded, which contradicts Proposition?. Thus there exists a line &i
contained in every E'(h!) for h! C π'0^). Analogously there exists a line k2 contained
in E'Qi!) for h! c π'iJζ) and fci Π k2 is the point to find. D
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Proposition 8. For every shadowed line ft' in TΓ' | J J ξ j the point N of the above

corollary either lies on ft' or is good with respect to it.

Proof. If N belongs to ft' then we are done. Suppose TV does not lie on ft' and
ft' £ π'(β{ U i ζ ) . Let fti,ft2 be lines going through N and parallel respectively to
TΓ'CFI) and τr'(F2).

The lines fti and ft2 intersect ft' at point A and B (Fig. 6).

hi N

WWWV

h /

777/

\
\
\

\\\\\v£

/ \
/ %

i <

/
/B

X\\\\\\\\\\\\\\\\\\\\\\\\
c

Fig. 6

There is a triple intersection point C in the segment [A, B\. That is the intersection
point of ft' and one line from π ; ( ^ ) and one line from π'(i?). By applying Lemma 2
to these lines we see that N is good with respect to hf. Π

By definition the set ρ(h) is good with respect to h! for every ft, h' such that

h = τr(iϊ), ft' = π'CH"), i ϊ G U ̂ ί' W e P Γ 0 v e a stronger result:
2 = 1

Proposition 9. For H e\J Ή>h = π( ί f ) , ft7 = π'(JΪ), ίλe ^ r Q(Ud(h)) is good with
2=1

ft;, ftere ε/d(ft) w ίA^ d-vicinity ofh (d is defined in 2.3).

Proof. The set ft' + Ud(h) by Lemma 1 belongs to the forbidden set B. Moreover
ft + [^(/j) is a wall. So Ω(Ud(h)) doesn't intersect with (ft' + Ud(h)). But Ω(Ud(h))
lies in (E/d(Ό + ^ ) Like ft' separates E' into two parts, the set Ud{h) + ft' separates
the set (C/d(ft) + E') into two parts, and Ω(Ud(h)) lies in one of them. Projecting this
picture to E' by TΓ' we see that ρ{Ud{h)) is good with respect to ft'. D

Let x be a point of £7,2<£ be the plane going through x and parallel to E'. The
intersection of B with E^ is a partition of E'x into convex polygons, and Ω{x) lies in
one of them. By projecting the polygon containing Ω(x) on E' (by TΓ') we obtain a
polygon Q ( x ) . Suppose α lies in a tile P of the tiling defined by the section Ω. Note
that x may lie on the boundary of P while ρ(x) always lies in the interior of Q(x). If
x and y both lie in the interior of P, then evidently Q(x) = Q(y)> and Q ( : r ) = τr'(C),
where C is the prism (or the tile of the refined oblique periodic tiling) containing
Ω{x). If x lies on the boundary of P, for example, if P ( 1 ) , P ( 2 ) , . . . , P{s\ are all tiles
containing x, then it's easy to see that

(***)
2=1

where y{ (ί = 1, . . . , n) is an interior point of P ω .
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Shadow all edges of this polygon Q{x) in the inner direction (Fig. 7).

Fig. 7. The polygon Q{x)

Proposition 10. Every edge of the polygon Q ( x ) is a segment of some line πf(F) where
n

F € U ^y and its shadow coincides with that of this line.
ΐ = l

Proof Due to (***) it's sufficient to consider the case when x is an interior point
of P. We may suppose that the prism C containing Ω(x) is a piece of the big prism
Ci + ξ, where / = {3,4} and ξ e Z 4 . We consider only the case ξ = 0 because other
cases are analogous.

Thus

P = π(Ci) = Pi =

PI-Pt

I. -Pί = {-

[0,1]}

The prism C has the form C = P - P', where P = Pτ and -P' is a piece of -P[.
More precisely, the projections of all walls intersecting with C/ divide the parallelo-
gram —Pi into smaller polygons, and —P' is one of them. Because projections of all

walls and edges of the parallelogram — P[ are in π' ( | J J ξ ] , we see that all edges
/ n \

of — P ' are segments of some line in πM \J

\

Fig. 8
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Fix an edge e of the polygon — P'. Now we consider two cases:

1stcase, e is a segment of the line π'(W), where W is a wall, W Γ\Ci Φ 0.
Because W is a wall W = F + Z d , where F e | J ^ π(WO = π(F), e c π(F) =

/^nC / N F n ^ + C/)^. *
Let / = π(F), we see that / Π {Zd + P/} 7̂  0. Zd + P 7 is the d-vicinity of

Pi, so / Π {Zd + Pj} ^ 0 means that Ud(f) Π P! φ β. Let y <Ξ Ud(f) Π Pj . Then
#(?/) £ Q( :c) = —P', and by Proposition 9 #(3/) is good with respect to /'. We conclude
that shadow of e and / are the same.

