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Abstract. We study the phase diagram of S = 1 antiferromagnetic chains with
particular emphasis on the Haldane phase. The hidden symmetry breaking mea-
sured by the string order parameter of den Nijs and Rommelse can be transformed
into an explicit breaking of a Z 2 x Z 2 symmetry by a nonlocal unitary transforma-
tion of the chain. For a particular class of Hamiltonians which includes the usual
Heisenberg Hamiltonian, we prove that the usual Neel order parameter is always
less than or equal to the string order parameter. We give a general treatment of
rigorous perturbation theory for the ground state of quantum spin systems which
are small perturbations of diagonal Hamiltonians. We then extend this rigorous
perturbation theory to a class of "diagonally dominant" Hamiltonians. Using this
theory we prove the existence of the Haldane phase in an open subset of the
parameter space of a particular class of Hamiltonians by showing that the string
order parameter does not vanish and the hidden Z 2 x Z 2 symmetry is completely
broken. While this open subset does not include the usual Heisenberg Hamilton-
ian, it does include models other than VBS models.

1. Introduction

Much of our intuition for quantum spin systems is based on our understanding of
the corresponding classical systems. However, occasionally the quantum spin
systems surprise us. One of the most interesting surprises is the qualitative depen-
dence of the properties of the one dimensional Heisenberg antiferromagnet on
whether the spin is integral or half integral which was discovered by Haldane. He
argued that the ground state has an excitation gap and exponentially decaying
correlation functions when S is integral, while it has a ground state without a gap
and correlation functions with power law decay when S is half integral [22].
Haldane's argument was based on an approximate mapping of the spin chain onto
a two dimensional quantum field theory.

The Heisenberg antiferromagnet has a continuous symmetry; we can rotate all
the spins by the same amount, and the Hamiltonian will be unchanged. This
suggests that it should be possible to construct excitations with arbitrarily low
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energy by a gradual twist of the ground state. Haldane's conclusion says that this
classical intuition is wrong when the spin is integral. (Note that in the quantum
case there is no guarantee that the gradual twist does not simply give you back the
ground state.) Even more surprising than this failure of our classical intuition is the
way in which the qualitative properties of the chain flip back and forth as the spin
varies through half integral and integral values. This is in stark contrast to the
universality we have come to expect.

Haldane's theoretical work prompted a great deal of further theoretical work,
numerical studies, experiments, and eventually some rigorous work. The numerical
work for S = 1 now supports Haldane's conclusions rather convincingly
[12, 34, 39, 45, 55]. Experimental results in quasi one dimensional systems with an
effective spin 1 at each site [6, 15, 21, 24,43, 51] seem to be consistent with the
existence of a gap. For a review, see [2].

The less interesting half of Haldane's conclusions have been proven rigorously.
Lieb, Schultz and Mattis [36] proved for S = 1/2 that the model must either have
no excitation gap or more than one ground state. This proof was extended to all
half integral spin by Affleck and Lieb [5] and by Kolb [30]. For any value of the
spin the one dimensional Heisenberg antiferromagnet is expected to have a unique
infinite volume ground state, in which case the above result implies there is no gap.

There are rigorous results for integral spin for a special class of Hamiltonians.
For S = 1 the special Hamiltonian is

Affleck, Kennedy, Lieb and Tasaki [4] proved that this model has a unique infinite
volume ground state with a gap and exponentially decaying correlation functions.
A crucial step in the proof was to realize that the exact ground state of the
Hamiltonian (1.1) can be written down compactly using the valence-bond basis.
The exact ground state is called the VBS (Valence-Bond-Solid) state. Knabe [29]
gave another proof of the existence of a gap in this model. For higher values of the
spin the special Hamiltonian is again a polynomial in Si S/ + 1 . The two point
function of the ground state of the special model with S = 1, 2, 3, . . . was computed
by Arovas, Auerbach and Haldane [7] and seen to decay exponentially. Fannes,
Nachtergaele and Werner [17] studied this class of models in a very general setting.
They proved the existence of a gap for all integral spin.

Tasaki [57] proved the existence of the Haldane gap in an S = 1 chain in which
the usual Heisenberg Hamiltonian is restricted to a subspace of the full Hubert
space. This result is stable in the sense that it established the existence of the
Haldane phase in a finite region of the parameter space, and extends even to
a quasi-one-dimensional model.

We should emphasize that the most interesting part of Haldane's conclusions,
that the integral spin Heisenberg chains are in a massive phase, is still unproven.

Hidden Order and Four-Fold Near Degeneracy. The Haldane phase has no long
range order; all the truncated correlation functions are expected to decay exponen-
tially. However, there is a form of hidden order discovered by den Nijs and
Rommelse [16]. They introduced the following string order parameter and argued
that it should be nonzero in the Haldane phase.

O« t r in = lim ωf-SJexpΓiπ *£* sAsi) . (1.2)
ij-fci—oo \ [_ ι = j + 1 j /
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Here ω ( ) denotes the expectation value in the ground state, and α can be x, j ;
or z. (It is not true that if this order parameter is nonzero then the system
is in the Haldane phase. We shall return to this point later.) Girvin and
Arovas [19] numerically evaluated the above order parameter and concluded it
was nonzero for the usual S = 1 Heisenberg Hamiltonian. Tasaki [58] reached
a picture similar to that of den Nijs and Rommelse by directly treating the path
integral representation of the S = 1 quantum spin chain and proving some related
rigorous results.

The ground state of the VBS model sheds some light on what this string order
parameter measures. In the standard basis in which Sf at each site is diagonal, the
VBS state can be written as follows [4]:

A "classical spin configuration" σ = {σu σ2, . . . , σL} is a choice of σ f = — 1, 0
or + 1 at each site i, and Φσ denotes the eigenstate with SfΦσ = σιΦσ.
Here the summation is over all the configurations σ which satisfy the
constraint that nonzero spins must alternate between + 1 and — 1. An
example of an allowed configuration is + 0 0 - 0 + - 0 + 000 - 0 + - + -
00 + 0 —. z(σ) is the number of odd sites with σ, = 0, and n(σ) is the
number of nonzero σt . Although the allowed configurations have some
structure, they do not have long range order. If we fix the spin at the
origin to be + , then we cannot predict what the spin at a distant site will
be since we have no control over the number of 0's that will appear between
the origin and our distant site. However, if we keep track of the number of
such 0's (or equivalently the number of nonzero's) then we can predict what
the spin at the distant site will do. This is precisely what the exponential factor
in the string order parameter does. It equals — 1 raised to the number of nonzero
spins between i and j .

In a Haldane gap system the ground state should be unique in the infinite
volume limit. However, it was found in [4] that the Hamiltonian (1.1) on a finite
chain with open boundary conditions has exactly four ground states. These ground
states all converge to the same infinite volume state as the length of the chain tends
to infinity. Such a degeneracy is not observed in a finite chain with periodic
boundary conditions. The valence-bond picture of [4] suggests that the four-fold
degeneracy is due to the two effective spin 1/2's induced in the boundaries of the
chain.

In general in the Haldane phase the ground state of the open chain is not
exactly four fold degenerate, but the four lowest eigenvalues are very close.
The separation of these eigenvalues converges to zero as exp( — L/ξ) when
the length of the chain L goes to infinity. Here ξ is the correlation length
of the ground state. This phenomena was studied by Kennedy [25] and by
Affleck and Halperin [3]. The geometric picture in [58] also suggests this
phenomena. Experimental consequences of this four-fold near degeneracy of the
ground states in a finite open chain (or more precisely the existence of effective
spin 1/2's at the boundaries) have been studied by Hagiwara, Katsumata,
Affleck, Halperin and Renard [21] and by Glarum, Geschwind, Lee, Kaplan, and
Michel [20].
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Phase Diagram of Typical Hamiltonians. In this paper we will consider the follow-
ing two spin 1 Hamiltonians:

= Σ λSfSf+
(1.4)

(1.5)

with Ji = 1 if i is even and J, = δ ^ 1 if i is odd.
One can consider a more general Hamiltonian which includes these two as

special cases. Some of our expansion results can be extended to such a Hamilton-
ian, but we will restrict our attention to (1.4) and (1.5) for the sake of simplicity. The
phase diagram of the ground state of Hi was studied numerically by Botet, Mien
and Kolb [12], and further investigated in [16, 47, 48, 57]. Figure 1.1 shows the
qualitative phase diagram. We have labelled the Haldane phase with an H. The
other phases that appear in these figures are the large D phase (labelled D), the
antiferromagnetic Ising phase (labelled I), the XY phase (labelled XY), and the
ferromagnetic Ising phase (labelled F). The exact location of the phase boundary
between the Haldane and the XY phases is still not clear because of the large
numerical ambiguity.

The large D phase of Hx occurs when D is large and λ is not too large. If D is
infinite, then the ground state is simply the configuration with all O's. The large
D phase may be thought of as a perturbation of this state. In this phase Hi is
expected to have a unique infinite volume ground state which has a gap and
exponentially decaying correlation functions. Numerical [12, 48] and field theor-
etic [47] studies indicate that between the Haldane and the large D phases there is

Fig. 1.1. The phase diagram of the ground state of Hamiltonian Hx obtained by numerical
studies. It contains the Haldane phase (labelled H), the antiferromagnetic Ising phase (labelled I),
the large-Z) phase (labelled D), the XY phase (labelled XY), and the ferromagnetic Ising phase
(labelled F). The boundary between the Haldane and the XY phases (shaded line) is not yet
determined. We have rigorous control of the properties of the ground states im the shaded
portions in the phase diagram. These portions just indicate the qualitative shape of the regions,
and are not meant to be quantitative
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a line of massless models. Initially, the existence of the massless line was the only
reason to believe that the large D and Haldane phases are distinct phases, since
both of them are characterized by unique massive ground states. But, as we will
discuss below, the string order parameter allows one to directly distinguish be-
tween these two phases.

The antiferromagnetic Ising phase of Hi occurs when λ is large and D is not.
If λ were infinite then the two Neel states + — + — + —••• and
— + — + — +••• would be the ground states. In the Ising phase we expect two

infinite volume ground states which are perturbations of these two Neel states.
Each of these ground states should have Neel order, a gap and exponential decay of
the truncated correlation functions.

The ground state phase diagram of H2 has been studied intensively, especially
on the line of translation invariant models with δ = 1. There are four special points
on this line where one has exact (or rigorous) results on the ground state. The exact
ground states for β = 1 and β = - 1 were obtained in [9, 32, 56] and [33, 52, 62],
respectively. At these points, it appears that the ground state is unique and has no
excitation gap. The point β = oo was solved in [10, 28, 42]. It appears to have two
ground states and an excitation gap. The Hamiltonian with β = — 1/3 is (1.1), and
has a massive unique ground state. It is expected that a similar massive ground
state occurs throughout the interval — 1 < β < 1. In the region β > 1, it is
expected that a spontaneous dimerization takes place, and the Hamiltonian has
two ground states accompanied by a finite gap. A spontaneous trimerization is
expected in the region β < — 1. See [40, 50] for numerical works.

The phase diagram including the nontranslation invariant models with δ < 1
was studied by Singh and Gelfand [49] by Pade analysis of perturbation series.
A qualitative phase diagram is shown in Fig. 1.2. The Haldane phase is labelled
H and the dimerized phase is labelled D. The VBS state is the exact ground state of
H2 on the line β = - 1/3 and δ > 0.

The origin of the dimerized phase of H2, at least for small <5, can be understood
as follows. If δ = 0 then the ground state is simply the tensor product of the ground
state for each of the bonds with nonzero coupling. If β > — 1/3 the ground state of
one of these bonds is the singlet state for two sites. The dimerized phase may be

-1/3 0

Fig. 1.2. The phase diagram of the ground state of Hamiltonian H2 obtained by numerical and
theoretical studies. It contains the Haldane phase (labelled H) and the dimerized phase (labelled
D). On the dashed line (which includes δ = 1 but not δ = 0), the ground state is exactly the VBS
state. The shaded regions indicate qualitatively (but not quantitatively) where we have rigorous
control of the ground state
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thought of as a perturbation of this tensor product of "dimers." Like the large
D phase in H 1 } the dimerized phase (except the spontaneously dimerized line
δ = 1, β > 1) is expected to have a unique infinite volume ground state which has
a gap and exponentially decaying correlation functions. This phase, like the large
D phase, may be distinguished from the Haldane phase by the string order
parameter.

