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Abstract. The purpose of this paper is to establish an intersection formula in equivari-

ant complex geometry, in the presence of an excess normal bundle. The contribution

of the excess normal bundle to the formula appears through an additive genus κ R. In

a forthcoming paper, an infinite dimensional analogue of this formula will be shown

to be the result of Bismut-Lebeau on the behaviour of Quillen metrics under complex

immersions.
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Introduction

This paper is the second of a series of three papers, which include [Bl] and [B3],
which are devoted to the role of excess normal bundles in complex intersection theory.

In [Bl], we established a formula relating certain Bott-Chern currents associated
to non-transversal complex submanifolds of a complex manifold. With respect to a
similar formula which was established in [BGS5], the formula in [Bl] contains a
correcting term, which explicitly reflects the presence of an excess normal bundle
N. In [BGS5], one could use the microlocal estimates of [B2] to take full advantage
of the transversality of the considered manifolds. In [Bl], one uses instead a method
formally inspired by the proof by Bismut-Lebeau [BL1,2] of a formula describing the
behaviour of Quillen metrics on the determinant of the cohomology under complex
embeddings.

In this paper, we solve a similar problem in complex equivariant intersection
theory. In fact let LX be a compact complex Kahler manifold with Kahler form
ωLX, let K be a holomorphic Killing vector field on LX, let X be the zero set of K.
Then a class of formulas, whose prototype is the Bott residue formula [Bo], relates
integrals of certain forms over LX to integrals over X. These formulas have been
made transparent in the context of equivariant cohomology by Berline-Vergne [BeV].

In [B5], inspired by our proof of such localization formulas [B4], and also by
a loop space formulation of the construction of Quillen metrics, we constructed a
^-invariant current κSωLx on LX, which solves the equation of currents

CΊ 1 K — 1 / Λ 7" -/V VI T V \ C SΓ\ 1 \
i j Γ Y" :— I — f l / V v / r v Π I •L' /v I f ) v ( I / I )uωL''X A ^maxv1 * X LX •> y )UX V^ 1/2ίπ

In (0.1), dκ9κ is a ^-equivariant version of the operator dd, and

gNχ/LX) is the equivariant maximal Chern class of the normal bundle Nχ/Lχ to
X in LX in equivariant Chern-Weil theory. The construction of the current κSωLx
refines the localization formulas of [Bo] and [BeV].

Let now (LE,gLE) be a complex Hermitian equivariant vector bundle on LX,
let σ be an equivariant holomorphic section of LE, which vanishes on a K-invariant
complex submanifold LY of LX. By imitating a construction of Bismut-Gillet-Soule
[BGS5], we exhibit an explicit Euler-Green ^-invariant current KeLX(LE,gLE) on
LX such that

e (LE) g ) = $LY ~ Cma.x( LE, g ). (0.2)
2ίπ

In (0.2), κcmax(LE, gLE) is the equivariant maximal Chern class of (LE, gLE) in
equivariant Chern-Weil theory.

In general X and LY have a non-empty intersection Y. Let N the corresponding
equivariant excess normal bundle. Roughly speaking, we now want to give a formula
for the height pairing of the ^-invariant cycles X and LY. Still the fact that X and
LY have a non-empty intersection and that the intersection is non-transversal makes
such a formula highly non-trivial. Our main result, which is contained in Theorems 3.2
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and 3.4, is a refinement of the previous described localization formulas in equivariant
cohomology. It expresses a combination of integrals of currents over LX and LY
in terms of integrals of other currents evaluated over X and Y. The presence of an
excess normal bundle TV is reflected in the appearance of a mysterious genus KR(N)
in the final formula.

The formulas considered in Theorems 3.2 and 3.4 are of interest from several
points of view. They could be the prototype of formulas in a still non-developed
equivariant Arakelov intersection theory.

More surprising to us is the fact that as we will see in our next paper [B3], our main
result has a well-defined formal extension in infinite dimensions, which, if properly
interpreted, coincides with the main result of Bismut-Lebeau [BL1,2] which concerns
the behaviour of Quillen metrics under complex embeddings. In [B3], i:Y —» X is
an embedding of complex manifolds, and LX, LY are the loop spaces of X, Y. The
analogy between the present paper and [BL2] is valid not only for the final result,
but also for the intermediary steps. In fact, Sect. 3 of this paper has been written by
strictly imitating the general organization of [BL2], so that a reader with a limited
knowledge of both subjects can immediately perceive the analogy.

In particular, as we shall see in [B3], the infinite dimensional analogue of the
mysterious genus KR is exactly the genus R introduced by Gillet and Soule [GS1] in
their conjectural formula of Riemann-Roch-Grothendieck in Arakelov theory. Using
the main result of Bismut-Lebeau [BL1,2], Gillet and Soule [GS2,3] have in fact
proved the conjectured Riemann-Roch-Grothendieck formula.

This paper is organized as follows. In Sect. 1, we construct a form ~B(E,F,gF)
associated to an equivariant exact sequence of holomorphic Hermitian vector bundles

0 ̂  E^F^G^O, (0.3)
i 3

and we calculate this form modulo <9 and d coboundaries. This way, we produce a
genus κD which is closely related to the genus KR of our final formula. In fact,
Sect. 1 is the finite dimensional analogue of our paper [B6], where a genus J9, closely
related to the Gillet-Soule genus R [GS1] was exhibited. This section relies on finite
dimensional results of [B6, Sect. 9], where the analogy with previous infinite dimen-
sional results of [B6] had been partly worked out. The organization of the proofs
of the results of Sect. 1 is such as to allow the reader to grasp at least the formal
resemblance with [B6].

In Sect. 2, we recall the construction in [B5] of the current κSωLχ. Also by im-

itating [BGS5], we construct the equivariant Euler-Green current KeLX(LE,gLE).
Finally, in Sect. 3, we establish our intersection formula. As explained before, the

general organization of this section is closely related to the organization of the paper
of Bismut-Lebeau [BL2]. In particular a rectangular contour Γ in R2

+, which played
a crucial role in [BL2], reappears here, as it also did in the preceding paper of the
series [Bl]. The role of the contour Γ in [Bl] and in the present paper is to overcome
the presence of the excess normal bundle N.

I. Equivariant Short Exact Sequences and Bott-Chern Forms

The purpose of this section is to construct and to calculate certain Bott-Chern forms
Έt>(E, F, gF) which are naturally associated to a short exact sequence
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of holomorphic Hermitian vector bundles. Part of the technical machinery was already
developed in [B6, Sect. 9], to which the reader is referred when necessary.

This section is organized as follows. In a), we introduce our main objects, and we
describe the forms χτ, T > 0 already introduced in [B6, Sect. 9]. In b), we recall the
results of [B6] on the asymptotics of χτ as T —> 0 or T —> +00. In c), we construct
the form B(F, F, gF) as the derivative at 0 of the Mellin transform of χτ In d), we
calculate B(F, F,gF) in terms of a Bott-Chern class in the sense of [BGS1], and of
an additive genus KD evaluated on G. Finally in e), we introduce a closely related
genus κ R.

This section should be considered as the continuation of [B6, Sect. 9]. Our formula
for B(F, F, gF) is in fact a finite dimensional analogue of the main result of [B6].

a) Equivariant Exact Sequences and Differential Forms

Let B a connected complex manifold.

Definition 1.1. Let PB be the vector space of smooth forms which are sums of forms
over B of type (p,p). Let Pβ'° be the set of ω G PB such that there exist smooth
forms α, β for which ω = da + dβ.

Let
O ^ F ^ F - > G - + 0 (1.1)

i 3

be a holomorphic acyclic complex of vector bundles over B. E will be considered as
a holomorphic subbundle of F, and G is identified with F/E.

Let gF be a Hermitian metric on F. gF induces a Hermitian metric gE on E.
By identifying G to the orthogonal bundle to E in F, gF also induces a Hermitian
metric gG on G. Let V^, VF, and VG be the corresponding holomorphic Hermitian
connections on E, F, and G, and let RE, RF, and RG be their curvatures.

Let JF be a holomorphic skew-adjoint section of End F, which preserves E. Let
JE be the restriction of JF to E and let J° be the natural action of JF on G.
Then JE and JG are also holomorphic skew-adjoint sections of End E and End G.
Moreover JE, JF, and JG are parallel with respect to the connections V£, VF, and
VG.

The connection VF defines a natural splitting of TF into

F®THF, (1.2)

where T^F is the horizontal subbundle of TF. We define TH E and T^G in a
similar way.

If z G F, we identify z with Z = z + z e FR. In particular \Z\2 = 2\z\2. Also
JFZ G FR. Using (1.2), we consider JF Z = JFz + JFz as a vertical holomorphic
vector field on F. If TB is equipped with a Hermitian metric, we can lift the metric
of TB to THF. We equip TF = F Θ THF with the orthogonal sum of the metrics
on F and THF. Then JF Z is also a Killing vector field on F. Similarly, if Z e E
or Z £ G, JEZ and JGZ will be considered as holomorphic Killing vector fields on
E and G.

F is a complex submanifold of F. The vector field JFZ restricts to the vector
field JEY on E. Also, the projection map j : F — > G maps the vector field JFZ into
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If U έ TRF, let Uv G FR be the projection of U on FR with respect to the
splitting (1.2) of TRF. Let (JFZ)' be the 1-form on F, U G TRF -> (JFZ, Uv).

Also, we identify JF with the 2-form

Z7, Z7' G ΓRF -> (Uv, JFU'V) . (1.3)

Let ijFZ denote the interior multiplication by JFZ acting on Λ(T^F) and let
LJFZ be the Lie derivative operator associated to the vector field JF Z. Then the
operators d, ijFZ and LJFZ act on the set of smooths sections of Λ(T^F) over F.
Moreover

(1.4)

Let π be any of the projections E1, F, G — > J5. If α; is a form on 5, we identify
ω with the form ττ*u; on E, F, or G.

The following result is proved in [B6, Proposition 9.1].

Proposition 1.2. The following identities hold:

-\(d + ijFz) (JFZ) = - Ώ^ + 1 <Λ^Z, Z> + JF , (L5)

Definition 1.3. Let κa(F, gF) be the smooth form on F

(1.6)

The form κa(F, gF) was introduced in a different context in [B4, Proof of Theorem
1.3].

Theorem 1.4. The form Ka(F,gF) lies in PF. Also

F) = 0. (1.7)

Proof. This result has been proved in [B6, Theorem 9.3]. It follows directly from
Proposition 1.2. D

Observe that since JF is a holomorphic skew-adjoint section of End(F), then

Fz) = 0, (d + ίjF,) = 0. (1.8)

Using (1.4) and (1.8), we find that

LjFz = [d + ijFz9d + i j F S ] . (1.9)

Of course, similar identities hold for LJEZ and LJGZ.

Definition 1.5. Set

"RE = RE + JE , KRF = RF + JF , KRG = RG + JG (L10)

Let JG be the complex structure of GR.

We now use the formalism of Mathai-Quillen [MQ], which is briefly described in
[Bl, Sect.3a)].
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Definition 1.6. For T > 0, let KaT(G,gG), KcT(G,gG) be the forms on G

κaτ(G, gG) = det ( ) exp | - !
V 2ιπ J {

<G) = ί\fet( ~^--b] (LID

We recall a result of [B6, Theorem 9.5].

Theorem 1.7. The forms KaT(G,gG), KcT(G,gG) lie in PG. For any T > 0, the
following identities hold:

κcr „ (1.12)
-jLκaτ(G,gG)=±-φ
ul 2^π j.

Since JF is a holomoφhic skew-adjoint parallel section of End F, one verifies
easily that F splits holomoφhically and orthogonally into

λeΛ

where yl is a finite set of locally constant distinct purely imaginary numbers, and the
Fλ's are nonzero holomoφhic vector bundles. Moreover for any λ 6 Λ, JF acts on
Fχ by multiplication by λ.