2nd case, e is a segment in the edge e of the parallelogram — P[. There are 4 edges
of this parallelogram, two of them go through 0, and two do not. If e goes through 0,
for example e C τr'(Fι). It's easy to check that if F\ intersects with Ci,π\F\) goes
through e, so the proof is just the same as the first case. If e does not go through 0,
for example, e lies on πf(F\) — e'2. Let us consider the 2-plane F — {F\ — ei), and its
wall W = (Fι - ε2 + Zd). We have πf(W) (= τr'(F)) contains the edge e. We prove
that this wall intersects with C/. In fact a wall is a prism, and π'(Ci) Π π'(W) φ 0;
it's sufficient to prove that πf(W) Π π ;(Cj) ^ 0. We have π(W) = π(Fλ) -e2 + Zd,

πf(Ci) = {-^363 - X^A', X3, ̂ 4 € [0,1]} .

Because d > |β2|, both sets contain 0, thus π(W) Π π'(C/) ^ 0. And this case is also
reduced to the previous one. D

Now we are ready to prove the theorem:

Theorem 2. A tiling satisfying our matching rules is equivalent to a tiling of a plane
cut and so is quasiperiodic.

Proof. By Theorem 1 such a tiling is defined by a section Ω C RA\B. Let N be the
point in Proposition 8, EN be the plane going through N and parallel to E, EN{x)
be the point-intersection of EN and Ef

x, where x is a point of E. Propositions 8 and
10 show that Ω is reduced to EN- The theorem is proved. D

5. The Connection Between the Quasiperiodic Tilings
and the Quasicrystallographic Groups

It is well-known that if the tiling $ of the Euclidean space Rfc is quasiperiodic, then
it can be obtained by the "cut method." This means that there exists some tiling φ
of R n, periodic with respect to some lattice Λ* = Z n c Rn, and there exists some
affine immersion 0 : 1 ^ -> Rn such that # is obtained, as a slice of φ on θ(Rk) Then
we can define the projection p : (R n )* —• (Mfe)*, as the operator, adjoint to the linear
part of θ, and the lattice A c (R n )*, as the lattice, dual to Λ*.

Definition. The finite-generated abelian subgroup in Rfc, which generates it as a linear
space, will be called the quasi-lattice in Rh.

Definition. The quasicrystallographic group G C Ek, corresponding to the quasiperi-
odic tiling if, is defined as the group of all movements of (R fc)*, preserving the
quasi-lattice p(Λ).

Note. The subspace [0(Rfe)J° [the annulator of θ(Rk) in (Rfc)*] is irrational (i.e., it
intersects with A only in zero), iff the projection p:Λ —> (Rfc)* has zero kernel.
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Everywhere below, unless otherwise specified, we suppose that this situation al-
ways takes place. In this situation we shall not distinguish A from p(Λ) C Rk and
(R n )* from Λ®R.

If the tiling $ consists only of parallelotops and is obtained by the strip projection
method (cf. 2 of this paper and [6]) (that is, the vertices of the tiling are selected by
the following way: The point x E Rk is the vertex of the tiling, iff x = π(y) for
some | / G / Π (θ(Rk) + /), where τr:Rn —> Rfc is some projection; / is an opened
parallelotop, spanned by the set {εi, . . . , εn} of some basis vectors in Λ* C R n ),
then A is a quasi-lattice in (R fc)*, generated by the linear functions {h\, ..., hn} on
Rfc, which are defined as restrictions on Rk of the linear functions on R n from the
basis, dual to {εi, . . . , ε n } .

6. Classification of Rotational Symmetry Types
of Two-Dimensional Quasicrystals, Obtained by Quadratic Irrational Embedding

If the embedding θ is quadratic and irrational, then the space A ® Q of rational linear
combinations of the quasilattice A in (R2)* admits the structure of 2-dimensional
linear subspace over Q I ^ I in (R2)*, and so, the quasilattice T always has rank 4 in
this situation.

It was proved in [1] that the angle φ can be an angle of rotation in some two-
dimensional quasicrystallographic group G with rank (71) = n, iff z = eιφ is an
integral algebraic number of degree n.

