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Abstract. The algebraic structure of a topological superconformal field theory on
a compact Riemann surface is investigated. The Krichever-Novikov [K-N] global
operator formalism is used to obtain an N = 4 super K-N algebra on a Riemann
surface. Subsequently this N = 4 algebra is shown to possess an N = 3 K-N
subalgebra. The N = 3 subalgebra is then twisted to derive a topological version of
the Krichever-Novikov algebra with a residual N = 2 superconformal structure.
The BRST charge of the associated topological field theory on the Riemann surface
is shown to be genus dependent in this formalism and the global generalization of
the BRST derivative conditions are obtained. The complete BRST structure of the
theory is explicitly elucidated.

I. Introduction

Recently topological field theories have assumed considerable significance in the
context of the nonperturbative aspects of string theories. It was earlier shown by
Witten [1] that these theories may be constructed by twisting an N = 2 super sym-
metric non-linear sigma model. Following this line of investigation Eguchi and
Yang [2] constructed topological conformal field theories in two dimensions by
twisting an N = 2 superconformal field theory (SCFT)[3]. Furthermore, it was
shown in later investigations that the minimal versions [4] of these models, when
coupled to two dimensional topological gravity [5], are equivalent to the matrix
model [6, 7] description of non-critical string theories. In addition, the supersym-
metric generalizations of the gravity sector have also been investigated [8].

The generators of an N = 2 SCFT [3] are: a weight two energy momentum
tensor T(z\ two supercharges G±(z) of weight f, and a U(l) current J(z) of weight
1. In ref. [2] it was observed that upon twisting the energy momentum tensor of
these theories via the L/(l) current, a centerless conformal algebra with a back-
ground charge is obtained. Moreover the two supercharges are transformed to
a weight two and a weight one operator with respect to the redefined energy
momentum tensor. In addition, the new operator of dimension 1 now plays the role
of a BRST current such that the BRST charge obtained from it is nilpotent and the
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twisted energy momentum tensor is a BRST derivative of the dimension two
operator. This defines the algebraic structure of a topological conformal field
theory (TCFT). The physical subspace of the Hubert space of this theory is
a cohomology of this algebra.

It was shown in ref. [9] that a topological superconformal field theory (TSCFT)
may be obtained starting from an N = 3 SCFT [3,10]. Moreover a N = 2 TSCFT
was obtained [11] starting from an N = 4 SCFT of Sevrin et al. [12].

However the structure of these topological field theories on a Riemann surface
have not been explicitly investigated. In an earlier work, we have addressed this
important question in the framework of the Krichever-Novikov global operator
formalism [13, 14, 15] for conformal field theories on a compact Riemann surface
with two distinguished punctures. In this article we propose to generalize our
analysis to the investigation of the algebraic structure of an N = 2 TSCFT on such
a Riemann surface starting from an N = 4 SCFT in the K-N framework. We find
an interesting, global generalization of the algebraic structure of the N = 2 TSCFT
on the complex plane [11]. Furthermore we obtain a genus dependent BRST
charge on the Riemann surface such that all the generators in the theory are
accompanied by a BRST partner. The BRST derivative condition is modified in
addition to a generalized BRST derivative on the Riemann surface.

The rest of the article is organized as follows. In Sect. II we present a resume of
our construction of a TCFT [16] starting from an N = 2 SCFT on a Riemann
surface [17]. In the next section (III) we explicitly construct the N = 4 K-N
superalgebra on a Riemann surface. In Sect. IV we define some of the generators of
this theory to extract an N = 3 K-N substructure and show that the remaining
generators organize into a weight zero superfield of the N = 3 supersymmetry. In
the next section (V) we twist this N = 3 theory to obtain an N = 2 TSCFT and
show that the remaining generators form a weight zero superfield of the N = 2
supersymmetry. We also explicitly show the full BRST structure of the resulting
TCFT in Sect. VI. In the last section (VII) we present a summary of our investiga-
tion and a discussion of the results obtained. In addition, there is an Appendix
containing the explicit global forms of the structure constants for the various
algebras.

