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Abstract Let Uk denote the quantized enveloping algebra corresponding to a finite
dimensional simple complex Lie algebra fi. Assume that the quantum parameter is
a root of unity in k of order at least the Coxeter number for fi. Also assume that this
order is odd and not divisible by 3 if type G2 occurs. We demonstrate how one can
define a reduced tensor product on the family !F consisting of those finite dimen-
sional simple £4-modules which are deformations of simple £-modules and
which have non-zero quantum dimension. This together with the work of
Reshetikhin-Turaev and Turaev-Wenzl prove that {Uk,tF) is a modular Hopf
algebra and hence produces invariants of 3-manifolds. Also by recent work of
Duurhus, Jakobsen and Nest it leads to a general topological quantum field theory.
The method of proof explores quantized analogues of tilting modules for algebraic
groups.

It was recently shown by Reshetikhin and Turaev [RT] that one can obtain
invariants of 3-manifolds via quantum groups (see also [KM] and [TW]). In fact,
[RT] contains a general procedure for the construction of invariants from modular
Hopf algebras, and it was proved that the quantum group for sl2 is a modular Hopf
algebra. Moreover, in [TW] it is proved that the quantum groups corresponding
to root systems of classical types are quasi-modular Hopf algebras and that such an
algebra similarly produces invariants of 3-manifolds.

The purpose of this paper is to prove that a quantum group corresponding to
any finite root system is a modular Hopf algebra (actually we only check two of the
axioms since the remaining ones are verified in [TW]). More specifically, we prove
this over any field of characteristic zero in which the quantum parameter is a root
of unity of odd order / bigger than the Coxeter number for the root system in
question (if the root system involves type G2i we assume / also to be prime to 3).

In another recent (and related) development Durhuus, Jakobsen and Nest,
[DJN], have demonstrated (generalising the results of Turaev and Viro [TV]) how
one may obtain a topological quantum field theory from the rather general setup of
an associative algebra with a distinguished finite set of irreducible representations
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equipped with a "nice" tensor product. Our theorem shows that the quantized
enveloping algebras at a root of unity form a large class of examples where this
setup is realized. (Most of the properties were already established in loc. cit. Our
contribution is the existence of an associative tensor product which preserves
semi-simplicity on the distinguished set of representations. (For quantum sl2 this
was shown in [RT].))

A key ingredient in our proof is the use of tilting modules for quantum groups.
These modules are defined exactly as Donkin defines tilting modules for algebraic
groups [D2] (see also [R]). In the last section which is not directly related to the
above result, we prove some additional properties of quantized tilting modules. In
particular, we find that the quantum analogue of two conjectures by Donkin are
easy consequences of the results in [APW 1-2]. We view this as evidence in favour
of the modular conjectures.

I would like to thank H.P. Jakobsen and V. Turaev for bringing the problem
studied here to my attention and for stimulating my interest in it. Also I want to
thank S. Donkin for selling me his tilting modules and for some useful remarks
which simplified the proof of the main result.

Some time after this paper was submitted I received S. Gelfand and D.
Kazhdan's preprint, "Examples of Tensor Categories," which contains results similar
to our main theorem for the case where the quantum parameter has prime order.

1. Quantum Groups at a Root of Unity

Let £ denote a simple complex Lie algebra and let U' denote the corresponding
quantized enveloping algebra over Q(u), v an indeterminate. SetA = Έ[v,v~1] and
let UA denote the Lusztig ^4-form of IT, see [LI] .

Fix now a field k and a primitive /th root of unity ζek. We shall assume that
k has characteristic zero, that / is prime to the non-zero entries of the Cartan matrix
for £ and that / is bigger than the Coxeter number. The assumption on k is mostly
for convenience whereas there are several reasons - some of them built-in - for the
restrictions on /.

The quantum group we shall consider throughout this paper is Uk = UA ®A k.
Here k is made into an ^-algebra by specializing v to ζ.

We now recall from [APW1] some of the key results which we will need about
finite dimensional representations of Uk. Most of these results are analogues of
theorems in the modular representation theory of algebraic groups, see Part II of [ J].