So, to classify all possible angles of rotation in two-dimensional quasicrystallo-
graphic groups, which are the symmetry groups of some tilings of the plane, obtained
by the aid of the strip projection method and admitting above constructed local rules,
we have to classify all the integral algebraic numbers of degree 4, lying on the unit
circumference. The fact that A <g> Q admits the structure of linear subspace over
Qiy^pi, when A is rank-4-subgroup of translations in some 2-dimensional quasicrys-
tallographic group with non-trivial rotational symmetry, is always true. It will follow
from the classification of angles.

Theorem 3. A complex number z, lying on the unit circumference \z\ = 1, is alge-
braically integral of degree 4, iff z + z is an integral algebraic number of degree 2,

777 ~t~

or, equίvalently, z + z = y-~ —, where m,k G Z;
m±

Proof. Suppose z is an integral algebraic number of degree 4; \z\ = 1. Let us denote
z -f z = A. Since z = z~ι, then z2 — Az + I = 0 which means that A is integral
algebraic. Since z is of degree 4, then A is irrational and there exists a quadratic
polynomial (z2 — Bz + C) with some complex coefficients B, C, such, that (z2 —
Az + 1) (02 - Bz + C) G Z w . This means, that C G Z; (A + B) G Z; (CA + B) G Z;
(AS) G Z. Since because z is of degree 4 and C G Q, then B £ Q. Since C G <Q>;
(A + B) G Q; (CA + B) G Q and A, B are both irrational, then C = 1. Let us denote

γγϊ —1— \ / ΎΎΊ ^L K* ΎΎ1 ϊ \ / ΎΎl / I Is*

m = (A + B); k = AB. Then z + S = A = 5 = —

= \z + z\ < 2, and the theorem is proved on the one hand.
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^ , , , , , ^ . 772 ± \Λ?Ί2 — 4fc

On the other hand: let z G C; \z\ = 1; z + z = A = . Then,
P(2) = z4 - mz 3 + (2 + /c)z2 - mz + 1 = (z2 - Az + 1) (z2 - £2: + 1) = 0, because
(z2 — Az + 1) = 0, and so, z is algebraically integral of degree 4. D

Let us denote w\ and W2 the roots of the polynomial P(z), other, then z and z.

Lemma 5. If either w\ or u>2 is not real number, then z is a root of unity of degree
5,8,10 or 12.

Proof. Conditions of the lemma imply that w\ = ΰ)2> Since zzw\W2 = P(0) = 1,
then w\W2 = 1. So, we have \w\\ = \w2\ = 1, which implies B = w\ +w\\ \B\ < 2.
So, conditions of the lemma are equivalent to \A\ < 2; \B\ < 2 and we have to find

m ± Λ/ΊΎI2 — Ak m ± \/m2 — Ak
< 2. It is easy toall (m, k) G Z such that

check that there are only four possibilities:
— 1 it Λ/5

a) m = A; = — 1 z + ^ = 2:5 = 1

b } 772 = I 1 * k τ=z — 1 * Z ~\~ Z z= * Z =z

c) ra = 0; A; = - 2 ; z + z = ±\/2; z8 = 1;
d ) m = 0; A; = ~3; z + z = ±Λ/3; z12 = 1;
which proves the lemma. D

7. Some Examples

The construction of the quasiperiodic tiling of the plane by the quasicrystallographic
group G with the point group R and the group of translations A is quite natural.

Since A is a commutative normal subgroup in G the action of G on A by inner
automorphisms is defined. If we factorise this action by the subgroup A C G lying
in the kernel of this action, we obtain some representation ρ:R = G/Λ —> Aut (A) =
GL(n, Z) (here n = rank A).

Since G c E2 and A = G U R2, then we have the representation φ:R = G/A —•
(£ 2 /R 2 ) = O(2, R). The action <p maps each element z e G C E2 onto its Jacobi
matrix Z from 0(2, R).

According to the definition of representation φ, the quasilattice A C R2 is φ(R)-
invariant and so, φ is a factor-representation of representation ρ. If we take the natural

inclusion i:Λ—> R2, then the projection p:

(\i e R, ε̂  G A); is i?-equivariant operator from the space A (8) R of representation
£ to the space R2 of representation φ. The kernel of p is an iϊ-invariant subspace in
A 0 R. We shall denote this subspace EL.

It follows from Theorem 4, formulated below, that the representation ρ is always
completely reducible. So, we have the .R-invariant (and orthogonal with respect to
some invariant bilinear form) decomposition A 0 R = E^ Θ EL, where E^ is the
2-dimensional space of representation φ and so we can apply the strip projection
method p: A 0 R —> £ΊI. If iΐ! is a finite group, ρ preserves some integral symmetric
bilinear form and so the projection p is orthogonal. If R is infinite, it is not so. But it
appears that ρ preserves some integral non-positive bilinear form and the spaces E^
and EL are orthogonal with respect to this form.
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In the examples below for R = Z 5 Zg, Z12 and Z, we shall give the formulas
for £•!' and E1, for the action of the group generator and for the planes {Fi}, which
appear in the definition of local rules.