II. Krichever-Novikov Formulation of Topological Conformal Field Theory

In this section we briefly outline the essential features of the K-N operator
formalism [13,14,15] and describe our construction of a TCFT [16] by twisting an
N = 2 SCFT [17] on a Riemann surface Σg of genus g. We choose Σg with g > 1
and having two distinguished punctures P± corresponding to the points z = 0 and
z = oo on the complex plane. K-N [13] provided a complete orthonormal set of
Fourier Laurent bases for the space of meromorphic forms of weight λ on Σg9

holomorphic away from the punctures where they might posess singularities. This
was done through the application of the Riemann-Roch theorem which ensures
the existence of the basis for the space of meromorphic forms of weight λ. In their
analysis, the classical form of the Riemann-Roch theorem in terms of divisors on
a compact Riemann surface was transformed to the theorem in terms of meromor-
phic sections of tensor products for Λλ, where Λλ is the canonical divisor corres-
ponding to the canonical line bundle on Σg. The section of each line bundle of this
tensor product has prescribed orders of poles at P+ and corresponding zeros
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elsewhere. The details of the construction may be found in K-N [13] and Bonora
et al. [14]. The asymptotic forms for these basis in a local complex co-ordinate
system z± around P+ are given as follows:

For λ e Z and λ φ 0, 1,

fj = φ^z^-^ίl + 0(z±)l(dz±)λ , (2.1)

where s(λ) = - — λ(g — 1) and φf}± are normalization constants. The index j runs

over -- , --- h i , . . . and is integer or half integer depending on the parity of

g. It can be observed that the order of the poles as prescribed by K-N [13] is
present in the expression for the asymptotic forms.

For λ = 0, we have the basis for the space of meromorphic functions An(P\ P
being a generic point on Σg9 with the asymptotic forms:

)] | H | £ | + 1 (2.2)

and

AH(z±) = α^zί"-*/2*1/2-^! + 0(z±)] |n| < I, (2.3)

Λ/2 = 1 , (2.4)

where ε = i, and αn

+ = 1. These expressions are the consequence of the Weirstrass
gap theorem which states that the meromorphic functions having poles of order
p at a given point on Σg cannot be extended holomorphically outside it for g values
of/?.

For λ = 1, we have the basis for one forms Wj(P) on Σg. Their asymptotic forms
around P+ is given in the local co-ordinate system z+ as,

\Λf ί*7 \ R r7\~*~ J ' 9 I 2 ~Γ 1. / 2 £/ Γ~ 1 I (~\ (17 \ ~] Arr fΌt" I 7 I ^ 7/1 -4- ί^J ^\\
VY j\ Δ -f- I — LJ ί Li -\ I -L ~Γ" v I Δ -j- I I tt ̂  + 1VJ1 | / ^>> Λί -j~ I Δ,.*J I

γ TT- / \ f \ ( \ I ' I ^*> ^ i 1 /Ό /C\

and

Wgl2(P) = d k ( P ) , (2.7)

where dfc(P) is an abelian differential of the third kind on the Riemann surface Σg9

having simple poles at the two punctures P+ and residues + 1 and normalized
such that the periods over all cycles are imaginary. dk(P) defined thus provides
a basis for holomorphic differentials on Σg which may be written as a linear
combination of the canonical homology basis.

When A e Z + ^, the basis may be constructed by taking the meromorphic
sections of the tensor products of Λλ with a given spin structure. There are two
different cases,

(i) The space of forms holomorphic outside P+ and a slit from P+ to P_ along
a Jordan curve. This corresponds to the Ramond (R) sector.

(ii) The space of forms holomorphic outside P±. This corresponds to the
Neveu-Schwarz (N-S) sector.
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We will restrict our consideration to the N-S sector only as this is the sector
relevant for the TCFT obtained after twisting. The asymptotic form for these bases
are as follows:

fλ«(z ± ) = (AM-S(A)[1 + 0(z±)-](dz±)λ , (2.8)

where α e Z + \ for the N-S sector.
This formalism provides for an elegant parametrization of the Riemann surface

by a set of level curves Cτ of constant τ analogous to the equal time circles on the
complex plane. The parameter τ plays the role of a global univalent and unique
time parameter on Σg in string theoretic applications. This is defined in the K-N
formalism as,

τ(P) = Re f dk(P) , (2.9)
PO

where dk(P) is as given earlier, and P0 is some reference point on Σg. As P -* P+ the
contours Cτ -> C± and τ -> + oo , where C+ are circles in the local co-ordinate
system z±.

