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Abstract. The global existence of smooth solutions to the equations of nonlinear
hyperbolic system of 2nd order with third order viscosity is shown for small and
smooth initial data in a bounded domain of n-dimensional Euclidean space with
smooth boundary. Dirichlet boundary condition is studied and the asymptotic
behaviour of exponential decay type of solutions as t tending to oo is described.
Time periodic solutions are also studied. As an application of our main theorem,
nonlinear viscoelasticity, strongly damped nonlinear wave equation and acoustic
wave equation in viscous conducting fluid are treated.

1. Introduction

In this paper, we are concerned with the global existence and exponential stability
of small and smooth solutions to the following equations:

A 0 ( U ) d f u + Aj(U)djdtu -

tdjdtU =f in [0, oo) x O , (1.1)

u = Q on[0, oo)xδί2, (1.2)

w(0, x) = u0(x) and wt(0, x) = u^x) in Ω . (1.3)

The existence of time periodic solutions is also studied. Here, Ω is a bounded
domain in R" with C°° boundary dΩ, U = (Vu9 ut, Vut\ ut = dtu = du/dt,
Vu = (δ iW, . . . , dnu\ djU = du/dxj (j = 1, . . . , n\ x = (xl9 . . . , xJeR",
u = '(«!, . . . , ud) is a d- vector of real- valued functions (*M means the transposed
M), and the summation convention is understood where the indices run through
1 to n. The AQ(U), Aj(U), A^U) and B^U) are dxd matrices of real- valued
functions defined on { ί7eR(2n + 1)d | | U\ ̂  K} and in C°° there, which satisfies the
following assumption:
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Assumption 1.1. (1) %>(£/) = A0(U\ tAj(U) = Aj(U\ ^^(U) = Aβ(U) and

(2) A0(Q) ̂

(3) MijMξtξj ^ *0\ξ\2Id for any ξ = ( ξ l 9 . . . , £M)

vviί/ί some constant α0 > 0, w/iere M = A and B, and Id is the dxd identity matrix.

From Assumption 1.1, Eq. (1.1) is a nonlinear hyperbolic system of 2nd order
with nonlinear viscosity term: Bijdidjdtu and it appears in models of nonlinear
viscoelasticity, acoustic wave equation in a viscous conducting fluid, strongly
damped wave equations and so on. Concerning global existence of solutions, the
problem (1. !)-(!. 3) was first studied in one space dimension and scalar case, and
classical solutions for arbitrary smooth data, their asymptotic properties and so on
were found in [1, 2, 8, 9, 14, 15, 20 and 25]. Concerning the strongly damped
nonlinear scalar wave equation of the form: un — άivσ(Vu) — Δut = 0, Pecher [19]
proved the global existence of classical solutions for arbitrary data in the two
dimensional Cauchy problem case (Ω = R2) under some growth order condition
on σ' (see also [7]), and global weak solutions was studied by J. Clement [6]. The
semilinear case: un — aΔu — Aut + f ( u , Vu9 ut, Vut) = 0 (a ̂  0), was studied by [3,
4, 5, 19 and 24]. The global strong solution (not so smooth, e.g., Vu, Vut are Holder
continuous) was studied by [12 and 13] under some growth order condition on
Aij(U)9 in the case where Aj(U) = 0 (7 = 1, . . . , n) and A0(U) = Id.

In the treatment of the above studies for the higher dimensional case, it plays an
essential role the estimation of ZΛnorm of solutions to the linear parabolic part:
(dt — Bij(0)didj)ut, and the nonlinear term was restricted strongly, because the
estimation of derivatives of higher order was not enough.

In order to study more general equations containing important physical
models, one approach is to abandon arbitrariness of data and to look for small
solutions. In this direction, the L2 framework is better, because the equation is
hyperbolic with a strong damping term and a good estimate of derivatives with
respect to both t and x are expected thanks to the hyperbolicity. In fact, Y. Ebihara
[10, 11] studied the small and smooth solution to the strongly damped scalar wave
equation of the form: utt — Aut =f(u, Vu, 52w, ut, Vut\ d2u = (d*u9 |α| = 2) with
suitable hyperbolic assumption, by using the so-called /^-Galerkin method.
Mizohata and Ukai [18] studied also small and smooth solutions in the L2

framework to acoustic wave equation in a viscous conducting fluid described by:

utt - aΔu - bAut = c(\ Vu\2 + \ut\
2\ (1.4)

with some constants a > 0, b > 0 and c φ 0. In these studies, to these authors it
does not seem that they obtained enough estimates of higher order derivatives, and
then the class of solutions in [10 and 11] was restricted and the proof in [18]
depended deeply on the special form of the nonlinear term.

Our purpose is to prove the unique existence theorem of global small and
smooth solutions to the problem (1. !)-(!. 3) in the L2 framework, studying an
exponential decay estimate of solutions. The crucial point is to get the estimate of
higher order derivatives with respect to both t and x. If the viscosity term:
Bijdidjdtu disappears, the estimate with respect to x are usually obtained by using
the ellipticity of the terms: AydidjU. However, in our case, this method does not
work, because the two terms: A^didjU and BydidjdtU must be evaluated at the same
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time. The main difficulty comes from this point and our technical contribution is
mainly how to derive the estimate of spatial derivatives, which seems a new point
compared with previous works.

Finally,_we would_like to remark that more general equation (1.1) with
/= F(t, x, d2u, d2 ut)(d2u = (d*xd{u\ |α| + j ^ 2)) can be handled with under a suit-
able assumption on F which guarantees the strict hyperbolicity and the essential
appearance of a viscosity term, by combining a technique here of obtaining the
exponential decay estimate with a technique due to [23] of reducing a fully
nonlinear hyperbolic operator to some quasilinear hyperbolic-elliptic coupled
system (see also [17]). However, to deal with the fully nonlinear case at least our
essential arguments concerning the estimate of spatial derivatives are not easy
to understand in this paper. Therefore, we shall treat (1.1) only. We believe that
Eq. (1.1) under Assumption 1.1 contains plenty of important physical models.

