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Abstract. The global existence of smooth solutions to the equations of nonlinear
hyperbolic system of 2nd order with third order viscosity is shown for small and
smooth initial data in a bounded domain of n-dimensional Euclidean space with
smooth boundary. Dirichlet boundary condition is studied and the asymptotic
behaviour of exponential decay type of solutions as ¢ tending to oo is described.
Time periodic solutions are also studied. As an application of our main theorem,
nonlinear viscoelasticity, strongly damped nonlinear wave equation and acoustic
wave equation in viscous conducting fluid are treated.

1. Introduction

In this paper, we are concerned with the global existence and exponential stability
of small and smooth solutions to the following equations:

— B;j(U)0;0;0u=f in [0, 0)x Q , (1.1)
u=20 on [0, o0)x0Q , (1.2)
u(0, x) = up(x) and u,(0,x)=wuy(x) in Q. (1.3)

The existence of time periodic solutions is also studied. Here, Q is a bounded
domain in R" with C® boundary 0Q, U = (Vu,u, Vu,), u, = o,u = du/dt,
Vu=(01u,...,0,u), Ou=0u/ox; (j=1,...,n, x=(x1,...,x,)eR,
u="uy,...,uy)is a d-vector of real-valued functions (*M means the transposed
M), and the summation convention is understood where the indices run through
1 to n. The Ag(U), A;(U), A;;(U) and B;;(U) are d xd matrices of real-valued
functions defined on {Ue R@"*14||U| < K} and in C* there, which satisfies the
following assumption:
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Assumption 1.1. (1) ‘Ao(U) = Ao(U), ‘A4;(U) = A4;(U), 'A;(U)=A4;(U) and
'Bij(U) = Bji(U),

2) A0(0) 2 a1y,
(3 M;;(0)¢:¢; =2 ao|&|?1, for any & = (&,,...,¢&,)eR",
with some constant oq > 0, where M = A and B, and 1, is the d x d identity matrix.

From Assumption 1.1, Eq. (1.1) is a nonlinear hyperbolic system of 2™ order
with nonlinear viscosity term: B;;0;0;0,u and it appears in models of nonlinear
viscoelasticity, acoustic wave equation in a viscous conducting fluid, strongly
damped wave equations and so on. Concerning global existence of solutions, the
problem (1.1)—(1.3) was first studied in one space dimension and scalar case, and
classical solutions for arbitrary smooth data, their asymptotic properties and so on
were found in [1, 2, 8, 9, 14, 15, 20 and 25]. Concerning the strongly damped
nonlinear scalar wave equation of the form: u,, — div o(Vu) — A4u, = 0, Pecher [19]
proved the global existence of classical solutions for arbitrary data in the two
dimensional Cauchy problem case (2 = R?) under some growth order condition
on ¢’ (see also [7]), and global weak solutions was studied by J. Clemént [6]. The
semilinear case: u, — adu — Au, + f (u, Vu, u,, Vu,) = 0 (a = 0), was studied by [3,
4, 5,19 and 24]. The global strong solution (not so smooth, e.g., Vu, Vi, are Holder
continuous) was studied by [12 and 13] under some growth order condition on
A;;(U), in the case where Aj(U)=0(j=1,...,n) and 4o(U) = I,.

In the treatment of the above studies for the higher dimensional case, it plays an
essential role the estimation of LP-norm of solutions to the linear parabolic part:
(0, — B;j(0)0;0;)u,, and the nonlinear term was restricted strongly, because the
estimation of derivatives of higher order was not enough.

In order to study more general equations containing important physical
models, one approach is to abandon arbitrariness of data and to look for small
solutions. In this direction, the L? framework is better, because the equation is
hyperbolic with a strong damping term and a good estimate of derivatives with
respect to both ¢t and x are expected thanks to the hyperbolicity. In fact, Y. Ebihara
[10, 11] studied the small and smooth solution to the strongly damped scalar wave
equation of the form: u, — Au, = f(u, Vi, 03u, u,, Vu,), 03u = (3%u, |a| = 2) with
suitable hyperbolic assumption, by using the so-called H*-Galerkin method.
Mizohata and Ukai [18] studied also small and smooth solutions in the L2
framework to acoustic wave equation in a viscous conducting fluid described by:

Uy — adu — bAu, = c(| Vul® + |u,)?), (1.4)

with some constants a > 0, b > 0 and ¢ # 0. In these studies, to these authors it
does not seem that they obtained enough estimates of higher order derivatives, and
then the class of solutions in [10 and 11] was restricted and the proof in [18]
depended deeply on the special form of the nonlinear term.

Our purpose is to prove the unique existence theorem of global small and
smooth solutions to the problem (1.1)—(1.3) in the L? framework, studying an
exponential decay estimate of solutions. The crucial point is to get the estimate of
higher order derivatives with respect to both ¢t and x. If the viscosity term:
B;;0,0;0,u disappears, the estimate with respect to x are usually obtained by using
the ellipticity of the terms: 4;;0;0;u. However, in our case, this method does not
work, because the two terms: 4;;0;0;u and B;;0;0;0,u must be evaluated at the same
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time. The main difficulty comes from this point and our technical contribution is
mainly how to derive the estimate of spatial derivatives, which seems a new point
compared with previous works.

Finally, we would like to remark that more general equation (1.1) with
f=F(t,x,0%u, 02u,)(0%u = (0%0{u;|a| + j < 2)) can be handled with under a suit-
able assumption on F which guarantees the strict hyperbolicity and the essential
appearance of a viscosity term, by combining a technique here of obtaining the
exponential decay estimate with a technique due to [23] of reducing a fully
nonlinear hyperbolic operator to some quasilinear hyperbolic-elliptic coupled
system (see also [17]). However, to deal with the fully nonlinear case at least our
essential arguments concerning the estimate of spatial derivatives are not easy
to understand in this paper. Therefore, we shall treat (1.1) only. We believe that
Eq. (1.1) under Assumption 1.1 contains plenty of important physical models.