As den Nijs and Rommelse [16] pointed out (see also [58]), the string order
parameter can be used to distinguish the Haldane phase from other phases with
unique massive ground states. The behavior of the string order parameter in the
phase diagrams in Figs. 1.1 and 1.2 is believed to be as follows. We will also
consider the usual Neel order parameter

O«md= lim (- l ) l ' -* 'ω(S5Sϊ) , (1.6)
| |

where α is x, y or z. In the Haldane phase (H in Figs. 1.1 and 1.2), all three of
ŝtring are nonzero while all three of OJeei a r e z e r o I n the large D phase (D in

Fig. 1.1) and the dimerized phase (D in Fig. 1.2) all of the order parameters vanish.
Finally, in the Ising phase (I in Fig. 1.1), Oftring and 0Nέel are nonzero while the other
four order parameters vanish. Hatsugai and Kohmoto [23] numerically evaluated
these order parameters for the Hamiltonian Hx with λ — 1; their results are
consistent with the above picture.

Tasaki [59] recently argued that the sharp singularity experimentally observed
in the magnetization process of Haldane gap antiferromagnets [6, 24] can be
understood in terms of the behavior of the string order parameter.

Hidden Z2 x Z 2 Symmetry Breaking. In [26] we introduced a nonlocal unitary
transformation U of the spin 1 chain with the following properties. (The definition
of the transformation is given again in section two.) If we apply the unitary
transformation to the operator that appears in the definition of the string order
parameter, we obtain the usual ferromagnetic order parameter £"££. (See Sect. 2.1.)
Thus the nonvanishing of the string order parameter for the system with
Hamiltonian H corresponds to the existence of ordinary ferromagnetic order for
the system with the transformed Hamiltonian H = UHU ~~*. Since the transforma-
tion is nonlocal there is apriori no reason that H should be a sum of local
operators. However, for the Hamiltonians above it is. (See Sect. 2.2.)

Hi has an SO(2) symmetry and H2 has an SU(2) symmetry. These symmetries
are local in the sense that the unitary operators are products of unitary operators
that act at a single site. The transformed Hamiltonians Hi = UHiU'1 and
H2 = UH2 U ~1 will have the same symmetries as the original Hamiltonian, but
there is no reason these symmetries must still be local. It turns out (see Sect. 2.2)
that the only local symmetries of Hx and H2 are rotations in spin space by π about
one of the three coordinate axes. Thus the local symmetry group is the discrete
group Z2xZ2.

In [26] we argued that one can determine which phase the system is in by the
extent to which the Z 2 x Z 2 symmetry of the transformed system is broken. In the
large D and dimerized phases this symmetry is not broken at all, and the trans-
formed Hamiltonian has a unique ground state. In the antiferromagpetic Ising
phase the Z 2 x Z 2 symmetry is partially broken and the transformed Hamiltonian
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I
has two ground states. In the Haldane phase the symmetry is fully broken and the
transformed Hamiltonian has four ground states. (Since the transformation is
nonlocal the original and transformed Hamiltonians can have different numbers of
infinite volume ground states.) We argued [26] that the four infinite volume
ground states in the transformed system imply that for a finite chain with open
boundary conditions the four lowest eigenvalues of the original system must be
very nearly equal. Thus the four fold near degeneracy in the Haldane gap system is
a consequence of the hidden Z 2 x Z 2 symmetry breaking.

Results of the Present Paper. In the above we have reviewed some of the properties
of the spin 1 chain which are believed to hold. We emphasize that none of the
various statements above are theorems except for the few that we have described as
"rigorous" or "proven". We turn now to the rigorous results of this paper.

Section 2 is devoted to the nonlocal unitary and the related Z 2 x Z 2 symmetry
breaking. We prove the existence of such a symmetry breaking in the Hamiltonian
obtained by applying the unitary to the exactly solvable Hamiltonian (1.1). We also
present a (highly nonrigorous) variational calculation. The success of this simple
approximation indicates the power of the unitary transformation.

We argued above that the string order parameter measures a floating or liquid
Neel order in which the nonzero spins alternate between + and — , but because of
the intervening O's this alternation does not simply go as (— I)'1'"-7'1. It is natural to
expect that this floating Neel order appears more easily than the usual Neel order.
This observation suggests there should be an inequality

String ^ O£έel (1.7)

In Sect. 3 of the present paper, we shall prove this inequality for α = x, y and z, and
other related inequalities for the Hamiltonian H1 with λ ^ 0. The random loop
representation used in [58] playes an essential role in the proof.

For certain values of the parameters the Hamiltonians H1 and H2 become
trivial in the sense that one can find a basis in which they are diagonal. As we saw
above, three of the phases (the large D, dimerized and Ising) can be obtained in this
trivial way. As λ -* oo with D fixed, Hi just becomes the spin 1 antiferromagnetic
Ising Hamiltonian. As D -^ oo with λ fixed, H x also becomes trivial. The
Hamiltonian in this limit is just H1 with D = 1 and all the other terms in ifx

deleted. The ground state consists of the state with all spins equal to 0. Hamiltonian
H2 becomes trivial if we set δ = 0. The ground state of St Si+ x - jS(St S/ + 1) 2 is the
unique singlet state when β > — 1/3. So for δ = 0 and β > — 1/3 the ground state
of H2 is unique and is just the tensor product of the singlet state on two sites. One
can hope to obtain rigorous results in a neighborhood of these trivial Hamiltonians
by doing some form of perturbation theory.

In Sect. 4 we prove the convergence of such a perturbation theory for two quite
general classes of Hamiltonians. The first class consists of Hamiltonians which are
small perturbations of a diagonal Hamiltonian which has a unique ground state. In
the second class the Hamiltonian is a small perturbation of a diagonal Hamiltonian
which has more than one ground state, and these ground states are related by
a symmetry group. In this paper we are primarily interested in the application of
this perturbation theory to the one-dimensional systems given by Hamiltonians
(1.4) and (1.5). However, we should emphasize that the theory developed in Sects. 4
and 5 is not restricted to one-dimensional systems. By applying these general
theorems to Hamiltonians Ht and H2 we can prove the following. (The precise
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statements of the theorems are given in Sect. 2.2.) In the shaded portion of region
D in Fig. 1.1 (the large D phase) and the shaded portion of region D in Fig. 1.2 (the
dimerized phase), there is a unique translation invariant ground state. This state
has a gap and exponentially decaying correlations. All the string order parameters
and the usual Neel order parameters vanish in this state. The transformed
Hamiltonian has a unique translation invariant ground state. Thus none of the
Z 2 x Z2 symmetry is broken in these two regions. In the shaded portion of region
I in Fig. 1.1 (the Ising phase) there are at least two ground states. The order
parameters Oaringanc* N̂eei with α = z are nonzero. When α = x or y, both of these
order parameters vanish. Thus one of the factors in the Z 2 x Z 2 symmetry is
broken, but the other is not. The transformed Hamiltonian also has at least two
infinite volume ground states. We stress that these shaded portions in the phase
diagrams are not drawn in a quantitative manner (while the phase boundaries are
semi-quantitative.) The actual regions where the rigorous perturbation theory
works are much smaller or farther away.

The rigorous perturbation theory of Sect. 4 can be thought of as Rayleigh
Schrόdinger perturbation theory. Rigorous Rayleigh Schrόdinger perturbation
theory for various quantum spin systems that are perturbations of diagonal
Hamiltonians has been done before. The approach we present here is quite general,
but the proof of convergence is still relatively simple. Kirkwood and Thomas [27]
controlled the perturbation theory for several models by writing the Schrόdinger
equation in a clever form and developing the expansion directly from this equation.
Another approach to controlling the perturbation theory is to use a Feynman-Kac
or path space formula to make the quantum spin system look like a classical model
in one more dimension. Yin and Thomas took such an approach [61]. See also
[46, 57]. Albanese [1] controlled the perturbation theory by constructing a "dress-
ing transformation" which takes the unperturbed ground state into the perturbed
ground state.

Our approach in Sect. 4 begins with a path space formula for Tr(e~βH). When
the Hamiltonian is a small perturbation of a diagonal Hamiltonian the dominant
terms in the path space formula consist of large regions of ground state (s) with rare
excitations. The usual polymer expansion can be used to control this dilute gas of
excitations. To take advantage of the usual polymer expansion we introduce
a blocking in the time direction. This blocking of the continuous time direction
makes the expansion look more like the usual polymer expansions one encounters
in classical lattice systems. Our proof of the convergence of the expansion is greatly
facilitated by the introduction of a "comparison Hamiltonian."

Unlike the three phases discussed above there is no diagonal Hamiltonian
which is in the Haldane phase. For H2 with β = — 1/3 the ground state is known
exactly, but not all the eigenstates are known. Another way to see that H2 with
β = — 1/3 is quite different from the diagonal Hamiltonians is to consider the
correlation length. In the ground states of the trivial Hamiltonians considered
above, truncated correlation functions vanish at large enough distances, so the
correlation length is 0. By contrast, the correlation function in the ground state of
H2 with β = — 1/3, δ > 0 decays exponentially, but never becomes exactly zero.
(The correlation length is 1/ln 3.) Attempting to control small perturbations of the
β = — 1/3 Hamiltonian is not simply a question of doing rigorous Rayleigh
Schrόdinger perturbation theory. In Sect. 5 we consider perturbations of
Hamiltonians for which the ground state (s) are known and are simple tensor
products, but the excited states need not be. Of course we must assume1 something
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about the Hamiltonian we are perturbing. The condition we assume, which we refer
to as diagonal dominance, says roughly that each diagonal entry of the unpertur-
bed Hamiltonian is greater than the sum of the absolute values of the off diagonal
entries in the same column. We prove a general theorem for these diagonally
dominant Hamiltonians which says that we can add a small but essentially
arbitrary perturbation to such a Hamiltonian and have a convergent expansion for
the ground state (s).

Returning to Hamiltonian H2, we show in the appendix that for β = — 1/3 and
δ sufficiently small but not zero, H2 satisfies the diagonal dominance condition.
The general result of Sect. 5 then gives us a rigorous expansion in the shaded
portion of region H in Fig. 1.2. (Again the shaded portion is not quantitative. Also
note that the portion does not include the point β = — 1/3, δ = 0.) We use this
expansion to prove that this region is indeed in the Haldane phase by showing that
the string order parameters are nonzero while the usual Neel order parameters
are zero. In this shaded region we also prove that the transformed Hamiltonian
H2 has a least four ground states. It is important to note that when β = — 1/3
and δ = 0 the ground state is highly degenerate. Our results for the shaded portion
of Fig. 1.2 cannot be regarded as perturbation theory about this highly singular
point.

In previous rigorous examples of the Haldane phase, the proofs that the
correlations decay exponentially and there is a gap depended crucially on being
able to find the exact ground state and ground state energy explicitly. Aside from
the obvious advantage of an explicit solution, there is the disadvantage that this
method is not robust, i.e., if one adds a small perturbation to the model then
typically one can say nothing about the new model. In this rigorous examples of the
Haldane phase that we obtain in this paper, i.e. the shaded portion of region H, we
do not find the ground state explicitly, but instead rely on perturbative methods.
Thus the results are robust in the sense that they hold in an open region of the
parameter space. Unfortunately, the parameter region where our result holds
does not include any translation invariant Hamiltonians. As long as β is close to
— 1/3 the ground state of H2 in the translation invariant case, δ = 1, should be

a small perturbation of the VBS state, so one can still hope to do some form of
perturbation theory. However, we have not been able to use the methods of Sect. 5
to do so.

2. The Unitary Transformation and Z 2 x Z2 Symmetry Breaking

2.1. Definition of the Unitary. In the present section we introduce the nonlocal
unitary transformation for the S = 1 spin chain, and discuss its relevance to the
problem of the Haldane gap. Our initial motivation for considering the unitary was
to explore the nature of the hidden antiferromagnetic order in the Haldane gap
systems. The transformation then lead us to the new Z 2 x Z 2 symmetry breaking
picture discussed in the introduction. At the end of Subsect. 2.2 we will argue that
this picture gives some insight into the origin of the Haldane gap. Moreover the
unitary leads us to a very simple variational calculation which qualitatively
recovers the phase diagram (Fig. 1.1) of the Hamiltonian H1.

We consider a finite chain with L sites where L is an even integer, and denote
the sites by ί, j9 k, . . . . We impose open boundary conditions. We associate spin
operators Sf, Sf, Sf with S = 1 with each site ί. We will work in the standard basis
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where the Sf are diagonal and the matrices of the spin operators are as follows.