We shall use the notation from [APW1]. Recall in particular that (€k is the
category of integrable ί/k-modules and that it contains all finite dimensional
modules of type 1 We have a triangular decomposition Uk = Uk Uk Uk , and the
induction functor from ^k (the category of integrable Uk t/°-modules) to c€k is
denoted Hk. From [AW, Theorem 2.5] we recall that the derived functors
H[ vanish for i > N9 where N is the number of positive roots. For a dominant
weight λeX+ we shall in this paper use the notation

where w0 is the largest element in the Weyl group W. By Serre duality [AW,
Theorem 3.2] we see that

Vk{λ) * H°k{ - woλ)* . (1.1)
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Then the irreducible module Lk(λ) is the socle of Hk(λ) as well as the head of
Vk{λ).

From Kempf 's vanishing theorem [AW, Theorem 5.3] it follows that Vk(λ) and
Hk(λ) are deformations of the corresponding constructions for the algebraic group
with Lie algebra £. To be specific, we have Vk(λ) ̂  HA(w0* λ)®Ak and
H°k{λ)^H°A{λ)®AK where HN

A{vtQ-k)®AV^H°A(k)®AV is the irreducible £-
module with highest weight λ. Here (C is the ,4-algebra obtained by specializing
v to 1.

We shall need the following (special case of the) linkage principle for quantum
groups at a primitive Ith root of H, see [APW1, Theorem 8.1] and [T].

If λ, μeX + and Lk(μ) is a composition factor of Hk{λ\
then μ is strongly linked to λ . (1.2)

The standard argument [CPS vdK], [J, Π.4.10] shows that Kempf's vanishing
theorem [AW, Theorem 5.3] has the following consequence:

Let λeX + and let Me%k. If Ext^(M, H°k{λ)) Φ 0 for some i ^ 0,

then M has a weight μ with μ ^ λ. If i > 0, then μ > λ . (1.3)

A particular case of (1.3) is

Let λ, μeX+. Then Ext^k{Vk(λ), H°k{μ)) = 0 for i > 0 . (1.4)

Another standard argument [J, Π.6.17] gives that (1.2) and (1.4) imply

Let λ, μeX + . If Lk(λ) and Lk(μ) both are composition
factors of an indecomposable module M e ^ k , then λsWΊ μ . (1.5)

This linkage principle allows us to decompose any module from (€k into
summands corresponding to Wrorbits:

Denote by C the first dominant alcove, i.e.

C = {λeX+\(λ + p, αv> < /for all oceR+}

and set

C = {λeX\0^ </l + p , α v > ^ / f o r allαeK+} .

Then C is a fundamental domain for Wx. For μeC and M e ^ , w e set

Pμ(M) = the maximal submodule of M whose composition
factors have highest weights in Wr μ .

With this notation at hand we can reformulate (1.5) as follows, cf. [J, Π.7.3]:

For M e ^ w e have M = φpμ(M) . (1.6)
μeC

2. Tilting Modules

In this section we define tilting modules for quantum groups and deduce their first
properties.
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Definition 2.1. A finite dimensional module M e ^ f c is said to have a good filtration
(respectively a Weyl filtration) if there exists a sequence

of submodules with FrfFi-x = Hk(λι) (respectively Vk(λι)) for some λiβX+,
i = 1,. . . , r.

Note that because of (1.1), a module M has a good filtration if and only if M*
has a Weyl filtration (and vice versa). Let us also record here the following
consequence of (1.3):

If M has a good filtration as in 2.1, then this filtration
can be rearranged so that i < j whenever Xt < λj . (2.2)

Of course there is an analogous statement about Weyl filtrations.
It is easy to see that a direct summand of a module with a good filtration has

a good filtration. The following result is much deeper.

Theorem 2.3. // Mx and M2 are modules with good filtration, then so is Mx ®k M 2 .

Proof In the case where / is a prime power, this result is recorded in [APW1,
Corollary 5.14]. The proof there relies on the corresponding theorem for reductive
algebraic groups in characteristic p > 0, see [W, Dl, M].

In the general case the result follows from Lusztig's work on canonical bases,
see [L2, Sect. 4] (this was pointed out to me by S. Donkin. For details see [P]). Of
course, we could also just quantize [W] (since we are assuming / > h).

Definition 2.4. A (partial) tilting module for Uk is a module Mec€k which has both
a good filtration and a Weyl filtration.

This definition is the exact analogue of Donkin's definition of tilting modules
for algebraic groups, see [D2]. Like in Donkin's work we have the following
version of RingePs theorem on the existence and uniqueness of indecomposable
tilting modules [R].