2. Statement of Main Results and Examples

First, we explain our basic notation. Let L, ( , ) and || - | denote the usual L? space
on (, its inner-product and its norm, respectively. Put

u=(Cu,|a| =k), Ou=(0ju,0<j<k (y=xandt),
o u = (030{u, la| +j=k), 0u=(u,0=j<k),
H*= {ueL*|0%ueL® for |a| £k}, H{={ueH'|u=0ondQ},
(us U)k = Z (aiu, aiv)s ”u”k = (ua u)}%/Z, ”u”oo = sup |u(x)| .
la| =k xe
For the time interval I = R and a Banach space B, C*(I, B) is the set of all B-valued
continuous functions which are continuously k times differentiable in teI. Put

N—-1
EN(S, T = () CI*U([S, T, HY 7).
j=0
For a d-vector v of functions in (¢, x), the capital letter 7 means that
V =(W,v, Wv,). Put

P(l))u = Ao(V)atzu + AJ( V)aja,u —_ AU( V)a,aju — BlJ( V)@iajatu 5
po() = 10" 2V (t, )|, No=1[n/2]1+3, 2.1)

where [r] is the largest integer =< r. For two operators 4 and B, the commutator of
A and Bis denoted by: [ A, B] = AB — BA. In order to estimate || u||, we always use
Poincaré’s inequality: ||u|| < oy Vu| for ue H§, where «; is a suitable constant.
From Sobolev’s inequality: ||u|l, < a;||u|n,—-2, it follows that

10Vt ) oo < c2py(t) - 22)

From Poincaré’s inequality, it follows that what ue Ey([S, T']) is equivalent to that
N—-1

Ue () C/[S, TI; HV 1) (2.3)
j=0

provided that u(t,-)=0 on 0Q for te[S,T]. Since C§(Q)= {ueC>(R")|
supp u = Q} is dense in H§, using Assumption 1.1-(3) and Parseval’s formula for



192 S. Kawashima and Y. Shibata

Fourier transform in IR", we have
(M;;(0)0;u, 0;u) = oo || Vu|* for ue Hy and M = A and B .
In view of this and Assumption 1.1-(2), we choose K so small that
(%0/2) || Vu|* < (M;ij(V)0;u, d;u) < a3 || Vul|? for any ue Hy and M = 4 and B,
(2.4)
(@0/2)1s = Ao(V) = a3ly, 2.5)

provided that | V| < K. Let a4 > 0 be a constant such that [(A4;;( V'), B;;(V), A;(V)I
< a4 for any | V| < K. The letter C denotes various constants depending only on
oo, 0y, U, O3, da, K, nand Q essentially. We denote also various constants depend-
ing on quantities A, B and so on by C(4, B, . . .).

Now, we shall explain compatibility condition. If u satisfies (1.1) and the
condition: |U| £ K, differentiation of (1.1) with respect to ¢ implies that 6¥u (k = 2)
are given successively by the formula:

6?“@, ') = Ao(U(t, ‘))_l{Aij(U(t, °))6,~6j(?{‘_2u(t, ‘) + B,](U(t, -))3i5j5£‘—1u(t, ')
— AU, +))0;0  ult,+) + [0~2, P@)]u(t,-) + o f(t,-)} . (2.6)

Using the formula (2.6), from u, and u; we can define successively the value of 6¥u
at t = 0, which is denoted by u,. What u = 0 on 0Q implies that u, = 0 on 0Q,
which is the compatibility condition at ¢t = 0 and the boundary.

The assumption on uy, u; and f is the following.

Assumption 2.1. Let N be an integer = N,. Suppose:

uoeHNmH(l), uj+leHN_jﬁH(1) (0§]§N’—1),

fel\ﬁ2 C/([0, 0); H¥=277) A C¥ ([0, o0); L?),

j=0
An(o0) = sup e {[|" 2f (&, )l + 0¥~ f (¢, ) ) < oo
t>0
for some u = 0.

The following theorem is our main result.

Theorem 2.2. Suppose that Assumptions 1.1 and 2.1 are satisfied. Put

k-1

k
Pr = Z lullie—; + Il Viell,  pr = lluolle + e 1 llic—j - 2.7
= =0

j=0 j
(A) Then, there exists an ¢ > 0 independent of uy, uy, f and N such that if

Pno + Ano(0) = &, then the problem (1.1)-(1.3) admits a unique solution ue
En([0, 0)) satisfying the condition: ||U(t, )|l < K/2 for all te[0, o).

(B) Moreover, the following asymptotic behavior holds. (1) If u =20, then there
exists an ey > 0 depending on N such that if Ay,(o0) < ey, then

13*72 Ut )1l < e dulpr) + Yl A(0)) 2.8)
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for any No <k < N, where w is some positive constant and ¢,(t) = Y, (t) =
C(k) (1 + t)™t for some integer my, = 0 depending on k.
2) If u> 0, then

10* 71U, )|l < e ¢ulpi) + €™ " Ya(Ai(0)) 29)
for any No£k< N and 0 <y <min(u, w), where ¢,(t) = Ck)(1 + t)™t and
Yil(®) = Clk, y)(1 + &)™t

By using the technique due to P. Rabinowitz [21] and A. Matsumura [17],
exploiting the exponential stability (2.8), we obtain the existence of global small
periodic solutions provided that f is periodic with respect to t.

Theorem 2.3. Suppose that Assumption 1.1 is satisfied and that

N—-2
fe () C/R;HY 27 A C¥ Y (R; L*) (N 2 No),

j=0
f@t+ Ty, x) =f(t,x) for any (t,x)e R x Q.

(A) (Existence of periodic solution). Then, there exists an ey > 0 depending on
N essentially such that if Ay,(00) < ey, then the problem (1.1) and (1.2) admits
a periodic solution ue Ey(R) satisfying the conditions: ||U(t, )|, < K for all te R
and u(t + Ty, x) = u(t, x) for any (t, x)e R x Q.

(B) (Uniqueness of periodic solution). Let u, ve Ey,(IR) be two periodic solutions with
period T, to the problem (1.1) and (1.2). Then, there exists an &’ > 0 independent of
u and v such that u = v provided that p,(t), p,(t) < & for any te R.

(C) (Exponential stability of periodic solution). There exists an ey > 0 depending on
N such that for the time periodic solution u obtained in (A), any solution v to the
problem (1.1)—(1.3) satisfying the following:

ve Ey([0, 00)) and [ 0v(0, -)|| < e ,
is asymptotic to u exponentially as t — oo, that is,
10N =2(U = V)(t, )| £ C(N, An(c0))e~*" | V(U = V)(0, )|
for all t > 0 with suitable w > 0.
Now, we shall discuss some examples.

Example 2.4. The so-called strongly damped nonlinear wave equation is described
by:

0Fu — dj(a;(Vu)) — Adu, = f, (2.10)
where u, a; and f are scalar valued functions. If 4 > 0 and
(0a;/0u;)(0) ¢ = ool E|? for any ¢ eR", where u;=0u,

then Assumption 1.1 is satisfied with d=1,4,=1,4;=0 (j=1,...,n),
A;; = 0a;/0u; and B;; = Ad;;, 6;; being the Kronecker’s delta symbol.