'0 1 0\ /0 -i 0\ /I 0 0y

0 - ί [ SI = 0 0 0

1 0 / \ 0 0 - 1

A "configuration" σ = {σj will mean a choice of σt = — 1,0, or + 1 at each site i,
and Φσ denotes the eigenstate with SfΦσ = σtΦσ.

Define N(σ) to be the number of odd sites at which there is a 0, and let σ be the
configuration given by

at = exp in £ σι (Tf.

We define the unitary U by

£/Φσ = ( - l f >Φ, . (2.1)

If a = 0 then af = 0. If σ̂  φ 0, then σt = σf if the number of nonzero σ7- to the left of
i is even and d{ = — at if this number is odd. We can visualize this transformation
in the following way. Beginning at the left end of the chain, we move to the right
looking for nonzero spins. The first nonzero spin is left unchanged, the second is
flipped, the third is left unchanged, the fourth is flipped, and so on. Here are a few
examples of the action of U:

(0 + 0 0 + + - + 0 - 0 ) - > ( 0 + 0 + - 0 - + + + 0 + 0),

(0 + - 0 0 + 0 0 - + 0 0 - ) ^ - ( 0 + + 00 + 0 0 + + 0 0 + ),

It is immediate from the definition of U that U is unitary and U ~1 = U. Recently,
Oshikawa [41] found U can be expressed compactly as

U = Π exp(iπSJS?).
j<k

A somewhat more complicated operator representation of U was found in [38, 54].
If O is a local observable, then UOU'1 need not be local. The action of U on

the Hamiltonian does, however, produce a sum of local operators. This fact can be
confirmed easily by an explicit calculation (see Lemma 2.1 below), but let us briefly
see why this should be true. Take, for example, the Hamiltonian (1.4) and rewrite
it as

Li V"1 p x r x i cy cy i ^C ZQZ _ι_ τ\(S?z\2
Πl = 2^ ^i ^i+1 i ^ί^ι+1 + Aόiύi+i + L>{bi)

i

— / , X V1^ i * ^ ϊ + l i ^ i ^ i + l / i ^ ^ i ^ i + 1 *^ W i / ?
t

where S/ = S J ± i S } .
It is clear that the term D(Sf)2 is unchanged by the unitary since this term does

not distinguish between o{ = + 1 and - 1. For Sf Sf+1 Φσ to be nonvanishing, both
Oi and σί + 1 must be nonzero. If so, exactly one of the sites ί and i + 1 will be flipped.
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Then the unitary changes the sign of σt σ ί + x . Therefore we find for the diagonal part
that U(λSfSz

i + 1 + D ί S f ) 2 ) ! / " 1 = - λSfSz

i + 1 + D(SZ)2.
To see how the off-diagonal part transforms, note that the nonvanishing matrix

elements of S?SΓ+i + SfSί+i are (00)<-»( + - ) , (0 0)<->( - + ), (0 + )<-•( + 0)
and (0 — )•->( — 0). It is crucial that these actions conserve the number of the
nonzero σt 's or change it by two. Since the unitary only involves the parity of the
number of the nonzero spins left of a site, the above matrix elements do not affect
the unitary transformation of the spins at sites j with j>i+ 1. Thus the matrix
element of U (S* S[+1 + Sf Sf+^U'1 are still local and are given by
(00)«->( + + ), (0 0)<->( - - ), (0 + ) ^ ( + 0) and (0 - )*-•( - 0).

Now we move on to explicit calculations of the unitary transformation of the
spin operators.

Lemma 2.1.

\ fc=l / \ k=j+l /

US) U -ι = exp (in ^ S\\s) . (2.2)

Proof. It is convenient to explicity write down the matrices of the following
operators:

0 0 - 1\ /0 0 1\

exp(iπSJ) = ( 0 - 1 0 , exp(iπSJ) = 0 - 1 0 ,

- 1 0 0/ \1 0 0/

- 1 0 0^

0 1 0

0 0 - 1

We start with S) which is the easiest,

US)U~ίΦσ = (- l)N(σ)US)Φδ

The last equality follows from UΦδ = (- ϊ)mΦσ and N(σ) = N(σ). The definition
of σ implies that

fc=i J

This proves the third identity of (2.2).
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Next we consider the transformation of S* = S* ± iS*,

USf U~1Φσ = (- l)N{σ) US? Φd

where the configuration δj is defined so that (δj)k is the Kronecker delta function

δjk

When <7jΪ + 1 > 1, we define Φd + δj to be zero. Let σ' be the configuration
obtained by applying the unitary (2.1) to σ + δj. An explicit calculation shows

σ'k = exp in £ (σ, + δn) \{σk + δjk)

Γ k~1 Ί Γ ί k~1

= exp in £ (σz + <5j7)
 e x P ίπ Σ

L ι = i JL \ z = i
/ fc-l \ / k-ί

= exp in X δjk )σk + exp in X
\ i = i / \ i = i

σfc iίk<j

σj + exp(ιπX/lί σ{) if k =j .

- σ f c if fe>;

The second equality follows from the fact that 1̂ 1 = \σt\. Rewriting the above
result in terms of the spin operators, we have

|

Π [-exp(ZπS£)]Φff,

where we have used the fact ( - i ) ^ ) + w + )̂ = ( _ i)i Note that - exp(iπSf) is
the operator that flips the spin at site k. The minus signs cancel out since the
number of sites L is even, and we get the transformation of S/.

Since l/S^ U ~x can be obtained by taking the adjoint of the above, the transforma-
tions of S* and S* immediately follow. |

The above lemma allows us to calculate the unitary transformation of an
arbitrary polynomial of spin operators, i.e., an arbitrary local observable. Of
special interest is the following transformation of the products of two spin vari-
ables.

Corollary 2.2.

USffiU - 1 = -S°j exp in £ Sf SJ, if α = x, z .
L 1 = 7+1 J
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We hέve used the identity exp(ίπS")SJ = — S". For α = y, the simple trans-
formation above does not hold. It is crucial that the right-hand side of the above
equation is nothing but the den Nijs-Rommelse string observable. Therefore we get
the following identity between the order parameters:

O«trin8(H) = O«Feττo(Hl for α = x, z , (2.3)

where H is a general Hamiltonian and H = UHU'1. The ferromagnetic order
parameter is defined by

= lim ωgiSISl),
|j-fc|->«>

where ωg( ) denotes the expectation value in the ground state of H.

2.2. Haldane Gap and Z2 x Z2 Symmetry Breaking. In the present subsection, we
shall apply the nonlocal unitary transformation to the Hamiltonians H± and H2

defined in (1.4) and (1.5), respectively. Let Hi = UHiU~* (i = 1, 2). Then an explicit
calculation using Lemma 2.1 shows that

#i = Σ hi + (! - Wί^U1 + D(Sι)2 (2-4)
i

and

H2 = ΣJi\hi-β(hi)
2ϊ,

i

where

ht = - SfSf+1 + Srexp{ίπ(Sf + S{+1)}SJ+i - SfSUi (2.5)

Although the transformed Hamiltonians Hί9 H2 are sums of local operators (as we
stressed in the previous subsection), it is evident that Hί9 H2 have less symmetry
than the original Hamiltonians HUH2. We find that Hi,H2 are only invariant
under rotations by π about each of the three coordinate axes. They are not
invariant under a rotation by π about an arbitrary axis. These three rotations
generate the discrete group Z2xZ2. Of course, the transformed Hamiltonians
Hu H2 will have the same symmetries as the original Hamiltonians Hu H2 since
these operators are related by a unitary, but in general these symmetries for Hl9 H2

will be nonlocal. The only local symmetry of the transformed Hamiltonian is the
discrete Z 2 x Z2 symmetry. We shall think of this group as being generated by
the rotations by π around the x and the z axes, i.e., Φ ̂ e xp( iπ^ iSJ)Φ and
Φ -• exp(/π£7.Sj)Φ. As we shall discuss in the following, these symmetries may be
spontaneously broken. Spontaneous breaking of these symmetries can be mea-
sured by the order parameters Oψeτro(H) and OpQTro(H\ respectively.

Let us investigate what happens to this Z 2 x Z 2 symmetry in various regions of
the phase diagrams. First we look at the ground state of H± in the region where the
anisotropy parameter D is large. Then we have the following theorem which is
proved in Sect. 4 as a special case of a general theorem.

Theorem 2.3. // D is sufficiently large, then the Hamiltonian Hi has a unique
translation invariant ground state. In this ground state 0^1(^1) = 0 and
Ostήng(Hi) = Ofor α = x, y, z. This ground state has a gap, and truncated correlation
functions decay exponentially. Under the same condition on the parameters the
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Hamiltonian Hί has a unique translation invariant ground state and in this ground
state Operro^x) = Ofor oc = x, y, z. (How large D should be depends on the value ofλ.
There are constants c, d such that the theorem holds ifD^.c + d\λ\.)

The above_ theorem states that the Z 2 x Z 2 symmetry of the transformed
Hamiltonian H1 is completely unbroken for sufficiently large D. (In [60], a conver-
gent cluster expansion for the random loop representation described in Sect. 3 was
developed. The above theorem was proved for D - 2\λ\ ^ 28.) Although our proof
requires that D be large, we expect that the conclusions of the theorem are valid
throughout the large-D phase in Fig. 1.1.

Similarly we have the following theorem for the ground state of the
Hamiltonian H2 in the region with strong bond alternation.

Theorem 2.4. Ifβ>— 1/3 and δ is sufficiently small, then the Hamiltonian H2 has
a unique translation invariant ground state. In this ground state O^έd(H2) = 0 and
Osiτιng(H2) = Ofor oc = x,y, z. This ground state has a gap, and truncated correlation
functions decay exponentially. Under the same conditions on the parameters the
Hamiltonian H2 has a unique translation invariant ground state and in this ground
state OpeTTO(H2) = Ofor oc = x, y, z. (How small δ should be depends on the value ofβ.
See the shaded portion of the region labelled D in Fig. 1.2. In particular, there is
a constant c such that when β is near — 1/3 the theorem holds in the wedge
0<δ<c\β+l/3\.)

Again, we expect that the conclusions of the theorem, in particular the absence
of any breaking of the Z 2 x Z 2 symmetry, are true throughout the dimerized phase
in Fig. 1.2 although our proof only works in a subset of this region.

Next we consider H± in the region with strong Ising-like anisotropy. We prove
the following theorem in Sect. 4.

Theorem 2.5. If λ is sufficiently large, then Hi has at least two translation invariant
infinite volume ground states. In each of these ground states we have O^^H^ = 0
and Ostring(#i) = Ofor oc = x,y, while O^HJ > 0 and Oftring(#i) > 0. Under the
same condition on the parameters Hx has at least two translation invariant infinite
volume ground states. In each of them 0 F e r r o (i?i) = Ofor a = x, y and 0Fe rro(#i) > 0.
(How large λ should be depends on the value ofD. There are constants c, d such that
the theorem holds if λ ^ c + d\D\.)

Thus the ground states for large enough λ spontaneously break the symmetry of
rotation by π about the x axis. Note that they break only half of the Z 2 x Z 2

symmetry, since the ground states are still invariant under the rotation by π about
the z axis. We expect that the same is true in the entire Ising phase in the phase
diagram of Fig. 1.1.

As we discussed in the introduction, the above theorems are proved by an
expansion that can be regarded as rigorous Rayleigh Schrodinger perturbation
theory. Several authors have put this perturbation theory on a rigorous footing for
various quantum spin systems, and we expect that their approaches can also be
used to prove Theorems 2.3, 2.4, and 2.5. Our next theorem concerns the Haldane
phase, and its proof is much more subtle. For the Hamiltonian H2 we can
rigorously establish the existence of the Haldane phase in an open region in the
phase diagram in Fig. 1.2. Unfortunately we have not been able to do this for the
Hamiltonian Hx.



Hidden Symmetry Breaking and the Haldane Phase 445

Theorem 2.6. There are positive constants ε, δ0 and y such that if\β+ 1/31 < ε and
y |/J+l/3 |<(5<(i)o then the transformed Hamiltonian H2 has at least four transla-
tion invariant infinite volume ground states. In each of them Opeτro(H2) > 0 for
α = x, z. Let H2 denote Hamiltonian H2 on sites — L to L with open boundary
conditions, and let

N '***- Tr(exp(-

Then under the above conditions on the parameters we have

I Γ k~1 Ί \
lim inf lim inf lim inf ( - SJ exp in Σ s" \Sk) > 0 ,

and there exist constants c, μ > 0 such that

lim sup lim sup K S J S J ^ . L I ύ ce~μlj~kl

for any j and k.