2. Statement of Main Results and Examples

First, we explain our basic notation. Let L2, ( , ) and || || denote the usual L2 space
on Ω, its inner-product and its norm, respectively. Put

dk

yu = (d«u, |α | = k\ dku = (dj

yu, Q^j^k) (y = x and t) ,

dku = (ftdίu, |α| +j = k\ dku = (dju, 0 ̂  j ^ k) ,

Hk = {ueL2\d*ueL2 for |α| ^ k}9 f f j - {ueH^u = 0 on dΩ} ,

(H, υ)k = Σ (d'xu, d*xυ\ |M|fc = (w,ι41/2, \\u\\^ = sup |tι(x)| .
| α | ^ f c xeΩ

For the time interval / c R and a Banach space B, Ck(I, B) is the set of all B- valued
continuous functions which are continuously k times differentiate in t e /. Put

7 = 0

For a d- vector v of functions in (ί, x), the capital letter V means that
V=(Vυ,vt, Vvt\ Put

P(v)u = A0(V)d2u + Aj(V)djdtu - AtAVfadjU - B^V^Jfru ,

Pv(t) = ||δ[w/2] + 2F(ί, ) l l , A^o = [n/2] + 3 , (2.1)

where [r] is the largest integer ^ r. For two operators A and B, the commutator of
A and B is denoted by: [̂ , B~\ = AB — BA. In order to estimate || u \\ , we always use
Poincare's inequality: \\u\\ ^ o^ || Vu\\ for ueHo, where αi is a suitable constant.
From Sobolev's inequality: | | M | | O O ^ α2 | | w 11^0-2? it follows that

From Poincare's inequality, it follows that what u e EN([S, Γ]) is equivalent to that

1/eTicmri tf"-1-;) (2.3)
7 = 0

provided that u(t, 0 = 0 on δΩ for ίe[S, Γ]. Since Co°(Ω) = {weC°°(Rn)|
supp u c= β} is dense in Hj, using Assumption 1.1 -(3) and Parse vaΓs formula for
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Fourier transform in Rn, we have

^ α0 1| Vu \\2 for w e / ϊ j and M = ,4 and B .

In view of this and Assumption 1.1 -(2), we choose K so small that

(α0/2)|| Fw||2 ^ (M0 (F)d, w, dtu) g α3 || Fw||2 for any w e t f j and M - A and B ,

(2.4)

(2.5)

provided that | F| g X. Let α4 > 0 be a constant such that |(4y( K),
^ α4 for any | V\ ̂  K The letter C denotes various constants depending only on

α0, α l 9 α2, α3, α4, K, n and Ω essentially. We denote also various constants depend-
ing on quantities A9 B and so on by C(A, B, . . .).

Now, we shall explain compatibility condition. If u satisfies (1.1) and the
condition: | U\ ̂  K, differentiation of (1.1) with respect to ί implies that d*u (k ̂  2)
are given successively by the formula:

= A0(U(t, OΓM'

Iu(t9 •) + [δf~2, P(u)]u(ί, •) + δ*-2/(ί, •)} - (2.6)

Using the formula (2.6), from u0 and w x we can define successively the value
at t = 0, which is denoted by uk. What u = 0 on dΩ implies that uk = 0 on dΩ,
which is the compatibility condition at t = 0 and the boundary.

The assumption on MO, MI and / is the following.

Assumption 2.1. Lei JV foe an integer ^ N0. Suppose:

H^ uj+1eHN~j nHΪ> (0 g j g AT - 1) ,

C^([0, oo); HN~2^)n C^ίfl), oo); L2) ,

ί>0

/or some μ ̂  0.

The following theorem is our main result.

Theorem 2.2. Suppose that Assumptions 1.1 and 2.1 are satisfied. Put

pk=Σ l | M j f c - ; + | | F M f e | | , A = l l " o l l * + V l l ^ + i l l * - ^ (2 7)
7=0 7 = 0

(A) Then, there exists an ε > 0 independent of u0, uί9 f and N such that if
PNO + Λ-NO(°°) = ε? then the problem (1. !)-(!. 3) admits a unique solution we
EN([0, oo)) satisfying the condition: \\ U(t, -)\\^^K/2 for all ίe[0, oo).

(B) Moreover, the following asymptotic behavior holds. (1) // μ = 0, then there
exists an εN > 0 depending on N such that if λNo(co) ^ εN, then

(2.8)
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for any AΓ0 ^ k ̂  N9 where ω is some positive constant and φk(t) = Ψk(t) =
C(k) (1 + t)mkt for some integer mk ^ 0 depending on k.
(2) // μ > 0,

|| 3*-1 t/(ί, O i l ^ e-ωtφk(pk) + e-yίιK(4M) (2.9)

^k^ N and 0 < y < min(μ, ω),
<Mί) = C(/c,

By using the technique due to P. Rabinowitz [21] and A. Matsumura [17],
exploiting the exponential stability (2.8), we obtain the existence of global small
periodic solutions provided that / is periodic with respect to t.

Theorem 2.3. Suppose that Assumption 1.1 is satisfied and that

N-2

f(t + Γ0, x) = f(t, x) for any (ί, x) e R x Ω .

(A) (Existence of periodic solution). Then, there exists an ε'N > 0 depending on
N essentially such that if λNo(co) ^ ε#, then the problem (1.1) and (1.2) admits
a periodic solution ueEN(ΊR) satisfying the conditions: \\ U(t9 OIL ^ K for all teJR.
and u(t + TQ, x) = u(t, x) for any (ί, x) e R x Ω.