Example 2.5. The acoustic wave equation in viscous conducting fluid (1.4) is
described by (1.1) with d =1, Ag=1—2co,u, Aj= —2c0;u, A;;=ad; and
B;; = bé;;. Assumption 1.1 is obviously satisfied.
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Example 2.6. The motion of viscoelastic material (cf. [20, pp. 56 and 57]): Let
a viscoelastic material occupy 2 in an equilibrium state. Let x denote the coordin-
ates of the material points, p(x) the density at x in the equilibrium state, u(t, x) the
displacement vector from the equilibrium configuration, y = Vu = the n x n matrix
(0;u;) the Green—Lagrange strain tensor, S the Piola—Kirchhoff stress tensor and
w(y) the free energy function which is assumed to be a function of strain only. The
constitutive law of Kelvin—Voigt viscoelasticity reads:

5=+ 109 G=1,
V4

where T(y,y) = (T;;) is a nxn matrix of nonlinear functions representing the
viscoelastic part of the stress. The T vanishes if the strain is independent of time,
that is, 7(y, 0) = 0. The balance law of linear momentum reads:

p(x)0%u —divS =f in Q 2.11)

for any ¢ > 0. Suppose that p(x) = p > 0 constant and that the displacement is
prescribed at the boundary, that is, u = 0 on 0Q for any ¢ > 0. Calculating the
divergence part in (2.11), we can rewrite (2.11) as follows:

patzu - Aij(?i@ju - Bijaiﬁj@,u =f in Q. (212)

Therefore, the motion of viscoelastic material is described by (1.1) and (1.2), setting
A;j = the nxn matrix (ax;) (@e; = 0*°w/07a0y,; + 0T/ Oy, 11j = Ojwr), Byj = the
nx nmatrix (bu;) (b = 0T/ 0915, Y1; = 0;0,w1), Ao = plyand 4;=0(j=1,...,
n). If 6n,/aylj = aﬂj/ayk, and a]‘;‘,/a')ﬁu = aﬂj/a'ﬁk,-, then we haVC

tAij = Aji and tBij = Bji . (213)
Since T'(y, 0) = 0, we have
aitj(0) = (azw/a?kia}’zj)(o) and  by(0) = (0Tw/ 0745)(0, 0) .
In many models appearing in the theory of elasticity, we may assume that
mkitj(o)ﬂk'?téifj 2 0‘0|f|2|71|2 for any £, neR",
where m = a and b, which implies that Assumption 1.1-(3) is satisfied in the present case.

3. Preparation for Later Sections

As a preparation for our a priori estimate of solutions locally in time, in this section
we discuss some estimate of composite function and multiplication of function in
paragraph 3.1, the first energy inequality of exponential decay type in paragraph
3.2, and the estimate for spatial derivatives in paragraphs 3.3 and 3.4. In particular,
the idea of paragraph 3.3 is new and one of our contributions to this field. Below,
wand ;(j=1,2,...) denote some special positive constants.

3.1. Estimates of Composite Function and Multiplication of Functions. All the
estimates here are derived easily by using the following well-known estimate:

/-9l = Cla,b)| fllallgll, fora,bz0,anda+b >g- (G.1.1)

So we may state all the assertions without any proof.
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Lemma 3.1.1. Suppose that F(v) is a function defined for |v| < K, which is in C*®
there and satisfies the condition: F(0) = 0. If k > n/2 and ||v(t, )| » < K, then

I10%F(u(t, )| < C(k, F)(1 + [[0*o(t, -)I1)* " [ 8*o(e, -) |l -
Moreover, if k= [n/2] + 3 and |[v(t, -) |l < K, then
10*F(v(t, )l < | F'(0(t, )l | *0(2, ) |
+ C(k, F)(1+ [|0% ol ) 1)1 16* Mo, )|l -
Lemma 3.1.2. (1)

101 (*(u(t, -)o(t, -)) — u(t, -)d*o(t, -))

C(k) 0™ * 2u(e, )| | 0%o(t, ) for OS k< [n/2]+1,
< CULN* Mult, ) IG™2* oty ) I + 1921 2u(t, -) || 0*o(, -) |

+ 10 uG, ) 110" 1o, )1} for k= [n/2]+2.
(2) Let 0 <1< k. Then,
18'(0* ~ (u(t, - )v(t, -)) — u(t, - )3 ~"o(t, -)) |
< {C(k)l@[”m”u(t,_')ll 10% ot -)Il for 1Sk<[nm/2]+1,
= L CR 0 ult, )l 10 o, ) Jor k2 [n/2]+2.
3.2. First Energy Inequality.

Theorem 3.2.1. Suppose that Assumption 1.1 is satisfied. Let u and v be two vectors
of functions satisfying:

uEEZ([S’ T])a UEEN([Ss T]) 5
| V(t, )l =K for te[S,T],u=00n[S,T]x0Q . (3.2.1)

Then, there exist positive numbers w, §, and 8, such that if p,(t) < B, forte[S, T],
then

t
PUIUE ), 0, 8) + [ e |ug(s, -) 1> ds
N

= ﬁz{ez“’sll ues, )l +}e2“’SIIP(U)u(S, )I*ds forte[S,T].
S

Here and hereafter, we put

P((t), w, S) = e2*'1(t)? + erwSI(s)st . (3.2.2)
S
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Proof. Let 6 be a constante(0, 1) determined later and put

E = (Aous, u;) + ((Aij + 6Bij)0u, d;u) + 6%(By;0;uy, Osuy) + 26(Aoty, )
+ 26%(A;;0;u, 0;u,) ,

F = (By;0;u;, 0;u,) + 8(A;j05u, d;u) + 62(Aots, uy) — 8(Aoty, u;)
+ 8(A;0;uy, u) + 62(A;0;up, uy) — 6*(Aij0u,, Oitty)

R =3(((Ao): + 0;A;)ue, t) + 6((Ao)eths, u) + 3((Ai; + 6B;;),0;u, O;u)
— ((0:44j)0;u + (8;By;)0;us, u, + Su + 6%uy) + 6%((A4i;).0;u, O;u,)

62

+ > ((Bi;):0;uy, Oiuy)

Then, by integration by parts, we have

1
§%E+F=(P(v)u,u,+5u + 6%u,) + R.