The acyclic complex (1.1) splits into a direct sum of holomoφhic acyclic com-
plexes

0 -» Eχ -> Fχ -> Gχ -> 0 . (1.13)
* j

Again J^ and JG act on E"Λ and Gχ by multiplication by λ.
We now make the basic assumption that 0 φ A.
Therefore, for any T > 0, the forms

κa(F, gF)j*(κaτ(G, 9°)) , K<*(F, 9

F)f(Kcτ(G, 9

G))

on F are Gaussian shaped, i.e., exhibit a Gaussian like decay as |F| — > +00.
In the sequel, J denotes integration along the fibre of π : F —> B.

F

Definition 1.8. For T > 0, let 0(T), χ(T) be the forms on B,

r

= J

(1-14)

F

The following result is proved in [B6, Theorem 9.7].
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Theorem 1.9. The forms θτ> XT He in PB. The forms OT are closed and their coho-
mology class does not depend on T. More precisely, for T > 0,

Oτ = ̂  — . (1-15)

Set
KRE

2iπ
KRE\

2iπ J '
(1.16)

01
16=0

We make the convention that if E = {0}, then

Kcnm(E,gE) = 1, Kc'max(E,gE) - 0, (Kd~^(E,gE) - 0. (1.17)

Note that since JE is parallel with respect to the connection VE, the forms in
(1.16) are closed. Of course they lie in PB. Similar forms can be defined which are
associated to (F,gF), (G,gG).

b) The Asymptotics of the Forms 9τ and XT

The following result is proved in [B6, Theorem 9.9].

Theorem 1.10. As T -> 0,

0τ = Kcm

l

ax(F, gF) xcmax(G, gG) + O(T),

As T —> +00,

θτ = Kc-l(E,gE) + θ(^\ Xτ = θ(^\. (1.19)

Set
χ o = l i m χ τ . (1.20)

T->0

The form χo is calculated in the right-hand side of (1.18).

c) The Form !(#, F, gF)

Definition 1.11. For s G C, 0 < Re(s) < 1, set

+ 00

A(8)=-^- ( Ts~lχτdT. (1.21)
Γ(s) J

0

Using Theorem 1.10, it is clear that A(s) is a meromorphic function of s, which
extends to a holomorphic function near 5 = 0.
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Definition 1.12. Set
r\

M(E,F,gF)=—A(0). (1.22)
as

Then B(J£, F, gF) is a smooth form on B.

Proposition 1.13. The following identity holds

1 +00

M(E,F,9

F) = J(χτ-Xo)^f + I Xτ^f-Γ'(l)Xo. (1.23)

0 1

Proof. Equation (1.23) follows from Theorem 1.10. D

By [BGS5, Theorem 3.15] or by [Bl, Remark 3.7], the current on G

' A- ' - - b) Log ( J—L + (KRG + 2πbJGΓi ) I (1-24)
db\ V 2m j 6 V 2 / l f c = 0

is locally integrable.

Theorem 1.14. The following identity holds

B(S,F,^)^ / e x p { -^f^ + I(^J^,Z) + JFJ

Log (¥?- + (KRG + 2π6JG)-Λl 1 . (1.25)
\ L / J 6-OJ6-OJ

Proof. Equation (1.25) follows from (1.11), (1.14), (1.21). D

Remark 1.15. Note that the local integrability of the current (1.24) on G plays a key
role in making sense of the right-hand side (1.25).

Theorem 1.16. The form M(E,F,gF) lies in PB . Moreover the following equation
holds

(1.26)

Proof. Equation (1.26) follows from (1.15), (1.18), (1.19). D

Remark 1.17. Equation (1.26) can also be considered as a consequence of [BGS5,
Theorems 3.14 and 3.15], of Proposition 1.2 and of Theorem 1.14.

d) Evaluation ofM(E,F,gF) in PB/PB$

If λ e Λ, let gEλ be the Hermitian metric induced by gE on Ex. Let Vβλ be the

holomorphic Hermitian connection on (Ex,gE ) and let RE be its curvature. Then

c-lx(E,9

E) = der1 ~~ (1-27)
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Therefore κc^x(E^ gE) is obtained by a usual construction in Chern-Weil theory. Of
course similar considerations apply to Kc^lx(F,gF) and Kc^x(G^gG).

By the theory of Bott-Chern classes developed in [BGS1, Sect. If)], there exists a

uniquely defined class Kc^ax(E,F,gF) e PB/PB$ such that

The class κc^(E, F,gF) is normalized by the two conditions:
• It is functorial with respect to pull-backs.

• KCmax(E)F,gF) vanishes when the equivariant exact sequence (1.1) splits holo-
morphically and metrically. This exactly means that for every λ G Λ, we have an
identification of holomorphic Hermitian vector bundles Fx — Ex 0 Gλ, and i and j
are the obvious injection and projection maps.

Definition 1.18. Let KD(G,gG) be the smooth form on B

Kτ\(Γ< ~^\ — TV I / " ' ~" \ (T^(λ\ T ~n( Ί^" Ί^Ό^\\\ (129)

We can write KD(G, gG) in the form

. (1.30)

It is clear that KD(G,gG) is a closed form which lies in PB . Also if gG varies
in the class of metrics on G such that the Gλ's remain mutually orthogonal in G, the
class KD(G) of KD(G,gG) in PB/PB^ does not depend on g°.

Similarly, we denote by κcmax(E)9

 κc^(E) the classes of Kcmax(E,gE\
Kc^lx(E,gE) in PB/PB>°. These classes do not depend on the metric gE as gE

varies in the class of metrics preserving the mutual orthogonality of the Ex's.

Theorem 1.19. The following identity holds

, <7G) K^L(E, F, gF)

in PB/PB>°. (1.31)

Proof. We proceed exactly as in [B6, Proof of Theorem 8.5].

Let P1 be the one-dimensional complex projective plane equipped with two dis-
tinguished points {0} and {00} and with the meromorphic coordinate z. By [BGS1,
Theorem 1.29] or by the Grassmann graph construction of Baum-Fulton-MacPherson
[BaFMa] which is explained in detail in [BGS5, Sect. 4], we can construct over B x P1

an acyclic complex of holomorphic vector bundles

0->E'-+F'-+G'->0, (1.32)
i' j'

which is a direct sum in λ € A of the holomorphic complexes

0 -> EfX -> F'x -> G'x -» 0 (1.33)
i1 j1

and which has the following two properties:
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• The restriction of the complex (1.32) to B x {0} coincides with the complex (1.1).
• On Bx {oo}, the complex (1.32) splits, i.e. for each λ G Λ9 we have an identification
of holomorphic vector bundles

^|J3x{oo} = E\Bx{oo} ® G'\Bx{oo} > (1-34)

and i1 and j' are the obvious injection and projection maps.
Let gF' be a Hermitian metric on F1, which is such that the F/λ's are mutually

orthogonal in F1, and which has the following two properties:
• The restriction of gF' to B x {0} coincides with gF.
• On B x {oo}, for any λ e Λ, the splitting (1.34) is orthogonal.

As in Sect, la), from the metric gF' , we construct metrics gE> ', g°' on E1 ', G '.
Clearly, on B x {0}, gE> ', #G/ coincide with gE , gG . Also for T > 0, let χ'τ be the
associated form (1.14) on B x P1 associated to the complex (1.32).

Over P1, we have the equation of currents

00

— (Log\z\2) = δ{0} - 6{00} . (1.35)

Set

β(E', F', gF>) = !(£', F', gF') + κcmΆX(G', gG')κ^(E>, F', gF') . (1.36)

By (1.26), (1.28), it is clear that

',gF) = 0. (1.37)
zπ

Also

jjt (Log \z\2)β(E', F', gF') - (Log \z\2) g β(E', F', gF')

= -j- (d(Log \z\2)β(E', F', 9

F')) + A ((Log \z\2)dβ(E', F', /')) . (1.38)

If K, is a smooth form on B x P1, let KQ, K^ be the restrictions of K to 5 x {0},
5 x {00} respectively. We will consider KQ, K,^ as forms on B.

Using (1.38) and integrating along the fibre of the projection map B x P1 — > B,
we get

/?(£', F', Λ - /?(£', F', Λ G P*'° . (1.39)

Clearly

, F , ) i n P / P . (1.40)

Also by construction

^L(ί;')F',ff

F')00=0 in Pβ/Ps'°. (1.41)

We now calculate !(£", F7, gF')oo In the sequel, all our constructions will be done
on B x {oo}.
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Since the complex (1.32) splits on B x {oo}, we see that if Z e F\BX{OO}>

Y + Y', Y € E'lBx{oo}, Y' e G\BX{00}, then over B x {oo},

K,

exp / _ \JGY'\2
 + 1 (RG'jG'γf γf) + jG'\

P \ 2 2 V 7 J

So, over B x {oo}, for T > 0, we get

•M i / D£77 τEfv Λ/Λ i T-E'

(1.42)

*.=/XToo = y exp ^ -

E'

_a_
a&

(1.43)

6-0

By an easy calculation (which is done in [B4, Eqs. (1.21)-(1.23)]), we see that

exp - (1.44)

Also one immediately verifies that

/*
_ T(JG> + RG>

= (2τr)dimG'det( - -b

del

'>,}
-JG'+T(JG/ + ΛG'

det(-JG"2+T-.RG'JG')

det(- JG/2 + T -

det(- JG'2 + T - JG'RG/)

From (1.45), we get

KRG'

(1.45)

_

db
Lσ'

det exp < -P

_ T(JG' + RG>

I 6=0

= - 2τrTr[iJG'(- JG'2 + Γ - (1.46)
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Now by an elementary calculation which is made in [B6, Appendix, Eq. (7)], we
know that for s G C, 0 < Re(s) < 1, then

'"
Γ(S) J L_jG'2+ Γ_jG' j RG'

0

- s)Tr[iJu (-J° - J° R* )s~']. (1.47)

From (1.43)-(1.47), we deduce that over B x {oo}, then

Λ(s)oo = (-2πκc^(E',gE')Γ(\ - s)Ίr[iJG'(-J0*2 - JG'RG')s~1])00 . (1.48)

Using (1.48), we see that

- Log(-JG'2 - JG'RG'))\ .
J 00

2iπ

(1.49)
J oo

Equivalently,

Clearly

r)] (1-51)
Δiπ

Using (1.35), (1.51) and integrating along the fibre of the projection map B x P1 —> B,
we get

From (1.39)-(1.41), (1.50), (1.52), we get (1.31). D

e) The Genus KR

Definition 1.20. Let KR(G, gG) G PB be given by

-'(I) - Log(-(JG)2 - JGRG))\ . (1.53)

The considerations we made for KD(G,gG) also apply to KR(G,gG). In partic-
ular KR(G,gG) is a closed form. We denote by κR(G) the class of KR(G,gG) in

κr' ((Ίϊ κr' (d nG\
PB/PB$. Similarly y

Cmax ^ denotes the class of max ^^G in PB/PB$.

(1.54)

Proposition 1.21. The following identity holds

K /
τ-ι//ι\ m .