Theorem 2.5. i) For each λeX+ there exists an indecomposable tilting module Q(λ)
which has unique highest weight λ. Furthermore, λ occurs with multiplicity 1 as
a weight of Q(λ).

ii) The modules Q(λ), λ e X+, form a complete set of inequivalent indecomposable
tilting modules.

Corollary 2.6. Let M be a tilting module. Then there exist uniquely determined
aλ(M)elN, λeX+, such that M = 0 A e * + Q(λ)®a^M). In fact, aλ(M) is determined
by the character ch M of M.

Remark 2.7. Since Uk is not co-commutative, we do not always have
Mi ® M 2 = M 2 ® Mi . However, if M1 and M 2 both are tilting modules, then
M1®M2 = M2®M1 (because by Corollary 2.6 we get aλ(M1® M2) =
aλ(M2®M1)iov all 4

3. Endomorphisms of Tilting Modules

In this section we shall prove that the quantum traces of all endomorphisms of
certain tilting modules vanish. As we shall see in the next section, this is exactly
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what is needed in order to apply the constructions in [RT] and [DJN] to
quantum groups.

If/ is an endomorphism of a finite dimensional vector space, we denote by tr( /) ,
the trace of/

Definition 3.1. Let Me(€kbe a finite dimensional module and let φ be an endomor-
phism of M. By the quantum trace, tr^(φ), we understand tr(K2pφ), where
K2p = YlβKβ, the product running over all positive roots.

By the quantum dimension, dim^M, we understand the quantum trace of the
identity on M, i.e. dim^M = tr(K 2 p )

It is clear from the definition how to obtain dim^M once the character of M is
known. Let us illustrate this in the case M = Vk(λ):

For λeX we denote by χ(λ)eZ[X^\ the usual Weyl character, i.e.

xW = Σ ^ w ( - ι ^ w ) e W { λ + p ) l Σ ^ w ^ - ι ) H w ) e W { p ) w h e n λ e X + > w e h a v e

χ(λ) = ch Vk(λ).
From this we obtain

ydβ(λ + p,βvy _ y-

= FT z (3-2)
/ > 0 ζdβ<P,βv> _ ζdβ<p,βv} V ;

(Here ^ € { 1 , 2, 3} are the integers used to symmetrize the Cart an matrix, and if
a positive root β is the ̂ -conjugate of the simple OLU then dβ = dι.)

Recall that λeX is called /-singular if (λ + p, /Γ> is divisible by / for some root
β. Otherwise λ is called /-regular. From (3.2) we get in particular

If λeX + , then dim, Vk(λ) φ 0 iff λ is /-regular . (3.3)

With the notation from Corollary 2.6 we can now state

Theorem 3.4. Let M be a tilting module with aλ(M) = 0 for all λeC. Then for any
endomorphism f of M we have tΐq(f) = 0.

To prove this theorem, let us first make a couple of reductions. First of all, it is
clear from Corollary 2.6 that it is enough to verify the theorem in the case
M — Q{λ\ λeX + \C. Secondly, we observe that if / is nilpotent, so is K2pf
(because our modules are direct sums of their weight spaces) and hence tr,(/) = 0
for all nilpotent / Now any endomorphism of the indecomposable module Q(λ) is
equal to a constant plus a nilpotent endomorphism. Hence the theorem reduces to

Proposition 3.5. Let λeX + . Then dimqQ(λ) = 0 iff λφC.

We shall first observe that Proposition 3.5 is clear for λ /-singular: By (1.5) it
follows immediately that if Vk(μ) occurs in a Weyl filtration of Q(λ) and λ is
/-singular, then μ is also /-singular. But then dimgFfc(μ) = 0 by (3.3) and the
proposition follows in this case.

The idea is now to obtain the /-regular case by translation. As a preparation we
need the following elementary lemma:

Lemma 3.6. Let E,Me%>k be finite dimensional and suppose tr,(/) = 0 for all
feEndUk(M). Then tτq(φ) = 0 for all φeEndUk(E (x) M). In particular, dimqQ = 0
for all summands Q of E®M.
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Proof. Let e l 5 . . . , er be a basis for E and denote by e*,. . . , e*, respectively
e**,. . . , e** the dual (respectively double dual) basis in £ * (respectively £**). The
map <::£-• £ * * which takes e into (/z -• h(K-2pe\ heE*) is a LVhomomorphism
(because the square of the antipode on Uk is conjugation by K-.2p) Also the two
maps

k Λ £* (x) £** and E*®E^>k

are t/fc-homomorphisms.
So if (peEnd c / k(£ (x) M), then the composite

i ® l ^ ® 1 1 ( g ) π ( g > 1

φ: M >£*®£**(x)M >£* ®E®M > £ * ® £ ( x ) M >M

is in End ι/k(M). It is an elementary exercise to check that

tτq(φ) = tvq(φ) .

