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Abstract. The purpose of this paper is to establish an intersection formula in equivari-

ant complex geometry, in the presence of an excess normal bundle. The contribution

of the excess normal bundle to the formula appears through an additive genus κ R. In

a forthcoming paper, an infinite dimensional analogue of this formula will be shown

to be the result of Bismut-Lebeau on the behaviour of Quillen metrics under complex

immersions.
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Introduction

This paper is the second of a series of three papers, which include [Bl] and [B3],
which are devoted to the role of excess normal bundles in complex intersection theory.

In [Bl], we established a formula relating certain Bott-Chern currents associated
to non-transversal complex submanifolds of a complex manifold. With respect to a
similar formula which was established in [BGS5], the formula in [Bl] contains a
correcting term, which explicitly reflects the presence of an excess normal bundle
N. In [BGS5], one could use the microlocal estimates of [B2] to take full advantage
of the transversality of the considered manifolds. In [Bl], one uses instead a method
formally inspired by the proof by Bismut-Lebeau [BL1,2] of a formula describing the
behaviour of Quillen metrics on the determinant of the cohomology under complex
embeddings.

In this paper, we solve a similar problem in complex equivariant intersection
theory. In fact let LX be a compact complex Kahler manifold with Kahler form
ωLX, let K be a holomorphic Killing vector field on LX, let X be the zero set of K.
Then a class of formulas, whose prototype is the Bott residue formula [Bo], relates
integrals of certain forms over LX to integrals over X. These formulas have been
made transparent in the context of equivariant cohomology by Berline-Vergne [BeV].

In [B5], inspired by our proof of such localization formulas [B4], and also by
a loop space formulation of the construction of Quillen metrics, we constructed a
^-invariant current κSωLx on LX, which solves the equation of currents

CΊ 1 K — 1 / Λ 7" -/V VI T V \ C SΓ\ 1 \
i j Γ Y" :— I — f l / V v / r v Π I •L' /v I f ) v ( I / I )uωL''X A ^maxv1 * X LX •> y )UX V^ 1/2ίπ

In (0.1), dκ9κ is a ^-equivariant version of the operator dd, and

gNχ/LX) is the equivariant maximal Chern class of the normal bundle Nχ/Lχ to
X in LX in equivariant Chern-Weil theory. The construction of the current κSωLx
refines the localization formulas of [Bo] and [BeV].

Let now (LE,gLE) be a complex Hermitian equivariant vector bundle on LX,
let σ be an equivariant holomorphic section of LE, which vanishes on a K-invariant
complex submanifold LY of LX. By imitating a construction of Bismut-Gillet-Soule
[BGS5], we exhibit an explicit Euler-Green ^-invariant current KeLX(LE,gLE) on
LX such that

e (LE) g ) = $LY ~ Cma.x( LE, g ). (0.2)
2ίπ

In (0.2), κcmax(LE, gLE) is the equivariant maximal Chern class of (LE, gLE) in
equivariant Chern-Weil theory.

In general X and LY have a non-empty intersection Y. Let N the corresponding
equivariant excess normal bundle. Roughly speaking, we now want to give a formula
for the height pairing of the ^-invariant cycles X and LY. Still the fact that X and
LY have a non-empty intersection and that the intersection is non-transversal makes
such a formula highly non-trivial. Our main result, which is contained in Theorems 3.2



Intersection Formula in Equivariant Complex Geometry 3

and 3.4, is a refinement of the previous described localization formulas in equivariant
cohomology. It expresses a combination of integrals of currents over LX and LY
in terms of integrals of other currents evaluated over X and Y. The presence of an
excess normal bundle TV is reflected in the appearance of a mysterious genus KR(N)
in the final formula.

The formulas considered in Theorems 3.2 and 3.4 are of interest from several
points of view. They could be the prototype of formulas in a still non-developed
equivariant Arakelov intersection theory.

More surprising to us is the fact that as we will see in our next paper [B3], our main
result has a well-defined formal extension in infinite dimensions, which, if properly
interpreted, coincides with the main result of Bismut-Lebeau [BL1,2] which concerns
the behaviour of Quillen metrics under complex embeddings. In [B3], i:Y —» X is
an embedding of complex manifolds, and LX, LY are the loop spaces of X, Y. The
analogy between the present paper and [BL2] is valid not only for the final result,
but also for the intermediary steps. In fact, Sect. 3 of this paper has been written by
strictly imitating the general organization of [BL2], so that a reader with a limited
knowledge of both subjects can immediately perceive the analogy.