Using Poincaré’s inequality and choosing 6 > 0 small enough, we see that
GllUIPSE=c|U|?and F 2 c3{|UI1* + llu,))?} (3.23)
for suitable positive constants c;, ¢, and c3. And also, we have
IR| = Cp,{I1UII* + luaI?}
[(P@)u, u + ou + *uy)| < CIPul{IIU] + lluxll} .

Therefore, there exist §; and w > 0 such that

d
G Et3eE+ lu 1) < Cl P(0)ull?

d d
provided that p,(t) < B, for te[S, T]. Since e~ 2¢* o (e*”'E) = o E + 2wE, integ-

ration over [, t] and use of (3.2.3) imply the theorem immediately.
Corollary 3.2.2. Suppose that Assumption 1.1 is satisfied. Let u and v be two vectors
of functions satisfying (3.2.1) and suppose that P(v)ue CX([S, T]; L?). Then,

PIUL ), @, 8) < C{2P [ UL(S, )I1* + [ [ (P©u)i(s, -)|1* ds
N

+ [ 29D, () (| 0%us, -) 1> + 92 8,u(s, -)|1*) ds
S

for te[S, T] provided that p,(t) < By for te[S, T].

Proof. Using a mollifier with respect to t only, we may assume that ue
C*([S, T]; H?) and that u =0 on [S, T]x 0Q (cf. Shibata [22, Lemma 4.1]).
Differentiation of P(v)u once in ¢ and application of Theorem 3.2.1 to the resulting
equation imply the Corollary immediately.
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3.3. Estimate of Spatial Derivatives in Half Space. In this paragraph, as a prepara-
tion of the estimate of spatial derivatives in Q, we shall discuss the half space case.
Let u be a vector of function satisfying the following condition:

Qu=gin[S,T]xH,andu=0on[S,T]xdH, . (3.3.1)
Here, H. = {xeR"x,>0}. 0H, ={xeR"x,=0}, Qu=ay;(t, x)0:0;u+
b;;(t, x)0;0;0,u and the a;; and b;; are dxd matrices of real-valued functions
satisfying the following assumption:
Assumption 3.3.1. (1) ‘a;; = aj;, 'b;j = bj; and a;;, bije()j=o C/([S, T1; HY 1 7V).
2 (my;0;u, 0;u) = B3| Vu|> for any ue Hp
for some constant 5 > 0, where m = a and b.

In this paragraph, in order to denote that usual L? space on H,, its norm, its
inner-product, the usual Sobolev space of order j in the L? sense and its norm, we
use the same notation: L2, ||+ ||, (, ), H’ and | - | ; as the notation defined in Sect. 2,
respectively. And, we put

H{={ueH'\u=0o0ndH,} and ||ul, = sup |u(x)| .
xeH +

Then, we have the following theorem.

Theorem 3.3.2. Suppose that Assumption 3.3.1 is satisfied and that
(@ij, bij)(t, Mo < Ba for te[S,T]. Let L be an integere[2, N]. Assume that
u satisfies (3.3.1) and that ue C*([S, T); H™). Then, there exist w and Bs depending
only on 33 and B, essentially such that

V(1103w w)(t, +) |, @, 8) < C(L, B3, Ba){e**® [ 05u(S, ) I* + P(llg(t,*) -2, @, S)
+ (@, biy)(t, )l | @ u) & ) lL-1, @, )} for any te[S, T,

provided that |(a;;, bij):(t, )l = Bs for all te[S, T], where L(n) = max([n/2]
+2,L—2).
Proof. Using the mollifier with respect to (xi,. .., x,—) and noting Friedrich’s
well-known lemma concerning the commutator of the mollifier and the multiplica-
tion of function, without loss of generality we may assume that u is differentiable
any times with respect to (xy,. .., X,—1) in the course of proof below.

First, we shall prove the theorem for L =2. Let[=1,2,...,n — 1. Multiply-
ing (3.3.1) by 0?(u + u,) and noting that u = d,u = 6?u = u, = d,u, = 0?u, = 0 on
0H ., by integration by parts we have

(9, 0F (u + u,)) = — ((8,4;)0;0;u + (0,b;j)0;05uy, 03(u + uy))
+ ((0:a:;)0,0;u + (0;b:;)0,0;u,, 0,(u + u,))

1d
+ (a;;0;0,u, 9;0,u) + (b;;0;0,uy, 0;0,u;)

1
- 5((aij + b;;),0;0,u, 0;0,u) .
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It follows from Schwarz’s inequality and Assumption 3.3.1-(2) that
Ld
2dt

S C{lgl oz + u)ll + ll(ay, byl | VOu|?
+ 10z (@i, bij) o (1030 ll + 02w DI Vi + u) ||} . (33.2)

For 2" order normal derivatives, we have

(A 02U + by O3 thy, OF (U + ) = (A Opty 07 1) + (b O3ty Op thy)

((aij + bi;)0;0,u, 0;0,u) + B3(I| Voull® + || Vou,l|?)

1d 2
+ 2 E ((ann + bnn)an u, an u)

1
- z ((ann + bnn)tap%u, 63 u) . (3.3.3)

It is known that a,, = f31; and b,, = B31;, which follows from Assumption
3.3.1-(2) (cf. Shibata [22, Lemma 3.4]). Let 6 be a small positive number determined
later. Combining (3.3.2) and (3.3.3) implies that

1 n—1
5%{ Y ((@ij + bij)0;01u, 0;0,u) + 6((Ann + bpn) 02 u, 5,%11)}
=1

n—1
+ /33{ > Vo (u, w)|* + 81107 (u, u,) llz}
=1

n—1
= C{é 2 Vo, w) | 1107w, w) | + gl 1| 0% (u, u,) |

=1
+ [@ijs bij)ell | 03w, ) 1* + 110x(@sj, big) o 07w, )| Il VA, ut)ll} :

Choosing 6 > 0 small enough, we see easily that there exist w and S5 depending
only on S5 and S, essentially such that

t
P(l|0zu(t, )ll, , ) + | €2 dZuyls, )1 ds
N
t
= C{ez“’sllﬁﬁu(& I+ el gls, +) | ds
S

+ [ 103y, bij)(s, ) I% | Vi, ) (s, +) [ 2ds (3.3.4)
S

provided that | (ay, byj)(s,*)w < fs for any se[S,7T] Considering
(bij0:0jus, fu)(I=1,...,n—1) and (b,,07u,, 0?u,) and employing the similar
arguments, we have also

103uli* < CCI0Zull® + gl + 1 0xbyll% | Vi) - (3.3.5)