In Theorems 2.3, 2.4, and 2.5 we have convergent expansions for both the
original and transformed Hamiltonians. In Theorem 2.6 we only have a convergent
expansion for the transformed Hamiltonian. This expansion proves most but not
all of the properties that should hold in the Haldane phase. For example, although
we prove that all the Neel order parameters vanish, we do not prove that the
original Hamiltonian has a unique ground state. This is why the statements in the
theorem about the string order parameter and the decay of the two point correla-
tion function are somewhat cumbersome. We cannot simply refer to "the ground
state," but must instead use < }βfL.

The theorem says that H2 has at least four infinite volume ground states in at
least part of the Haldane phase. We expect that this is true in the entire Haldane
phase for both Hx and H2. This may seem somewhat puzzling since the original
Hamiltonian H should have a unique infinite volume ground state. Of course our
unitary is nonlocal, so the number of infinite volume ground states of the original
Hamiltonian does not have to equal the number of infinite volume ground states
for the transformed Hamiltonian. Recall that the number of infinite volume ground
states is unchanged by the unitary when we are in the Ising, the large-D, and the
dimerized phases. The nonlocal unitary changes the physics drastically, but only
does so when we are in the Haldane phase!

The four infinite volume ground states of the transformed Hamiltonian in
the Haldane phase have an important consequence for the original Hamiltonian.
For a long finite open chain the four lowest eigenvalues of the transformed
Hamiltonian should be almost degenerate. For a finite open chain the original and
transformed Hamiltonians have the same eigenvalues, so the four lowest eigen-
values of the original Hamiltonian must also be almost degenerate. We conclude
that the near degeneracy in the Haldane phase discussed in Sect. 1 is an inevitable
consequence of the Z2 x Z2 symmetry breaking.

Moreover, one may argue that the spontaneous breaking of the Z 2 x Z 2

symmetry is the origin of the Haldane gap itself. The spontaneous breaking of
a continuous symmetry is usually accompanied by massless excitations (Goldstone
bosons), while the breaking of a discrete symmetry is usually accompanied by the
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appearance of a gap. Since the ground states of the transformed Hamiltonian
spontaneously break the Z 2 x Z 2 symmetry in the Haldane phase, it is natural that
each of the four ground states will be accompanied by a finite excitation gap. Then
the most natural scenario (but not the only possible one) for a finite open chain is
that the four lowest eigenvalues of the transformed Hamiltonian are separated
from the other eigenvalues by a finite gap which is uniform in the size of the system.
Since the spectrum of the original and transformed Hamiltonians are identical, this
suggests that the original Hamiltonian should have a gap above the ground state
energy.

2.3. The Solvable Model. In this subsection we prove that the full Z 2 x Z 2 sym-
metry is broken in the solvable model of Affleck, Kennedy, Lieb and Tasaki [4].
The Hamiltonian is

— X Si*S ί + 1 + -(Sf Sf+i) .

This Hamiltonian is special because Sr Si + 1 + l/3(SfS i + i ) 2 = 2Pfj+! - 2/3,
where Pfj+1 is the projection onto the states with spin 2 on sites i and i + 1. Using
this fact the following statements have been proven for the Hamiltonian HYBS [4],
There is a unique infinite volume ground state. In this ground state the truncated
correlation functions decay exponentially. There is a gap in the energy spectrum.
For a finite open chain the ground state subspace of HΎBS is four dimensional. In
the infinite volume limit these ground states all yield the same infinite volume state.
The Hamiltonian i?vBs f° r a finite chain with open boundary conditions must also
have a four dimensional ground state subspace. However, we will prove below that
these finite chain ground states yield four distinct ground states in the infinite
volume limit.

There are explicit formulae for the ground states of H V BS [4], e.g., Eq. (1.3). We
will not need these formulae here, but we should emphasize that these ground
states cannot be written as a single tensor product, of states at each site. We denote
the transformed Hamiltonian UHy^U'1 by H V BS AS we will now show the
ground states of HγBS can be written as a simple tensor product. Using our
calculations above, HYBs = Σilhί + 3^2]> w ^ t n h defined in (2.5). The two site
Hamiltonian ht + %hf is easily diagonalized, and we find that the ground state
subspace is'four dimensional and is spanned by the states φk®φk9k=l,2,3,49

where

For convenience we work with a finite chain running from — L to L. The
modifications needed for other finite chains should be clear. Let φk be the state on
this finite chain formed by tensoring together 2L + 1 copies of φk. It follows
immediately from the two site calculation that these four states are ground states
for the - L to L chain.
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Lemma 2.7. For a finite chain with open boundary conditions the ground state
subspacefor HYBS is four dimensional and is spanned by the states φk9 k = 1, 2, 3, 4,
defined above.

Proof. The ground state subspaces of HYBS and HYBS have the same dimension. In
[4] it was proven that the former has dimension four. As noted above the states
φk are ground states, so we need only show that these four states are linearly
independent. This is an easy exercise that we omit. |

We can define four infinite volume states ωί9 ω 2 , ω 3 , and ω 4 as follows. For
any local observable 0 let

ωk(O) = lim (φ%9 Oφt) .
L-> oo

For sufficiently large L, (φk9 Oφk) is independent of L, so the existence of the limit
is trivial.

In general the ground state energy per bond is defined to be

1
e0 = inf lim — p(H-Lt L),

p L->oo ^

where H-LL is the Hamiltonian for a chain running from — L to L, and the
infimum over p is over all states on the infinite chain. The Hamiltonian HYBS is
unusual in that the ground state energy for a finite chain is just equal to the number
of bonds times the lowest eigenvalue of the two site Hamiltonian. Thus e0 = — 2/3,
where — 2/3 is the lowest eigenvalue of h x + 3/1?. We will say that an infinite
volume state ω is a ground state if for every i, ω(hi + %hf) = e0. Clearly each ωk is
an infinite volume ground state.

Theorem 2.8. H V BS has exactly 4 infinite volume ground states.

Proof. We first show that one can find local observables Ok,k = 1,2, 3,4, such that
wk(0j) = δkj. An immediate consequence of this is that the ωk are linearly indepen-
dent. Let Pj be the orthogonal projection onto the subspace spanned by states of
the form χ® φj® Φj® ζ, where χ is any state on sites — L to — 1 and ξ is any
state on sites 2 to L. So the factor φj (x) φj lives at sites 0 and 1. Some calculation
shows that ωk(Pj) = Mkj9 where

Mkj=z\i/n if + fc

One can check that the matrix Mkj is invertible. We define

Oj= V (M-%Pk.

Then ωk(0j) = δkj.

Now let ω be an infinite volume ground state. Using the observables Ok defined
above we let ck = p(Ok). We will show that

4

ω = X ckωk .

It suffices to show that ω(0) = Σk = 1 ckωk(0) for any local observable O. We can
also assume that the observable O has | |0|) ^ 1. Choose / large enough that the
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support of 0 is contained in sites — I to I. Consider the restrictions of the states
ω and Σfc=icfcωfc t 0 ^ e finite chain which contains sites — L to L. These
restrictions can be written as density matrices for the — L to L chain. Furthermore,
since the expectations in ω and Yjk ckωk of the Hamiltonian for this finite chain are
equal to the ground state energy of the finite chain, these density matrices can only
involve the ground state vectors for the finite chain. Using the lemma above this
implies that there are four by four matrices atj and α o such that

ij

jIn these sums ij and k all run from 1 to 4. The states \jjk are not orthonormal, so
the matrices atj and a^ do not have all the properties they would have if we used an
orthonormal basis, but this does not affect our proof.

For i Φy , \(φi9 φj)\ = 1/3. Thus i +j implies

which implies

ω(O)-Σatt(ΨΪ,Oψϊ)
i

Similarly,

< 12 3"2(L-°

The definition of the ck and the properties of the observables Ok imply that
ωφi) = Σkckω(0ι). Thus if we take 0 = Ot in the above bounds we find that
\an - άu\ is of order 3 " 2 ( L - 0 . Thus \ω(0) - £fccfccofc(O)| is of order 3"2 ( L-°. We
can take L as large as we like, so this proves the theorem. |

2.4. A Variatίonal Calculation. There is a simple variational calculation which
qualitatively recovers the phase diagram (Fig. 1.1) of the Hamiltonian Hx and the
Z 2 x Z2 symmetry breaking picture discussed in Sect. 2.2. The success of our simple
calculation indicates that the nonlocal unitary transformation provides a natural
viewpoint for studying the Haldane gap phenomena. We believe that the unitary
also provides a good starting point for developing approximate theories for the
Haldane gap.

Let φ = α(0) + £>( + ) + c( —) be a state on a single site, and Φ = ®ίφ be the
state on the whole lattice obtained by tensoring together copies of the state φ at
each site. We shall take Φ as our variational state, and minimize the energy
expectation value of H1. It is crucial that we use the transformed Hamiltonian
rather than the original one here.

By an explicit calculation using (2.4), (2.5), we find

= (Φ,H1Φ)

= (\a\2 + \b\2 + \c\2y2{ - 2Rφ2(b2 + c2)) - 2\a\2(\b\2 + \c\2)

- λ{\b\2 ~ \c\2)2 + D ( | α | 2 + \b\2 + | c
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-2

(c)

Fig. 2.1. Typical energy landscape encountered in the variational calculation of the ground state
of Hx. The expectation value of the energy is plotted against the variational parameters b/a and
c/a. a. The large D phase; λ = 0, D = 4. There is a unique minimum at the origin, which preserves
the symmetry, b. The Ising phase; λ = 4, D = 0. There are two minima at b/a, c/a= ±oo,
corresponding to the breaking of half of the Z 2 xZ 2 symmetry, c. The Haldane phase; λ = 1,
D = 0. There are four minima, indicating the full Z 2 xZ 2 symmetry breaking
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λ

Fig. 2.2. The phase diagram for H1 obtained by the variational calculation. It contains the
Haldane phase (labelled H), the antiferromagnetic Ising phase (labelled I), and the large-D phase
(labelled D). This qualitatively recovers the phase diagram of Fig. 1.1

It is clear that a minimum of E(a, b, c) is attained when a, b, c are all real. When we
minimize £(α, fr, c), we find that the number of states at which the minimum occurs,
i.e., the number of variational ground states, can be one, two or four depending on
the values of the parameters in the Hamiltonian. Figure 2.1 shows typical energy
landscapes in each of the three cases. In this figure we have plotted E(a, b, c) as
a function of b/a and c/a.

i) The large-D Phase: In the region D > 4, D > λ > 0, we find that φ = (0) is the
unique variational ground state (i.e., minimizer of the energy expectation value).
This state does not break the Z 2 x Z 2 symmetry at all.
ii) The Ising Phase: In the region 2λ - D > 4, λ > D, λ > 0, we find two distinct

variational ground states, φ = | + > and φ = \ — ) . These states breaks half of the
Z 2 x Z 2 symmetry, i.e., the rotation by π about the x axis,
iii) The Haldane Phase: In the region D < 4, 2λ — D < 4, λ > 0, we find there are
four different variational ground states, φ = α|O>±jδ| + >, φ = α|0> + j8| — >,
where α = y/(4 + D - 2λ)/(S - 2λ\ β = J(A - D)/(8 - 2λ). They clearly break
the full Z 2 x Z 2 symmetry. These variational ground states at the Heisenberg point
X = 15 D = 0 are the exact VBS ground states of the solvable model discussed in the
previous subsection. Given the fact that the unitary U transforms the VBS states into
simple tensor product states, this coincidence is not surprising since the SU(2) in va-
riance requires <(Sf)2> = 2/3 and thus uniquely determines the coefficients α and β.

Figure 2.2 shows the phase diagram that results from this variational calcu-
lation. It shows a striking similarity with the expected diagram in Fig. 1.1.

3. String Order Parameters and Random Loop Representation

3.1. Main Results. In the present section, we study the den Nijs-Rommelse string
correlation functions for S = 1 quantum spin chains. The main goal here is to
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establish the bound between the string order parameters and the Neel order
parameters. To prove the bound, we develop a stochastic geometric representation
of the spin chain. Relations between the string order parameters and percolation
phenomena in the representation are also discussed.

We consider a finite chain of length L with open boundary conditions, where
L is a finite integer. As in the previous sections, a "configuration" σ = {σj will
mean a choice of σt = — 1, 0, or + 1 at each site i, and Φσ denotes the eigenstate
with SfΦσ = σιΦσ.