As an illustration of the operator formalism outlined above we present a brief
summary of our earlier investigation of the construction of a TCFT on Σg from an
N = 2 SCFT. The generators of the N = 2 SCFT on Σg are now meromorphic
tensors of definite weight on Σg, given by a weight two energy momentum tensor
T(P\ two supercharges G±(P) of weight f, and a 17(1) current J(P) of weight one.
The bases described earlier may be used to perform mode expansion of these
operators on Σg as follows:

£LA(P), (2.10)
n

ΣGα

±B t((P), (2.11)
α

Σ W(P). (2-12)
fc

The energy momentum tensor on Σg is then twisted as,

(2.13)

where dp is a global derivative on Σg having the local form (Sz±dz+) in the
co-ordinate system z+ as defined earlier. As P -> P± , we recover the expression for
the twisted energy momentum tensor on the complex plane in the local co-ordinate
system z+. This is given as [2],

f(z±)=T(z±) + ̂ dz±J(z±). (2.14)

It can be easily verified that with respect to the redefined energy momentum tensor
Eq. (2.14), the Virasoro part of the superconformal algebra is centerless and the
supercharges G±(z) transform as a dimension one and a dimension two field
respectively. This is evident from the operator product expansions for the twisted
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Table 1. The K-N bases and their duality and completeness relations

λ Basis Dual basis λ

- 1
0

-1/2
1/2

β«(P)
Am(P)
C.(P)
β.(P)

Qn(P)

Wn(P)
Bβ(P)
9β(P)

1
1
3/2
1/2

Duality and Completeness

1

Z7ΓI |

1

2πι (

1

2πi t

1 em(P)Ωn(P) = δmn
f

§ Am(P)Wn(P) = δma
r>
'-'τ

| C.(P)B,(P) = ̂
f-i

1
— ΣβM(P)βm(P) = Dτ(P,P)
2πz m

1

2πi7
1

— Y Cα(P)βα(P) = dτ(P, P)
2πi .

2π/ cτ

 %

version of the theory which are presented in Appendix A. Consequently these
charges now have new mode expansions. These are,

(2.15)

(2.16)
m

where G(P), and Q(P) denotes the modified operators in the twisted theory. It is
well known that although the OPE on Σg are in general g dependent, their
singularity structures are genus independent and the same as those on the complex
plane. So we can use the standard OPE together with the K-N bases in Table 1 to
obtain the topological version of the K-N algebra. The mode expansion Eqs. (2.7,
2.9, 2.12, 2.13) are inverted using the duality properties of the K-N bases to obtain
the Fourier projections,

£/ = ̂  $ f ( P ) e j ( P ) , (2.17)
2πι PeCτ

GJ = τΓ f G ( P ) e j ( P ) , (2.18)

j .
2πl PeC τ

J* = τ-. § J(P)Ak(P) (2.20)2πιP

J

ECτ

These equations may now be expressed in the local cordinate system z around
the puncture P+. Knowing the OPE of the generators in the twisted theory which
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may be evaluated from those in the N = 2 SCFT we can construct the algebra by
means of the complex contour representation and we arrive at the following
topological K-N algebra:

LAπ+n-s, (2.21)

s

mnGm+n-s, (2.22)

^,e«]= - Σ CLβm+B-s, (2.23)

9/2 00 c

{Gm,βn}= Σ P s

m nΐm + n- s+ Σ £s

mΛ+n-s + τ Π m n > (2.24)
s=-β/2 S=-ίn

0/2

[^m,GJ= Σ ΰβ«»Gm + l l-β, (2.26)
s=-g/2

9/2

Um,Qn]= Σ BSmnQm + n-s, (2.27)

[ J m , Λ ] = K m » , (2-40)

{Gm, Gn} = {βM, βM} = 0 , (2.28)

where the structure constants of the algebra are given explicitly in the Appendix.
The BRST charge in the twisted version of the theory is defined as an integral of

the new, dimension one operator over a closed cycle on Σg. This may be chosen as
one of the level curves Cτ. Explicitly, we have

QB= § Q(P) (2.29)
PeC τ

With the use of the appropriate mode expansion and the asymptotic forms for the
bases in the local complex co-ordinate system z+ around the punctures P± we have

QB = β,/2 (2.30)

Equation (2.24) then gives the relation

9/2

{Gm,QB}= Σ Psm(d/2}Lm+g/2-s (2.31)
s=-g/2

as the structure constants in the other terms vanish for n = g/2. This is a global
generalization of the BRST derivative condition for the energy momentum tensor
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on the complex plane [2, 4]. We remark here that on Σg9 f ( P ) is a generalized
BRST derivative of the generator G(P). This reduces to the familiar relation [2, 4]
on the complex plane when evaluated in a suitable local co-ordinate system. Notice
that on Σg the BRST charge is genus dependent. This naturally gives a genus
dependent physical state cohomology in the Hubert space of the associated TCFT
on Σg. It has been shown in ref. [16] that the physical subspace consists of those
states which are equivalent up to a BRST exact state to the chiral primary states of
the untwisted theory. It was observed that all these states have zero weight with
respect to the redefined modes of the energy momentum tensor. This completes
a resume of our construction of a TCFT on Σg from an N = 2 SCFT. We now
consider the application of this formalism to investigate the algebraic structure of
an N = 2 TSCFT derived from an N = 4 SCFT on Σg. In the next section we
present the explicit construction of an N = 4 K-N superalgebra on Σg.