Combining (3.3.4) and (3.3.5) and using Sobolev’s imbedding theorem implies that
the theorem is valid for L = 2.
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Now, we shall evaluate higher order derivatives. Assume that ||(a;;, b;;),(Z, *) |l
< Bs for any te[S, T], below. For any multi-index o = (o, .. .,a,) with |«
=L — 2, put h, = 0% — [0%, QJu. Applying Lemma 3.1.2-(2) to h, implies that

Ihall = 110591 + CCL)I(asjs bij) | ow (4, u) - 1. (3.3.6)

With the help of (3.3.6), differentiation of (3.3.1) with respect to (x;,. . ., X,—;) and
application of the theorem for L = 2 to the resulting formula yields:

ql(” a:zca;l(ua ut)(t9 ¢ ) ”’ , S)
< C{e?*S)|020% u(S, )1* + P(10x"2g(, )l, @, S)
+ P(li(aij, bij)(t, )l Low Il (w, ) (€, ) -1, @, S)} (3.3.7)

for any o = (ay,...,0,-1,0) with |a'| = L — 2. Integrating the inner-product:
(Apy 02 0%u + by, 02 %u,, 020%(u + u,)) with respect to t and adding the inner-
product: (b,,0%0%u,, 02 9%u,), with the help of (3.3.6) we have

([ 020%(u, u)(t, )|, w, S) £ C{e2*%| 07 05u(S, ) |I* + P( 05 %g(t, )], », S)
+ Y (Il (@i, bij) @€ ) Lo Il W, ) (&, <)L~ 1, @, S)

n—1
+ Z ¥ (110;0,0%(u, u)(t, +) |, @, S)
n—1
+ ) P10:0;0%w, u)(t, )|, », S)} (3.3.8)

i,j=1

for o = (a4, . ..,0a,) with |a] = L — 2. Repeated use of (3.3.8) and combination of
the resulting inequality with (3.3.7) in the final step implies the theorem.

3.4. Estimate of Spatial Derivatives in Case of Q. Here, we shall discuss the
estimate of spatial derivativesin [S, 7] x Q. Let D be an open set such that D n Q is
non-empty and @ a C*-diffeomorphism from D to D’ = @(D). Let & CJ (D) and
put (¢u)(t, x) = w(t, y), where y = ®(x). Since

A;j(V)0:0;(¢u) + By;0:0;(¢us) = Aij(V){(0:9)0;u + (8;6)0:u + (0;0;¢)u}
+ Bii(V){(0:¢)0;u, + (0;¢)0;u, + (0:0;¢)u, }
— (P — Ao(V)Pu — A,(V)0;0,u)
we have
10k W + b0, 0,0,w = ggo @1, (3.4.1)
where
My = M (Vo @ 1)(0yy/0x;)(0y:/0x;) (m = a and b, M = A and B, respectively) ,
9o = — P(P)u — Ao(V)0?u — Ay(V)0;0,u) + Aij(V)((0:4)0;u
+ (0;0)0iu + (0:0;¢)u) + Bij(V)((0:)0;u, + (0;¢)0:u,
+ (0:0;9)u) — A;j(V)(0? y1/ 0x:0x;)(0w/ )
— By(V)(9% 31/ 0x:0x;) (dw,/ Oy1) -
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Applying Lemma 3.1.2-(2) to g, implies that
[gpllL-2 < C(d, &, D){ | P)ullL-2 + [ Ao(V)lal 0% 20u|
+ 1AV), A7), By (1073 + 104 ) l-1)} - (342)
It follows from (2.4) that

[ myoywo,wdy = 8, [ |Vw|?dy (3.4.3)
D’ D’

with some constant d, = C(¢, @, 09) > 0 for any w(y) = u(®~'(y)) with ue H;.
Therefore, using a partition of unity of 2 consisting of a finite number of functions
in Cy(IR") and applying Theorem 3.3.2, we have the following theorem.

Theorem 3.4.1. Suppose that Assumption 1.1 is satisfied. Let u and v be two vectors
of functions satisfying the following:

veEN([S, T]), ueEN([S,T]), V(- )lo=K forte[ST],
where L is an integer €2, N]. Then, there exist constants w and B¢ > 0 such that
P (103w, u) (& )l @, S)
< CL % [u(S, )IE + P P@)ult, *)llL-2, @, S) + (05 2ua(t, ), , S)
+ P((L+ 1(A4;(V), Ay(V), By(V) (& ) ) (107t +) -3
+ 1 u)@ ) -1), ©, 5)},
provided that p,(t) < Be for any te[S, T].

Remark  3.4.2. Since [0y~ UL, )|l < 1057w, u)(t, )| + 105w, u)(t, -,
1057 2ug(t, )| S 1102720 ), (107u(t, ) llL-3 + @, u)(E+) -1 £ ClIO* 72U )|
provided u = 0 on 02, the estimate in Theorem 3.4.1 can be rewritten as follows:

Yoz~ UE ), o, S)
< C(L, Q{2 [u(S, )IE + U PO)ult, )llL-2, 0 S) + P02 72Ut ), @, S)
+ P((L+ I(A5(V), Ag(V), BV D& ) L) 10772 U ), @, S)} (3.4.4)
for2< L <N.

4. A Priori Estimate

In this section, we shall discuss the a priori estimate of u satisfying the following:

Poyu=f in[S,T]xQandu=0o0n[S, T]x0Q, 4.1
veEN([S, T]), ueE([S,T])(2=L<N),
feCET([S, T];Lz)r\L(_]2 Ci([S, T]; H--27), 4.2)
j=0

IVt )]lo < K and p,(t) < 1 forte[S, T] . 4.3)
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We shall prove the following theorem.

Theorem 4.1. Suppose that Assumption 1.1 is satisfied. Let u, v and f be three vectors
of functions satisfying (4.1), (4.2) and (4.3). Then, there exist constants w and > 0
such that

Y1051 U )] o, ) < C(L){ez“’s(llé"u(& DIZ + 1 Voru(s, -)I1?)

+ 0@ ) o, 8) + [0 f (s, +) 1> ds
S
+ P19 2U G, ), o, )

+ jez“”Rk(u, v)(s)? ds} ,

5
provided that p,(t) < f for te[S, T], where

(1 for k< Ny,
000 ={ 1 11 13211 o kN1

Ry (u, v)(t)
P 0% UG, )l for k < N,

=< p@I3* U@ ) + P10 V2, )l
+ (N0 V (@ )2 102 V(e ) 192U (8, +) || for kZ No+ 1.