(B) ( Uniqueness of periodic solution). Let u,vε ENo(Sί) be two periodic solutions with
period T0 to the problem (1.1) and (1.2). Then, there exists an ε" > 0 independent of
u and v such that u = v provided that pu(t\ pv(t) ^ ε" for any ίeR.

(C) (Exponential stability of periodic solution). There exists an ε'ύ > 0 depending on
N such that for the time periodic solution u obtained in (A), any solution v to the
problem (1. !)-(!. 3) satisfying the following:

is asymptotic to u exponentially as t -> oo, that is,

for all t > 0 with suitable ω > 0.

Now, we shall discuss some examples.

Example 2.4. The so-called strongly damped nonlinear wave equation is described
by:

- λAut =/, (2.10)

where u, a^ and / are scalar valued functions. If λ > 0 and

ξtξj ^ α 0 |£| 2 for any £eRM, where Uj = djU ,

then Assumption 1.1 is satisfied with d = 1, A0 = 1, Aj = 0 (7 = 1, . . . , n\
AIJ = dai/duj and B^ = λδtj, <5ί7 being the Kronecker's delta symbol.

Example 2.5. The acoustic wave equation in viscous conducting fluid (1.4) is
described by (1.1) with d = 1, A0 = 1 — 2cdtu, Aj = — 2cdjU, Atj = ab^ and
Btj = bδij. Assumption 1.1 is obviously satisfied.
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Example 2.6. The motion of viscoelastic material (cf. [20, pp. 56 and 57]): Let
a viscoelastic material occupy Ω in an equilibrium state. Let x denote the coordin-
ates of the material points, p(x) the density at x in the equilibrium state, u(t, x) the
displacement vector from the equilibrium configuration, γ = Vu = the n x n matrix
(8iUj) the Green-Lagrange strain tensor, S the Piola-Kirchhoίf stress tensor and
w(y) the free energy function which is assumed to be a function of strain only. The
constitutive law of Kelvin-Voigt viscoelasticity reads:

dw
S = ~jτ(y) + T(y,y) (γ = γt),

dy

where T(y,y) = (Tij) is a nxn matrix of nonlinear functions representing the
viscoelastic part of the stress. The T vanishes if the strain is independent of time,
that is, Γ(y, 0) = 0. The balance law of linear momentum reads:

p(x)B?u-divS=f inΩ (2.11)

for any t > 0. Suppose that p(x) = p > 0 constant and that the displacement is
prescribed at the boundary, that is, u = 0 on dΩ for any t > 0. Calculating the
divergence part in (2.11), we can rewrite (2.11) as follows:

pdfu-AijdidjU-BijdidjdtU^f i n Ω . (2.12)

Therefore, the motion of viscoelastic material is described by (1.1) and (1.2), setting
Atj = the n x n matrix (akilj) (akilj = d2\v/dykidytj + dTki/dylJ9 ytj = djUi), Btj = the
nxn matrix (bmj) (bkίlj = d T k i / d y t j , y t j = dsdtuι\ A0 = pln and A,- = 0 (j = 1,. . . ,
n). If dTki/dyu = dTυ/dγkt and 3Γw/δyy = dTu/dγkί9 then we have

My = 4, and tBij = BJi. (2.13)

Since T(γ, 0) = 0, we have

flwιXO) = (δ2w/3yw3yy)(0) and bkaj(0) = (dTki/dγlJ)(09Q).

In many models appearing in the theory of elasticity, we may assume that

mkttj(0)ηkηιξιξj ^ *0\ξ\2\η\2 for any ξ,ι,elR" ,

where m = a and fc, which implies that Assumption 1.1-(3) is satisfied in the present case.

3. Preparation for Later Sections

As a preparation for our a priori estimate of solutions locally in time, in this section
we discuss some estimate of composite function and multiplication of function in
paragraph 3.1, the first energy inequality of exponential decay type in paragraph
3.2, and the estimate for spatial derivatives in paragraphs 3.3 and 3.4. In particular,
the idea of paragraph 3.3 is new and one of our contributions to this field. Below,
ω and βj (j = 1,2,. . . ) denote some special positive constants.

3.1. Estimates of Composite Function and Multiplication of Functions. All the
estimates here are derived easily by using the following well-known estimate:

l l / ff II ̂  C(a,b)\\f\\a\\g\\b for α,b ^ 0, and a + b > ^ . (3.1.1)

So we may state all the assertions without any proof.
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Lemma 3.1.1. Suppose that F(v) is a function defined for \v\ :$ K, which is in C°°
there and satisfies the condition: F(0) = 0. // k> n/2 and \\v(t, OIL ^ K, then

\\dkF(v(t, ))\\^c(k,F)(ί + HδMί.OllΓΊ^OII .

Moreover, if k ̂  [n/2] + 3 and ||t>(ί, OIL ^ K, then

\\dkF(v(t, ) ) \ \ ί \ \ F ' ( v ( t , ))\\x\\dkv(t, )\\

+ C(k, F)(l + || dk-lv(t, OH)"- 1 \\~dk~lv(t, OH .

Lemma 3.1.2. (1)

t, Oil ||a*»(ί, Oi l for 0 g fc ̂  [n/2] +

^ C(/c){||δ f c + 1u(t, Oi l llδ[n/21+1ί;(t, Oi l + l|5[M/2]+2M(ί, O i l 11

I +||3*tt(t, )IMI5*- 1 »(f, ) l l } /or /c ̂  [n/2] + 2 .

(2) LetO^l^k. Then,

\\dl(dk-'(u(t, )v(t,.))-u(t, )dk-lv(t, ))\\

(t,OIII|S*-Mt, )ll /or 1 £ fc £ [n/2] + 1 ,
= \ C ( k ) \ \ d k u ( t , . ) \ \ \ \ d k - 1 v ( t , ' ) \ \ for k ̂  [n/2] + 2 .