We consider the antiferromagnetic Hamiltonian with uniaxial anisotropy

H = Σ SfSf+1 + SfSUi + λSϊSx

i+1 + D{Sl)2 , (3.1)
i

where λ ^ 0. This is precisely the Hamiltonian Hί in the introduction. We denote
by ωL( ) the ground state expectation value in the finite chain. We shall prove the
following inequalities between the string correlation function and the standard
antiferromagnetic correlation function.

Theorem 3.1. In the ground state of the Hamiltonian (3.1) with λ ^ 0, we have

ωL(-S?expNπ ' £ SMSJj £ |ω L ((-1)"- "S?SJ)| (3.2)

for any i, j and oc = x,y, z. For the antiferromagnetic correlation function, we have

ω L ( ( - l ) " - "SfSJ)^0 (3.3)

for oc = x, y.

By letting L-+ oo and \i—j\-+oo in the above inequalities, we get the
following bounds which were claimed in the introduction.

Corollary 3.2. The string order parmeters and the Neel order parameters satisfy

where a = x9 y or z.

Remarks.
1. For the antiferromagnetic correlation function in the z direction, we do not
prove the bound (3.3). This bound may be violated when D is very large.
2. Our proof of the theorem requires open boundary conditions for some technical
(but essential) reasons. We could prove the theorem for a periodic chain with an
even number of sites if we knew that the (finite volume) ground state had £ f Sf = 0.
This can be proved if i) λ ^ 1, D ^ 0, ii) - 1 < λ ^ 1, D ^ 0, or iii) D - 2λ ^ 4.
The proof of cases i) and ii) is a straightforward extension of the method used in
[5, 35], while case iii) is proved using the random loop representation [60].
3. It is straightforward to extend our theorem to the Hamiltonian

H = Σ Ji(SfSf+1 + SϊShi + λiSfSϊ+1) + Dt(Sf)2

i

with site dependent couplings Jt > 0, λt ^ 0, and Df. But the proof fails if the
Hamiltonian contains a nonnearest neighbor interaction or a biquadratic term

2
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3.2. Random Loop Representation. In order to prepare for the proof of the
theorem, we develop a random loop representation for the ground state.
The representation follows the standard philosophy of path integrals. In a finite
system, the ground state expectation value can be realized as the zero temperature
limit of the Gibbs state,

Ύr(Ae~βH)
ωdΛ) ΪZ

We use the standard path space formula [8, 18, 53, 44] to represent the above
expectation value as that of a classical system. From the Lie product formula, we
have

e-l"1 = lim (TxyTzr» ,
N-»oo

where the "time evolution operators" Txy, Tz are defined by

= Π Γ1 - ^ (S+

We let Nβ be a finite even integer, and study the expectation value

ωL,β,N(A) = — ! — Tr(A(TxyTz)^) , (3.4)
^L,β,N

where

β (3.5)

Note that we have
ωL(A)= lim lim ωLfβ,N(A)

iV->oo

for any local observable A. We shall prove (3.2), (3.3) for the expectation value
ωuβiN(A). The resulting bounds are uniform in N, Nβ and L, and thus are also
valid in the limits N, /?, L -• oo .

By inserting the complete basis Φσ, we can rewrite ZLtβtN as

ZL,P,N= Σ Π (Φσ τ + 1 / , , (M)Φ, f ) , (3.6)
{σt}τ=0,l/N,...,β-ί/N τ = 0

where στ is a classical spin configuration indexed by τ = 0, 1/JV, 2/AT, . . . ,
β — ί/N, β. We impose periodic boundary conditions (in the temporal direction),
σ0 = σβ9 and sum στ over all the classical spin configurations for each τ. As usual, it
is convenient to interpret i and τ as spatial and temporal coordinates, respectively,
of an L x β space-time lattice. The lattice spacing in the spatial direction is 1 while
that in the temporal direction is 1/ΛΓ. Then the summation in (3.6) can be regarded
as being over all the classical spin configuration {σitt} in the space-time lattice
where σίjτ = 0, ± 1 .

Now we develop a geometric representation of (3.6). For each space-time point
(i, τ) with σUτ + 0, we draw a vertical line of length ί/N which has the pdint as its
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midpoint1, i.e., (i9 τ + 1/2N) — (/, τ - 1/2N). We put an up-going arrow on the bond
if σUτ = + 1 and a down-going arrow if σUτ = — 1.

Next we expand the operator Txy. When a term in Txy acts on a basis state, each
bond may be hit by an operator S^S?+ί, by an operator Si~S[~+l9 or by 1.
A graphical rule to represent these contributions to the matrix element
(Φσ+ι/N, TxyΦσ) in (3.6) is as follows. Each horizontal bond (/, τ + 1/2ΛΓ)
— (i + 1, τ + i/2N) can be occupied by a right-going or a left-going arrow, or left
vacant. Given a graph G of such horizontal arrows, we define operators Oi(G) as
follows. We set O^G) = Sι~Si+1 if the element in G on the bond ( ι , τ + l /
2ΛΓ) - (i + 1, τ + 1/2JV) is a right-going arrow, O^G) = S? S/+1 if it is a left-going
arrow, and O^G) = 1 if it is empty. Then we can write

TxyΦσ) = Σ (φaτ+ίlN, ΓΊ Oi(G)Φσ

\
where G is summed over all the possible graphs of horizontal arrows.

We have constructed a graph Γ which is a collection of vertical and horizontal
arrows. See Fig. 3.1 for an example of a classical spin configuration on the
space-time lattice, and the corresponding graph Γ. (We have omitted the arrows in
the figure.) Now (3.6) can be rewritten as

where Γ is summed over all the possible graphs. Note that Γ satisfies a self-avoiding
condition in the sense that each bond in the lattice can be occupied by at most one
arrow in a graph Γ. It also turns out that the only graphs Γ we should take into
account are those satisfying a kind of "current conservation."

Lemma 3.3. The weight W(Γ) is nonvanishing if and only if, at each space-time point
(i, τ + 1/2JV), the numbers of incoming arrows and outgoing arrows are identical

t o o o + o o
0 ^ 0 0 + 0 0

o o-to
0> 0 0> + 0 +
o ootj-o

0 0 0
^•F+o o o-pb o

Fig. 3.1. A typical space-time configuration of classical spins, where we regard the horizontal and
vertical axes as spatial and temporal axes, respectively. We draw closed loops which show the
time-evolution of the nonzero spins to construct the random loop representation
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Proof. The statement follows easily from the construction of the graphic expansion

and the fact that ((s)h Sf (s'X) = ((A, Sf M ) = yfeδ,,s< + x for 5, s' = - 1, 0,1. |

A graph Γ which satisfies the above "current conservation" can be uniquely
decomposed into a union of loops as Γ = y1 u . . . u γN, where we do not allow
a loop ya to have self-intersections. (An 8-shaped graph, for example, is regarded as
two loops.) We denote by each ya an unoriented loop, and represent its orientation
by an accompanying parity variable pa = ± 1. For a reason which will become
clear later, we use the following procedure to determine pα. Suppose that we are
given a graph Γ of oriented loops. Take a loop γa, and pick an arbitrary point (i, τ)
on it. The classical spin σUτ at the point must be either + 1 or — 1. Let Nitt({ya})
be the number of vertical bonds in {yα} that cross the line (1/2, τ) - (ί - 1/2, τ). (We
assume that i = 1, L are the boundary sites.)

Lemma 3.4.

pa = (-ir^y »σitt. (3.7)

is independent of the specific choice of the point (i, τ) on ya.

Proof. Given (/, τ)ey α , let (j, τ) be the left-most point on yα with the same τ. The
loop ya crosses the line (j + 1/2, τ) — (i — 1/2, τ) an even number of times if
0i,τ = σj,τ> and an odd number of times if σUτ = — σ hτ. This is because the
up-going and down-going arrows alternate in a constant τ slice of the oriented loop
γa. All the other loops cross the line (j + 1/2, τ) — (i — 1/2, τ) an even number of
times. Thus we see that

Next we shall see that (3.7) gives the same value for an arbitrary point (fe, τ')
which is the left-most point in ya for a fixed t'. Note that our space-time lattice has
a cylindrical topology, so a self-avoiding loop on it must have the winding number
0 or ± 1 . Any loop yβ (α Φ β) with the winding number 0 crosses the line
(1/2, τ') — (k — 1/2, τ') an even number of times. A loop yβ with the winding
number + 1 crosses the same line an even number of times if it is right of γΛ9 and an
odd number of times if it is left of ya. Thus the definition of pa is independent of
{Kτ'). I

Now we can rewrite the representation (3.6) as

ZL,β,N=Σ
{P.}

where {ya} is summed over all the configurations of unoriented loops, and {pα}
over all the ways of assigning orientations to the loops. We have factorized the
whole weight as W{Γ) = ^({yα})^{ra}({Pα}) The weight U({ya}) comes from the
operator Txy and the D-dependent part of Γz, while V^({pa}) from the in-
dependent part of Tz. It immediately follows from the construction of the geometric
representation that

) = Π ( - ^
where Nhoτ is the number of horizontal bonds and iVvert the number of vertical
bonds in {yα}. Note that the weight U({γa}) is nonnegative because dny loop
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contains kn even number of horizontal bonds. As for the other weight, we have the
following.

Lemma 3.5. The weight V{ya}({p<x}) c a n be written as

Vb.)({Pa}) = expf Σ •/«.«• P.P. ) , (3.10)
\α, α' /

where the sum is over all pairs of loop indices α, α' including the case α = α'. Here

J<x,<x' = — x ( # of horizontal bonds that connect ya and y'Λ)

for 0L = a' and

J<x,<x = τ ; X ( # of horizontal bonds that connect two points on γa).

In particular, we have Jα > a> ̂  0 /or any α, α'.

Proo/ Note that, in terms of the classical spin configuration [σUτ], the weight can
be written as

V{γa]({pa}) =

Suppose (ί, τ) e yα and (i + 1, τ) e yα>. Then we have N i + 1>t({yα}) = NUτ({ya}) + 1,
and hence pα/v = — σi 5 τ σ ί + l 5 τ by (3.7). Summing up the contributions from all the
bonds connecting ya and γf

a9 we get the desired expression for Jαα/. |

It should be noted that the expression (3.10) can be regarded as the Boltzman
factor of a ferromagnetic Ising model where the parity variable of each loop plays
the role of an Ising spin. We used a somewhat involved definition of pa to implicitly
perform a local gauge transformation to make the model ferromagnetic. Note that
this gauge transformation is closely related to the nonlocal unitary transformation
discussed in the previous section. This ferromagnetic property is essential for our
proof of the desired bounds.

Since the statistical weights U({γa}% V^ ({pa}) are nonnegative, we can make
use of probabilistic concepts. The quantity

ProbL>/J,N({yα}) = — — U({ya}) £ VM({pa}) (3.11)
ΔL,β,N {Pa}

can be interpreted as the probability that a loop configuration {ya} appears.

3.3. Proof of the Bounds. We shall construct representations for the expectation
values of various operators, and complete the proof of Theorem 3.1. First we
investigate the order parameters in the z direction.

Consider an observable which can be written as F({Sf}), where F is an
arbitrary real polynomial. Inserting the complete basis into the expectation value
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(3.4), and noting that F({Sf})Φσo = F({σuo})Φσo, we get

β-l/N

ωL,β,N(F({Sf})) = Z£,iN Σ Π (Φστ+llNΛTxyTz)Φσ)(ΦσυNΛTxyTz)F({Sf})ΦJ
{στ} τ = l / N

y«}) ΣF({σi.o})V{ym)({pa}). (3.12)
M {Pα}

The classical spin variables {σuo} can be expressed in terms of pΛ as

σι.o = (-ira{y ))P*(i,o), (3.13)

where α(i, 0) denotes the index of the loop to which the space-time point (ί, 0)
belongs. We set pa{i, 0 ) = 0 if (ί, 0) does not belong to any loop.

Since the weight V{ya]{{pa}) can be regarded as the Boltzman factor of an Ising
model, it is natural to define the corresponding expectation value by

where F is an arbitrary function of {pa}.
By putting together (3.4), (3.8), (3.11), (3.12), and (3.14), we finally get the desired

random loop representation

ωL,PtN(F{{Sϊ})) = Σ Prob L ,^({yJ)<F({σ, 0 })> { 7 , } , (3.15)
{ya}

where we use (3.13) to interpret F as a function of {pa}. It is interesting that the
right-hand-side of the above representation can be regarded as the expectation
value in a random Ising ferromagnet, in which the parity variables {pa} play the
role of the Ising spins, and the random loop configuration {y^} determines the
random lattice.