The lemma follows.

Recall now that once we have the linkage principle (1.5-6), we can define
translation functors, T\ for λ, μe C, as follows: For Mec€k we set
Tμ

λM = pμ(M® £), where £ is a finite dimensional Uk-module with highest weight
w(μ — λ). Here weW is chosen so that w(μ — λ)eX+. Usually one takes
£ = Lk(w(μ — λ)\ but actually any other module with w(μ — λ) as its unique
highest weight will do just as well. We shall use the tilting module, i.e. we define

The advantage of replacing the simple module by the tilting module is that it is now
immediately clear (by Theorem 2.3) that

Tμ

λ takes tilting modules to tilting modules . (3.7)

We are now ready for the

Proof of Proposition 3.5. By the above observations we may assume that the
highest weight of the tilting module in question is /-regular, i.e. equal to w λ for
some λeC and we Wι\ί. Then we choose μeC such that

stab^(μ) = {1, s} and ws λ <w-λ .

(This means that w μ lies on a unique wall in the lower closure of w C.)
Since we already know that dim^β(w μ) = 0, we see from Lemma 3.6 that also

all the summands of Tλ

μ(Q(w-λ) have ^-dimension equal to zero. However, it is
obvious that w λ is the (unique) highest weight of Tλ

μQ(w μ), and hence Q(w λ) is
a summand. The proposition is proved.

Remark. As we shall see in Proposition 5.6, we actually have TμQ(w μ) = Q(w λ)
when we are in a situation as in the proof above.

Corollary 3.8. Let λeX + \C, and let E be any finite dimensional module in ^k. Then
each summand of E ® Q(λ) has quantum dimension zero.

Proof Combine Proposition 3.5 and Lemma 3.6.
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4. Applications

In this section we shall consider Uk together with the following family of simple
£/k-modules

& = {Vk(λ)\λeC}.

Note that 3F consists of irreducible modules for Uk which are obtained by
deforming irreducible representations of 2. Also the modules in 3F have non-zero
quantum dimension, see (3.3). In fact, we see that J^ is the maximal family with
these two properties.

Clearly, 3F is stable under duality. In fact, Vk(λ)* ~ Vk(- woλ) for all λeC.
Here w0 is the longest element in the Weyl group (so in particular the modules in
!F are self-dual for those 2 for which w0 = — 1).

Reshetikhin and Turaev [RT] have defined the concept of a modular Hopf
algebra as a Hopf algebra with a distinguished family of irreducible representations
satisfying certain axioms. We shall not repeat these here but just point out that the
following result says that (Uk, 3F) satisfies axioms 3 and 4 in the notation from
[RT]. Together with the results in loc. cit. and [ T W ] this then verifies that (Uk9 &)
is a modular Hopf algebra and hence produces invariants of 3-manifolds (for
quantum sl2 axioms 3 and 4 are proved in [RT]).

Corollary 4.1. Let Vx,. . . , Vne&. Then

λeC

where n A e N , λeC, and Z is a Uk-module with the property that tr^(φ) = 0 for all
φeEndUk(Z).

Proof. From Sect. 2 we know that V1 ® ' ' ' ® Vn is a tilting module and may be
written

v1®"'®K= Θ Q(WΛ

for certain unique α λ e N . This proves that we may take nλ = aλ (because
Q(X) = vk{λ) for λ e C) and Z = φλeχ+χc Q(λ)a\ The required property of Z is then
Theorem 3.4.

Our second application has to do with the so-called generalized 6/-symbols
associated to quantum groups, see [TV] and [DJN]. In order for the above pair
(Uk, #") to fit into the framework of this theory, we need what we shall call
a reduced tensor product ® on # \ Actually, we shall define ® on tilting modules:

Let M be a tilting module. Then we define (with notation as in Corollary 2.6)

M = 0 Vk(λ)aΛM) .
λeC

Corollary 2.6 says that the aλ(M) are uniquely determined (even by ch M) so that M
is well defined.