3.2. First Energy Inequality.

Theorem 3.2.1. Suppose that Assumption 1.1 is satisfied. Let u and v be two vectors
of functions satisfying:

|| V(t, OIL ^ K/or ίe[S, Γ], u = 0 on [S, Γ] xdΩ . (3.2.1)

Γ/ien, there exist positive numbers ω, β^ and β2 such that if pv(t) ^ βt for ί e [S, Γ],
then

«(s,OII2^ /ort6[S,Γ].
s

Here and hereafter, we put

Ψ(l(t), ω, S) = e2ω'l(t)2 + } e2ωsl(s)2ds . (3.2.2)
s
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Proof. Let δ be a constant e(0, 1) determined later and put

E = (AoUt, t^) + ((Aij + δBώdjU, dp) + δ2(Bίjdjut, 3,ιO + 2δ(A0ut, u)

+ 2δ2(Aijdju,diut),

F = (BijdjUt, δjtt,) + δ(Aijdju, δjii) + δ2(AQutt, utt) - δ(A0ut9 ut)

jdjUt, u) + δ2(AjdjUt, utt) - δ2(Aίjdjut, dtut) ,

j)ut, ut) + δ((AQ\ut, u) + i((Λy + 5By)t37u, dtu)

+ (dtBrfdjUt, ut + δu + δ2utt)

Then, by integration by parts, we have

i^£ + F = (P(v)u, ut + δu + δ2un) + R .
2 at

Using Poincare's inequality and choosing δ > 0 small enough, we see that

d l l E / l l 2 ^E^ c2\\U\\2 and F ̂  c3{|| U\\2 + \\utt\\2} (3.2.3)

for suitable positive constants cί9 c2 and c3. And also, we have

\ R \ ^ C p v ( t ) { \ \ U \ \ 2 + \ \ u t t \ \ 2 }

Therefore, there exist β1 and ω > 0 such that

provided that pυ(t) ^ β^ for t e [5, Γ]. Since β-2ωί (^2ωί£) = £ + 2ω£, integ-
dt at

ration over [5, ί] and use of (3.2.3) imply the theorem immediately.

Corollary 3.2.2. Suppose that Assumption 1.1 is satisfied. Let u and v be two vectors
of functions satisfying (3.2.1) and suppose that P(ϋ)weC1([S, Γ]; L2). Then,

Ψ( || £7t(ί, .) || , ω, S) ̂  C{e2»s \\ Ut(S, •) ||2 + } e2™\\ (P(υ)u)t(s,.)\\2 ds

+ e2ωspv(s)2(\\d2u(s, ) \ \ 2 + \ \ d 2

x d , u ( s , )\\2)ds
S

for ίe[S, T] provided that pv(ή ^ )?! for ίe[S, 71].

Proo/ Using a mollifier with respect to t only, we may assume that w e
C°°([S, Γ]; /ί2) and that u = 0 on [S, Γ] xδί2 (cf. Shibata [22, Lemma 4.1]).
Differentiation of P(v)u once in t and application of Theorem 3.2.1 to the resulting
equation imply the Corollary immediately.
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3.3. Estimate of Spatial Derivatives in Half Space. In this paragraph, as a prepara-
tion of the estimate of spatial derivatives in Ω, we shall discuss the half space case.
Let u be a vector of function satisfying the following condition:

Qu = gin [S, Γ] x H + and u = 0 on [S, Γ] x dH+ . (3.3.1)

Here, H+ = {xeΊkn\xn > 0}. dH+ = {xeR"|x« = 0}, Qu = α/7 (ί, x)didju +
bij(t9x)didjdtu and the atj and fcy are d x d matrices of real-valued functions
satisfying the following assumption:

Assumption 3.3.1. (1) 'αy = ajh % = bβ and aiJ9 bise Π)=o C'([S, T^H^1^).

(2) (mtjdju, dtu) ^ j83 II Vu \\ 2 for any u e Hi

for some constant β3 > 0, where m = a and b.

In this paragraph, in order to denote that usual L2 space on H+, its norm, its
inner-product, the usual Sobolev space of order j in the L2 sense and its norm, we
use the same notation: L2, || ||, ( , ), H j and || ||7 as the notation defined in Sect. 2,
respectively. And, we put

H1

0 = {ueH^u = 0 on dH+} and \\u\\a. = sup \u(x)\ .

Then, we have the following theorem.

Theorem 3.3.2. Suppose that Assumption 3.3.1 is satisfied and that
|| (fly, bij)(t, ) l l o o ^ /?4 /^ ίe[S, Γ]. L ί̂ L i?e αw integer € [2, JV]. Assume that
u satisfies (3.3.1) απrf ί/zαί weC^fS, Γ]; HL). TTierc, ί/iere ^xisί ω and β5 depending
only on /?3 and β4 essentially such that

Ψ(\\%(u, wf)(ί, ) l l , ω, S) ^ C(L, β^ β4){e2ωS\\dϊu(S, ) ||2 + ^(||^(ί, OIL-a, ω, S)

ω

provided that \\(aij9 b^t, OIL ^ j?s /or α// ίe[S, Γ], w/zerβ L(n) = max([n/2]
+ 2, L - 2).

Proo/ Using the mollifier with respect to (xl9 . . . , x π _ ι ) and noting Friedrich's
well-known lemma concerning the commutator of the mollifier and the multiplica-
tion of function, without loss of generality we may assume that u is differentiable
any times with respect to (x l9 . . . , xn-ι) in the course of proof below.