III. TV = 4 Krichever-Novikov Superalgebra

To construct anN = 4 super K-N algebra on Σg we follow the procedure outlined
in Sect. II. The generators of this algebra are given by the weight two energy
momentum tensor T(P\ four weight f supercurrents Gα(P\ six generators D±l(P)
of the SU(2) x SU(2) Kac-Moody algebra, four weight i fields Qα(P) and a 17(1)
generator U(P). These generators may be mode expanded in the appropriate K-N
bases as follows:

£LA(P), (3.1)
n

G'(P) = £ GIBX , (3.2)
α

±ί(P) = ̂ D^ίWm(P), (3.3)
m

Qα(P) = Σ QβββP) . (3.4)
β
^υmwm(p), (3.5)

where i = 1 to 3 and α = 1 to 4. The Eqs. (3.1), (3.5) may now be inverted to give the
following Fourier projections:

Ln = -. § e n ( P ) T ( P ) 9 (3.6)
τ

CΛ(P)G°(P)9 (3.7)
t

Am(P)D±i(P)ί (3.8)
τ

g-β(P)Qα(P), (3.9)
τ

. $ Am(P)U(P). (3.10)
PeCτ
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The N = 4 K-N algebra is then derived in an analogous fashion as in Sect. II
by expressing the algebra as double contour integrals in the local co-ordinate
system around the puncture P±. The OPE for the generators are standard and
using these to evaluate the contour integrals we arrive at the N = 4 super K-N
algebra. Explicitly we have for the modes of the energy momentum tensor,

s + ̂ -χmn, (3.11)

-,, (3.12)

s, (3.13)

Cs

mnUm+n.s, (3.14)

The algebra involving the supercharges and the weight \ generators are

9/2 c

Σ F^L^^^-^, (3.16)
s=-g/2 3

-J , (3-17)

Γ β/2 »0 Ί

= αi' Σ 7LGS,+α-s - 2(1 - 7) Σ 2LβJ,+α-s ,
Ls=-g/2 s=-gQ J

Γ 0/2 0o Ί

= αli
< Σ Y°n*Gb

m+Λ-a + 2γ Σ ZLβί.+.- L
L s = - 0 / 2 s = ~0 0 J

(3.19)

0/2

2 Σ ^αά'βίί*-, - **1DXP-S + δαbUΛ+b-sl , (3.20)

(3.21)
The modes of the Kac-Moody generators satisfy,

0/2 Ί,±

, (3.22)
s=-0/2 ^

0/2

£ , β a = α α V Σ ^mαβ^α-s (3-23)
s=-0/2
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Finally the modes of the (7(1) current give

[t/»,ea = o , (3.24)

[C/W,G;]= Σ Ns

m«Qam+«-s, (3.25)
s=-90

[t/ M ,D Λ

± < ]=0, (3.26)

where 7 parametrizes the unitary representations of the N = 4 superconformal
algebra. The structure constants are presented explicitly in their global forms in the
Appendix. This completes our construction of the N = 4 superconformal algebra
on Σg. In the next section we extract the N = 3 subalgebra through suitable
redefinitions of some of the generators and show that the remaining generators
organize into a weight zero superfield with respect to the N = 3 superconformal
generators.

IV. The N = 3 Substructure

We redefine the generators of the N = 4 superconformal algebra of the last section
in the following fashion:

f ( P ) = T(P) - l- (2y - l)dPU(P) , (4.1)

(JL)'(P) = i[D + ί(P) + D-'(P)] , (4.2)

Γ(P)=-iβ 4(P), (4.3)

G'(P) = G'(P) - (2γ - l)dPQ
l(P) . (4.4)

The mode expansions for these generators in terms of the K-N bases is obvious
from Table 1 and we do not present them here explicitly. Following the procedure
outlined in Sect. II we can express these redefined generators in the local z coordi-
nate system around the punctures P+ . The Fourier projections for the generators
may be derived using the duality relations between the bases in Table 1,

A» = ̂  $ ?(P)em(P)9 (4.5)
2πιP

J

ECτ

&« = ^-. $ G'(P)Cα(P), (4.6)

_α(P), (4.7)
Zπi

= § Ji

L(P)Am(P). (4.8)
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We now follow exactly the same procedure as in Sects. II and III to express the
algebra as double contour integrals using the local form of Eqs. (4.5)-(4.8) in the
z co-ordinate system around the punctures. The OPE for the modified generators
may be derived knowing the OPE for the original theory. These OPE may be used
in conjunction with the local form of the K-N bases to derive the N = 3 K-N
subalgebra. For the modes of the new energy momentum tensor we have,