C,nax(G)
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Proof. Clearly,
KJ (Γ nG\ Γ / JG I p<3\-h

(155)

Equation (1.54) follows from (1.29), (1.53), (1.55). D

Definition 1.22. If μ e R*, x e C, set

= (M + a:)'1 (2Γ'(1) - 2 Log |2πμ| - Log ( 1 + -)) . (1.56)
\ V M/ /

j i
In the sequel, we make ^ — = 0 if j = 0.

k=l *

Proposition 1.23. For x e C, x| < μ, the following identity holds

+00. +00 X J ^ V X V j

= - V (2Γ'(1) - 2 Log |2πμ| + Ϋ) T I ( — 1 . (1.57)
μ = V = j ^ μ s

Proof. Equation (1.57) follows from a trivial calculation which is left to the
reader. D

We identify Rμ with the corresponding additive genus.
_JG

Let M C R* be the spectrum of - .
2ίπ

Proposition 1.24. The following identity holds

ίπμ) (1.58)

Proof. Equation (1.58) follows from (1.53), (1.56). D

II. Equivariant Bott-Chern Currents

The purpose of this section is to recall the construction in [B5] of the equivariant
Bott-Chern current κSωLx, and also to construct the equivariant Euler-Green current
KeLX(LE,gLE) by extending results of [BGS5].

This section is organized as follows. In a), we recall results of [B4,5]. In b), we
construct the current κ SωLx on LX. In c), we introduce the equivariant holomorphic
Hermitian vector bundle (LE, gLE). In d), using the formalism of Mathai-Quillen
[MQ], we introduce equivariant Thorn forms and we prove equivariant double trans-
gression formulas. In e), we construct an equivariant Euler-Green current on a K-

invariant complex submanifold Yr, which is denoted κeγ (LE, gLE). Finally in f),
we establish some properties of the current KeLX(LE,gLE).

a) Holomorphic Killing Vector Fields and Localization

Let LX be a compact complex manifold. Let iTLX be the complex structure on
T^LX. Let gTLX be a Hermitian metric on TX. Let ωLX be the Kahler form of
LX, i.e. ifU,Ve TRLX, set

ωLX(U, V) = (U,JTLXV) . (2.1)

Then ωLX is a (1, 1) form on LX.
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In the sequel, we assume that the manifold (LX, gTLX) is Kahler, or equivalently
that the form ωLX is closed.

Let VTLX be the holomorphic Hermitian connection on (TLX,gTLX). The con-
nection VTLX induces the Levi-Civita connection on T^LX. Let RTLX be the cur-
vature of VTLX.

Let K be a holomorphic Killing vector field on LX. Then the form ωLX is K-
invariant. Set

X = {u e LX', K(u) = 0} . (2.2)

Then X is a complex totally geodesic submanifold of LX. Let / be the embedding
X -+ LX. Set

ω

x = f*ω

LX . (2.3)

The form ωx is the Kahler form of the metric gτx induced by gTLX on TX,
and ωx is closed, i.e. the manifold (X,gτx) is also Kahler.

Let NX/LX be the normal bundle to X in LX. We identify NX/LX to the orthog-
onal bundle to TX in TLX\X. Then TLX\X splits holomorphically into

TLXIX=TX®NX/LX. (2.4)

Also TX and NX/LX are orthogonal subbundles of TLX\X. Let gNχ/LX be the
T"1 7" X"

metric induced by the metric g \x on NX/LX.

Let Vτx, VNχ/LX be the holomoφhic Hermitian connections on (TX,gτx),
(Nχ/LX,gNχ/LX)- Then with respect to the splitting (2.4) of TLX\X, we know that

VTLX\X = Vτx®VNχ/LX. Let Rτx, RNχ/Lx be the curvatures of Vτx, VNχ/LX .
ΊfUeNx/LX,set

jNχ/LχU= ^L(U). (2.5)
cm

Then J χ/LX is a skew-adjoint invertible endomorphism of NX/LX, which is parallel

with respect to the connection VAΓχ/LX . In particular over each connected component
of X, the eigenvalues of J X/LX are nonzero and are constant. The vector bundle
NX/LX then splits holomorphically and metrically as the direct sum of the various

eigenbundles of JNχ/Lx . We will use freely the notation of Sect. 1 with respect to
the couple (NX/LX, JNχ/LX).

Let K(1'0), K(0'1} be the components of K in T(1'0)X, T^^X respectively, so that
\ Set

dκ = d + iκ(Q,i) , dκ = d + %(i,o) . (2.6)

Since ^Γ is holomorphic, then

01

K=0, 92

K=0. (2.7)

Let LK be the Lie derivative operator with respect to K. Then

Lκ = (d + ίκ)
2. (2.8)

From (2.7), (2.8), we deduce that

LK = dκ'Θκ + dκdκ - (2.9)

Definition 2.1. Let KPLX be the set of smooth forms on LJΓ which are ^-invariant
and are sums of forms ot type (p,p). Let κ pLX$ be the set of smooth forms a G
KpLX Sucj1 u^f. jkere exjst ^-invariant forms /?, 7 on LJΓ for which α = dκβ+dκΊ
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Clearly ωLX G KPLX. Observe that by (2.9), if α is a ^-invariant form, then

dκdκa = -dκdκa. (2.10)

Therefore, when acting on ίί-invariant forms, the operators 8κ and ΘK anticommute
as the usual d and d operators.

Let K' be the 1-form on LX which corresponds to K by the metric gTLX . Clearly

LKK' = 0. (2.11)

Since ωLX is a closed form, dωLX = 0, dωLX = 0. By [B5, Eq. (14)], we get

(2.12)

Definition 2.2. For ί > 0, set

Kκat = exp
7 (2 13)

κ 2πωLX ' 'Ίt = — — exp

Theorem 2.3. For any t > 0, the forms κat and κ^t He in κ PLX . Moreover the
following identities hold

dκκat=0, 8K« <*=<>, ^K ldκdκκ (2 14)
dt t 2ιπ

Proof. These results were already proved in [B5, Proposition 5]. In fact using (2.7),
(2.10), we obtain the first identities in (2.14). Also

(2.15)

The third identity in (2.14) follows. D

Let <g>'(LX) be the set of currents on LX. Let &N* (LX) be the set of
X I LX ^R

currents on LX whose wave front set is included in

Then by [H, p. 262], &' * (LX) can be naturally equipped with a family of
X/LX,R

semi-norms. In fact, let V be an open set in LX which is holomorphically equivalent
to an open ball in CdimLX ^ R2dimLx Qver y? we identify T^LX with V xR2dimLX.
Let Γ be a closed cone in R2dimL* such that on V Γ) X, Γ Π N*/LX R = {0}. Let φ

be a smooth current with support in V, and let m be an integer. Let Λ denote Fourier
transform.

If a G ̂ ' * (LX), set
X/LX,M

(α) = sup I^

Take α G J%.# (LX). We will say that a sequence of currents an G
X/LX,R

' * (LX) converges to α in @? * (LX) if:

• o;n converges to a in &



16 J.-M. Bismut

• If V, Γ, 92 , m are taken as in (2.16), then pv,r,φ,m(&n — α) -» 0.

Definition 2.4. Let κPχX be the set of .Ff -invariant currents on LX which are sums

of currents of type (p,p), whose wave front set is included in N^,LX R. Let

be the set of currents α e κ PχX such that there exist K-invariant currents 6, c,
whose wave front sets are included in Nχ,Lχ R, and for which a = <9^& + 5/^c.

We equip *P£X, *p£x,o with the topology induced by &'* (LX).
^

Let || ||ci(Lx) be a norm on the Banach space of forms μ on LX which are
continuous with continuous first derivative.

Theorem 2.5. There exists a constant C > 0 swcA that for any t e]0, 1], for any
smooth differential form μ on LX, then

μ{κat - <CVt\\μ\\cl(LX). (2.17)

LX

IfV,Γ,φ,m are taken as in (2.16), there exists C' > 0 such that for any t E]0,1],

Pv,r,y>,ra(αt — Kcmlχ(Nχ/LX,9 x/LX)δχ) < C'Vt. (2.18)

Proof. By (2.12), we know that

/ Mexp (^d-^-LX\ = f μexp ( _ (* + **)*'} . (2.19)

7 V * J J \ 2t J
LX LX

By [B4, second proof of Theorem 1.3] and [B5, Theorem 2], we know that as t —> 0,

μf
J f / / / jNv/j y i Γ)Ny/r yt / J ( J X/LX _^ /£ X//.X

LX x det

(2.20)

More precisely, the techniques of [B4] easily show that (2.17) holds. The proof of
[B4, Theorem 1.3] is closely related to the proof of [B2, Theorem 3.2]. By proceeding
as in [B2, Eqs. (3.121)-(3.127)], we obtain (2.18). D

Remark 2.6: From the proof of (2.17), one also easily finds that there exist currents
0ι, ... , 0fc, ... on LX, which lie in κPχX and are concentrated on X, such that as
t -> 0, for any k G N,

μI (dκdκ^\ωLX\ i
J μQXP(—i—)=J . RNX/LX

LX x det I - ~

μθfl +o(Γ). (2.21)

7 = 1 LX

The main point in (2.21) is that only integral (and no half-integrals) powers of t
appear, essentially because the integral of an odd polynomial on Rn with respect to
a Gaussian distribution vanishes.
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b) An Equivariant Bott-Chern Current

We now recall the construction in [B5] of an equivariant Bott-Chern current on LX
associated to the embedding /: Jf — > LX.

Theorem 2.7. For any smooth form μ on LX,for any k G N, as t — >• 0,

LX κ '

LX X

k

J= LX

In particular

I μ2πωLXθ3+lV + o(tk) . (2.22)

in

Proof. Equation (2.22) follows from (2.21), (2.23) was proved in [B5, Eqs. (40)-
(49)]. D

Remark 2.8. From (2.23), we find that

dκdκ(2πωLXθl) = 0. (2.24)

Observe that (2.24) also follows from (2.14) and (2.22).
Let μ be a smooth differential form on LX. By (2.22), the function of s G C,

Re(s) > 1,
i

1 I . 0 — 1 I I K I.X I -, . ,~ >~\C\

extends to a meromoφhic function of s £ C, which is holomoφhic near s = 0. Also
for s e C, Re(s) < 1, the function

+00

'β~1J / μκΊtx\dt (2 26)
i [LX )

is holomoφhic.
Therefore the function F^(s) + F^(s) is holomoφhic near 5 = 0.

Definition 2.9. Letκ SωLx be the current on LX such that if μ is a smooth differential
form on LX, then

μKSωLχ = :jj-s(Fl

μ + F2

μ) (0). (2.27)

LX

Remark 2.10. The current κSωLx is exactly the current 2πiζ'^LX/2(0) which was

constructed in [B5, Sect. C].
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Proposition 2.11. For any smooth form μ on LX, the following identity holds

/
LX

μ«i

(2.28)

LX

Proof. Using (2.22), we immediately obtain (2.28) D

We now state a result which was proved in [B5, Theorem 6].

Theorem 2.12. The current κSωLx lies in κ PχX. Also the following equation of
currents on LX holds

(2.29)

Proof. Our theorem follows from Theorems 2.3 and 2.5, from (2.22), (2.24) and from
Proposition 2.11. D

c) An Equivariant Vector Bundle on LX

Let (LE,gLE) be a holomorphic Hermitian vector bundle on LX. Let VLE be the
holomorphic Hermitian connection on (LE,gLE) and let RLE = (VLE)2 be its
curvature.

Let QLE be the GL(dim LE) bundle of frames in LE. Let a be the connection
form on QLE associated to the connection VLE.

We assume that the vector field K lifts to a GL(dim LE?)-invariant vector field
KLE on QLE, which is holomorphic, and preserves the metric gLE. Then a(KLE)
is the equivariant representation of a smooth skew-adjoint section of End(LE), which
we denote JLE.