First, we shall prove the theorem for L = 2. Let / = 1, 2, . . . , n — 1. Multiply-
ing (3.3.1) by df (u + ut) and noting that u = dtu = d2u = ut = dtut = d2ut = 0 on
dH+, by integration by parts we have

(g, d2(u + ut)) = - ((d^didjU + (d^did^ dt(u + ut))

+ ((didijWidjU + (dibij^djUt, dt(u + M,))

+ 2 ~dt

+

- -((ay
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It follows from Schwarz's inequality and Assumption 3. 3.1 -(2) that

\\dϊ(u + ut)\\ + ||(α l7ΛAI

+ l l3K*uA)llαo(l |3 2 t t | | + \\d2ut\\)\\V(u + u t ) \ \ } (3.3.2)

For 2nd order normal derivatives, we have

(annd
2u + &Λ Λδίtt f, δ

2(w 4- M,)) = (αΛΛδίM, δ2w) + (bnnd
2ut, d*ut)

— ~ ((ann + bnn)td
2u, d2u) . (3.3.3)

It is known that ann^.β3Id and bnn^β^Id9 which follows from Assumption
3.3.1-(2) (cf. Shibata [22, Lemma 3.4]). Let δ be a small positive number determined
later. Combining (3.3.2) and (3.3.3) implies that

- — < Y ((ay + bij)djdιU, didiU) + (5((flMn + bnn)d2u, d2u)
2 dt (l = i

Σ II ra^M,)!! ||an

2(u,M()|| +
1=1

+ II (fly,

Choosing δ > 0 small enough, we see easily that there exist ω and β5 depending
only on β3 and β4 essentially such that

+ I e2<M||δί(αy, 6y)(s, ) l l i II ̂ «, «,)(«, Oil2* , (3.3.4)
S

provided that ||(α£j , &ij)t(s, )IU ^ j^s f°r any se[S,Γ]. Considering
(bijdidjUt, d f u t ) ( l = 1,. . . , n — 1) and (bnnd%ut9 d2ut) and employing the similar
arguments, we have also

||3^|i2 ^ C(||δ2ιι||2 + ||0||2 + ||^^.||i|| Fuji 2 ). (3.3.5)

Combining (3.3.4) and (3.3.5) and using Sobolev's imbedding theorem implies that
the theorem is valid for L = 2.
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Now, we shall evaluate higher order derivatives. Assume that || (aij9 fey),(f, ) II <»
^ β5 for any f e[S, Γ], below. For any multi-index α = (α1? . . . , αj with j α |
= L — 2, put ftα = 5"# — [<9*, g]u. Applying Lemma 3.1.2-(2) to hΛ implies that

P. II g I I 350 I I + C(L)| |(α l 7 )fo0.)| |L ( M)ll(^^)llL-ι. (3.3.6)

With the help of (3.3.6), differentiation of (3.3.1) with respect to (x i, . . . , xn-ι) and
application of the theorem for L = 2 to the resulting formula yields:

Ψ(\\d*d*x'(u9ut)(t9 ) \ \ 9 ω 9 S )

+ ψ( || (aij9 fty)(ί, ) \\L(n} || (u, fO (ί, ) HL- i , ω, S)} (3.3.7)

for any α' = (α1? . . . , α π _ l ί 0) with |α' | = L — 2. Integrating the inner-product:
(annd

2dxu + bnndϊd*ut, d%d*(u + i^)) with respect to ί and adding the inner-
product: (bnnd

2d"xut, d2dxut\ with the help of (3.3.6) we have

Ψ( || aπ

2 55(tt, ttί)(ί, •) || , ω, 5) ̂  C (β2ωs ||

δ ^^Kί,.)!!,®^)} (3.3.8)
i , j = l

for α = (oci , . . . , αM) with |α| = L — 2. Repeated use of (3.3.8) and combination of
the resulting inequality with (3.3.7) in the final step implies the theorem.

3.4. Estimate of Spatial Derivatives in Case of Ω. Here, we shall discuss the
estimate of spatial derivatives in [S, Γ] x Ω. Let D be an open set such that D n Ω is
non-empty and Φ a C°°-diffeomorphism from D to D' = Φ(D). Let ΦeCJfφ) and
put (φu)(t9 x) = w(ί, y), where y = Φ(x). Since

+ Btjdidjtfut) = AtjWUdtφWjU + (3^)δ,M +

+ BtjWUdiφWjUt + (djφWut +

- φ(P(v)u - A0(V)d2u - Aj(V)djdtu)

we have

akldkdtw + bkidkdιdtw = gφoΦ'1 , (3.4.1)

where

mkι = Mij(Vo Φ~ί)(dyk/dxi)(dyι/dxj) (m = a and b, M = A and £, respectively) ,

gφ = - φ(P(v}u - A0(V)d2u - Aj(V)djdtu) +
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Applying Lemma 3.1.2-(2) to gφ implies that

(»)(ii3?ιιiιL-3 + IK^UL-I)} . (3.4.2)
It follows from (2.4) that

f mudkwdtwdy ^δφ $ \Vw\2dy (3.4.3)
D' D'

with some constant δφ = C(φ, Φ, α0) >_0 for any w(y) = wίΦ"1^)) with ueHo
Therefore, using a partition of unity of Ω consisting of a finite number of functions
in CO^R") and applying Theorem 3.3.2, we have the following theorem.

Theorem 3.4.1. Suppose that Assumption 1.1 is satisfied. Let u and v be two vectors
of functions satisfying the following:

,n), ueEN(lS,T]), || V(t, ) || „ £ K for te\_S,T~\ ,

where L is an integer e [2, JV]. Then, there exist constants ω and β6 > 0 such that

Ψ(\\dL

x(u,ut)(t, )\\,ω,S)

Ψ((ί

provided that pv(t) ^ β6 for any t e [S, 71].