Example 1. R — Zg. Here Z(xι,x2,#3,£4) = (—£4,#i,#2,#3), where Z is the group
generator of Zg.

II _ ( x\ - X3 + \/2£4 = 0 j_ J £1 - £3 + λ/2#4 = 0

~ 1 ^ 0 '
j_ _ J £1 -

+ X3 = 0 ' ~ \ x\ - Vϊx2 + £3 = 0 '

X\ — X3 = 0

= 0

The planes F(ε{)\ -Ffe); -Ffe); ^(54) are here dependent, and so, to construct local
rules, we have to add the plane

_ ( xι - x4 = 0

\ X2 - X3 — 0

To make these local rules 7h% -symmetric, we can add another three 2-planes

\ X3 — X4 = 0 \ X4 + x\ = 0 \ X2 — x\ = 0

which are obtained from F5 by Z-symmetry.

General Example of Rotational Symmetry. Everywhere below we shall fix the
angle φ (rational or irrational) and restrict ourselves to consideration of the case
when Λ, considered as a Z^j-module, is isomorphic to Z ^ j . (In the general situation
the module A is isomorphic to some ideal in Z^j.)

Let us note the operator of rotation on the angle φ, acting on A, as Z, and let us
fix the basis {εi;ε2;β3;ε4} in A such, that Z(εi) = εi+\ (i = 1,2,3).

Lemma 6. The operator Z, which is given in the basis \ε\\ e2\ £3; £4} by the matrix

( 0 0 0 - 1
1 0 0 m

0 1 0 -2-k
0 0 1 m

has two invariant two-dimensional subspaces E and F in ( y l ^ Q i ^ i ) . The restriction
of Z on the subspace E^ = E 0 R is rotation on the angle φ. The restriction of Z on
the subspace E1 = F (g) R is hyperbolic rotation with the eigennumbers w\ and u>2
Proof Let us note that the subspace E in A 0 QL/DJ' generated by the vectors e\
and β2, where e\ = ε\ +83 — Bε2; β2 = ε2 +84 — Bε^, and the subspace F, generated
by the vectors f\ and /2, where f\ = ε\ + 83 — Aε2\ J2 — 82 + £4 — Aε3\ satisfy the
conditions of the lemma. D

Note. This example contains all the cases R = Z 5, Zg, Z12, and Z. If m = 0, k = ±2,
then R = Zg, and we are in the situation of the previous example. If m = k = ± 1 ,
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then R = Z 5; if m = -k = ± 1 , then R = Zio and if ra = 0, fc = ± 3 , then R = Z i 2 .
In all the other cases R = Z.

The 2-planes F(εO; F(ε 2); F(ε 3); F(ε 4) are independent, if # ^ Z 8 . The plane
F(ε 2) is generated by e\ and f\\ F(ε3) is generated by e2 and / 2 ; F(εi) = Z~ι(F(ε2));
F(ε4) = Z(F(ε,)).

Theorem 4. The operator Z preserves the two-parametric family {Apq}; p,q £ Z
of bilinear symmetric forms on A of signature (1,3), //-R w infinite, and of signature
(4,0), / i? is finite, which is given in the basis {ε\\ ε2; ε3; £4} fry the family of matrices

( 2p q —2p — kp + mq —mkp + (ra2 — A: — 3

g Ip q -2p-kp + mq
—2p — kp + mq q 2p q

—mkp + (m2 — k — 3)q —2p — kp + mg' g 2p
The subspaces E^ and E1- are orthogonal with respect to the bilinear form Apq with
arbitrary values of p and q.

The proof of this lemma consists of direct checking of the matrix equation
Z*ApqZ = Apq and the formula Apq(eu fό) = 0 (ij = 1,2). D
Note. It can be proved that the space of all the bilinear forms on A 0 R, preserved
by the operator Z, is two-dimensional linear space, described by the following way:
jEJll and E1 are orthogonal with respect to all the bilinear forms from this space; their
restrictions on E^ and on EL are proportional to the restrictions of bilinear form
A = An on these subspaces.
Hypothesis. We suppose that variation of the bilinear form in the family {Apq^, pre-
serving its determinant (there is a one-parametric family of such variations), is con-
nected in some way with the inflation-deflation procedure.
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