Let σ be a holomorphic KLE-invariant section of LE. Set

LY = {u G LX', σ(u) = 0} . (2.30)

We assume that if u G LY, the rank of dσ(u)\TLXu —> LEU is equal to
Then LY is a compact K-invariant complex submanifold of LX. Let i be the

embedding LY —> LX. Set
ωLY=ί*ωLX. (2.31)

Then ωLY is the Kahler form of the ^-invariant metric gTLY induced by gTLX on
TLY.
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Let NLγ/Lχ be the normal bundle to LY. By identifying NLY/LX with the

orthogonal bundle TLYL to TLY in TLX\LY with respect to the metric gTLX\LY ,

we thus equip NLY/LX with a Hermitian metric gNLY/Lx t

Also dσ : NLY/LX — > LE^Y is an identification of holomorphic vector bundles.

We assume that dσ also identifies the metrics g LY/LX and g \LY . Observe that
given the metric gTLX on TLX, one can always find a KLE -invariant metric gLE

on LE such that this is the case.
Let PTLY , P Ly/Lx be me orthogonal projection operators from TLX\LY on

TLF, NLY/LX respectively.
Clearly since K is holomorphic and Killing, (TLX,gTLX) is an example of

(LE, gLE), to which the action of K on LX lifts. One easily verifies that

JTLX = VTLXK (232)

Also the vector field K^x preserves (TLY, gTLY). Therefore K^x also pre-

serves (NLY/LX,g
NWX).

Let JTLy, JNLY/LX be me obvious analogues of JLE '. One verifies that

rTLy _ pτz,y TTLX pτz,y
J — r J\LY * •>

(2.33)
JNLY/LX — pNLY/LX jTLX p^LYjLX

\LY

Also since σ is a KLE -invariant section of E, one sees easily that under the identi-
fication of holomorphic Hermitian vector bundles NLY/LX = LE\LY, then

J^LY/LX = jL£ (234)

d) Equivariant Double Transgression Formulas

We now closely imitate [BGS5] to construct equivariant Thorn forms and equivariant
Euler-Green currents on the total space of LE. We still use the formalism of Mathai-
Quillen [MQ] described in [Bl, Sect.3a)].

Set
dKLE = d + iKLE(0,l) , 3KLE = d + ΪKLE(1,0) (2.35)

As in (2.7), (2.9), we find that

LKLE =

Since KLE is a holomorphic vector field which preserves the metric gLE, it also
preserves the connection VL£ !.

Definition 2.13. The equivariant curvature κ RLE is defined by

KRLE = JLE + RLE . (2.37)

κ RLE is the sum of (0, 0) and of a (1, 1) form on LX taking values in skew-adjoint
elements of Enά(LE).

Let iLE be the complex structure on LE^.
Recall that if z G LE, we identify ztoZ = z + ze LER, so that \Z\2 = 2\z\2.
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Definition 2.14. For u>0, let Kau(LE,gLE), Kcu(LE,gLE) be the smooth forms
on LE,

( K r>LE\ ( / I 712

~^τ)exp{"
/3 Γ f K ΐ>LE \

κcu(LE, gLE) = £ det ( - -£— - 6 )
σo |_ \ 2ιπ /

2
(2.38)

exp -
6=0

The analogue of [Bl, Theorem 3.2] is as follows.

Theorem 2.15. The forms Kau(LE,gLE) and Kcu(LE,gLE) lie in κLEpLE. Also

,

,gLE) = 0.

For any u > 0, the following identity holds

9 κn fr p LB-, dKLEdKLB κcu LE- au(LE,g )= ^ — (LE,ff )

2^π
(2.40)

When K = 0, formulas (2.39), (2.40) were established in [BGS5, Theorem
3.10] and recalled in [Bl, Theorem 3.2]. In general, the formalism of equivariant
cohomology of [BeV] shows that formulas (2.39), (2.40) are consequences of [BGS5,
Theorem 3.10], essentially because the connection VLE is KLE -invariant. The fact
that the forms Kau(LE,gLE) and Kcu(LE,gLE) are KLE -invariant follows tauto-
logically.

Here we will simply check directly that the forms κ au(LE ', gLE) and κcu(LE,
gLE) are KLE -invariant. In fact since the connection VLE is KLE -invariant, one
deduces from [BeV] that

VLEjLE + iκRLE = o (2.41)

In particular from (2.41), we find that

VJfjLE = Q. (2.42)

Since VLE is KLE -invariant, RLE is KLE -invariant, i.e.

VJfRLE - [JLE, RLE] = 0 . (2.43)

From (2.42), (2.43), we get

WκE ~ jLEι KRLE} - 0 . (2.44)

Using (2.44), we easily deduce that the forms Kau(LE,gLE) and Kcu(LE,gLE)
are KLE -invariant. D
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e) Equivariant Bott-Chern Currents on K-invariant Submanifolds of LX

Let Y' be a K-invariant complex submanifold of LX. Let i1 :Yf —> LX be the
corresponding embedding. Set

Y" = LY ΓΊ Y'. (2.45)

We assume that Y" is a complex submanifold of LX and that

TY" = TLY Π TY'. (2.46)

Then Y" is also a A^-invariant submanifold of LX.
Let Nγn/γr be the normal bundle to Y" in V. Then we have an exact sequence

of holomorphic vector bundles over Y",

0 _> jVy///y/ -> NLY/Lχlγf, -> TV -> 0. (2.47)

In (2.47), TV is the excess normal bundle to Y" in LX.

The vector bundle NLY/LX is equipped with the metric g LY'LX\Y" > Let

^y/y' be the metric induced by g

NLY/LX\γ» on Nγn/γ,. We identify TV with

the orthogonal bundle to TV y///y/ in NLY/LX . Let ̂  be the metric induced by

r" on TV.
Let V^ be the holomorphic Hermitian connection on (TV, gN) and let RN be its

curvature.
By the same arguments as in Sect. 2c), we see that K lifts to a holomorphic vector

field on Nγn/γι which preserves the metrics g γ"/γf.

Let P γ"/γl

 9 pN be the orthogonal projection operators from NLγ/Lχ π on

TVy,,/y/, TV respectively. Let JNY"/Y' be the obvious analogue of JLE. By (2.33),
we find that

jNγ ll jYl pNγ/l jγl j- LiI/Lι^γH plMγιιjγι (748^

Since K lifts to a holomorphic vector field on NLγ/Lχ which preserves the

LY/LX ~ ΛΓ
metric g \γ , it also acts holomoφhically on TV and preserves the metric g™.
If J^ is the analogue of JLE for TV, one then finds that

(2.49)
I *•

In the sense of Definition 2.13, the equivariant curvature κRγ/x on (N,g^~) is
given by

KR* = J* + R*. (2.50)

We identify σ G L £ t o , s = σ + σ E LER, so that |s|2 = 2|σ|2.

Theorem 2.16. The forms s* Kau(LE,gLE) and 5* Kcu(LE,gLE) lie in KPLX.
Also

dκs*κau(LE,gLE) = 0, dκs* Kau(LE,gLE) = 0. (2.51)
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For any u > 0, the following identity holds

9 e* *n ,τ r, Γ,£\ 5KΘK S* K Cu LE-s au(LE,9 }=^———(LE,9 )

— ̂ ~(^L*) (2.52)

Proof. Since σ is holomorphic and .?ΓL£; -invariant, one sees easily that

dκs* = s*dKLE\ Bκs* = s*dKLE . (2.53)

Our theorem follows from Theorem 2.15 and from (2.53). D

Let k be the embedding Y" — > Y1 '. We use the notation of Sect. 2a) for currents
on Yf whose wave front set is included in Nγ,,,γ, R.

Definition 2.17. Set

(254)
^•^'

= 0 . (2.55)

Theorem 2.18. There exists a constant C > 0 swc/z ί/zαί // μ is a smooth differential
form on Y' , then for u > 1,

16=0

If TV = 0, we make the convention

μ(i?*s*κau(LE,gLB)-κcmax(N,g*)δγ,,)

.
, gLE) + Kc'mΆK(N, gN)δγ,,)

<

r (2.56)
o ., ..

//" V, -Γ, φ, m are taken as in (2.16) with respect to the embedding k:Y" — > Y' ',
wίί C; > 0 swc/z that for u > I,

ί^s* Kcu(LE,gLE) + κ dm^(N ,gN)δγ,,) < -j= .

Proof. The proof of our theorem is essentially the same as the proof of [B2, Theorems
5.1 and 5.4] and [BGS5, Theorem 3.12]. In particular the fact that JLE which appears
in KRLE is ultimately replaced by J^ follows directly from (2.49) and from [B2,
Eq. (5.23)]. D

Definition 2.19. For s G C, 0 < Re(s) < £, let KHY'(LE,gLE)(s) be the current

+00

=j^ f u*-l(es*κ

o

+ Kc'm!Ά(N,gff)δγ,,)du. (2.58)
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By Theorem 2.18, (2.58) extends to a holomorphic function near 0.

Definition 2.20. Let KeY'(LE,gLE) be the current on Y',

κeγ'(LE, gLE) = —KHY'(LE, gLE) (0). (2.59)

Proposition 2.21. The following identity holds

i
κeγ'(LE,9LE) = I i'V (κcu(LE,9

LE) - Kc0(LE,9

LE)) ̂

0

+00

{i1 s cu(LE,g ) -f- cmaχ(Nιg )δγ") —

1

Proof. Equation (2.60) follows from (2.58). D

By replacing in Definition 2.4 LX and X by Y' and Y", we define the sets of

currents KP$,, KPY'/° on Y'.,,

K Y ' L E K , ,Theorem 2.22. The current KeY'(LE,gLE) lies in KPY',,. Moreover it verifies the
equation of currents

2iπ ' max ' max

Proof. Using Theorems 2.16 and 2.18, the proof of our theorem is the same as the
proof of Theorem 2.12. D

Remark 2.23. By exactly proceeding as in [BGS5, Theorem 3.15], we know that the
current KeLX(LE,gLE) is locally integrable, and is given by the formula

db _

Log (^ + s\KRLE + 2πbJLEΓl } I . (2.62)
\ 2 / - I 6=0

Equivalently

KRLE

άimLE—l

- Σ s*(-(KRLE + 2πbiLEΓl)k (2.63)
£ί k\s\ Jί>=o

The singularity of KeLX(LE,gLE) near Y is of the form \s\-WmE-i)^ which is

indeed locally integrable.
If Y' is transversal to LY, the restriction if* KeLX(LE,gLE) of the current

KeLX(LE,gLE) to Y' is well-defined. As in [Bl, Eq. (3.17)], we find that

κeγ'(LE, gLE) = i'* KeLX(LE, gLE) . (2.64)
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If Y1 is not transversal to Y, i.e. if TV ^ 0, then KeY'(LE,gLE) is not locally
integrable on Y' near Y". More precisely, by proceeding as in [BGS4, proof of
Theorem 3.4], we see that κeγ'(LE, gLE) is smooth on Y'/Y", and has a singularity

near Y" of the form —^—τ-τ . In fact the obvious analogue of the final part ofI \2dim N γ f f / γ t σ *

[Bl, Remark 3.7] still holds in this case.

f) The Current Kex(LE,gLE)

If B is a complex manifold and if Bf is a complex submanifold, by replacing in
Definition 2.4 LX by B, X by B' and K by the 0 vector field, we define the sets of
currents Pj*,, Pβΐ over B. Of course the condition of K-invariance of the currents
is now empty.