Remαr/c 3.4.2. Since ||̂ - 1 U(t, )|| ^ 11^^ >, «()(ί, )ll + ll^(w, «,)(t, O i l ,
liaέ-2^,.)!! ^ ll^-2t/,(ί, ) l l , ||θ,2M(ί,OllL-3 + I I (u, «,)((, Ok-i ^c||δL-2[/(ί, )||
provided u = 0 on dΩ, the estimate in Theorem 3.4.1 can be rewritten as follows:

Ψ(\\%-1U(t,.)lω,S)

ίC(L,Ω){e2ωS\\u(S, )\\l+Ψ(\\P(v)u(t, )\\L-2,ω,S)+Ψ(\\δL

χ-
2U,(t, )lω,S)

+ Ψ((ί + \ \ ( A J ( V ) , A l j ( V ) , B l J ( V ) ) ( t , . ) \ \ L M ) \ \ d L - 2 U ( t , . ) \ \ , ω , S ) } (3.4.4)

for 2 ̂  L g JV.

4. A Priori Estimate

In this section, we shall discuss the a priori estimate of u satisfying the following:

P(v)u =/ in [S, Γ] x Ω and u = 0 on [5, Γ] x dΩ , (4.1)

), ue£L([S, Γ]) (2 ̂  L g ΛT) ,

d S.ri LV Π CJ([S,Γ];Ht-2- '), (4.2)
; = o

| V(t, ) || „ ̂  K and Pt)(ί) ̂  1 for ί e [5, Γ] . (4.3)
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We shall prove the following theorem.

Theorem 4.1. Suppose that Assumption 1.1 is satisfied. Let u, v and f be three vectors
of functions satisfying (4.1), (4.2) and (4.3). Then, there exist constants ω and β > 0
such that

s

+ Ψ(Qk(v)(t)\\dk-2U(t, )\\,ω,S)

+ \e2<°sRk(u,v)(S)
2dsl,

s )

provided that pv(t) ^ β for ίe[S, Γ], where

1 for k^ No,

Rk(u, v)(t)

- ' l / f c O I I for k^ NO,
1 V(t, ) II

Proof. Let fc be an integer 6 [2, L]. Differentiating (4.1) fe — 2 times with respect to
ί, we can write the resulting equation as follows:

P(v)dΓ2u = dΓ2 - Fk in [S, Γ] x Ω, ^-2t< = 0 on [S, T]xdΩ, (4.4)

where Ft = \_dk

t~
2, P(v) - P(0)]w. Applying Lemmas 3.1.1 and 3.1.2-(1) to Fk and

using (4.3) and the fact that

\\~d\u,,, Vut,d
2u,d2

xut)(t, )\\ ̂ C(/)| |5 ί + 1[/(ί,OII

we have

| |31F l t(ί,OII^C(fc)Λ l t(«,ι;)(ί). (4.5)

Applying Corollary 3.2.2 to (4.4) implies that

(4.6)

provided that pv(t)^βι for ίe[S, Γ]. In order to evaluate H^1"'^^^, O i l
(0 g / ϊί k — 2), let us differentiate (4.1) / times with respect to t and apply (3.4.4) to
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the resulting equation with L = k — I. For estimate of the nonlinear term, we apply
Lemma 3.1.1 and use (4.3), and then we have

\ \ ( A J ( V ) 9 A i J ( V ) 9 B i J ( V ) ) ( t ^ ) \ \ k ( n } ^ C(k)Qk(v)(t) ,

\\dl

k((P(υ) - P(0))u) - (P(υ) - P(Q))dl

tu\\k^2 ^ C(k)Qk(v)(t)\\d"-2U(t9 ) l l ,

where k(n) = max([n/2] + 2, k - 2).
Therefore, it follows that

Ψ(\\dk

χ-
2-ldl

t

+*U(t9 ) \ \ 9 ω 9 S )

2U(t9^\\9ω9S)}9 (4.7)

provided that pυ(t) ^ β6 for f e[S, Γ]. Repeated use of (4.7), and substitution of
(4.6) and use of Theorem 3.2.1 in the final step imply the theorem immediately.

5. A Proof of Theorem 2.2

Our proof of the existence part (A) of Theorem 2.2 consists in combining the
following local existence and uniqueness theorem with uniform a priori estimate.

Theorem 5.1 (local existence and uniqueness). Suppose that Assumptions 1.1 and 2.1
are satisfied. Then, there exists a T > 0 depending only on pNo + λNo(cc) essentially
such that the initial boundary value problem:

p(u)u =fin [0, Γ] x Ω and u = 0 on [0, Γ] x dΩ ,

w(0, x) = UQ(X) and ut(09 x) = MI(X) in Ω , (5.1)

admits a unique solution ueEN([Q, Γ]) satisfying the condition: \\ U(t, ) l l o o ^ 2K/3
for ίe[0, Γ] provided that \\(Vuθ9 ul9 Vu,)^ £ K/2.

Since we have already shown how to get the a priori estimate for P(υ)u, by using
the usual contraction method we can prove Theorem 5.1 in a standard way (cf.
Shibata-Kikuchi [23] or Kato [16]). We will write a proof of Theorem 5.1
elsewhere.