In particular, as we shall see in [B3], the infinite dimensional analogue of the
mysterious genus KR is exactly the genus R introduced by Gillet and Soule [GS1] in
their conjectural formula of Riemann-Roch-Grothendieck in Arakelov theory. Using
the main result of Bismut-Lebeau [BL1,2], Gillet and Soule [GS2,3] have in fact
proved the conjectured Riemann-Roch-Grothendieck formula.

This paper is organized as follows. In Sect. 1, we construct a form ~B(E,F,gF)
associated to an equivariant exact sequence of holomorphic Hermitian vector bundles

0 ̂  E^F^G^O, (0.3)
i 3

and we calculate this form modulo <9 and d coboundaries. This way, we produce a
genus κD which is closely related to the genus KR of our final formula. In fact,
Sect. 1 is the finite dimensional analogue of our paper [B6], where a genus J9, closely
related to the Gillet-Soule genus R [GS1] was exhibited. This section relies on finite
dimensional results of [B6, Sect. 9], where the analogy with previous infinite dimen-
sional results of [B6] had been partly worked out. The organization of the proofs
of the results of Sect. 1 is such as to allow the reader to grasp at least the formal
resemblance with [B6].

In Sect. 2, we recall the construction in [B5] of the current κSωLχ. Also by im-

itating [BGS5], we construct the equivariant Euler-Green current KeLX(LE,gLE).
Finally, in Sect. 3, we establish our intersection formula. As explained before, the

general organization of this section is closely related to the organization of the paper
of Bismut-Lebeau [BL2]. In particular a rectangular contour Γ in R2

+, which played
a crucial role in [BL2], reappears here, as it also did in the preceding paper of the
series [Bl]. The role of the contour Γ in [Bl] and in the present paper is to overcome
the presence of the excess normal bundle N.

I. Equivariant Short Exact Sequences and Bott-Chern Forms

The purpose of this section is to construct and to calculate certain Bott-Chern forms
Έt>(E, F, gF) which are naturally associated to a short exact sequence
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of holomorphic Hermitian vector bundles. Part of the technical machinery was already
developed in [B6, Sect. 9], to which the reader is referred when necessary.

This section is organized as follows. In a), we introduce our main objects, and we
describe the forms χτ, T > 0 already introduced in [B6, Sect. 9]. In b), we recall the
results of [B6] on the asymptotics of χτ as T —> 0 or T —> +00. In c), we construct
the form B(F, F, gF) as the derivative at 0 of the Mellin transform of χτ In d), we
calculate B(F, F,gF) in terms of a Bott-Chern class in the sense of [BGS1], and of
an additive genus KD evaluated on G. Finally in e), we introduce a closely related
genus κ R.

This section should be considered as the continuation of [B6, Sect. 9]. Our formula
for B(F, F, gF) is in fact a finite dimensional analogue of the main result of [B6].

a) Equivariant Exact Sequences and Differential Forms

Let B a connected complex manifold.

Definition 1.1. Let PB be the vector space of smooth forms which are sums of forms
over B of type (p,p). Let Pβ'° be the set of ω G PB such that there exist smooth
forms α, β for which ω = da + dβ.

Let
O ^ F ^ F - > G - + 0 (1.1)

i 3

be a holomorphic acyclic complex of vector bundles over B. E will be considered as
a holomorphic subbundle of F, and G is identified with F/E.

Let gF be a Hermitian metric on F. gF induces a Hermitian metric gE on E.
By identifying G to the orthogonal bundle to E in F, gF also induces a Hermitian
metric gG on G. Let V^, VF, and VG be the corresponding holomorphic Hermitian
connections on E, F, and G, and let RE, RF, and RG be their curvatures.

Let JF be a holomorphic skew-adjoint section of End F, which preserves E. Let
JE be the restriction of JF to E and let J° be the natural action of JF on G.
Then JE and JG are also holomorphic skew-adjoint sections of End E and End G.
Moreover JE, JF, and JG are parallel with respect to the connections V£, VF, and
VG.

The connection VF defines a natural splitting of TF into

F®THF, (1.2)

where T^F is the horizontal subbundle of TF. We define TH E and T^G in a
similar way.