We now specialize the results of Sect. 2e) to the case where Y' = X. X is of
course K-invariant. Set

Y = LY Π X . (2.65)

Since the restriction of K to LY is also a Killing vector field, then Y is a complex
submanifold of LY. Moreover since TX is the kernel of JM^LX and TY is the kernel

of J|yLy, we find that
ΓY = TLY Π TX . (2.66)

With the notation of Sect. 2e), Y" = Y.
Since K vanishes on X, using (2.41), we get

V J\χ = 0. (2.67)

The tensor Jh^ being parallel with respect to the connection VLE, the eigenvalues

of Jh^ are locally constant. Let A denote the finite set of distinct locally constant

eigenvalues of J^p. If λ G Λ, let LE^χ be the eigensubbundle of LE\χ associated

to the eigenvalue λ of JKF. Then LE\X splits holomorphically into

Γ Z71 ΛTN Γ Z7"λ /"•) (iQ\L/H/\v = I I 1 L/Ju\γ , (Z.Oo)l^v vlx IΛ

λe/1

and the splitting (2.68) is orthogonal with respect to the metric gLE\x.
Let LE9χ be the eigensubbundle of LE\X associated to the eigenvalue 0 (LE9χ

may be reduced to 0) and let LE?^~ be its orthogonal with respect to the metric
7- π

g lχ. Then by (2.68), we deduce in particular that LE\X splits holomoφhically into

LE\X = LEfx Θ LE^ . (2.69)

T rrΌ r 17'̂ ')-'- ,,

Let ^ lχ, g \x be the Hermitian metrics on LE9X, LE\X induced by the metric

Since the section σ of LE is KLE -invariant, then

\/

From (2.70), we deduce that

= JLE

σ . (2.70)

(2.71)
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In the case considered here, the exact sequence (2.47) can be written in the form

0 _> Nγ/x -> NLY/LXlγ -> N -> 0. (2.72)

We know that if h e TLX\X, then JTLXh = 0 if and only if h G TX. Moreover
TLY\Y is stable under JTLX. Therefore using (2.33), over Y, we have the identity

(2.73)

From (2.72), (2.73) we see that if N^γ,Lχ is the direct sum of the eigenspaces

of JNLY/LX\Y associated to nonzero eigenvalues of JNLY/LX\Y , then N^y/LXγ is

a holomorphic vector subbundle of NLY/LX . Moreover NLY/LX splits holomor-

phically into

NLY/LX}γ = NY/X θ N°£γ/LXιy , (2.74)

and so
ΛΓ _

iV —

Recall that dσ\LY identifies NLY/LX with LE\LY. Using (2.34), it is clear that
under this identification, the splittings (2.69) and (2.75) correspond. Of course by
construction, the metrics also correspond. In particular dσ\γ identifies Nγ/x with

Ltfx
We identify X with the zero section of LE?χ. The Euler-Green current e(LE?χ,

LE® LE®
g \x) on the total space of the holomorphic Hermitian vector bundle (LE?χ,g lχ)

LE°
was constructed in [BGS5, Sect.3f)]. Then e(LE?χ,g \x) is a locally integrable

LE\xcurrent lying in Px ' , such that

. (2.76)

In the sequel, σ\x will be considered as a section of LE?χ, which vanishes exactly

on Y. Set 5|χ = σ\χ + σ\x. Then s\x is a smooth section of LE?χR over X.
LE°

By [BGS5, Remark 3.16], the current on X, s*χe(LE^χ,g I*), is well-defined,

lies in Pγ , and moreover

= δγ - cmax(LE°x,g\x) . (2.77)

The current s?χe(LE?χ,g \x) is a special case of the current KeLX(LE,gLE),

when K = Q, KLE = 0.

Theorem 2.24. The following identity holds

9

LE°x) in P P ' ° .

(2.78)
Proof. By proceeding as in the proof of [Bl, Theorem 3.8], the proof of Theorem
2.24 is identical to the proof of [BGS5, Theorem 3.17]. D
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III. Localization Formulas for Bott-Chern Currents

The purpose of this section is to prove localization formulas for Bott-Chern currents.
More precisely, we prove in Theorems 3.2 and 3.4 that certain combination of Bott-
Chern currents on LX differ of currents localized on X by sums of 3κ and 3κ
coboundaries.

As explained in the introduction, the organization of this section is closely related
to the organization of the paper by Bismut-Lebeau [BL2]. The analogy will in fact
be further explored in [B3].

This paper is organized as follows. In a), we state our localization formulas. The
rest of the section is devoted to the proof of these formulas. In b), and in relation with
[BL2] and also with [Bl], we construct a closed form on R+ x Λ*. In c), by integrating
this form over a closed rectangular contour, we obtain a fundamental identity. By
deforming the rectangle, we will in fact ultimately prove our main formulas.

In d), we state three intermediary results, which are needed in the proof of Theo-
rems 3.2 and 3.4. The proofs of these results are delayed to Sects. 3h)-3j).

In e), using these intermediary results, we calculate the asymptotics of the funda-
mental identity of Sect. 3c). Section 3d) is in fact in close resemblance with [BL2,
Sect. 6].

In f), we verify the consistency of our calculations, by checking that certain di-
verging terms in e) effectively cancel each other.

In g), we prove Theorem 3.4.
In h), i), j), we prove the three intermediary results stated in d).
In k), we give another approach to the results established in e), by a direct manip-

ulation of certain Euler-Green currents, which are shown to exhibit mysterious and
hidden algebraic properties.

Finally in 1), we briefly check the proof of Theorem 3.2.
The techniques used in this section are very similar to techniques we used in [Bl]

to deal with another problem also involving an excess normal bundle.

a) A Fundamental Result

We make the same assumptions and we use the same notation as in Sect. 2. If
X U LY, set

= NX/LX,R if * e X\Y

Definition 3.1. Let &'* N* (LX) be the set of currents on LX whose
X/LX,R+ LY/LX,R

wave front set is included in Nχ,LX R -h N^γ,Lχ R.

Let Pγ^r v be the set of K -invariant currents in <£)' * , , Γ* (LX} which

are sums of currents of type (p,p).
Let Pχ*Lγ be the set of currents ω G PχζLY such that there exist j?f -invariant

currents α, β e &'N* N* (LX) for which ω = dκ& + 5κβ.
~*~ LY/LX,R
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We now use the notation of Sect. 2f). Consider the exact sequences

0 _ Nγ/x -H. NLY/LX[γ ^N^Q,

0 _> Nγ/LY -> Nx/LXlγ ^N^O. (3'2)

As we saw in (2.72)-(2.75), the first exact sequence splits holomorphically, so that

NLY/LXIY=NY/X®N. (3.3)

By identifying NLY/LX and NX/LX with the orthogonal bundles to TLY and

TX in TLX\LY and TLX\X, NLY/LX and NX/LX are respectively equipped with

induced metrics gNLY/Lx an(j g
Nx/Lx t Using (3.2), these metrics induce the obvious

natural metrics gNγ/x and gNγ/LY on ΛΓy/χ and NY/LY.

On the other hand, in the exact sequences (3.2), we can identify TV to the orthog-
onal bundle to Nγ/x in NLY/LX and also to the orthogonal bundle to NY/LY in

Nx/LX\γ' It is then easy to check that N inherits a common metric g^ . This metric

is exactly the one which is obtained by identifying N with the orthogonal bundle to
TX + TLY\X mTLX\x.

Finally, observe that the exact sequence of holomorphic Hermitian vector bundles
onY

0 _+ Nγ/Lγ _> Nx/LXlγ ^N^Q (3.4)

verifies the assumptions of Sect, la) with respect to the action of J 'LX\Y 9 which
restricts to J Y/LY on NY/LY. The assumptions of Sect, la) are verified in particular

because Keτ(JNχ/LX) = 0. _

We can then use the notation of Sect. 1. Note that the class

Nx/LχlY,g
Nχ/LXlY) € Py/Py'° was constructed in Sect. Id).

We now state the main result of this paper.

Theorem 3.2. The following identity of currents on LX holds

- KeLX(LE,9
LE) - κSωLX

κcmκ(LE,gLE) + κSωLYδLYLY

ex (LE, gLE) δx

Nχ/LX
, NX/LX{Y , 9

-Kc-ml(NY/LY)
KR(N)6Y in KPk^LY/KPχuLY (3-5)

Equivalently,

, gLE)δx

KcmΆX(N, g*) K^L(NY/LY, Nx/LX{γ , gN

Kc~la(Nx/LX)
κR(Nx/LX)

κcm^(LE)δx

in κ
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Remark 3.3. By applying the operator dχ9κ on both sides of (3.5), by using Theo-
rems 2.12 and 2.22, and the fact that

K R(N) δγ) = 0 , (3.7)

one obtains an already known identity. Identity (3.5) must be thought of as a consid-
erable refinement of this identity.

It is here important to observe why (3.5) or (3.6) cannot be entirely trivial. In fact
assume temporarily that X and LY are transversal in LX, i.e. that N = 0. Recall
that κSωLχ e KP^X, KeLX(LE,gLE) G κP^. By [H, Theorem 8.2.10], we can

then form the product of currents κ SωLxκeLX(LE, gLE) and the ordinary rules of
calculus apply to this product. In particular

dκdκ(
κSωLX]

κeLX(LE,gLE) - κSωLXdκdκ

κeLX(LE,gLE)

= Bκ[dκ

κSωLxKeLX(LE,gLE)} + dκ[
κSωLXdκ

κeLX(LE,gLE)]. (3.8)

From (3.8), we get

KeLX(LE,gLE) - κc^(Nx/LX,g
Nχ/LX)κeLX(LE,gLE)δx

K r» / c K - ( T 771 ^,LE\\ /- K τr)LX.Q /Q π\
- OωLx(θLY — Cmax(LU,g )) G P , (3.9)

which is equivalent to (3.5), (3.6).
It should be no surprise that as in [Bl, Theorem 2.8], the extra terms in (3.5),

(3.6) with respect to (3.9) come from the fact that X and LY are not transversal,
so that we get a contribution from the excess normal bundle N.

An obvious corollary of Theorem 3.2 is the following result.

Theorem 3.4. Let μ G KPLX, which is such that 3κμ = 0, 8χμ = 0. Then the
following identity holds:

- j μκeLX(LE,gLE)- J μκSωLX

κcam(LE,gLE) + J μ1

LX LX LY

X

+ J μKcm^(N,g*)^(Nγ/LY,

Y

- j μKc^(Nγ/LY)
κR(N) . (3.10)
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Equivalently ,

- I μκeLX(LE,9

LE)- j μκSωLX

κcmm(LE,gLE)+ j μκ SωLγ

LX LX LY

x

J μκcmax(N, g*)K^(NY/LY, Nx/LXlγ

x

+ j μKc^x(Nγ/LY)
κR(Nγ/LY). (3.11)

Y
Remark 3.5. Theorem 3.4 will be proved in detail in Sects. 3b)-3j). The proof of the
more refined Theorem 3.2 essentially follows the same lines and will be sketched in
Sect. 31).

From now on, the assumptions of Theorem 3.4 will be in force.

b) A Closed One-Form on R+ x R+

A first step in the proof of Theorem 3.4 is as follows:

Theorem 3.6. Let ηu,τ be the l-form on Ή* x R+

~LE^du f κ * κ
ηu,τ = — / μ ΊUS

u J
LX

+ ?f J μκauS*
κcτ(LE,gLE). (3.12)

LX

Then ηu,τ is a closed form.

Proof. Using Theorems 2.3 and 2.16, and also the fact that Oκμ — 0, Oκμ — 0, we
find that

KΊuS* Kaτ(LE,gLE)

LX

= - ίuT J 2ιπ
LX

LX

11 / μκaus* κcτ(LE, 9

LE) = -L j μ ̂  *ΊuS* ̂ Cτ(LE, f*).

LX LX
(3.13)

From (3.13), we see that the form ηu^τ is closed. D
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c) A Contour Integral

We now fix constants ε, A, to, T0 such that 0 < ε < l < ^ 4 < +00, 0 < ί0 < 1 <
TO < +00.

Let Γ = Γε?^?ίo?To be the oriented contour in R+2

Fig.l

Γ2

-+-

As shown in Fig. 1, Γ is made of four oriented pieces:

ε<u<A, Γ 4 : ί 0 <T<T 0 ; w = ε.