Now, let us prove a global existence of the solution to the problem (1.1-(1.3).
Let e > 0 be a small constant determined later and assume that ueEN([09 Γ]) and
that u satisfies (5.1) and the following:

pu(t) £ ε for 0 g ί ̂  T . (5.2)

Assume that ε ̂  β (cf. Theorem 4.1), that ε^βi (cf. Theorem 3.2.1) and that
α2ε ^ K/2 (cf. (2.2)). In particular, we have by (2.2)

(5.3)
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With the help of Theorem 3.2.1, repeated use of Theorem 4.1 implies that there
exists a ω > 0 such that

ί
,,2ωr~ /v\2 i f Λ2ωspu(t)2 + ί e2(ospu(s)2 ds ̂  C(n} P

2

No
o

* 1
+ ε2 J e2ωspu(s)2 ds\ for 0 ̂  t ^ T .

o J
(5.4)

Therefore, if ε is chosen additionally in such a way that C(n)ε2 ^ 1, we have

||δ [«/2] + 2l/(ί, O i l ^ C(rc){e-«V*0 + C(y)e-»λNo(π)} . (5.5)

If C(n){pNo + C(y)AWo(oo)} £ ε/2, then pu(t) £ ε/2 for 0 ̂  ί g Γ. Therefore, by
Theorem 5.1 we can continue w e £N([0, Γ]) to a u'eEN([Q, Γ']) with some T' > T
in a unique way such that u' satisfies (5.1) and (5.2), replacing T by T' there. In
addition, since pu(0) ^ CpNo for a suitable constant C>0 provided that we
EN([0, 71]) and M satisfies (5.1), if pNo rg ε/2C, then Theorem 5.1 and the continuity
of pu(t) imply that there exists a T> 0 such that (5.1) admits a unique solution
ueEN([Q, Γ]) which satisfies (5.2). Combining these facts, we can continue a solu-
tion locally in time to any time interval, which completes the proof of the part (A) of
Theorem 2.2.

Now, we shall show part (B) of Theorem 2.2. From (5.5) it follows that (2.8) and
(2.9) are valid for k = N0. Assume that k ̂  N0 + 1 and that (2.8) and (2.9) are valid
for smaller values of k. Since pu(t) ^ ε for any t e [0, oo), applying Theorem 4.1 and
using (5.5), we have

C(k){pl

+ Ψ((\ + \\dk-2U(t,

ί

C(k,y)λNo(cv)2$e-2ωs(\\dk-1U(s, )\\2e2<°s)ds .
0

When 7 = 0 (i.e., μ = 0), we choose λNo(ao) in such a way that C(fc, 0)λ#0(oo)2 ^ 1.
Using GronwalΓs inequality and the induction assumption and noting that we may
assume that pN(J9 λNo(co) ^ 1, we have (2.8) and (2.9) for required fc, which completes
the proof of Theorem 2.2.

6. A Proof of Theorem 2.3

In this section, we shall prove an existence of periodic solution by using a standard
method (see, Rabinowitz [21] and Matsumura [17]). For the readers' convenience,
we shall give a proof of Theorem 2.3, below.
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In order to construct a periodic solution, we consider a sequence {wm}, where
the um satisfy the following:

for ίeR (ί/w = ( FII", n", FiiΓ)) , (6.1)

P(um)um =fm in R x Ω and wm = 0 on R x 3Ω , (6.2)

||3fc-1l/m(ί, )ll ^ C(fcμk(oo) for ίeR and Λ/o ^ /c ^ W , (6.3)

where/m(ί, x) = p(t + m)/(ί, x) and p(ί)eC°°(R) such that p(t) = 1 for t ^ 1 and
= 0 for ί g 1/2. The wm are defined by the following:

um(t, x) = t;m(ί + m, x) for t ̂  - m and = 0 for t g - m ,

where the υm are vectors of functions satisfying the following:

forίe[0,αo)

(6.4)

p^t/" =/«(ί - m, •) in [0, oo) x Ω and ym = 0 on [0, oo) x dΩ ,

ϋm(0, x) = v?(Q, x) = 0 in Ω , (6.5)

I I 3*- 1 Fm(ί, )|| ^ C(fc)λfc(oo) for ίe[0, oo) and AΓ0 ^ fc ̂  AT . (6.6)

Since supp/m(ί — m, •) c [J, oo) x Ω, the compatibility condition is satisfied for
(6.5). And then, the existence of the vm follows from Theorem 2.2 under the
assumption that λNo(co) is very small. Since / is assumed to be bounded with
respect to t only, the way of choosing λNo(co) depends on N in order to get (6.6) (cf.
Theorem 2.2 (B)-(l)). Since 3|t;m(0, x) = 0 for 0 ̂  / g N, (6.1), (6.2) and (6.3) follows
from (6.4), (6.5) and (6.6), respectively.

Now, we shall show that (wm(ί, •)} is a Cauchy sequence in £JV_1(R). Put

> Q an(j ψm = ( y^m^ ^m ? y^

Then, the vvm satisfy the equation:

P(wm)wm =fm+p -fm + (P(um) - P(um+p))um+p in R x Ω . (6.7)

Using Lemmas 3.1.2-(2) and 3.1.1, the well-known inequality:

and (6.3), we have

\\dk-2(P(um) - P(um+p))um+p\\

^C(k,λN(π))\\dk-2Wm(t, )\\ f o r 2 ^ f c ^ J V , (6.8)

\ \ d ί ~ 1 ( ( P ( u m ) - P(um + p))um+p\\

m(ί, ) l l f o r 2 ^ f c ^ J V - l , (6.9)

f o r f c = l ,

In the same manner as in Sect. 5, applying Theorems 4.1 and 3.2.1, noting that
(fm+p -/m)(ί> 0 = 0 for t ̂  - m + 1 and using (6.8) and (6.9), we see that

(oo))^2ωS||3N-2^w(5, ) l l 2 (6.10)
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^ S ^ — m + 1 with suitable ω > 0 provided that λNo(co) is small enough. For
any t eR and m with T ̂  - m + 1, it follows from (6.10) that

because ||^"2 Wm(- m + l, )ll ̂  C(ΛΓ)^(oo), which follows from (6.3). Using
(6.10) for any t > T again, we have

sup \ \ d N ~ 2 W m ( t 9 ' ) \ \ ^C(n,AN(oo))e-ω(Γ+m-1UN(oo)^0 (6.11)
ί^Γ

as m -> oo, which means that {um} is a Cauchy sequence in £#-1 - Therefore, there
exists a limit UEEN-1(]R) such that

lim max \\dN~2(Um(t9 •) - I7(ί, - ) ) l l =0 (6.12)
m-»oo Γι^ί^Γ 2

for any - oo < Γx < T2 < oo. From (6.1), (6.2), (6.3), (6.12) and the fact that
N — 2 ^ [n/2] +' 1, we see easily that

p(u)U=f in Rxί2 and w = 0 on Rxdί2 , (6.13)

|| l/(ί,.) || oo^K/2 f o r ί e R , (6.14)