Since the tensor product of two tilting modules M1 and M2 is again a tilting
module, we may define

MX®M2 = M1®M2
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We shall call ® the reduced tensor product (because M x ® M 2 is completely
reducible).

Corollary 4.2. The reduced tensor product ® is associative, i.e. if MUM2 and
M 3 are three tilting modules, then Mx ® (M 2 ® M 3 ) ^ MΊ ® M2) ® M 3 .

Proof. We may write M 1 ® M 2 = ( M 1 ( g ) M 2 ) Θ Z 1 and M 2 ® M 3 =

(M2 ® M 3 ) ( f )Z 2 , where αv(Zj) = 0 for all veC9i= 1, 2. By Corollary 3.8 we have

then also av(E ® Z t ) = 0 for all ve C, / = 1, 2 and £ finite dimensional. It follows

that M 3 ® Z1 = 0 = Mi ® Z 2 . Hence we get

M 2 ) ® M 3 £ (Mx ® M 2 ) ® M 3 ^ (Mx ® M 2 ) ® M 3

^ Mi ® (M 2 ® M 3 ) ^ Mi ® (M 2 ® M 3 ) ^ Mi ® (M 2 ® M 3 ) .

Remark 4.3. i) The above shows that (Uk, 3F, ® ) satisfies the two first axioms in

[DJN, Sect. 2]. By the results in loc. cit. one may thus construct a topological

quantum field theory associated to Uk.

ii) Let us take the opportunity to point out that even though Vk(λ) ® Vk(μ) is

a nice semi-simple module for all λ, μ e C, we have not given any formula for

determining its irreducible constituents, i.e. we have no general formula for

MPfcW ® VkilA\ v> λ, μeC. In fact, the general procedure (contained in Corollary

2.6) for decomposing a tilting module into its indecomposable summands gives

explicit answers only if we know chQ(λ) for all λeX + . By Proposition 5.8 below

and [APW2] a solution to this problem would include a solution to the deep

problem of determining the irreducible characters chLk(λ), λeX+ (cf. the recent

announcement [KL]).

5. Further Properties of Tilting Modules

In this section we shall establish some properties of tilting modules not directly
related to the main problem studied in the previous sections.

First we shall prove a result (see Proposition 5.6 below) about the behaviour of
tilting modules under_translations.

Fix λeC and μeC with s t a b ^ μ ) = {1, s}. In this case, recall that we have (see
[APW1, Sect. 8])

nH°k(yλ) = Ho

k(y.μ) for all ye Wt , (5.1)

For any ye Wx with ys λ < yλ and y-μeX+, we have
a non-split exact sequence

)-+0. (5.2)

Lemma 5.3. For λ and μ as above we have

for all yeWi with y-μeX + .
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Proof. Sinόe Tμ

λTμQ(y- μ) is a tilting module, we see from Corollary 2.6 that it is
enough to prove that the two sides have the same characters. But this follows
because by (5.1) and (5.2) we get Tμ

λT
λ

μH%(wμ) ^ i/fc°(w μ)0//£(w /i) for all

Lemma 5.4. Let λeC, veX+ and ye Wι with y λeX + . If Lk(v) is a composition

factor of Q(y λ\ then v is strongly linked to y-λ.

Proof We proceed by induction on y. If y = 1, we have Q(λ) — Lk(λ) and the
lemma is trivial. Suppose j / φ l and pick 5 such that ys λ < y λ. Let us first prove
that the lemma is true if we replace Q(y λ) by Tμ Tμ

λQ(ys λ). By the strong linkage
principle (1.2), it is enough to prove the statement for those v for which Hk (v) occurs
in a good filtration for Tλ

μT
μ

λQ(ys λ). But by (5.1) and (5.2) such a v has the form
w λ or ws'λ for some weWt for which H%(w λ) occurs in a good filtration of
Q(ys λ). By induction hypothesis, w λ is strongly linked to ys λ and hence to y λ.
Moreover, w λ strongly linked to ys λ < y λ implies that ws λ is strongly linked
to y λ.

Finally, to obtain the lemma for Q{y-λ) we just observe that Tλ

μT
μ

λQ(ys- λ) is
a tilting module. The above shows that y λ is its unique highest weight. Hence
Q(y λ) is a direct summand, and the lemma follows.