The orientation of Γi, Γ2, Γ3,
For 1 < k < 4,set

is indicated in Fig. 1.

(3.14)

A

Theorem 3.7. The following identity holds

(3.15)

fc=l

Proof. Equation (3.15) is a trivial consequence of Theorem 3.6. D

Remark 3.8. We now will make to ̂  0, A -> +00, T0 —> +00, ε —> 0 in this order
in identity (3.15). Typically each term 7j!(l < k < 4) will diverge at one or several
stages of this process. However because of the identity (3.15), the divergences will
cancel, often for non-trivial reasons. Once the divergences will have been subtracted
off, we will obtain an identity in Sect. 3f) which will lead us to the proof of Theorem
3.4.
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d) Three Intermediary Results

We now state three intermediary essential results whose proof is delayed to Sects.
3h)-3j).

As explained in Sect. 3a), we apply the results of Sect. 1 to the exact sequence
(3.4).

Theorem 3.8. There exists C > 0 such that for any u G]0,1], T 6 0, - ,
L ^J

μκaus* KcT(LE,gLE) - I μκ c^(Nx/LX,g
Nχ/LX) s* KcT(LE,gL1

LX X

< C(u(l+T))1/2 (3.16)

Theorem 3.9. For any T > 0, the following identity holds

lim / μκaus*κcτ/u(LE,gLE)

LX

= ί μ f κa(Nx/LX 9

Nχ/LX\-)W**cτ(N,9*).
J J (
y NX/LXIY

Theorem 3.10. There exists C > 0 such that for any u G]0, 1], and any T > 1,

17)
}

μκaus*κcτ/u(LE,gLE)
C

(3.18)
V'T

LX

Remark 3.11. Using Theorems 1.10 and 2.18, one can easily check that Theorems
3.8-3.10 are indeed compatible.

e) The Asymptotics of the 1%'s

1. The term /?. Clearly

A

1 J \ J μ ΊuS αT° ' 9 ί u '
ε (LX )

α) ίo -̂  O I\ remains constant and equal to I\.
β) A -^ +00. We see that

+00

(3.20)
T} τΊ ί ( ί K * K T P Ί dU

I\-%= / \ / μKΊuS*κaTo(LE,9

LE)(-.
J \ J \

ε (LX )

γ) TO -> +00
+ OO Λn.

The form J Krγu — is smooth on LX. By using Theorem 2.18, we find that as
TO —» +00, ε

+00

( Γ ^ rln,

(3.21)
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δ) ε — > 0. Since 8κμ = 0, Oκμ = 0, using Theorem 2.7, we see that as ε — > 0,

, <Λ/Ly)Log(ε)

Y

1

+00

1 - + / / / Λ Λ - . (3-22)I u { U I u

ε) Evaluation of I\.

Theorem 3.12. The following identity holds

LY Y

(3.23)

Proof. Equation (3.23) follows from Theorem 2.7, from Proposition 2.11 and from
(3.22). D

2. The term 1$. Clearly, 1$ is given by

TO

/o = - ί ί μ*aAs* KcT(LE,gLE) . (3.24)ί ί
] J
{LX

α) to —>• 0. We have the obvious

* KΛ / r u1 ^LE\ K J / T 771 ^LE\ /o o<\5 co(LE,g ) = - cmax(LE,g ). (3.25)

So, we find that as £Q ~> 0,

= - /
j
o
TO

- ί ! ί μK*As* KcT(LE,gLE)\ ^ . (3.26)
J I J I
i Ux J
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β) A —> +00. Obviously

i

ϊ\ - II = ~ ί I ί M** Kcτ(LE,gLE) - s* Kc0(LE,gLE))\ ^
J \ J I -*-
o (LX )

-f ί f μs^o^LE,^)}^. (3.27)

γ) TO -> +00. By Theorem 2.18, we know that as T -> +00,

(3.28)

LX

From (3.28), we find that as T0 -> +00,

i

= _ f
J
0 (LX

+00

(3.29)

δ) ε —> 0. /| remains constant and equal to /£.
ε) Evaluation of 1%.

Theorem 3.13. The following identity holds

/2

4 = - j μκeLX(LE, gLE) + Γ'd) j μKcf

max(LE, gLE). (3.30)

LX LX

Proof. Equation (3.30) follows from Proposition 2.21 and from (3.29). D

3. The term I®. We have the obvious

-/{/
ε (LX

'^H—. (3.31)
./ I ,/ ~ \ u

ε (LX )

a) to -> 0. Clearly

A

/o _ /j = _ /" ί /" μ^^^c^^LE,^)! ̂  . (3.32)

ε vZ/JC /

β) A -^ +00. As A —» +00, then

+00

γ) TO —> +00. /| remains constant and equal to Tf.
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δ) ε — > 0. Using Theorem 2.7 and the fact that 3κμ = 0, 8κμ = 0, we see that as

- j μ2πωx Kc^x(Nx/LX,g
N^/^)κcmax(LE,gLE) (l -

x

/3

4

X

1

LX K -1 N 1
Ju — 27RJ C ^^X/LXiQ ^/^^~)δX —

U
o (LX

\ ., ϊ du

r
+00

(3.34)

ε) Evaluation of 1^.

Theorem 3.14. The following identity holds

r4 _ /" . . K C _ . . A " Λ
ί ,,Kμ

^LX

- / μ(2πα;x κc^(Nx/LX) + Γ'(l) (^c^/ (NX/LX)) Kcmax(L^).
ί (3.35)

Frao/. Using Proposition 2.11 and (3.34), (3.35) follows. Π

4. The term Jj. Clearly

TO

/o = j ί y μ^αε5*
 xcτ(LE^L£;) I ̂  . (3.36)

α) ί0 —» 0. Obviously,

LX

1

= / / / μV^^OΓdi^^)-^^,^))} ̂j I j I -̂
o ILX )

+ f [ f μKaεs* KcT(LE,gLE)\ ^ . (3.37)
j T
1 iLX J

β) A -^ +00. /4 remains constant and equal to /|.
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γ) Γ0 — » +00. Using Theorem 2.18, we find that

i

ί
J

+00

(3.38)

δ) ε ->. 0. Set

i

= / ί / M^αεS*(^
•̂  I
0 \LX

1

= ί ί ί μ^α^^c
J I ^/
ε UX

(3.39)

+00

Then
7-3 TO j_ TO i TO /Q /IΠΛ

^4 = J} + J2 ' <^3 (3.4U)

1. The term Jf. Using Theorem 2.5, it is clear that as ε —> 0,

o \γ

s*(κcτ(LE,gLE) - κco(LE,gLE))\ ^ . (3.41)

J

2. Γ/z^ term J$. We make the crucial step of writing J2 in the form

2 J ) J ε T/ε

ε (LX

^ jrr
K~ (TT? ~LEcτ/ε(LE,9

LE)

X )

L E ) . (3.42)
I -*•

J

By Theorem 3.8, we know that for ε 6]0, 1], T G [ε, 1], then

μκaεs* κcτ/ε(LE,gLE) - j μκc-^(Nx/LX,9

Nx/^)s* κ cτ/ε(LE,gL

LX X

< C(ε + T)1/2 < C(2T)1/2 . (3.43)
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Using (3.43) and Theorems 2.18 and 3.9, we see that as ε —> 0,

μκaεs*κcτ/ε(LE,gLE)

* κcτ/ε(LE,9

LE)\ f

X

1

/ / / μ( I K*
J \ J \ J

o (Y \NxLX

/ μKc-m

Vχ/LX\y

+ J μKc-mUNx/LXlv,9

 Λ'^ )κc'max(N,g»)\ ^. (3.44)

y

Of course by Theorem 1.10, we know that as T —> 0,

NX/LX\y

^ g
Nχ/LxlY) ^c^aχ(τv, gti) + O(T), (3.45)

so that (3.44) makes sense.
By Theorem 2.18, we see that as ε — > 0,

i

y
+00

i

c;ax(7V,/) . (3.46)

We now use the notation of Sect. 1 with respect to the exact sequence (3.4). From
(3.42)-(3.46), we see that as ε -» 0,

Γ Γ sJr~ΓΊ

Log(ε) -»• J\ = I I μ(χτ - χ0) ~jτ

o y
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+00

J J (3.47)

3. The term J®. Using Theorems 3.9 and 3.10, we see that as ε —> 0,

+00

J3° _> J\ = J ί (μχτ) -I. . (3.48)

i y

4. The asymptotics of ϊ\. Using (3.40), (3.41), (3.47), (3.48), we see that as ε -> 0,

Y
i

Log(ε) - /4

4 =

o

+00

1 +00

+ y i μ(χτ - χ0) ̂  + y y (MXT) ̂  . (3.49)
o y i y

ε) Evaluation of I* .

Theorem 3.15. The following identity holds

= / μKc-^(Nx/LX,g
N*/^)κ~ex(LE,gL

*)

y
/•

LEμKc-l(Nx/LX,gx/^)Kcf

max(LE,gLE). (3.50)

x

Proof. Equation (3.50) follows from Propositions 1.13 and 2.21, and from (3.49). D
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f) Matching the Divergences

We now establish an identity, which will lead us directly to the proof of Theorem
3.4.

Theorem 3.16. The following identity holds

4

£)/ί=0. (3.51)
fc=l

Proof. Recall that ]Γ /£ = 0. The sum of the diverging terms at each of the four
fc=l

steps to — » 0, A — > +00, T0 — > +00, ε — > 0 is then tautologically zero. The identity
(3.51) follows. We will here verify that the diverging terms effectively add up to zero.
This will confirm that our previous calculations are correct. Also we will establish
certain identities which will be useful when proving Theorem 3.4.
α) to — > 0. By formulas (3.26) and (3.37), which concern the diverging terms I®, I%9

we get

LE)- ί μκaε

κcf

max(LE,gLE)\ Logft,) - (3.52)
J I

LX /

Since μκc'max(LE,gLE) is 8κ and OK closed, one concludes from Theorem 2.3 that
(3.52) is effectively zero.
β) A —> +00. There is no divergence.
γ) TO — > +00. There is no divergence.
δ) ε -> 0. By formulas (3.22), (3.34), (3.49), which concern the terms /f, J3

3, /|, we
must calculate the expression

, 9 ) Log(ε). (3.53)

Y

Now by (2.69), we know that over X

f κcmax(LE, gLE) = cma;ί(LE^gLE^})κcmaκ(LE'±,gLE^'±). (3.54)
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The section σ\x of LE?χ exactly vanishes on Y. Since the forms /*μ, ωx G Px

are closed, we deduce from Theorem 2.22, from (2.77) and (3.54),

, gLE)

Y

γ K~ κ

x

= / μ2πωγ κ c^(Nx/LX)
κ cmax(7V). (3.55)

Y

By (3.4), it is clear we have the identity

= KC^(NY/LY} in Py/Py'°. (3.56)

So from (3.55), (3.56), we see that

μ2πωx Kc^l

ax(Nx/LX,g
Nχ/LX)κcmax(LE,gLE)

x

= j μ2πωγ Kc^(NY/LY). (3.57)

Y

The same arguments as in (3.55) show that

X (NX/LX)
 Kcmax(LE) = j μ(Kc^J (NX/LX)

 κcmax(N). (3.58)

x Y

Clearly,

fK-\

(3.59)

Equivalently,

(3.60)

From (3.58), (3.60), we deduce that

(NY/LY) - j M(*c-ax)' (NX/LX)
 κcmax(LE)

x

μKc~^(Nx/LX)
κ^(N) = Q.