Proof. Let k be an integer €[2, L]. Differentiating (4.1) k — 2 times with respect to
t, we can write the resulting equation as follows:

P)o* 2u=0"2—F,in[S,T]xQ, 0 2u=0o0n[S, T]x0Q, (44

where F, = [0¥~ 2, P(v) — P(0)]Ju. Applying Lemmas 3.1.1 and 3.1.2-(1) to F, and
using (4.3) and the fact that

10 (e Vity, 02u, 02u) (¢, -) | < C(D N0 U, -) |
we have
18 Fi(t, )| < C(K)Ry(u, v)(2) - 4.5)

Applying Corollary 3.2.2 to (4.4) implies that

Pl U ), w8 < C(k){ez“’s It~ u(s, )2

[ (18 (5, + Rl v)(s)z)dS} , (46)
S

provided that p,(t) < B, for te[S, T]. In order to evaluate |05 ' 'dlU(t, )|
(0 =1 <k — 2),let us differentiate (4.1) | times with respect to ¢ and apply (3.4.4) to
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the resulting equation with L = k — I. For estimate of the nonlinear term, we apply
Lemma 3.1.1 and use (4.3), and then we have

1CA;(V), Ai(V), Biy(V))(E, )k = C(K)Qi(0)(®)
10L((P() — P(0))u) — (P(v) — P(O)dfulli-1-2 < C(HQDN1* U, -)

where k(n) = max([n/2] + 2, k — 2).
Therefore, it follows that

P05~ iU, ), @, 8) £ C(k){e|| 05" dru(S, +) |1
+ P10t ) le-2-1 @, )
+ P50 UE ) @, 8)
+ P(QO0*2UE, ), o, S)} 4.7)

provided that p,(t) £ e for te[S, T]. Repeated use of (4.7), and substitution of
(4.6) and use of Theorem 3.2.1 in the final step imply the theorem immediately.

5. A Proof of Theorem 2.2

Our proof of the existence part (A) of Theorem 2.2 consists in combining the
following local existence and uniqueness theorem with uniform a priori estimate.

Theorem 5.1 (local existence and uniqueness). Suppose that Assumptions 1.1 and 2.1
are satisfied. Then, there exists a T > 0 depending only on py, + Ay,(00) essentially
such that the initial boundary value problem:

pu=fin[0,T]xQand u=0o0n[0, T]x0Q2,
u(0, x) = uy(x) and u,(0, x) = uy(x) in 2, 5.1

admits a unique solution ue Ey([0, T']) satisfying the condition: | U(t, *)|l» < 2K/3
for te[0, T] provided that ||(Vug, uy, V)|l o < K/2.

Since we have already shown how to get the a priori estimate for P(v)u, by using
the usual contraction method we can prove Theorem 5.1 in a standard way (cf.
Shibata—Kikuchi [23] or Kato [16]). We will write a proof of Theorem 5.1
elsewhere.

Now, let us prove a global existence of the solution to the problem (1.1-(1.3).
Let ¢ > 0 be a small constant determined later and assume that ue Ey([0, 7]) and
that u satisfies (5.1) and the following;

put)<e for0Zt<T. (5.2)

Assume that ¢ < B (cf. Theorem 4.1), that ¢ <, (cf. Theorem 3.2.1) and that
a6 < K/2 (cf. (2.2)). In particular, we have by (2.2)

10* U, )l < 02pult) S 028 S K/2. (5.3)
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With the help of Theorem 3.2.1, repeated use of Theorem 4.1 implies that there
exists a w > 0 such that

t
e p, (1) + [ °p,(s) ds < C(n){pl%lo + C()e* ™" Ayy(00)?
0

t
+ &2 [ e2%%p,(s)* ds} for0<t<T. (5.4)
0

Therefore, if ¢ is chosen additionally in such a way that C(n)e? < 1, we have
18"+ 2U (L, ) || < C(m){e™ " pw, + C()e ™" Ano(0)} . (55)

If C(n){pn, + C(7)An,(00)} < €/2, then p,(t) < ¢/2 for 0 < ¢ < T. Therefore, by
Theorem 5.1 we can continue ue Ex([0, T])toau' € Ex([0, T']) withsome T’ > T
in a unique way such that ' satisfies (5.1) and (5.2), replacing T by T’ there. In
addition, since p,(0) = Cpy, for a suitable constant C > 0 provided that ue
Ex([0, T]) and u satisfies (5.1), if py, < ¢/2C, then Theorem 5.1 and the continuity
of p,(t) imply that there exists a 7> 0 such that (5.1) admits a unique solution
ue Ex([0, T]) which satisfies (5.2). Combining these facts, we can continue a solu-
tion locally in time to any time interval, which completes the proof of the part (A) of
Theorem 2.2.

Now, we shall show part (B) of Theorem 2.2. From (5.5) it follows that (2.8) and
(2.9) are valid for k = N,. Assume that k = N, + 1 and that (2.8) and (2.9) are valid
for smaller values of k. Since p,(f) < ¢ for any t € [0, o), applying Theorem 4.1 and
using (5.5), we have

T + 51U, )| ds
0
< C(k){p? + C(r)e* @y co)?
+ (1 + 132U D212 UG )L, 0))

- C(R)PR, [ 25 (| 751 UGs, )| e2 ) ds
0

+ C(k, 7) Awo(00)? j eT2(|3F U, ) I17e? %) ds .
0

When y = 0 (i.e., u = 0), we choose dy,(o0) in such a way that C(k, 0)Ay,(c0)* < 1.
Using Gronwall’s inequality and the induction assumption and noting that we may
assume that py,, An,(00) < 1, we have (2.8) and (2.9) for required k, which completes
the proof of Theorem 2.2.

6. A Proof of Theorem 2.3

In this section, we shall prove an existence of periodic solution by using a standard
method (see, Rabinowitz [21] and Matsumura [17]). For the readers’ convenience,
we shall give a proof of Theorem 2.3, below.
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In order to construct a periodic solution, we consider a sequence {u™}, where
the u™ satisfy the following:

umeEx(R), | Ut *) |l = K/2 for teR (U™ = (VU™ u", Vui*)),  (6.1)

P")u™=f"in RxQ2 and " =0 on R x0Q, (6.2)

[8¥=*U™(t, )| £ C(k)A() for teR and N < k< N, (6.3)

where f™(t, x) = p(t + m)f(¢t, x) and p(t)e C*(R) such that p(t) =1 for t = 1 and
= 0 for t < 1/2. The u™ are defined by the following:

umt,x)=v"t+mx)fort=2 —mand =0fort< —m,
where the v™ are vectors of functions satisfying the following:
v"eEx([0, 00)), V™t +)lo = K/2 for te[0, )

(V™= (V" of", Vor)) , (6.4)
P@™)v"™ =f"(t —m,-) in [0, 0)x Q2 and v™ =0 on [0, c0) x 02,
v™0,x) =0v"0,x)=0 inQ, (6.5)

135~ 1pm(t, )| < C(K)Ae(0) for te[0,0)and Ng<k<N.  (6.6)

Since supp f™(t — m,-) < [4, 00) x Q, the compatibility condition is satisfied for
(6.5). And then, the existence of the v™ follows from Theorem 2.2 under the
assumption that Ay (o0) is very small. Since f is assumed to be bounded with
respect to t only, the way of choosing Ay,(o0) depends on N in order to get (6.6) (cf.
Theorem 2.2 (B)-(1)). Since 0:v™(0, x) = 0 for 0 < [ < N, (6.1), (6.2) and (6.3) follows
from (6.4), (6.5) and (6.6), respectively.