„
, Ln~] = Σ As

mnLm+n_s + — χmn , (4.9)
1Z

^s

mαGίn+«-s, (4.10)

n]= Σ

(4.12)
s=-00

The structure constants are relegated to the Appendix. We observe that the modes
of the redefined energy momentum tensor satisfies the K-N algebra with a modi-
fied central charge c, where c = c/4y(l — γ), c being the original central charge. The
algebra involving the supercharges and the weight \ fields are:

a+β-s, (4-13)

ί)«, G2] = fcy* Σ 0LG*+ β-5, (4.14)
s= -fir/2

,Gi]= Σ ^αΓm+α-s, (4.15)

C ^ Γ ^ ^ Λ , , (4.16)

)m, Γα] = 0 , (4.17)

fir/2

Σ ΠβVti +β-s (4-18)
s=-^/2

The dimension one current satisfies,

9/2 z

[(JίL,(Ja] = iε^ Σ HUJDm+π-. + T^O^. (4.19)
s=-g/2 3

The structure constants are presented in the Appendix.
The remaining generators organize themselves into a weight zero primary

superfield modulo certain central terms, with respect to the N = 3 superconformal



Topological Superconformal Field Theory on Riemann Surfaces 127

symmetry. These consist of the operators u(P\ Ql(P), JR(P) and G4(P) of weights
0, i, 1 and f respectively. Following exactly the same procedure as before we can
derive the transformation properties of these operators with respect to the N = 3
superconformal generators. The explicit form of the algebra may be derived
following by the now familiar procedure,

T«β(JΆ+β-s, (4.20)
*=-0o

9/2

• Σ βmαGX + α - s , (4.21)
s=-0/2

P'm*Qm+*-,, (4.22)

s=-0o

SO λ

= Σ tlϊβUϊβ + l'(2/y - 1) - £αjj , (4.23)

0/2

s=~9/2

9/2

[Gi,wJ= Σ ymαβL + «- s . (4.25)
s=-g/2

The transformation under the weight 1 generator of the N — 3 superconformal
symmetry may be obtained in the same manner. This gives us,

ΛLβm+ -., (4.26)

γ-V-θnn, (4.27)

flf/2
i \ / T j \ η _ , pύ'fc V1 PS / r fc \ /^i 2g\

[(^i)m, βi] = 0 . (4.30)

For the weight half generator the transformations are,

[Γ.,5ί]= £ ΨlβU.+n-.-ilΛ.t, (4.31)

= Σ ^mαδUα-s, (4.32)
s=-g/2

[Γ.,6i]=0 = [Γβ,ttw]. (4.33)

The structure constants of this algebra are once again relegated to the Appendix.
It may be verified that these relations are the global generalization of the

transformation properties of the components of a weight zero superfield under the
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N = 3 supersymmetry transformations on the complex plane, modulo certain
central extensions. This concludes our discussion of the N = 3 subalgebra on Σg. In
the next section we twist this theory to extract a TCFT and show that the resulting
theory posesses a residual N = 2 supersymmetry.

V. Topological Structure

We have obtained an N = 3 K-N subalgebra of the original N = 4 K-N algebra in
the last section. We now proceed to twist this algebra to obtain the topological
version of the K-N algebra. To do this we make the following redefinitions of the
generators of the N = 3 superalgebra:

(5.1)

dPJ'h(P), (5.2)

J**(P) = (JL)3(P). (5.3)

Once again we refrain from explicitly presenting the mode expansions as they are
obvious from the identification of the weights of the redefined generators.

Following the procedure of the earlier sections it may be verified that the new
generators in the twisted version of the theory satisfy the topological K-N algebra
outlined in Sect. II. As before the generators &±(P) transform as a dimension one
BRST current and a dimension two BRST partner of 9~(P\ The BRST charge is
given as before:

QB=$9 + (P) = 9ϊ/2 (5-4)
cτ

Consequently Jgh(P) is identified as the ghost number current of the TCFT on Σg.
We relabel the operators as $+(P) = β(P) and 0~(P) = G(P). Q(P) and G(P) are
the new weight 1 and weight 2 operators.