If z G F, we identify z with Z = z + z e FR. In particular \Z\2 = 2\z\2. Also
JFZ G FR. Using (1.2), we consider JF Z = JFz + JFz as a vertical holomorphic
vector field on F. If TB is equipped with a Hermitian metric, we can lift the metric
of TB to THF. We equip TF = F Θ THF with the orthogonal sum of the metrics
on F and THF. Then JF Z is also a Killing vector field on F. Similarly, if Z e E
or Z £ G, JEZ and JGZ will be considered as holomorphic Killing vector fields on
E and G.

F is a complex submanifold of F. The vector field JFZ restricts to the vector
field JEY on E. Also, the projection map j : F — > G maps the vector field JFZ into
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If U έ TRF, let Uv G FR be the projection of U on FR with respect to the
splitting (1.2) of TRF. Let (JFZ)' be the 1-form on F, U G TRF -> (JFZ, Uv).

Also, we identify JF with the 2-form

Z7, Z7' G ΓRF -> (Uv, JFU'V) . (1.3)

Let ijFZ denote the interior multiplication by JFZ acting on Λ(T^F) and let
LJFZ be the Lie derivative operator associated to the vector field JF Z. Then the
operators d, ijFZ and LJFZ act on the set of smooths sections of Λ(T^F) over F.
Moreover

(1.4)

Let π be any of the projections E1, F, G — > J5. If α; is a form on 5, we identify
ω with the form ττ*u; on E, F, or G.

The following result is proved in [B6, Proposition 9.1].

Proposition 1.2. The following identities hold:

-\(d + ijFz) (JFZ) = - Ώ^ + 1 <Λ^Z, Z> + JF , (L5)

Definition 1.3. Let κa(F, gF) be the smooth form on F

(1.6)

The form κa(F, gF) was introduced in a different context in [B4, Proof of Theorem
1.3].

Theorem 1.4. The form Ka(F,gF) lies in PF. Also

F) = 0. (1.7)

Proof. This result has been proved in [B6, Theorem 9.3]. It follows directly from
Proposition 1.2. D

Observe that since JF is a holomorphic skew-adjoint section of End(F), then

Fz) = 0, (d + ίjF,) = 0. (1.8)

Using (1.4) and (1.8), we find that

LjFz = [d + ijFz9d + i j F S ] . (1.9)

Of course, similar identities hold for LJEZ and LJGZ.

Definition 1.5. Set

"RE = RE + JE , KRF = RF + JF , KRG = RG + JG (L10)

Let JG be the complex structure of GR.

We now use the formalism of Mathai-Quillen [MQ], which is briefly described in
[Bl, Sect.3a)].
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Definition 1.6. For T > 0, let KaT(G,gG), KcT(G,gG) be the forms on G

κaτ(G, gG) = det ( ) exp | - !
V 2ιπ J {

<G) = ί\fet( ~^--b] (LID

We recall a result of [B6, Theorem 9.5].

Theorem 1.7. The forms KaT(G,gG), KcT(G,gG) lie in PG. For any T > 0, the
following identities hold:

κcr „ (1.12)
-jLκaτ(G,gG)=±-φ
ul 2^π j.

Since JF is a holomoφhic skew-adjoint parallel section of End F, one verifies
easily that F splits holomoφhically and orthogonally into

λeΛ

where yl is a finite set of locally constant distinct purely imaginary numbers, and the
Fλ's are nonzero holomoφhic vector bundles. Moreover for any λ 6 Λ, JF acts on
Fχ by multiplication by λ.

The acyclic complex (1.1) splits into a direct sum of holomoφhic acyclic com-
plexes

0 -» Eχ -> Fχ -> Gχ -> 0 . (1.13)
* j

Again J^ and JG act on E"Λ and Gχ by multiplication by λ.
We now make the basic assumption that 0 φ A.
Therefore, for any T > 0, the forms

κa(F, gF)j*(κaτ(G, 9°)) , K<*(F, 9

F)f(Kcτ(G, 9

G))

on F are Gaussian shaped, i.e., exhibit a Gaussian like decay as |F| — > +00.
In the sequel, J denotes integration along the fibre of π : F —> B.