Now, we shall show that {u™(t,-)} is a Cauchy sequence in Ey_;(IR). Put

wh=u"*? —ym foranymand p>0and W™= (Vw™ wl, VW) .
Then, the w™ satisfy the equation:
P™)w™ = fm*? — fm + (P(u™) — P@™*?))u™*? in RxQ. 6.7)
Using Lemmas 3.1.2-(2) and 3.1.1, the well-known inequality:
If-gli = COIflimlgll (i) = max([n/2] + 1, 1)),
and (6.3), we have
1% =2 (P(u™) — P(u™*?))u™*?|
< C(k, Ay(0) 0% 2 W™(t, )| for2<k=<N, (6.8)
10F =1 ((P(u™) — P(u™*?))u™*?||
C(k) Ay (o) 10~ W™ (. -) |
<{ + C(k, Ay(c0)) | 0*2W™(t,-)| for2<k<N -1, (6.9)
C(k)Ano(0) [ W™(t, +)|| for k=1,

In the same manner as in Sect. 5, applying Theorems 4.1 and 3.2.1, noting that
(f™*? —f™(t,+) =0 for t = — m + 1 and using (6.8) and (6.9), we see that

P3N (e, -)ll, @, S) £ C(N, Ay(00))e* 5 N2 W (S, ) |> (6.10)
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fort 2 S = — m + 1 with suitable w > 0 provided that Ay,(o0) is small enough. For
any teR and m with T > — m + 1, it follows from (6.10) that

I3N=2W™(T, )] £ C(N, Ay(e0))e™ T~ Dy(c0) ,

because || 0¥ 2W™(—m + 1,-)|| £ C(N)Aiy(c0), which follows from (6.3). Using
(6.10) for any ¢t > T again, we have

sup | 0¥ "2 W™ (t, )| £ C(n, An(o0))e™ T *™ =D jy(00) = 0 (6.11)

t2T

as m — oo, which means that {u”} is a Cauchy sequence in Ey_ ;. Therefore, there
exists a limit ue Ey_;(R) such that

lim max [0¥ 2(U™(t,-)— U@ -))|l =0 (6.12)
m—=o T1Zt<T>

for any — o0 < 7; < T, < c0. From (6.1), (6.2), (6.3), (6.12) and the fact that
N — 2 = [n/2] + 1, we see easily that

Pu=f in RxQ and u=0o0n R xR, (6.13)
MU ) < K/2 forteR, (6.14)
[0¥U(t, )| < C(k)A(o0) forteRand 0< k<N —2. (6.15)

Now, let us prove that ue Ey(IR), using our local existence theorem: Theorem
5.1. In order to do that, first we shall show that

o tu(t,-)eH" InHy and 07" u(t,+)ly-; < C(N)Ay(c0)  (6.16)

for any je[0, N — 2] and teR. For any ¢eCg§ () and multi-index o with
|a) = N — j, we have

(0207 Mut, +), @) S 1107 H(u(z, -) — u™(2t, )| 1031l + C() An(c0) | & |

for any m. Combining this and (6.12) implies that 0] 'u(t,-)e H"™/ and
0% u(t, -)|y—; £ C(N)Ay(c0), because C& () is dense in L2 For any ¢ > 0 and
¢ e H}, there exists a e CP(Q) such that ||¢ — ¢, < e And then, we have

lim (3" (w™ —u™)(t,+), ¢} < lim {Hé{“(u"'—u’”/)(t,-)llllltﬁ—!//Hl

m,m’' = o mym’ = o0

+ ¥ =@ - um)(e, ), 0§“¢)I} < 2An(0)e

laf =1

which implies that {01 tum(t, +)} is a Cauchy sequence in the weak topology of
H . Since 0/ " 'u™(t, ) converges to 0{* ' u(z, -) in the strong topology of L* for each
teR as follows from (6.12), we have 37" 1u(t,-)e H} for each te R, which proves
(6.16).
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Since we do not know the existence of 6N u(t, - ) until now, instead of oM (¢, -) we
consider

un(t,+) = Ao(U (5, +)) " {A4;;(U(t, -))0;0;0F ~2ul(t, -) + By(U(t, +));0;0F ~*ul(t,-)
— Aj(U(t,+))0;07  tu(t, ) + 0 " 2f(t,+) + [a¥ 2, P(w)]u(t,-)} . (6.17)

Using Lemmas 3.1.1 and 3.1.2-(2) and (6.12), we see that [oY "2, P(u™)]u™(t, )
converges to [0Y "2, P(u)]u(t, -) strongly in L? for each te R as m — oo. Therefore,
employing the same arguments as before, from (6.12) and the second part of (6.16)
we see that dMu™(t,-) converges to uy(f,-) weakly in L? and {dNu™(t,-)} is
a Cauchy sequence in the weak topology of Hj for each te IR, which implies that

uy(t,-)eHs and fuy(t,-)| < C(n)Ay(0) . (6.18)
For any TeRR, let us consider the following initial boundary value problem:
Pwyo=f in [T,T+T11xQ, v=0 on[T, T+ T]x0Q2,
o(T,-)=u(T,:) and v(T,:)=u(T,:) inQ. (6.19)

In view of (6.16) and (6.18), the compatibility condition for (6.19) is satisfied and
then Theorem 5.1 implies that there exists a 7; > 0 independent of 7 such that
(6.19) admits a unique solution veEy([T, T + Ty]) satisfying the condition:
[V, ) o =2K/3 for te[T, T+ T]. Applying (3.2.3) in the proof of Theorem
3.2.1 to the problem:

Pw)v—u)=(Pw)—PW)u in[T, T+ T,]xQ,
v—u=0 on[T, T+ T,]x0Q,
—u(Tx)=@—-u)(l,x)=0 inQ,

and using (6.15) and Sobolev’s imbedding theorem, we have
t
IV =0)& ) = C A+ p(s) + p(s))I(V = U)s, ) [I2ds  (6.20)
T

for any te[T,T+ T;]. Since v(t,*)eEN([T, T+ T1]1), p,(s) is bounded in
[T, T+ T,]. And then, application of Gronwall’s inequality to (6.20) implies that
|U(t,-)— Vit,+)|| =0forte[ T, T + T;]. Combining this and Poincaré’s inequal-
ity, we see that u(t, -) = v(t,-)e Ex([ T, T + T3 ]). Since T is chosen arbitrarily and
since T; is independent of 7, we have ue Ey(IR).