We proceed now to show that the topological field theory on Σg which realizes
the topological K-N algebra posesses a residual N = 2 supersymmetry. The
remaining generators organize themselves into a weight zero superfield of this
N = 2 supersymmetry. To obtain the N = 2 superconformal structure of the TCFT
on Σg we start off by redefining some of the generators in the following fashion:

4?3(P) = G3(P)-idPQ4(P), (5.5)

^4(P) = G4(P) + idPβ3(P), (5.6)

(J£)(P) = ± 4= UL(P) ± ίJi(pK > (5 7)

(J±)(P) = + — [Jjj(P) ± iJl(P)] , (5.8)

(J3)(P) = /[D+3(P) - β-3(P)] + U(P), (5.9)

β±(ί') = 4=[β1(^)±e2(ί>)] (5-10)
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As before we can go over to the local expressions of these operators and obtain
their modified OPE's with the N = 2 superconformal generators. From these
OPE's it is seen that the supercharge ^3(P) transforms as a weight f operator and
the operators ( JL )(P) and (J# )(P) in the twisted theory transform as weight \ and
f fields respectively. Furthermore the weights of the various other fields are also

shifted accordingly. ^4(P), (/i)(P) and β±(P) transform as weight f, 1,0 and
1 respectively. We rename the operators in the twisted theory as follows:

J£(P), (5.11)

(J|)(P) = J|(P) , (5.12)

The generators may now be expanded as earlier in the appropriate K-N bases
and then inverted to obtain the relevant Fourier projections. The algebra may now
be obtained explicitly following the method of the earlier sections. We see that the
operators ^3, ̂ 4, ( Jj), and & satisfy an N = 2 super K-N algebra on Σg.

= Σ

ί99
l

β}= Σ F°Λβ&Λ+β.s i = 3,4, (5.15)
s=-g/2

9/2

,#|} = i Σ *lβ(J3R)*+β-» (5.16)
s=-g/2

9/2

,».3] = i Σ ^nα^ + α - s , (5.17)
s= -0/2

9/2

[( J|)«, ^α4] = - ί Σ ^nAα-s - (5.18)
s=-g/2

This completes our derivation of the N = 2 superconformal structure of the TCFT
associated with the topological K-N algebra obtained from twisting the N = 3
subalgebra of the N = 4 super K-N algebra.

We now proceed to discuss the weight zero primary superfield of this N = 2
superconformal symmetry. The components of this superfield are the four gener-
ators u(P\ Γ(P\ Q3(P) and Jgh(P). The primary nature is obvious from the
transformation under the conformal generator J5fm. The transformation under the
other N = 2 superconformal generators may be derived following the standard
procedure as outlined earlier. For the weight f generators we have

= Σ
s=-0

= Σ

(5.19)

(5.20)
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(5.21)

0/2

[^«3,WJ = Σ ^m«β^ + «-S, (5.22)

s=-g/2

9/2

[y^um-\= Σ ^LΓm+α-s. (5.23)
s=-flf/2

The transformation with respect to the SU(2) generator is derived in a similar
fashion to give

9/2

[(/i)m,/Y| = i Σ ΛLβi+.- , (5-24)
s = - 0 / 2

0/2

, 2α3] - - i Σ #ί*Γm+β-s, (5.25)
s=-0/2

l)^IWI, (5.26)

[(•/!)», "„] = -y«L. (5.27)

It may be verified that these transformation laws are the global generalization
of the similar laws of the weight zero N = 2 superfield on the complex plane. This
can be most suitably observed by evaluating the above expressions on a local
co-ordinate patch around the punctures. The structure constants for the above
algebra are presented explicitly in the Appendix. This completes our discussion of
the N = 2 superconformal structure of the TCFT on Σg associated with the
topological K-N algebra derived at the beginning of this section. In the next
section we present the explicit BRST structure of the full theory.

VI. BRST Structure of the Topological Field Theory

In this section we explicitly elucidate the BRST structure of the N = 2 TSCFT. We
observe that each generator is the generalized BRST derivative of some other
generators, leading to a BRST partnership of all the generators characteristic of
any topological field theory. Here we only illustrate the BRST partnership of those
generators which are not part of the set of generators of the N = 2 SCFT. For these
the BRST partnership is standard. For the rest of the generators we obtain the
BRST derivative conditions by obtaining their BRST transformations. Thus we
have the following algebra:

- 't
9/2

Σ ^na^n + a-s, (6.1)
s=-g/2

,,».3]= Σ «'»«(JL ).+«-,, (6-2)
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9/2

[βΛ,Γβ] = Σ ^L(JL)»+«-,, (6.3)
s=-g/2

9/2

\.Qn,Ql~]=- Σ ^n«(JΪ)n + «-s , (6-4)
s=-flf/2

9/2

[β»,Hm] = Σ ^mnC/KUα-s , (6-5)
s=-0/2

So 0/2

[βB,(Ja).] = Σ &'**<£+•-*+ Σ v^ί+.-5, (6.6)
s=-00 s=-g/2

ίQn,9ϊl = Σ r«α(J*U«-s, (6.7)
s=-90

9/2 z

[β», β»] = Σ ^ίmί Jl)«+»-, - i ~ (2y - l)^m , (6.8)
s=-flf/2 J

where Q(z) is the weight one BRST current for the N = 2 TSCFT. The structure
constants of the algebra are relegated to Appendix.