We now apply the representation to investigate the properties of the string
correlation function. We note that

- Sf exp in Σ Sk Sj φ*o = ~ σu o exp in Σ σκo) σjt 0 Φσ

\ k=i+l / \ k=i+l

— P<x(i,O)Pa(j,O)Φσo

Therefore the representation (3.15) for the string correlation function becomes
extremely simple,

( ( j^
a>Ltβ,N\ -Sfexpl iπ Σ *

\ \ k = i+l

Moreover, since < }^ is the expectation value of a ferromagnetic Ising model,
Griffiths' first inequality implies

<Pα(ΐ,0)AxO\0)>{yα} ^ 0 .
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We see that (3.16) represents the string correlation function as a sum of nonnegative
terms. Thus we have proved that the string correlation function, and hence the
string order parameter in the z direction are nonnegative.

To compare the string correlation function with the antiferromagnetic correla-
tion function, we write down the representation (3.15) for the standard Sz correla-
tion function,

By taking the absolute value, we see that

= ωLi, iN( -Sfexp/iπ 'Σ SΠS)

which, in the limits β,N-+ oo, becomes the desired bound (3.2) for α = z.
Next we consider the order parameters in the x and y directions. By symmetry,

it suffices to consider only the x direction.
The string operator in the x direction can be conveniently rewritten as

/ j-l \ (_ n\J-i\ ί J-1 \

-Sfexp ίπ Σ Sϊ)S>i = y—^ (S? + Sf) Π Λ (S/+ Sj"),
\ k = ί + l / ^ \fc = £ + l /

where Pk = — exp(ίπSk) is the spin-flip operator which flips the spin at site k.
We will develop a geometric representation of the following quantity:

XL.P.N(UJ) = ZLtβtNωLtβJ- SfexpUπ 'Σ SΛS

β-ί/N

Σ Σ (**,„„, (T
{σ,} τ=l/N

\k = i+l

We follow every step in the previous subsection to get graphs of vertical and
horizontal arrows, and represent the above quantity as

XL.βM) = Σw'{Γ). (3.17)
Γ

The "current conservation rule" stated in the Lemma 3.3 is still valid except for
those space-time points on which the string operator directly acts. At the points
(Ϊ, 1/2) and (j, 1/2), there can be an extra in-coming or out-going current because
the creation-annihilation operators S ± act here. When a current crosses (vertically)
through the horizontal line (ί + 1/2,1/2) - (j - 1/2, 1/2), the direction of the
current is reversed because the spin-flip operators act here. Besides these excep-
tions, any graph Γ with nonvanishing weight W'(Γ) must conserve the current.

An allowed graph Γ can again be decomposed as Γ = w u yί u . . . yN, where
each {ya} is a loop, and w is a walk connecting the space-time points (i, 1/2) and
(j, 1/2). We assume {yα} and w are unoriented and non-self-intersecting (Fig. 3.2).
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7

(1,1/2)

r\
\/

(JΛ/2)

\s

Fig. 3.2. A graph that contributes to the calculation of the string correlation function in the
x direction. Note that the direction of the current is reversed when it crosses the spin flip line
indicated by the shaded line

Note that the weight W'(Γ) is again nonnegative. This is most easily seen by noting
that the sign from Txy associated with the walk w exactly cancels out the factor

We further follow the previous subsection to associate a parity variable pa

(α = 1,. . . , N) with each loop, and a parity variable Po with the walk w. Even
though the topology of the graphs are different from the previous subsection, the
construction (3.7) works consistently in this case also. This is because the anomaly
caused by the current sources at (ί, 1/2) and (j, 1/2) is precisely canceled by the
spin-flip on the line between the sources.

Therefore we arrive at the representation

) , (3.18)

where [/, V are again defined by (3.9), (3.10), and Lemma 3.5 is still valid. Thus
V can be regarded as the Boltzman factor of a ferromagnetic Ising model.

In order to compare the string correlation function with the standard antifer-
romagnetic correlation function, we now repeat the same construction for the
quantity

Σ Π
{στ} t = l / N

It is now straightforward to get a representation
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where the weight W"(Γ) is nonnegative. This proves the nonnegativity of the
antiferromagnetic correlation function (3.3) claimed in Theorem 3.1. We also note
that the graphs Γ summed over here are in one-to-one correspondence with those
summed over in (3.17).

Although an allowed Γ can again be decomposed as Γ = w u γ1 u . . . y^, the
construction of the parity variables {pa} does not extend to this situation. Our
definition (3.7) gives inconsistent values of pa for a loop that crosses the line
(i + 1/2, 1/2) - (j - 1/2, 1/2). For such a loop, we chose an arbitrary point on it
and apply (3.7) to define pa.

Because of this arbitrariness in the definition of pa, Lemma 3.5 need not hold.
As a consequence, the final representation for YLtβtN(Uj) becomes

YL,P,N(IJ)= Σ \U({w,ya})\Σ * W { / U ) > (3.19)
{*,?.} {P*}

where

The interaction Jaa> satisfies | J α , α | ^Λ,«' with J α α ' defined as in (3.10). The
effective Ising model of the parity variables {pa} may not be ferromagnetic in this
situation.

Lemma 3.6.

Σ
{p.}

Proof. Note that the quantities in the inequality are partition functions of Ising
models. By using the identity exp(Jσ) = cosh(J) + σsinh(J) for σ = ± 1, we
expand the partition functions in standard high temperature series. Comparing the
terms corresponding to the same graph using | J α > α Ί ^ «/α,α> w e get the desired
bound. I

By inserting the above bound into the representations (3.18) and (3.19), and
noting that there is a one-to-one correspondence between the walk-loop configura-
tions, we get the desired inequality in Theorem 3.1.

3.4. Geometric Interpretation of the String Order. In [58, 60] a stochastic geomet-
ric picture of the Haldane gap was developed. The point of this work was that the
three phases (the Ising phase, the large-/) phase, and the Haldane phase) of the
Hamiltonian (3.1) can be fully characterized by using the notion of percolation. In
the present subsection, we briefly see how the string order parameters are related to
percolation phenomena.

Theorem 3.7. The string correlation function in the z direction satisfies the lower
bound

( ( \ \

ωl - S f e x p zπ Σ Sk )Sj ^ Prob(ί <->./), (3.20)

\ \ k = i + i ) )

where

Prob(*'<-•./) = lim Σ P r o b ({rα})z(ft 0), (j, 0) e y* for some α)
L,β,N^ oo {yx}
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denotes the probability (in the L, /?, N-+00 limits) that the two space-time points are
connected with each other by a single loop. Here χ(event) is one if the event is true and
zero if it is false. The probability of the basic event {ya} is defined in (3.11).

Proof The inequality follows by taking only those loop configurations {yα} where
the two sites are connected, and noting that (in such a configuration) one has

Poc(i,0)Pa(j,0) — l I

An interesting lower bound for the string order parameter Oaring follows from
(3.20). If we define the percolation probability P^ of our random loop system by

Pi = lim Prob( i^ j )
I i - j I ^ 0 0

we have

r\z -> p2
^string = L 00

The inequality is reminiscent of the picture developed in [58] that the percolation
in the random loop system (formed by + and — states) generates the alternating
order of + and — in the S = 1 quantum antiferromagnet. It is expected that the
percolation takes place in the Ising phase and the Haldane phase, but not in the
large-D phase.

The string correlation function in the x (or y) direction cannot be bounded by
the probability of a simple event. However the geometric representation developed
in the previous subsection suggest an interesting connection between the percola-
tion phenomena and the behavior of the string order parameter in the x (or y)
directions.

In a graph contributing to the quantity Xu βt N(i, j\ the space-time points (z, 1/2)
and (j, 1/2) become sources of flux carried by the bonds. Since flux is conserved (or
changes by two at the spin-flip line) in all the other points, these two points must be
connected by a random walk w consisting of the + and — states. It is likely that
the percolation of the loops formed by + and — is necessary for the string order
parameter in the x direction to become nonvanishing.

However this is not the only geometric condition required. To see this, we
consider different geometric objects. Given a classical configuration on the space-
time lattice, we draw a vertical line of the unit time length through each point with
0 on it. When drawing the horizontal lines, we use the same rule as before but omit
its arrow. Figure 3.3 shows the same configuration as in Fig. 3.1, and the corres-
ponding graph constructed in the new way. There is again a current conservation
rule which says that each space-time point is attached to an even number of lines.
A graph contributing to ZL j βt N consists of unoriented closed loops formed by the
0 states.

If we apply the new geometric construction to the quantity XL,P,N> w e find that
the points (i, 1/2) and (j, 1/2) again become sources of 0-lines. Thus we must have
a random walk of 0 states connecting these points. This suggests that the percola-
tion in the new geometric system of 0 states is also necessary to get a nonvanishing
string order in the x direction. It is expected [58] that the percolation of the 0-loop
system takes place in the large-D and the Haldane phase, but not in the Ising phase.

In the previous section, we have characterized the Haldane phase by non-
vanishing string order parameters in both the z and x directions. The above
observation reveals that this characterization is perfectly consistent With the
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Fig. 3.3. The same classical spin configuration as in Fig. 3.1 is shown, but now the random loops
formed by 0 spins are drawn. In the Haldane phase the ± loops (drawn in Fig. 3.1) and the
0 loops (drawn here) both percolate

percolation picture in [58], where the Haldane phase was characterized by the
coexistence of percolation of ± loops and percolation of 0 loops.

4. Rigorous Perturbation Theory for Quantum Spin Systems

4.1. Statement of Results. In the present section we study Hamiltonians that are
small perturbations of Hamiltonians which are trivially diagonalizable. When the
unperturbed Hamiltonian is a sum of independent terms and the unperturbed
ground state is unique and has a gap, we can allow an essentially arbitrary finite
range perturbation if it is sufficiently small. In this case we prove there is a unique
translation invariant ground state, a finite correlation length and a nonzero
excitation gap. For unperturbed Hamiltonians which have multiple ground states
related by a symmetry group, we can allow perturbations which preserve this
symmetry. We prove that each of the unperturbed ground states gives rise to
a ground state for the perturbed model. These ground states have a finite correla-
tion length and a nonzero excitation gap.

Theorems 2.3, 2.4 and 2.5 follow from the results of this section. While these
applications are all one-dimensional, the perturbation theory of this section and
the following section is valid in any number of dimensions. Some examples of
applications of the general theorems to models other than the spin 1 chains are
briefly discussed below. As we emphasized in the introduction, other authors have
done similar rigorous perturbation theory for a variety of quantum spin systems.
See the introduction for references.

We consider an arbitrary translation invariant infinite lattice whose sites are
denoted by ί, j , . . . . On each site we have a finite dimensional state space. A "site"
in the present section need not be an atomic site of a quantum spin system. For
example, a pair of strongly coupled (atomic) sites in the dimerized Hamiltonian H2

in the introduction is treated here as a single "site."
We consider the following two classes of systems.
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A: Unique Ground State. The models in this class have translation invariant
Hamiltonians of the form

H = V + εP ,

where Vt acts only on the spin at site i. We assume that Vt restricted to site ί has
a unique ground state. We normalize Vt so that the ground state energy is 0, and
denote by g the first nonzero eigenvalue (i.e., the gap) of Vt. The only conditions on
the perturbation P are as follows. Po is an arbitrary hermitian operator whose
support is a finite set including the origin 0. Pt is obtained by translating P o so that
the origin is mapped onto the site i.

B: Multiple Ground States. The models in this class have translation invariant
Hamiltonians of the form

H=V+εP,

V=Y Vih P = y ? h (4.2)
/ J IJ ? / i I ' \ /
i,j ί

where ij is summed over all the nearest neighbor pairs of sites. As in class A, the
perturbation Po must have finite support, and P t is the translation of P o . We assume
that there is an orthonormal basis {eJ?}jUi for the single site i and an integer
m^d, such that V^ is diagonal in the basis {ef ® eft} and the ground state
subspace of V^ is spanned by {eμ

ι) (x) eft}μ=ίt... ? m . If we normalize the ground
state energy to zero, we have

= 0 i f μ = μ ' ^ m

for some positive constant g. The unperturbed model with ε = 0 has m ground
states |μ> = (8)/^° with μ = 1, . . . , m. Finally, we require that F and P are
invariant under a symmetry group that acts transitively on the m unperturbed
ground states of the model.