Lemma 5.5. Let λ9 μ and s be as above. Suppose yeWt with y μeX+ and
ys λ < y λ. Then Hk(ys λ) occurs at least once in a good filtration of Q(y λ).

Proof Consider the diagram

0 - Q -> Q(yλ) -*H°k{yλ)-+ 0

ί II
0 - H°k(ys λ) -» Tλ

μH°k(yμ) - H°k(y λ) - 0 ,

where the first sequence is the top piece of a good filtration for Q(y-λ) and the
second sequence is (5.2). The dotted map exists (making the diagram commutative)
because by (1.4) we have Ext%k(Q(y λ), Hk(ys-λ)) = 0. The induced map
Q! -> Hk(ys λ) is non-zero because otherwise we would have a splitting of (5.2).
This means that Hk(ys λ) must occur (at the top) in a good filtration of Q because
by Lemma 5.4 ys λ is maximal for the strong linkage ordering among the high
weights of composition factors of Q.

Proposition 5.6. For λ and μ as above we have

for all yeWi with y>μeX+ and ys λ < y*λ.

Proof It is clear from Lemma 5.4 that Tμ

λQ(ys λ) contains Q(y μ) as a summand
and hence that the composition factors of Q(y * μ) have highest weights strongly
linked to y λ. It follows that TμQ(y μ) has highest weight y λ. Hence
TμQ(y -μ) = Q(y λ) ®Q for some tilting module Q. From Lemma 5.5 we see that
TχQ(y λ) has Hk (y μ) occurring (at least) twice in a good filtration. Moreover, by
Lemma 5.4 we have that yμ is a highest weight of Tμ

λQ(y λ). We conclude that
Q(y μ) 0 Q(y μ) is a summand of Tμ

λQ(y λ). Comparing this with Lemma 5.3 we
see that Tμ

λQ = 0. But the Hk(x λ)'s occurring in a good filtration of Q are among
those occurring in a good filtration for TμQ(y-μ) and all of these satisfy
Tμ

λHU*-λ)*0. Hence β = 0.
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Secondly, we shall prove that "most" indecomposable tilting modules are
injective/projective in %lk.

Recall from [APW1, Sect. 9] that the injective modules in <$k may be obtained
as summands of Stfc ® E with E running through a set of finite dimensional
Uk-modules. Here Stk = Lk((l - l)p) = #?((/ - l)p) = Vk((l - \)p) is the
Steinberg module. By examining the arguments in loc. cit. it is easy to see that the
£'s may be chosen among the tilting modules in c€k. Hence

All injective modules in <€k are tilting modules . (5.7)

Now, let for λeX+ the injective hull in (€k of Lk(λ) be denoted Ik(λ). If
λ_=λo + lλl9 with 0 ^ (λ0,ocv) < I for all simple roots, then we set
λ = 2{l- \)p + woλo + Iλi (compare [D2]).

Proposition 5.8. For all λeX + we have Ik(λ) = Q(λ).

Proof. By the above Ik(λ) is an indecomposable tilting module. By construction
(see [APW1, Sect. 9]) it has highest weight λ. The proposition follows.

Remark. This proposition shows that the quantum analogue of Donkin's conjec-
ture in [D2, Sect. 2] holds.

Corollary 5.9. Let veX+ and suppose <v, α v > ̂  / for all simple roots a. Then Q(v)
has simple head and simple socle.

Corollary 5.10. In the above notation we have

for allλeX + .

Proof By [APW2] we know that Ik(λ) ^ Ik(λ°) ® Lk(lλx). Hence the corollary is
immediate from Proposition 5.8.

Corollary 5.11. Let veX+ with <v, α v > ^ / for all simple roots a. Then for each
finite dimensional module Ee^k we have

<2(v) ® E is a tilting module .

Furthermore, if aλ(Q(v) ® £ ) Φ θ , then <A, α v > ̂  /— 1 for all simple roots oc.

Proof Since injectivity is preserved when tensoring by E, the corollary follows
from Proposition 5.8.

Applying the same argument to the tilting module Stfc, we obtain a quantum
analogue of another conjecture by Donkin stated in a talk at MSRI in November
1990:

Corollary 5.12. For any finite dimensional module Ee^k we have

Stfc (x) E is a tilting module

and if αA(St ® £ ) φ θ , then </l, α v> ^ / - 1 for all simple roots α.
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