(3.61)

Using (3.57), (3.61), we see that (3.53) is indeed equal to zero. The proof of
Theorem 3.16 is completed. D
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g) Proof of Theorem 3.4

Using Theorems 3.12-3.16, we get

f KQ K L E ( K
~ I A4 Sω

LX CmaxCk ̂ ) 9 ) ~~ / M

LX

/* ~
/ A^

> NX/LXIY

e—(Lti,g-

LX LX

LY X

+ -Γ'(l)
J

.Y

X

Y

- J μ2πωx κc^(Nx/LX)
 κcmax(LE) - 0 . (3.62)

x

Since f*μ E Px and since df*μ = 0, 5/*μ = 0, we deduce from Theorem 1.19
that

K D(N) . (3.63)

Also by (2.29) and (3.56), we obtain

j μκc'm^(LE) = j μκ^m(LE)κc-lκ(Nx/LX),

(3'64)
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From (3.57), (3.61)-(3.64), we get

μκSωLχKcm^(LE,gLE)- μκ~eLX(LE,gLE)

LX LX

μκSωLY+J

LY X

+ J μKc~^(NY/LY) (KD(N) + r (1) K

C™x(

(^} = °- (3-65)

Y maX

Using Proposition 1.21 and (3.65), we get (3.10). Also since the class κR is additive,
we see that

J μκc^(Nγ/LY)
κR(N) = j μKc^(Nγ/LY)

κR(Nx/LX)

Y Y

- I μκc^x(Nγ/LY)
κR(Nγ/LY). (3.66)

Y

By using (2.69), (2.74), (2.75), (3.56), (3.66), we thus find that

j μKc-{

ax(Nγ/LY)
κR(N) = j μKc^(Nx/LX)

κR(Nx/LX)
κcm^(LE)

R(NY/LY}. (3.67)

Y
r

\K

Y

Using (3.10), (3.67), we obtain (3.11). D

h) Proof of Theorem 3.8

By Theorem 2.5, it is clear that we may restrict ourselves to the case where T £

If the support K of μ is included in LX\LY, then the forms μs* κCγ(LE,gLE)
and their derivatives are uniformly bounded for T G [l,+oo[, and so, using again
Theorem 2.5, (3.16) holds.

On the other hand as T -> +00, \s* KcT(LE,gLE)\ grows at most like TάimLX.
If the support of μ is included in LX\X, there exists c > 0, C > 0 such that for

u>l,T<-9u

\μκαus* KcT(LE,gLE)\ < cexp ( - ̂  (l + ̂ (3.68)

and so (3.16) still holds.
So to prove Theorem 3.8, we may and we will assume that the support of μ is

included in an arbitrarily small open neighborhood of Y in LX.
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Take ?/o e Y. Set

e = dim Nγ/x^ , e' = dim NY/LY^ , e = dim 7Vy o. (3.69)

By (3.2), we find that
e + e' + e - dinKTVy/^)^ . (3.70)

For ry > 0, let .Be(0, r/), 5e/(0, r;), #e(0, ??) be the open balls of center 0 and radius

η in Ce = R2e, Ce/ = R2e/, Cg = R2έ. Let ̂  be an open neighborhood of y0 in Y. If
9^ and η > 0 are small enough, we can identify 9^ x £e(0, r/) x £e/(0, η) x £?e(0, ̂ )
with an open neighborhood Uη of yo in

Fig. 2

Let σn,τ be the map from W x R2e x R2e/ x R2g into itself

y,

Assume that the support of μ is included in Uη. Clearly

μKaus*κcτ(LE,gLB)

* κ * * κ

LX

(σ*tTμ)(σ*tT

κau)σ*tT(s*κcτ(LE,gLB)),

μ s* κcτ(LE,

κ

(3.71)

(3.72)

cτ(LE,

\Z\<ηVT
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Set

Pr(j/,Z,Z',Z)= (y, -|=,
\ vT

(3.73)

Recall that NX/LX is identified to the orthogonal bundle to TX in TLX\χ. As in

(1.2), the connection VNχ/LX induces a splitting TNX/LX = NX/LX ®THNX/LX.
I f U e TRNX/LX, let Uv be the component of U in T^NX/LX with respect to this

splitting. As in (1.3), we identify JN*/L* with the 2-form [7, U' e TRNX/LX ->

We consider ((y, Z),Z' + Z) as lying in the total space of NX/LX^. There-

fore J^*/^ is now a 2-form in the coordinates (y, Z, Z7, Z). Similarly R^X^X is
a 2-form in the variables (?/, Z) which lifts naturally to a 2-form in the variables
(y,Z,Z',Z).

By proceeding as in [B2, proof of Theorem 3.2] and in [B4, proof of Theorem
1.3], we find that there exist c> 0, C > 0 such that if 0 < u < 1, T > 1, \Z\ <

\Z'\ < -5=, |Z| < 4=,

' + Z)\2

jNX/LX R

NX/LX(

(3.74)
7

J(y,Z)

Clearly

Therefore

and so

ju,τ(y, Z, Z', Z) = (y, Z, V^Z',

&u,T = h TJu,T

Set
/ Z Z \

k^Λi/ 77' 7\ — I n, 7' 1

(3.75)

(3.76)

(3.77)

(3.78)

Now by proceeding as in [BGS5, proof of Theorem 3.12] and using the fact that
• LE\Y is an isometry, it is clear that as T —> +00,

* K

Kcτ(LE,gLE)) - σ*Γ(s* KcT(LE,gLB))

= (3*,τ ~ Jo, , gLB)) .

r) Γ /κ PίLE \
h*(s* κcτ(LE,gLE))(y, Z, Z', Z) -> ̂  - det -?— (y, Z')-b)

db I \ 2τn )

exp { - (¥±2L + (fR^(y, Z') + 2πbJLEϊ (3.79)
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Also, we find easily that for any differential operator P with constant coefficients
in the variables y, Z, Z> ', Z, there exist CP > 0, CP > 0 such that for any T > 1,
\Z\ < ηVT, \Zf < ̂  \Z\ < ηVT, then

IP/I* S*
 κcτ(LE, gLE) (y, Z, Z', Z)| < CP exp(-CP(|Z|2 + |Z|2)) . (3.80)

Using (3.80), we see that there exist d > 0, Cr > 0 such that if 0 < u < 1,

1 < T < -, \Z\ < ηVT, \Z'\ < -^=, \Z\ < -4=, then

|(σ* τβ* κcτ(LE, gLE) - σ*τs* κcτ(LE, gLE)) (y, Z, Z> ', Z)|

pί-C'ΊZl2). (3.81)

From (3.74), (3.81), we find that there exist c" > 0, C" > 0 such that if 0 < u < 1,

1 < T < -, \Z\ < ηVT, \Z'\ < -^=. \Z\ < 4=, then
u u u

, X, Z', Z)

' + Z), (Z' + Z))

Kcτ(LE, gLE» (y, Z, Z', Z)\

"(|Z|2 + |Z'|2 + |Z|2)) . (3.82)

As in (1.44), we get

, U) - \ \
NX/LX

(3.83)

Using (3.82), (3.83) we easily obtain the inequality (3.16) in the special case consid-
ered above.

By partition of unity, we get (3.16) in full generality. D

/) Proof of Theorem 3.9

It is clear that since on LX\Y, either K or σ are nonzero, if % is an arbitrary open
neighborhood of Y in LX, as u —» 0,

/ μ κaus* κcτ/u(LE, gLE) -> 0. (3.84)

We now take yv £ Y and we use the notation in Sect. 3h). In particular, we
choose 9^* and η > 0 as in the proof of Theorem 3.8. Let σu be the map from
9^ x E2e x R2e/ x R2g into itself

σu(y, Z, Z7, Z) -> (y, v^Z, y^^, \/^) - (3.85)



Intersection Formula in Equivariant Complex Geometry 45

Then

μκaus*κcτ/u(LE,gLE)

*μ) (σ* κ αj σ*(s* Kcτ/u(LE, gLE)) . (3.86)

Let ρ, r be the maps

ρ:(y, Z, Zf , 2) -> (j/, Z;, Z) €
(3.87)

As explained after Eq. (3.73), κθL(Nx/LX^γ,g
 X/LX\Y) can be considered as a

form in the variables (2/,Z',Z). By (3.74) and by [BGS4, proof of Theorem 3.12]
(see also Eq. (3.79)), we know that

lim σ*u

καu = ρ* κα(Nx,LX g"*"**) ,
„ (3.88)

lim σu*S*
 κcτ/u = r* ^cr(JVLy/LX|y , /^/«|ir ) .

By (3.86), (3.88) and by an easy application of the dominated convergence theorem,
we find that

lim j μ καus* Kcτ/u(LE, gLB) = j μ ί j ρ* κ α(Nx/LX}γ , gNχ'LX\y )

LX

\Y\\γ) . (3.89)

Recall that forms ατ(Nγ/x,g
Nγ/x) and cτ(Nγ/x,g

Nγ/x) were defined in

[Bl, Definition 3.1]. These forms are exactly the forms κατ(Nγ/x,g
Nγ/x) and

κcτ(Nγ/x,g
Nγ/x), with JNγ/x = 0.

Let p,p' be the projection maps p:NLY/LX]γ -> Nγ/x,p' :NLY/LX^γ -> TV. By

(2.38), (2.74), (2.75), we get

Kcτ(NLY/LX]γ ,gNLγtLX\γ ) = p*cτ(Nγ/x,g
Nv/x)p'* κατ(N,g*)

* κcτ(N, g*) . (3.90)

By [MQ, Theorem 4.10], [BGS5, Eq. (3.58)], or by an easy direct calculation, we
obtain

J
(3.91)

NY/X NY/X
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Recall that w is the projection NX/LX —» N. From (3.89)-(3.91), we deduce

that

lim / μκaus*κcτ/u(LE,gLE)
u—>0 /

LX

= I μ \ I Ka(Nx/Lχlγ, gNχ/LX\y) w*
 κcτ(N, g*)

J J

LX

(392)

I- 1

^ U VX/LX|y

Using (3.92) and partition of unity, Theorem 3.9 holds in full generality. D

j) Proof of Theorem 3.10

We use the same notation as in the proofs of Theorems 3.8 and 3.9. If the support to
μ is included in LX\LY, there exist c > 0, C > 0 such that

( CT\
. (3.93)

U /

The estimate (3.18) is then trivial.
If the support of μ is included in LX\X, for 0 < u < 1, the forms μκau and

their derivatives are uniformly bounded. Equation (3.18) then follows from (2.56). So
as in the proof of Theorem 3.8, we may and we will assume that the support of μ is
included in an arbitrary small open neighborhood of Y in LX.