F

Definition 1.8. For T > 0, let 0(T), χ(T) be the forms on B,

r

= J

(1-14)

F

The following result is proved in [B6, Theorem 9.7].
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Theorem 1.9. The forms θτ> XT He in PB. The forms OT are closed and their coho-
mology class does not depend on T. More precisely, for T > 0,

Oτ = ̂  — . (1-15)

Set
KRE

2iπ
KRE\

2iπ J '
(1.16)

01
16=0

We make the convention that if E = {0}, then

Kcnm(E,gE) = 1, Kc'max(E,gE) - 0, (Kd~^(E,gE) - 0. (1.17)

Note that since JE is parallel with respect to the connection VE, the forms in
(1.16) are closed. Of course they lie in PB. Similar forms can be defined which are
associated to (F,gF), (G,gG).

b) The Asymptotics of the Forms 9τ and XT

The following result is proved in [B6, Theorem 9.9].

Theorem 1.10. As T -> 0,

0τ = Kcm

l

ax(F, gF) xcmax(G, gG) + O(T),

As T —> +00,

θτ = Kc-l(E,gE) + θ(^\ Xτ = θ(^\. (1.19)

Set
χ o = l i m χ τ . (1.20)

T->0

The form χo is calculated in the right-hand side of (1.18).

c) The Form !(#, F, gF)

Definition 1.11. For s G C, 0 < Re(s) < 1, set

+ 00

A(8)=-^- ( Ts~lχτdT. (1.21)
Γ(s) J

0

Using Theorem 1.10, it is clear that A(s) is a meromorphic function of s, which
extends to a holomorphic function near 5 = 0.
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Definition 1.12. Set
r\

M(E,F,gF)=—A(0). (1.22)
as

Then B(J£, F, gF) is a smooth form on B.

Proposition 1.13. The following identity holds

1 +00

M(E,F,9

F) = J(χτ-Xo)^f + I Xτ^f-Γ'(l)Xo. (1.23)

0 1

Proof. Equation (1.23) follows from Theorem 1.10. D

By [BGS5, Theorem 3.15] or by [Bl, Remark 3.7], the current on G

' A- ' - - b) Log ( J—L + (KRG + 2πbJGΓi ) I (1-24)
db\ V 2m j 6 V 2 / l f c = 0

is locally integrable.

Theorem 1.14. The following identity holds

B(S,F,^)^ / e x p { -^f^ + I(^J^,Z) + JFJ

Log (¥?- + (KRG + 2π6JG)-Λl 1 . (1.25)
\ L / J 6-OJ6-OJ

Proof. Equation (1.25) follows from (1.11), (1.14), (1.21). D

Remark 1.15. Note that the local integrability of the current (1.24) on G plays a key
role in making sense of the right-hand side (1.25).

Theorem 1.16. The form M(E,F,gF) lies in PB . Moreover the following equation
holds

(1.26)

Proof. Equation (1.26) follows from (1.15), (1.18), (1.19). D

Remark 1.17. Equation (1.26) can also be considered as a consequence of [BGS5,
Theorems 3.14 and 3.15], of Proposition 1.2 and of Theorem 1.14.

d) Evaluation ofM(E,F,gF) in PB/PB$

If λ e Λ, let gEλ be the Hermitian metric induced by gE on Ex. Let Vβλ be the

holomorphic Hermitian connection on (Ex,gE ) and let RE be its curvature. Then

c-lx(E,9

E) = der1 ~~ (1-27)
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Therefore κc^x(E^ gE) is obtained by a usual construction in Chern-Weil theory. Of
course similar considerations apply to Kc^lx(F,gF) and Kc^x(G^gG).

By the theory of Bott-Chern classes developed in [BGS1, Sect. If)], there exists a

uniquely defined class Kc^ax(E,F,gF) e PB/PB$ such that

The class κc^(E, F,gF) is normalized by the two conditions:
• It is functorial with respect to pull-backs.

• KCmax(E)F,gF) vanishes when the equivariant exact sequence (1.1) splits holo-
morphically and metrically. This exactly means that for every λ G Λ, we have an
identification of holomorphic Hermitian vector bundles Fx — Ex 0 Gλ, and i and j
are the obvious injection and projection maps.

Definition 1.18. Let KD(G,gG) be the smooth form on B

Kτ\(Γ< ~^\ — TV I / " ' ~" \ (T^(λ\ T ~n( Ί^" Ί^Ό^\\\ (129)

We can write KD(G, gG) in the form

. (1.30)

It is clear that KD(G,gG) is a closed form which lies in PB . Also if gG varies
in the class of metrics on G such that the Gλ's remain mutually orthogonal in G, the
class KD(G) of KD(G,gG) in PB/PB^ does not depend on g°.