\\dkU(t, ) l l ^ C(/c)/ίfe(oo) for ίeR and 0 ̂  k ̂  N - 2 . (6.15)

Now, let us prove that ueEN(]R), using our local existence theorem: Theorem
5.1. In order to do that, first we shall show that

and ||5/+1ι/(ί, )||*-y ^ C(JVμ*(oo) (6.16)

for any 7'e[0, N - 2] and ίeR. For any </>eCo)(ί2) and multi-index α with
\α\ = N —j, we have

ί, •) - «w(ί, •))!! \\d«xφ\\+C(n)λN(π)\\φ\\

foj any m. Combining this and (6.12) implies that d{+1u(t, )eHN~J and
, ) l l j v - 7 ^ C(N)λN(co)9 because Cfίίί) is dense in ZA For any ε > 0 and

Q, there exists a ^eCo^Ω) such that ||φ — ̂ ||ι < ε. And then, we have

lim |(3/+ 1(ttm-Mm ')(ί, λ 0 ) ι l ^ I™ llδΓ1^"1 - wm/)(ί, O l l i l l Φ -

+ Σ l(-l)α(5
W = ι

which impjies that {3/+ 1wm(i, •)} is a Cauchy sequence in the weak topology of
HO . Since dji+1um(t9 ) converges to d/+ l u(t, ) in the strong topology of L2 for each
ίeR as follows from (6.12), we have dj

t

 + 1u(t, )e#o for each ίeR, which proves
(6.16).
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Since we do not know the existence of d?u(t, ) until now, instead of d^(t, ) we
consider

uN(t, •) = A0(U(t, OΓ'Myίtffe •)) W?- 2u(t, •) + BtJ(U(t9 •)) WΓ M*, •)

^r^o + 3̂ ^ . (β.ιη
Using Lemmas 3.1.1 and 3.1.2-(2) and (6.12), we see that [S?'2, P(wm)]wm(ί, •)
converges to [3f ~2, P(w)]u(ί, •) strongly in L2 for each f eR as m -» oo. Therefore,
employing the same arguments as before, from (6.12) and the second part of (6.16)
we see that d?um(t, •) converges to uN(ί, •) weakly in L2 and {3fwm(ί, •)} is
a Cauchy sequence in the weak topology of HQ for each t e IR, which implies that

and ||uN(t, )ll ^ C(n)AN(oo) . (6.18)

For any ΓeR, let us consider the following initial boundary value problem:

P(v)υ=f in [Γ, Γ + Γ J x Ω , υ = Q on [Γ, Γ+ 7Ί] x3Q ,

and ι;t(Γ, •) = wt(Γ, •) in Ω . (6.19)

In view of (6.16) and (6.18), the compatibility condition for (6.19) is satisfied and
then Theorem 5.1 implies that there exists a 7\ > 0 independent of T such that
(6.19) admits a unique solution veEN([T, T+ 7\]) satisfying the condition:
|| V(t9 )IL ^ 2^/3 for ίe[Γ, T+ 7\]. Applying (3.2.3) in the proof of Theorem
3.2.1 to the problem:

P(v)(v -u) = (P(u) - P(v))u in [Γ, T + ΓJ x Ω ,

v - u = 0 on [Γ, T + ΓJ x 3Ω ,

(ϋ - tt)(Γ, x) = (t; - u\(T9 x) = 0 in Ω ,

and using (6.15) and Sobolev's imbedding theorem, we have

\\(V — U)(t, ) l l ^ C J (1 + Pt (s) + Pυ(s)2}\\(V — U)(s, )\\2ds (6.20)
Γ

for any ίe[Γ, Γ+ΓJ. Since ι;(ί, )eEN([T, T+ 7^]), ^(s) is bounded in
[ Γ, Γ + 7\ ]. And then, application of GronwalΓs inequality to (6.20) implies that
|| U(t9 ) - V(t9 ) II = 0 for t E [ Γ, T + 7\ ]. Combining this and Poincare's inequal-
ity, we see that w(ί, •) = υ(t, )eEN([T, T + Γ^). Since Γis chosen arbitrarily and
since 7\ is independent of Γ, we have we£N(R).

Finally, we shall show that u(t + Γ0, •) = u(t9 •) for any ίeR. Put
υ(t9 x) = w(ί + TQ, ), and then P(u)(v - u) = (P(u) - P(v))v in R x ί2 and
u - v = 0 on R x dΩ. Since | | ( P ( u ) - P(v))v \\ ̂  CλNo(oo) \\ V - U ||, applying
Theorem 3.2.1, we have for t > S,

}\\2ds
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Choosing λNo(co) so small that CλNo(co)2 ^ 1, we have

for any t > S. Tending S to - oo, we have ||(17 - V)(t, )ll =0 for any ίeR.
Combining this and Poincare's inequality implies that u = v, that is,

tt(ί, •) = u(t + Γ0, ) for any t e R. This completes the proof of the assertion (A) of
Theorem 2.3.

Employing the same argument, by Theorem 3.2.1 we have the assertion (2) of
Theorem 2.3. In the same manner as in proving (6.10), we see the assertion (3) of
Theorem 2.3. Therefore, we may finish the proof of Theorem 2.3.
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