In the following theorems and throughout the present section, an infinite
volume ground state ω( ) will mean a state for the infinite system which satisfies

for an arbitrary local operator A. This is a fairly standard definition in the
mathematical literature. Note that we used a slightly different definition when we
discussed the ground states of HYBs in Sect. 2. See the remark in [4, page 493] for
the relation between these two definitions.

Theorem 4.1. Consider a model in class A. There is a positive constant ε0 such that
for any ε with \ε\ ̂  ε0 the model has a unique translation invariant infinite volume
ground state.

Theorem 4.2. Consider a model in class B. There is a positive constant ε0 such that for
any ε with \ε\ ̂  ε0 the model has (at least) m distinct translation invariant infinite
volume ground states. When ε = 0 these ground states equal the states |μ> = ®i^μl)-
If the Hamiltonίan H has additional symmetry under which the unperturbέd ground
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states |μ> are invariant, then the m ground states are also invariant under this
additional symmetry.

We denote by ω(^) the expectation value in the above ground state of a local
observable A. We also define the ground state energy per spin by

£ 0 = - l i m lim - i - T r e " ' * , (4.4)
Λ-00 0-00 β\Λ\

where H denotes the Hamiltonian of the corresponding finite system with A sites.

Theorem 4.3. Consider a model in class A or B. There is a positive constant ε0 such
that for any ε with \ε\ ̂  ε0 we have the following.

i) The ground state energy per spin Eo is an analytic function of the parameters in

Pi.

ii) Let A be an arbitrary local observable. The expectation value ω(A) is an analytic
function of the parameters in P^
iii) Let A and B be arbitrary local observables which contain the origin of the lattice
in their supports, and let Bt be the operator obtained by translating B so that the
origin is translated to the site i. Then we have

\ω(ABt) - ω(A)ω(B)\ ^ CACB exp( - \i\/ξ0)

(in one of the m ground states in the case of class B) where \i\ is the graph theoretic
distance between the origin and the site ί. CA and CB are positive constants that
depend on A and B, and ξ0 is a finite constant that does not. Thus the ground state has
a finite correlation length.
iv) There is a positive constant γ such that if A is any local observable with ω(A) = 0
then

ω(A*[H, A]) ^ γω(A*A) .

(In the case of class B, ω is any one of the ground states of Theorem 4.2.) Thus the
ground state has a nonzero excitation gap.

Remarks.
1. One can extend class B so that the interaction V includes general π-spin
interactions which allow the standard Peierls argument.
2. We have restricted ourselves to translation invariant models. But our expansion
and the convergence proof work in models without translation invariance as well.
4.2. Applications. The theorems above are quite general. Before proving them, we
list some examples to which they apply.

i) Large-D Hamiltonian. Consider the Hamiltonian Hx in the introduction and its
unitary transformation Ht. These Hamiltonians fall into class A if we regard
ΣiD(Sϊ)2 as an unperturbed Hamiltonian V and the rest of the Hamiltonians as
perturbations. Thus we can show the convergence of the rigorous perturbation
theory when the uniaxial anisotropy D is sufficiently large (compared to 1 and λ).
This proves Theorem 2.3.

ii) Large-λ Hamiltonian. We again consider Hλ and Hl9 but we now regard
± ΣiλSf Sz

i+! as unperturbed Hamiltonians. Then Hx and H1 fall into class B. The
perturbation theory works when λ is positive and sufficiently large (compared to
1 and D). This proves Theorem 2.5.
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One might ask whether we are able to prove the existence of a Neel order in the
ground state of Hx when λ > 0 is not large, but D is negative and its absolute value
is large. In this region, we should regard £λSfSf+ 1 + D(Sf)2 as the unperturbed
Hamiltonian. The perturbation J^SfSf+1 + SjSy

i+1 is not small in norm, but is
effectively small since there are no matrix elements between the ground states. One
must always go through an excited state (which costs an energy roughly equal to
\D\) to get from one ground state to the other, and this fact should assume the
convergence of the cluster expansion. This model does not belong to class B, but it
is not difficult to modify the methods of this section to handle this model.

iii) Dimerίzed Hamiltonian. First we describe a general class of models which can
be handled by our theorem. Consider an arbitrary translation invariant lattice, and
let B = {(inj'n)} be a set of bonds (indexed by ή) with the property that each site in
the lattice belongs to exactly one of the bonds in B. Let Vn be an arbitrary
Hamiltonian which acts only on the spins at sites ίnjn and has a unique ground
state. Consider an arbitrary Hamiltonian of the form

H = Σ Vn + βP
n

which is of finite range and invariant under any translationj hat leaves B invariant.
Such a model falls into class A if we regard each bond in B as a "site." Thus it has
a unique ground state, a finite correlation length and a gap, provided that ε is
sufficiently small.

In a chain, we let B = {(2n, In + l)}nez Consider the Hamiltonians H2 and
H2, and let Vn be the parts of the Hamiltonians corresponding to the interactions
between sites In and 2n + 1. Then H2 and H2 fall into the general class described
above. This proves Theorem 2.4.

Note that there is no reason to limit ourselves only to dimerized models.
A "site" can be a collection of any number of atomic sites, provided that the
Hamiltonian on the "site" has a unique ground state.

iv) Strong Magnetic Field. Let Ho be any finite range translation invariant
Hamiltonian. Then the Hamiltonian

falls into class A if we regard Ho as a perturbation. The rigorous perturbation
converges for sufficiently large magnetic field h, and we can show that the model
has a unique ground state and a gap. Note that we do not have to make any
technical assumptions (other than finite range) on the unperturbed Hamiltonian
Ho.

4.3. Polymer Expansion. To prove the theorems, we first develop a polymer
expansion. Our expansion is based on the standard idea [8, 18, 44, 53, 61] of
expanding the exponential of an operator by using the Lie product formula. We
first develop the expansion for a finite volume A. All the estimates will be uniform
in the volume. An orthonormal basis for the state space of A is given by ®ieA^μi

with 1 ^ μι-^ d. We will use φ to denote elements of this basis.
Consider a model in class B. In the following H will denote the sum of the terms

in the Hamiltonian whose support lies entirely in A. A model in clasfe A can be
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treated in a similar (and simpler) manner. A simple variant of the Lie product
formula says that

Tr(exp( - βH)) = Urn Tr j ^
= lim

ΛΓ^oo φ t

J"}

iV^oo φ t

Here </> is shorthand for φ1/Ni Φ2/N> •> Φβ Each φk/N is summed over the
orthonormal basis defined above in which the Vt or Vtj are all diagonal. Because of
the trace we have φ0 = φβ. The product over t is over the values 1/JV, 2/N, . . . β.
(We assume for convenience that Nβ is an integer.)

We further expand this expression by expanding the 1 — (ε/N)P term. At each
time t we can either take one of the terms in — (e/iVJ^P/ or simply the 1. So for
each time t we can either choose a site i (which labels Pt) or no site at all. Let n be
the number of times at which we choose a site, let ί l 9 ί2, . . . , £ „ be the times and let
iί9 i2, . . , in be the sites. We refer to a choice of φ9 tl9 . . . , tn9 il9 . . . , in as
a configuration and denote it by C The weight of C is zero unless φt-i/N = Φt for
£ £ {ίi, *2> > in}- I*1 ^ i s case the weight is

W{C) ̂ ψφue-WWφt) ή ^ - 1 / W s - ^ P , A ) (4.5)

We now have

Tr(exp(- i?H)) = lim
N-^oo C

Next we define the support, s(C\ of a configuration C. Loosely speaking, the
support is the part of the space time picture that is not in the ground state. To get
an expansion in the N -> oo limit, and to take advantage of the usual polymer
expansion methods, we introduce a "blocking" in the time direction, τ is a time
scale that will be chosen later. We divide the time axis [0, /?] into intervals
[(/ — l)τ, Zτ]. For convenience we assume that β is a multiple of τ. P f has finite
support, i.e., it acts nontrivially only on a finite set of sites. For each of these sites we
take the unit hypercube in the spatial lattice which is centered at the site, and define
Si to be the union of these hypercubes. So Si is a "thickened" version of the support
set of Pt. For a model from class B, the support set will consist of plaquettes of the
form (ij) x [(/ - l)τ, Zτ] and "boxes" of the form St x [(/ - l)τ, Zτ].

Given a configuration C, the plaquette (Uj)x[(l— l)τ, Zτ] is in s(C) if φt

restricted to sites i and j is never in any of the m ground states of VUj for
(Z - l)τ ^ t ^ Zτ. The box St x [(/ - l)τ, Zτ] is in s(C) if i equals one of the i] with
tj G 1(1 — l)τ, ίτ], i.e., if the operator Pf appears during the time interval. (In a model
in class A, we replace plaquettes by (time-like) bonds of the form {i} x [(Z — l)τ, ίτ].
The bond is in s(C) if φt at site ί is never in the ground state for (Z - l)τ ^ t ^ Zτ.)

The most important property of the above construction is the following.

Lemma 4.4. If the space time site (i, t) is not in s(C) then φt at site i is in one of the
ground states.
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Proof. Let / be such that t e [(/ - l)τ, ίτ]. The plaquette (ij) x [(/ - l)τ, Jτ] is not
in s(C) since (i, ί) ̂  s(C), so (/>, at site i must be in a ground state for at least part of
the interval [(/ - l)τ, ίτ]. But to excite φt out of this ground state into one of the
excited states, one must hit it by an off-diagonal element of the Hamiltonian, which
is the perturbation sP. This is impossible because no boxes intersect with the bond
i x [ ( / - l ) τ , / τ ] . I

In a model in class B, a space time point not in s(C) is in one of the ground
states, μ = 1, . . . , m. It is clear from the definition that two space time points not in
s(C) with different μ are separated by a wall of s(C). Thus all the space time sites in
the same connected component of the complement of s(C) have the same ground
state. Therefore (in class B) we extend the definition of the support set s(C) so that it
also specifies the ground state indices μ for each connected component of the lattice
sites not in s(C). We will refer to this as simply a "ground state assignment."

Let X be a possible support set, i.e., a set which equals s(C) for some C. Define
the weight of X to be

W(X) = lim Σ w(c) ( 4 6 )
N^oo C:s(C) = χ

Then we have

Tr(exp(- βH)) = £ W{X).
X

The following two properties of the weight W(X) enable us to use the standard
machinery of convergent polymer expansions.

Lemma 4.5. (factorization): Let X be a possible support set and let X = χx u χ2

u . . . u χn be the decomposition of X into connected components. (We regard two
elements in X as connected whenever they share a common space-time site.) A connec-
ted component χ{ is called a polymer. In class B, a polymer carries information about
the ground state assignment. Then

W(X) = Π W(Xt) (4.7)
£ = 1

Proof. Let C be a configuration with s(C) = X. Let C< be the configuration which
agrees with C on χ̂  and equals the appropriate ground state off of xt. Then
s(Ci) = Xi. Thus there is a one to one correspondence between C with s(C) = X and
Ci, C 2 , . . . , Cn with s(Ci) = Xi. Furthermore, since we have normalized V so that
the ground state energy is zero,

W{C) = Π W(Ct) .
ί = l

This proves the lemma. |

Lemma 4.6. Given μ > 0 we can choose τ and ε0 so that | ε | ^ ε 0 implies

\W{χ)\ ^e~μlχl . (4.8)

For a model in class A, \χ\ is the number of bonds and boxes that make up χ. For
a model in class B, |χ | is the number of plaquettes and boxes in χ plus the number of
bonds in χ which are associated with sites in the boundary of A.
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We will prove Lemma 4.6 in Sect. 4.5. Here we give a heuristic explanation of
why it should be true. If a plaquette (ij) x [(/ — l)τ, /τ] is in s(C) then the part of
W(C) that comes from the diagonal terms in the Hamiltonian should contain
a factor at least as small as e~gτ. This is small if we take τ large enough. If a box
appears in s(C\ then there is a corresponding factor of ε in W(C). Thus there is
a small factor associated with each plaquette and box in s(C). We still must control
the sum over all C such that s(C) = χ. In particular the factor of ε associated with
a box can occur anywhere in the box, so it is really a factor of ετ. Thus we will have
to first choose τ large enough that e~0τ is small, and then choose ε small enough
that ετ is small.

Lemma 4.5 implies that

T r ( β " ^ ) = Σ Π w<Xt) ( 4 9 )
XI Xn 1 = 1

The sum is over polymers χ{ which do not overlap with each other. For a model in
class A, (4.9) is the desired polymer expansion. For a model in class B there are
constraints on the χ, arising from the ground state assignments. We return to the
expansion for these models later.