Finally, we shall show that u(t+ Ty,)=u(t,-) for any telR. Put
v(t,x) =u(t + Tp,*), and then P(u)(v —u)=(Pu) — P())v in RxQ and
u—v=0 on Rx0Q Since |[(Pu)— P@))v| = CAy,(0)||V — U], applying
Theorem 3.2.1, we have for t > S,

EUNU = V)& + [ (U = V)G, )l ds
S

= C{ez“’sll(U = V)8, )I” + lNO(OO)zjeZ”SH(U - V)(S,')deS}-
S
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Choosing Ay,(o0) so small that CAy,(c0)* < 1, we have

(U = V)t )l < Ce ™D (U = V)(S, *) || < 2CAy,(c0)e™ ¢

for any t > S. Tending S to — oo, we have ||[(U — V)(t,)|| =0 for any telR.
Combining this and Poincaré’s inequality implies that u =wv, that is,
u(t,+) = u(t + Ty, -) for any teR. This completes the proof of the assertion (A) of
Theorem 2.3.

Employing the same argument, by Theorem 3.2.1 we have the assertion (2) of
Theorem 2.3. In the same manner as in proving (6.10), we see the assertion (3) of
Theorem 2.3. Therefore, we may finish the proof of Theorem 2.3.

References

1. Andrews, G.: On the existence of solutions to the equation u,, = u
200-231 (1980)

2. Andrews, G., Ball, J.M.: Asymptotic behaviour and changes in phase in one-dimensional
nonlinear viscoelasticity. J. Diff. Eq. 44, 306—341 (1982)

3. Ang, D.D,, Dinh, A.P.N.: On the strongly damped wave equation: u,, — 4u — Au, + f (u) = 0.
SIAM J. Math. Anal. 19, 1409-1418 (1988)

4. Arima, R., Hasegawa, Y.: On global solutions for mixed problem of semilinear differential
equation. Proc. Jpn Acad. 39, 721-725 (1963)

5. Aviles, P., Sandefur, J.: Nonlinear second order equations with applications to partial
differential equations. J. Diff. Eq. 58, 404—427 (1985)

6. Cleménts, J.: Existence theorems for a quasilinear evolution equation. SIAM J. Appl. Math.
26, 745-752 (1974)

7. Cleménts, J.: On the existence and uniqueness of solutions of the equation u, —
(0/0x;)a,(u,,) — Ayu, = f. Canad. Math. Bull. 18, 181187 (1975)

8. Dafermos, C.M.: The mixed initial-boundary value problem for the equations of nonlinear
one-dimensional visco-elasticity. J. Diff. Eq. 6, 71-86 (1969)

9. Davis, P.: A quasi-linear hyperbolic and related third order equation. J. Math. Anal. Appl. 51,
596-606 (1975)

10. Ebihara, Y.: On some nonlinear evolution equations with the strong dissipation. J. Diff. Eq.
30, 149-164 (1978); I1, ibid 34, 339-352 (1979); II1, ibid 45, 332-355 (1982)

11. Ebihara, Y.: Some evolution equations with the quasi-linear strong dissipation. J. Math.
Pures et Appl. 58, 229245 (1979)

12. Engler, H.: Strong solutions for strongly damped quasilinear wave equations. Contemp.
Math. 64, 219-237 (1987)

13. Friedman, A., Necas, J.: Systems of nonlinear wave equations with nonlinear viscosity. Pacific
J. Math. 135, 29-55 (1988)

14. Greenberg, J.M., MacCamy, R.C., Mizel, J.J.: On the existence, uniqueness, and stability of
the equation ¢’ (u,)u,, — Au,,, = pou,. J. Math. Mech. 17, 707-728 (1968)

15. Greenberg, J.M.: On the existence, uniqueness, and stability of the equation
poX,=E(X )X, + X, J Math. Anal. Appl. 25, 575-591 (1969)

16. Kato, T.: Abstract differential equations and nonlinear mixed problem. Scuola Normale
Superiore, Lezioni Fermiane, Pisa (1985)

17. Matsumura, A.: Global existence and asymptotics of the solutions of the second-order
quasilinear hyperbolic equations with the first-order dissipation. Publ. RIMS, Kyoto Univ.
13, 349-379 (1977)

18. Mizohata, K., Ukai, S.: The global existence of small amplitude solutions to the nonlinear
acoustic wave equation. Preprint in 1991, Department of Information Sci., Tokyo Inst. of
Tech.

19. Pecher, H.: On global regular solutions of third order partial differential equations. J. Math.
Anal. Appl. 73, 278-299 (1980)

20. Potier-Ferry, M.: On the mathematical foundation of elastic stability, I. Arch. Rational Mech.
Anal. 78, 55-72 (1982)

+ o(u,),.J. Diff. Eq. 35,

xxt



208 S. Kawashima and Y. Shibata

21. Rabinowitz, P.: Periodic solutions of nonlinear partial differential equations. Commun. Pure
Appl. Math. 20, 145-205 (1967); I, ibid 22, 15-39 (1969)

22. Shibata, Y.: On the Neumann problem for some linear hyperbolic systems of 2*¢ order with
coefficients in Sobolev spaces. Tsukuba J. Math. 13, 283-352 (1989)

23. Shibata, Y., Kikuchi, M.: On the mixed problem for some quasilinear hyperbolic system with
fully nonlinear boundary condition. J. Diff. Eq. 80, 154197 (1989)

24. Webb, G.F.: Existence and asymptotic behavior for a strongly damped nonlinear wave
equation. Canada J. Math. 32, 631-643 (1980)

25. Yamada, Y.: Some remarks on the equation y, — 0(y,)Vx — Vi =f Osaka J. Math. 17,
303-323 (1980)

Communicated by H. Araki