Similarly, we denote by κcmax(E)9

 κc^(E) the classes of Kcmax(E,gE\
Kc^lx(E,gE) in PB/PB>°. These classes do not depend on the metric gE as gE

varies in the class of metrics preserving the mutual orthogonality of the Ex's.

Theorem 1.19. The following identity holds

, <7G) K^L(E, F, gF)

in PB/PB>°. (1.31)

Proof. We proceed exactly as in [B6, Proof of Theorem 8.5].

Let P1 be the one-dimensional complex projective plane equipped with two dis-
tinguished points {0} and {00} and with the meromorphic coordinate z. By [BGS1,
Theorem 1.29] or by the Grassmann graph construction of Baum-Fulton-MacPherson
[BaFMa] which is explained in detail in [BGS5, Sect. 4], we can construct over B x P1

an acyclic complex of holomorphic vector bundles

0->E'-+F'-+G'->0, (1.32)
i' j'

which is a direct sum in λ € A of the holomorphic complexes

0 -> EfX -> F'x -> G'x -» 0 (1.33)
i1 j1

and which has the following two properties:
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• The restriction of the complex (1.32) to B x {0} coincides with the complex (1.1).
• On Bx {oo}, the complex (1.32) splits, i.e. for each λ G Λ9 we have an identification
of holomorphic vector bundles

^|J3x{oo} = E\Bx{oo} ® G'\Bx{oo} > (1-34)

and i1 and j' are the obvious injection and projection maps.
Let gF' be a Hermitian metric on F1, which is such that the F/λ's are mutually

orthogonal in F1, and which has the following two properties:
• The restriction of gF' to B x {0} coincides with gF.
• On B x {oo}, for any λ e Λ, the splitting (1.34) is orthogonal.

As in Sect, la), from the metric gF' , we construct metrics gE> ', g°' on E1 ', G '.
Clearly, on B x {0}, gE> ', #G/ coincide with gE , gG . Also for T > 0, let χ'τ be the
associated form (1.14) on B x P1 associated to the complex (1.32).

Over P1, we have the equation of currents

00

— (Log\z\2) = δ{0} - 6{00} . (1.35)

Set

β(E', F', gF>) = !(£', F', gF') + κcmΆX(G', gG')κ^(E>, F', gF') . (1.36)

By (1.26), (1.28), it is clear that

',gF) = 0. (1.37)
zπ

Also

jjt (Log \z\2)β(E', F', gF') - (Log \z\2) g β(E', F', gF')

= -j- (d(Log \z\2)β(E', F', 9

F')) + A ((Log \z\2)dβ(E', F', /')) . (1.38)

If K, is a smooth form on B x P1, let KQ, K^ be the restrictions of K to 5 x {0},
5 x {00} respectively. We will consider KQ, K,^ as forms on B.

Using (1.38) and integrating along the fibre of the projection map B x P1 — > B,
we get

/?(£', F', Λ - /?(£', F', Λ G P*'° . (1.39)

Clearly

, F , ) i n P / P . (1.40)

Also by construction

^L(ί;')F',ff

F')00=0 in Pβ/Ps'°. (1.41)

We now calculate !(£", F7, gF')oo In the sequel, all our constructions will be done
on B x {oo}.
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Since the complex (1.32) splits on B x {oo}, we see that if Z e F\BX{OO}>

Y + Y', Y € E'lBx{oo}, Y' e G\BX{00}, then over B x {oo},

K,

exp / _ \JGY'\2
 + 1 (RG'jG'γf γf) + jG'\

P \ 2 2 V 7 J

So, over B x {oo}, for T > 0, we get

•M i / D£77 τEfv Λ/Λ i T-E'

(1.42)

*.=/XToo = y exp ^ -

E'

_a_
a&

(1.43)

6-0

By an easy calculation (which is done in [B4, Eqs. (1.21)-(1.23)]), we see that

exp - (1.44)

Also one immediately verifies that

/*
_ T(JG> + RG>

= (2τr)dimG'det( - -b

del

'>,}
-JG'+T(JG/ + ΛG'

det(-JG"2+T-.RG'JG')

det(- JG/2 + T -

det(- JG'2 + T - JG'RG/)

From (1.45), we get

KRG'

(1.45)

_

db
Lσ'

det exp < -P

_ T(JG' + RG>

I 6=0

= - 2τrTr[iJG'(- JG'2 + Γ - (1.46)