The BRST structure may now be obtained from Eqs. (6.1-6.8) by setting
n = g/2. Recall from Sects. II and V that for n = g/2 we have Qg/2 = QB where QB

is the BRST charge. Notice from Appendix that the structure constants
&*nΛ9 ^L? &nm an(i ^«« are all zero as their expressions contain dPAg/2(P) = 0 as
Aβ/2(P) = 1 from Eq. (2.4).

However in contrast to the case on the complex plane where the algebra closes
onto a single mode of the BRST partner of the relevant generator, on Σg it closes to
a linear combination of the modes. This is a global generalization of the BRST
derivative condition on a Riemann surface. So we may remark that on Σg9 each
generator is a generalized BRST derivative of some other generator. We may
recover the complex plane results by going to a local co-ordinate system. This
concludes our discussion of the full BRST structure of the N = 2 TSCFT.

VII. Summary and Conclusion

We have investigated the algebraic structure of a topological superconformal field
theory on a compact Riemann surface of arbitrary genus. In this context we have
used the K-N global operator formalism to define an N = 4 super K-N algebra on
a Riemann surface. Subsequently we have extracted an N = 3 super K-N algebra
from it via certain suitable redefinitions of the generators. It was found that the
remaining generators transform as a weight zero primary superfield of this N = 3
superconformal symmetry. A topological version of the K-N algebra was con-
structed by twisting this N = 3 algebra and it was shown that there exists a residual
N = 2 superconformal structure. In addition we have described the full BRST
structure of the theory and have identified the BRST partners of all the generators.
We have observed that on the Riemann surface the BRST derivative condition on
the complex plane is modified to a generalized BRST derivative condition which
reduces to the complex plane results [2, 4] when evaluated in a local co-ordinate
patch. The BRST charge in the formalism developed is genus dependent. Conse-
quently the cohomology of the physical states in the Hubert space of the associated
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TSCFT should also be genus dependent in accordance with the results of [16] for
a TCFT on a Riemann surface.

In conclusion we remark that the K-N operator formalism provides an elegant
and simple method to probe the algebraic structure of TCFT and TSCFT on
a Riemann surface. Our investigations reveal an interesting global generalization of
the BRST charge and the BRST derivative conditions for the generators.

It would be an interesting exercise to extend this analysis to the free field
realization of these TCFT and two dimensional topological gravity. Investigation
into the structure of the minimal TCFT coupled to topological gravity in this
framework would provide the construction of a topological string theory on
a Riemann surface. Work in this direction is in progress.

Acknowledgements. All of us would like to thank Samir K. Paul for numerous discussions
regarding K-N algebra. We would also like to thank Vijay Agrawal, V.S. Uma and Suresh. K.
Patra for help in preparation of the manuscript.

Appendix

In this appendix we present the structure constants appearing in the various
algebras in the text. We express these in their global forms valid everywhere on the
Riemann surface by using

fλ(P) = Φ(z)(dz)λ .

Here/λ is a meromorphic form on Σg and Φ(z) stands for the components in some
local co-ordinate system z,

n-s, (A.I)

(A.2)

= -. I An(P)em(P)Ωm+n-s(P) , (A.3)

mn = ~. § em(P)dPAn(P)Wm+n,s(P) , (A.4)
2πι PeCτ

mn = ̂ -. § em(P}d2

PAn(P}Wm+n-s(P] , (A.5)
Zπi PeCτ

.
Zπi PeCτ

P) , (A.6a)

jn=~. § An(P)dPAj(P) , (A.6b)

Ds

mn = - $ Am(P)en(P)Ωm+a.a(P) , (A.7)
Zπι PeCτ

Bs

mn = -. § Am(P)An(P)Wm+n-s(P] . (A.8)
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The global expressions for the structure constants of the N = 4 super K-N
algebra on the Riemann surface Σg Eqs. (3.11-3.26) in Sect. Ill is given as,

(A.9)
PeC,

_ α _ s + em(P)dPgm+.-,(P)

-̂  § ί2Cβ(P)dPC«(P)Wx+p-s(P)
Z7Π PeC,

+ Cβ(P)CΛ(P)dPW^β-s(P)-],

)\,
J

p, =J_
2πί

-̂  § Cβ(P)d2

PCΛ(P),
2πιP

J

ECτ

= -. § Am(P}An(P)Wm+n.s(P)