We assume that y$, 9 ,̂ η > 0, Uη, are chosen as in the proof of Theorem 3.8, and
also that the support of μ is included in Uη. Set

Then

ku<τ(y, Z, Z', Z) = (y, J^Z, JΪZ', J^ Z J . (3.94)

μκaus*κcτ/u(LE,gLE)

LX
r

(k^τμ) (k*:T

κau) (fc*?τs* κcτ/u(LE, gLE)). (3.95)

Set
τu(y, Z, Z1, Z} = (y, Z, ^Z', Z}. (3.96)

By proceeding as in [B2, proof of Theorem 3.2] and in [BGS5, proof of Theorem

IT
3.12], we find that there exist c > 0, C > 0, such that if \Z\, \Z\ < \ —η, \Z'\ <

V u

—= 77, then

<r** Kcτ/u(LE, gLE) - r* κcτ

f |Z| 2)). (3.97)
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Set

&(y, Z, Z', Z) - (y, Z,

mMϊΓ(2/, Z, Z', Z) = (y, M
\ V J

Then

(3.99)

Therefore

λ£τ(μ*αJ = m*,τ4*(μXαJ. (3.100)

By proceeding as in [B2, proof of Theorem 3.2] and in [B4, proof of Theorem
1.3], we know that if P is any differential operator with constant coefficients, there
exist c> 0, C > 0, such that if u E]0, 1], |Z| < 77, \Z' < η/Vΰ, \Z\ < η/^/ΰ, then

\P^(μκau)\ < cexp(-C(|Z'|2 + |^|2)). (3.101)

Forms on ̂  x R2e x R2e x R2e can be decomposed according to their partial
degree in the Grassmann variables associated to the variables (Z, Z). If ω is a form,
let cj° be the piece of ω of degree 0 in these Grassmann variables, and let ω>0 be the
piece of ω which has nonzero degree in these variables, so that

ω = ω° + ω>0. (3.102)

In particular

<*(μ*αj = «*(μκαtt))0 + «*(μ*αj)>0 . (3.103)

From (3.100), (3.101), we deduce that if |Z| < ^Tjΰη, \Z'\ < η/^/ΰ, \Z\ <

, then

u)>° (y, Z, Z', Z)\ < -j= exp ( - c(\Z' (3.104)

Also by (3.100), (3.101), under the same conditions on Z, Z', Z, we get

|(fc* τ(μ κau))° (y, Z, Z', Z) - (k*>τ(μ κau))° (y, 0, Z', 0)|

fc\Z\ + 4ϋ \Z\] exp ( - c(\Z'f + ζΓ) Y (3.105)

Finally by the obvious analogue of (3.91), or by a trivial calculation, we see that

KCτ/u(NLγ/LX, 9NLY/LX) = 0. (3.106)

NLY/LX

By combining (3.97), (3.104), (3.106), we get (3.18). Using partition of unity, we
obtain (3.18) in full generality. D
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k) Some Remarks on the Behaviour of the Term I\ as ε —» 0

By (2.60), (3.38), it is clear that

II = j μκaε

κ~eLX(LE,gLE)-Γ'(l) j μκaε

κc'max(LE,gLE). (3.107)

LX .LX

By Theorems 2.3 and 2.5, we know that

j μκaε

κdmιaί(LE,gLE) = j μκc^(Nx/LX)
κ^Άlί(LE). (3.108)

LX X

Set

I'l = j μκaε

κeLX(LE,gLE). (3.109)

LX

Using (3.107)-(3.109), it is clear that, to calculate the asymptotics of /| as ε —> 0,
we may instead replace /| by /f.

By (2.63), we find that

KftLE \ / / | 0 |2

. . . * -b)(^(Ύ
LX

Y^

Observe that by (2.69),

6-0

LE\X
det ( - - -- 6

2^π
r r?0 r ι?0,_L

\x

= det[ - - -- 6) det - - -- 6 ) . (3.111)
2^π

Using (3.111) and the Mathai-Quillen formalism [MQ], we see that expressions over
X like

det ( - R - b] (-(RLE\* + 2πbJLE\xΓl)k (0 < k < dim E)
V 2iπ J

make sense.
In the sequel, we assume that X is connected, so that dim LE°χ is a well-defined

constant.
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Theorem 3.17. The following identities hold

LX

6=0

K -pLE

/

/
/.'«iew««,/"/«) - « - - - - » tog

.-1

- Σ

/

β Γ / K τ>LE \

μaε — — det ( 6 ]
db [ \ 2ιπ J

lim
)
LX

όimLE-l k

ΓΪΰ s(-(R +-KLE

Λ
+1

xdimAΓ-1 9^ \1 Ί

Σ ii|i2*(-(Jr^ + 2irM*)"1)*)
\ fc=1

 Λl^l / J 6 = θ J

/ | s | 2\

Proof. Observe that on X, the function Log I —^— J is integrable. Also for

1 < 3 <.dim£^ = dimNY/x, one verifies that —^-r is integrable over X. Over

X, σ is a section of LE9χ. Some easy analysis, which essentially involves dominated

convergence, then shows that the first identity in (3.112) holds.
If % is an open neighborhood of X in LX, it is clear that for any k, 1 < k <

E — 1, then

lim / μ κof —
ε->o J db [
lim / μ ^ α ε ^ | - d e t ( -
ε->0

=0. (3.113)
b=0

Recall that over X, σ is a section of LE9χ. It follows that for k > dimLER^,

over X
/ K OLE \

detί -— 6)5*(-(x

JR
L£; + 2π6JL^r1)fc-0. (3.114)

V 2ιπ J
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Let %' be an open set in LX which is at a positive distance from Y. From (3.114),
we easily deduce that

l m / μ * sf-^f-T^Mf):->o J db[ V 2ϊ7Γ / V V 2 /
2&f

άimLE-\ ~k x -,

/ ^ j U l Q |2fc vV v /
fc=ι ^l5' / J^o

.
- 6 Log i—

- Σ

Equivalently, using Remark 2.23, we find that

Umίμκaε

κeLX(LE,gLE)

= j μKc^(Nx/LX,g
N^^)κex(LE,gLE). (3.1

Now the restriction of the current κex(LE, gLE) to X\Y is generally not locally

integrable near Y because of the singular term ^ = —^—^ which
2dimL£^ I |2dιmjVy/_^

appears in the analogue of (2.63). It follows in particular from (3.115) that for k >

16)

lim f μ κ a 9 \ _
e->o J db [ 2iπ J k\s\2k

s*((-(KRLE + 2πbϊLETl)k) I = 0. (3.117)
6=0

For k > dimLE?χ, we now will study

„,„/„* «LW_^_Λ
ε^O J db [ V 2ϊ7Γ / k\s\2k

LX

s*((-(KRLE + 2πbJLEΓl)k) . (3.118)
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Let %6 be an arbitrary small open neighborhood of Y in LX. In view of (3.117),
it is equivalent to study

K -pLE \ ofc
•" Ί\ Δ

2ίπ J φ 2k

s*((-(KRLE + 2πbJLEΓl)k)\ - (3.119)
J&=0

We now take y$ G Y, η > 0 as in the proof of Theorem 3.8, and we use the same
notation. Set

σε(y, Z, Z', Z) - (j/, v£Z, ̂ Z', JίZ). (3.120)

Clearly

/
&=0

7/c
Z „*// fKr>LE

>\2kls*((-(KRLE + 2πbJLEΓl)k) - (3.121)

Let p, g be the obvious linear maps NY/LX -> Nx/LX}γ, NY/LX -> NLY/LX]γ =

LE\Y. Using (3.74) and an easy argument on the asymptotic behaviour of σ* fc ,
we find that as ε — > 0, 's'

(κaε JL Γ _ d e Ύ _ KJjj^__λ _*_S*((_(KR

q*((-(KRLE + 2π6JL£;)-1)/c) . (3.122)
J 6=0

Set # = L^Py. Equivalently E = Nγ/x. If r, f are the projections L#|y —> ,̂

^ L = TV, then

/=0

""r1^). (3.123)
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Let dvE be the oriented volume form on E. Then one has the identities

KRLE \ ί RE

det[--£—-6]=det ί -£--6)det[-

(3.124)
7

- - - 6 ] (- (RE + 2πW£)-1)dim£; = - (dim E)! d^ .

,,. IPdimJE
E

Moreover a trivial calculation shows that if k > dim E, then for Z £ 7V\{0},

dϋtf (Z) Γ(jfc - dim E) ττdim β

(3.125)

From (3.121)-(3.125) and from some non-entirely trivial algebra, we deduce that
if fc > dim E

/

d Γ / κ RLE \
μ κaε — — det I 6 )
P ε <% L V 2iπ y 2fc

u^vy i \ ^^uι\ i I K I O I

η

1
*^ (K-oLE , O^AΪ££Λ-I\A;\

6=0

2iπ / fc|s

s*((-(κRL»+2πbJ^Γl)k)

= /"

^X/L^y

' ' -._ «, „
/ \27Γ/ Γ(A;)

^) (-(*** + ZπU*)-1^*-*-^)] ̂  - (3.126)

Now,

-, \ di

J_ (dirndl
2π / Γ(k) k k — di

Using (3.117), (3.126), (3.127) and partition of unity, we see that

.
hm

/

r) Γ / ^ 7?^^ \
μ καε — - det ( 6 )

db [ \ 2^π / k\s\2k

LX

6-0

(3.128)

From (3.128), we obtain the second identity in (3.112). D
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Remark 3.18. In view of (3.110), (3.112), we see that to calculate the asymptotics as
ε -> 0 of If = / μκaε

κeLX(LE,gLE), the only quantity which is left to study
is LX

ί κa °
Γ / KRLE \
\ A^ I Λ Λ

J aεdb[ -V ~2i*--"J
LX

dimLE®
2 ' „*// sKr>LE ,

0 o vv v ^ i
2&mLElχ

2bπJLEΓl^mLE"x) . (3.129)

It follows from (3.49), (3.107)-(3.109), (3.112), that, as ε -> 0, (3.129) diverges
like Log(ε). In view of Theorem 3.15, once the logarithmic divergence is sub-
tracted off, the remainder splits into two pieces, one which makes a missing lo-
cally non-integrable piece of the current ex(LE,gLE) appear in the expression

/ μκc~*x(7Vχ/Lχ, gNχ/LX)κex(LE,gLE), the other piece which in particular

makes the missing term appear in the expression for f μ$>(Nγ/LY, NX/LX , g X'LX\Y )
Y

given in (1.25) with respect to the sum of the right-hand sides of (3.112).
The main purpose of Theorems 3.8-3.10 has been to deal indirectly with these

difficulties when studying the asymptotics of J| as ε —>• 0.
The term (3.129) could be directly studied as ε —> 0 by the techniques of [BGS4,

Sect. 3b)]. The description of the current ex(LE,gLE) as a principal part of its re-
striction to X/Y should then be used.

Another manifestation of the difficulty in studying (3.129) directly is made obvious
by the fact that the integral

KRLE

s*((-(KRLE + 2πbJLEΓTlίί^x)\ - (3.130)
J&=o

diverges.
As we shall see in [B3], the main point of the proof of Theorem 3.4 given in Sects.

3b)-3j) is that it has a formal extremely interesting analogue in infinite dimensions.

I) Proof of Theorem 32

We now briefly sketch the principle of the proof of the stronger Theorem 3.2. Let
ηu^τ be the form on Ή* x #* x LX,

dm rlΎ1

Lί/Ct/ τs~ jn Tf -r Γ / 7 " LL-L zx" *k "if _ Γ ϊ?

r?u,τ = — KΊuS Kaτ(LE, gLE) + — κaus* κcτ(LE, gLE).
u T

dUjT denotes the exterior differentiation operator with respect to the variables u, T.

Theorem 3.19. The following identity holds

dudT (* ((dκ K \ *κ TF
du,τηu,τ = — =r { oκ ( ( — Ίu J s cτ(LE, g )

+ dκ (KΊu |̂  5* κcτ(LE,gLE)\ } . (3.131)
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Proof. By proceeding as in the proof of Theorem 3.6, we immediately obtain
(3.131). D

Let Γ be the oriented contour considered in Sect. 3c), and let A be its interior.

Theorem 3.20. The following identity holds

r Ei dudTΓ _ . f (dκ K \ *
J ηu'T K J V2"1" 7 / ^v™»* / uT
Γ A

+ dκ [ κ

Ίu^(s*κcτ(LE,g^))^^. (3.132)
J 2ίπ ~™

In particular

(3.133)I
The idea will be then to take the limit in (3.132) as ί0 -> 0, A -» +00, T0 -> +00,

ε —> 0. The intermediary steps are essentially the same as in the proof of Theorem 3.4,
except that now one has to study carefully the right-hand side of (3.132). A similar
difficulty in fact already appeared in the proof of [Bl, Theorem 2.8].

Details of the proof of Theorem 3.2 are left to the reader.

Acknowledgement. The author is very indebted to a referee for his comments and suggestions.
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