PeCτ

= 7-. § g-p(P)g-Λ(P),

(A.20)

with the only non zero elements of a±l being, αj|' = \ εijk and α '̂ = α^/ = i (5^ .
The structure constants of the N = 3 K-N subalgebra of the N = 4 K-N

superalgebra on Σg Eqs. (4.9-4.17) in Sect. IV, are given in the global form as
follows:

, = τr . $ \l:CΛ
2 π ί PeC,L 2

(P)dPem(P)-dpC.(P)em(P)Bt+j-,(P), (A.22)
J

em(P)dPAn(P)Wm+e-.(P) , (A.23)
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3 sm«= -^ f em(P)dPg-Λ(P)gm+Λ-,(P), (A.24)
Z π ι PeC τ

.+,-,(p)> (A.25)

α_ s(P) , (A.26)
P e C τ

«-,(P) , (A.27)

HL- § An(P)Am(P)Wm+n.s(P) , (A.28)
τ

An(P)dPAm(P) , (A29)

/Ϊ = I g-a(P)g.β(P)9 (A.30)
2πιPeCτ

β-s. (A31)

We also present the structure constants for the algebra of the transformations
of the components of the residual weight zero superfield under the N = 3 supercon-
formal transformations in Eqs. (4.18-4.31),

βsm« = ~ § Am(P)CΛ(P)Bm+oc-s(P) , (A32)
2πι PeCτ

Ps

m« = ~. § Am(P)dPCΛ(P)gm+0ί-s(P) , (A.33)J

s«β = ~ § g-β(P)CΛ(P)dPAΛ+p-s(P), (A.34)
Zπl P e C τ

ξ.β = ~ § g-β(P)dPCa(P), (A.35)
Zπl PeCτ

tiβ = ~ § g-β(P)Ca(P}WΰL+β-s(P), (A.36)
2m PeCτ

m« = ^-. f Wm(P)CΛ(P)gΛ+m-a(P) , (A.37)
Zπi P e C τ

L = ̂  § dPAm(P)Ca(P)gm+Λ-s(P) , (A.38)
zπϊ P e C τ

P) , (A.39)
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rm* = -. I An(P)Am(P)Wm+n-s(P) , (A.40)

PeC,

= - - . § Cβ(P)g-a(P)dPAΛ+β-s(P), (A.42)

Λ β = - - . § Cβ(P)dPg-a(P), (A.43)

Λ-s(P). (A.44)
PeCτ

We now present the explicit global forms for the structure constants of the
algebra of transformation of the components of the weight zero primary superfield
of the N = 2 superconformal symmetry in Eqs. (5.19-5.28) ,

^L = ̂  § CΛ(P)[Am(P)dPgm+Λ-a-gm+Λ-a(P)dPAm(P)]9 (A.45)
2πι PeCτ

μs«β = ^-. § g-β(P)C0[(P)dPAα+β+s(P)y (A.46)
2πι pECτ

&sm« = -. f Am(P)CΛ(P)gm+α-a(P) , (A.47)J

α-s(P), (A.48)

®mn = -. I An(P)dPAm(P) , (A.49)
2πι PeCτ

3mn = ̂ -. § Wn(P)dPAm(P] . (A.50)
2πι PeCτ

Having presented the OPEs we now give the explicit global expression for the
structure constants of the algebra in Eqs. (6.1-6.8) for the transformation under the
weight one BRST current the integral of which over a level curve Cτ defines the
BRST charge,

^ = ̂  § CΛ(P)dPAn(P)gn+Λ.s(P) , (A.51)
2πι PeCτ

^sn« = ~. I Cα(P)AH(P)Bn+α-8(P) , (A.52)



136 A. Ali, A. Kumar, J. Maharana and G. Sengupta

1
' mot. = — § C«(P)dPAm(P)gm+a.s(P), (A.53)

2πί PeCτ

τ~. § g*(P)AH(P)gn+Λ-,(P) , (A.54)
2πι

smn = 2-. I Wm(P)An(P)An + m-a(P) 9 (A.55)
2πip 6 C t

n« = ^-. § CΛ(P)dPAn(P)gΛ+n.s(P) , (A.56)

) , (A.57)

α_ s(P) , (A.58)

= i-. $ An(P)Am(P)Wm+n.a(P), (A.59)
*

r»» = $ Am(P)dPAn(P) . (A.60)

For rc = 0/2 we have the global form of the BRST derivative conditions. Recall
that from Sect. II we have the BRST charge as QB = Qg/2
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