We can develop a similar polymer expansion for the (unnormalized) expecta-
tion value of an arbitrary local operator A. For a model in class A this is given by

WA(X) can be decomposed as

WA(X) = WA(χ(A)) f[
i=l

where χ(A) is the collection of polymers (in X) that overlap with the support of A at
time t = 0, and χx, . . . , χn are the rest of the polymers in X. The weight W(χi) is the
same as that appearing in (4.7). Corresponding to the bound (4.8), the weight
WA(χ(A)) satisfies

\WA{χ(A))\^\\A\\e-^Λ)^^ (4.10)

with the same μ, where vA is the number of sites in the support of A. Suppose that
A is a product of two local operators B, C whose supports do not overlap. If χ(B)
unioned with the support of B and χ(C) unioned with the support of C are disjoint,
then we have

WA(χ(A))=WB(χ(B))Wc(χ(C)).

Now let us discuss a model in class B. In the polymer expansion (4.9), there is
the global constraint that the ground state assignments of the χt must be com-
patible. We will eliminate this constraint by introducing equivalence classes of
polymers. We will construct the m different ground states by modifying the
Hamiltonian at the boundary. Define for a volume A

H"Λ = Σ Vι.i + e Σ Pi + Σ Pΐ •
i,j e A i: supp(P f) <= A iedA
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The sum over ij is over nearest neighbor pairs in A. dΛ denotes the sites in A which
have a nearest neighbor that is not in A. Pf denotes the orthogonal projection
whose kernel consists of the states which are in the ground state μ on site i. We let

ω%β(O) = Tr(O e x p ( - j8ff5))/Tr(exp(- βHft)

and ωμ(O) = l i m ^ ^ \imβ^^ω^jiO). Note that we let β -> oo first. (The existence
of the limits will follow from the expansion.) For models in class B we modify the
definition of the support, s(C), of a configuration C. If a site at the boundary of A is
never in ground state μ during the time interval [(/ — l)τ, Zτ], then we include the
line segment i x [(Z — l)τ, Zτ] in s(C).

Let X be a support set including the ground state assignment, and let
X = χί u χ2 u . . . u χn be its decomposition into a union of polymers. Each χf

inherits a ground state assignment from I in a natural way. We think of the
configuration as being in ground state μ outside of A. Then each polymer χ has
a unique exterior component; we will refer to its ground state as the exterior
ground state. If χt completely encloses Xj then the exterior ground state of Xj is
determined by χ{. This forces us to introduce equivalence classes in the following
way.

The symmetry group acts transitively on the m ground states, so there are
unitary operators Uμ which leave V and P invariant and send ground state 1 into
ground state μ. If χ and χ' do not intersect dΛ9 then we define χ and χr to be
equivalent if the following are true. First χ and χ' must be identical as geometric
objects. Let μ and μ' be the exterior ground states of χ and χf. Second, the ground
state assignment of χ' must be equal to that obtained by applying U^U'1 to the
ground state assignment of χ. This definition is an equivalence relation since
Uμi Uμi Urn Uμ^ = U' μι U ~^. The key point is that if we are given an equivalence
class χ and a ground state for the exterior of χ, then there is a unique element of
χ whose ground state on the exterior is the specified one. If either of χ or χ'
intersects dΛ9 then we define them to be equivalent only if they are identical.

To eliminate the global constraint from (4.9), we must show that two support
sets from the same equivalence class have the same weight. At first glance this may
appear to be a trivial consequence of the symmetry assumptions. (In the classical
case it is.) However, we had to choose a basis to do the path space expansion and
that breaks the symmetry. If we can find a basis for which the action of the unitary
operators from the symmetry group is simply to permute the basis vectors among
themselves, then the desired equality is indeed trivial. Unfortunately, in the
example we are most interested in, the Haldane phase studied in Sect. 5, this is not
the case. We prove the following lemma in Subsect. 4.6.

Lemma 4.7. If χ and χr belong to the same equivalence class, then

W(χ) = W(χ') .

Let X be a support set which appears in the expansion of Tr(exp(— βHμ

A)). Let
X = χ1 u . . . u χn be its decomposition into connected components. As before we
let χi denote the equivalence class of χt. Recall that the equivalence class χt and the
exterior ground state of χt together determine χ{. Since the ground state outside of
A is fixed to be μ, χl9 . . . , χn determines χu . . . , χn. The χu . . . , χn had to satisfy
the global constraint that their ground state assignments were compatible. There is
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no such constraint on the equivalence classes. Using Lemma 4.7 we get the desired
polymer expansion

Tr(exp(-j8H5))= Σ Π W{χt),

where the only constraint on the χt is that they are disjoint.
For a model from class B, the expansion for the expectation value of an

observable A is a little trickier than in class A. As above we picture the support of
A as being at t = 0. The observable A need not be invariant under the symmetries.
Thus the weight of a polymer that intersects the support of A will depend on the
exterior ground state of the polymer. If there is another polymer that completely
encloses the first polymer and the support of A, then removing this polymer could
change the weight of the first polymer. We define χ(A) to be the union of the
polymers that intersect the support of A and any polymers which completely
enclose the support of A. The weight WA(χ(A)) is then well defined since the ground
state outside of the space time lattice is fixed. It is important to note that if the
polymer χ encloses the support of A and it also encloses the polymer χ', but χf does
not intersect the support of A or enclose the support of A, then we do not include χf

in χ(A). (To do so would be a disaster when we tried to bound WA(χ(A)).)

We must check that we have not enlarged χ(A) so much that we cannot bound
WA{χ(A)) as before. For any integer n the number of polymers with \χ\ = n which
enclose a fixed site is bounded by c^ncn

2 for constants C\ and c 2 . (To see this fix
a line of sites which goes through the fixed site. Any such polymer much contain at
least one site on this line within a distance n of the fixed site.) Thus a bound similar
to (4.10) holds.

4.4. Proofs of Theorems. Let us now outline how to prove the main theorems. We
shall be rather sketchy here because most of the arguments are standard.

A standard combinatoric argument shows that the number of all the possible
polymers which include the origin 0 of the space-time lattice is bounded from above
by c l x l with some finite constant c. It then follows from the bound (4.8) that, for
a given positive constant q < 1, there is ε0 such that the following bound holds in
a model with ε ^ ε0.

M^q. (4.12)

We rewrite the polymer expansion in the last section as

Tr(exp(- βH)) = 1 + Σ Σ w(Xi). W(χn),

where the second sum is over the polymers that satisfy the "hard core condition"
Xi n Xj = 0 f° r * + J Then a standard result in rigorous statistical mechanics is that,
when we have the condition (4.12), we can take the logarithm of the above
expansion [14, 31],

log Tr(exp( - βH)) = Σ Σ ^(Xi) W(χn)ψG{χl9 . . . , χn), (4.13)

ΨΛXi, - - - •> Xn) is the connected part of the hard core interaction. The definition of
φc can be found in [14]. ψc(χi, . . . , χn) is nonvanishing only when the union of the
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polymers χx, . . . , χn is connected. If we denote by /„ the nth term in (4.13), it satisfies
the bound

l (4.14)

where \A\\s the number of sites in the (space) lattice A.
Therefore we get an expansion for the specific free energy.

which is uniformly absolutely convergent in the limits Λ, β -> oo because of the
bound (4.14). This proves the analyticity of the energy stated in part i) of Theorem
4.3.

The rest of the statements are proved by developing similar convergent expan-
sions for various expectation values. For the finite volume Gibbs state

Tr(Λexp(-/?H))

Tr(exp(-/?H)) '

we have the expansion

a>Λ,β(A) =Σ Σ WA(χ(A))W(Xl) . . . JV(χn)φc(lXu . . . , * „ ) ,
n £ 0 χ(A),χί,...,χn

where the n th term in the sum is bounded from above by CAq
n/n, where CA is

a finite constant independent of A and β. Therefore we get a uniformly absolutely
convergent expansion for the expectation value in the Λ, β -> oo limits. The
existence of an infinite volume ground state in Theorem 4.1 and the analyticity of
the expectation value in Theorem 4.3 ii) follow. We construct the m infinite volume
ground states of Theorem 4.2 by using the Hamiltonian which includes the
boundary term Hμ

A. The proof of part iii) of Theorem 4.3 using the convergent
expansion is standard.

To prove part iv) of Theorem 4.3 we first consider the finite volume Hamilton-
ian Hμ

A. Let Eo, El9 E29 . . . be its eigenvalues counted according to multiplicity.
Then

Trexp(-/tff5) = Σ e x p ( - £ £ „ ) .
n = 0

The expansion implies that

Trexp( - βHμ

Λ) = e x p ( - βf+ O(e~vβ))

for some constants/and γ. y is positive and does not depend on A. (The terms in
O(e~γβ) come from terms in the expansion that go all the way around the periodic
time axis.) Comparing these two expressions for the trace, we see that Eo is a simple
eigenvalue and Eγ — Eo ^ y. Let ωμ

Λ = lim/S_ooωίitβ9 so ωμ

Λ is just expectation in the
ground state of Hμ

A. By expanding in eigenstates of Hμ

A, it is easy to show that
Eί — Eo ^ γ implies

ω 5 μ * [ H 5 , A-]) ^ y [ωJ jμM) - \ωμ

Λ{A)\2~\

for any local observable A. Letting A -> oo we obtain part iv) of Thedrem 4.3.
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Finally we show how to prove the uniqueness of the translation invariant
ground state mentioned in Theorem 4.1. Let Qo be an arbitrary local observable,
and Qi its translation. We consider the translation invariant Hamiltonian

Let E(δ) be the ground state energy per spin defined as in (4.4). The main ingredient
of the proof is the following "Feynman's relation" proved in [37] by using
a theorem of Bratteli, Kishimoto and Robinson [13].

Lemma 4.8. Let ω( ) be an arbitrary translation invariant ground state of the
Hamiltonian H. When E(δ) is differentiable in δ at δ = 0, we have

' dδ

We will prove the differentiability of E(δ) for an arbitrary local observable β o

Then the lemma implies the uniqueness of the translation invariant ground state.
To prove the differentiability, we note that the Hamiltonian H(δ) is in class A if we
think of δQi as part of the perturbation εPt. So we have a convergent expansion for
E(δ) if δ is sufficiently small. It follows as above that E(δ) is analytic in a neighbor-
hood of δ = 0.

4.5. Convergence Estimates. To facilitate the control of the sum over all C such
that s(C) = χ in the definition of W(χ), we introduce a "comparison Hamiltonian"

H=-1-ΣPi- (4.15)

Pi is obtained by replacing the matrix elements of Pt by their absolute values. For
a configuration C we let W(C) be the weight we get by using H in place of H in
Eq. (4.5). Clearly, W(C) ^ 0. It is important to note that H contains a factor of 1/τ
rather than the ε found in H.

Lemma 4.9.

C:s(C) = χ

k is a constant that depends on the operator Ph but not on ε or τ.

Proof of Lemma 4.6 given Lemma 4.9. In the proof we assume we have a model
from class B. A model from class A requires some trivial changes in notation and
terminology in the proof. Let C be a configuration with s(C) = χ. Let p(C) be the
number of plaquettes in s(C\ b(C) the number of boxes in s(C) and d{C) the
number of bonds in s(C) which are associated with boundary sites. (So \χ\
= p(C) + 6(C) + d{C)). Recall that a plaquette (ij) x [(/ - l)τ, /τ] is included in

the support set if VV] is never in one of its ground states during the time interval.
A bond i x [(/ — l)τ, /τ] with i e dΛ is in s(C) if the state at i is never in ground state
μ during the time interval. These definitions, hypothesis (4.3) and the addition of
the boundary term ΣiedλPi t 0 the Hamiltonian imply
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We also have

n

π
Noting that n ^ b(C) and assuming that |ε|τ ^ 1 and g ^ 1, we conclude that

\W{C)\ ^ ε-gτ{p(C)+d{C))(\s\τ)b{C)W(C) .

We now take

εo = -e~9τ (4.18)

so \ε\ ̂  ε0 implies |ε|τ 5Ξ e~9\ and thus

\W(C)\£t

Using Lemma 4.9 this implies

If we take τ ^ (k + μ)/# and define ε0 as in (4.18), then this proves the lemma. |

Proof of Lemma 4.9. Consider the restriction of χ to t = 0. This gives us a subset χ0

of the spatial lattice, χ also gives us an assignment of a ground state to each
connected component of the complement of χo Let Π(χ0) be the projection onto
the states which are in the ground state specified by χ0 outside of χ0. Let

So I(χ) is the set of sites which are in X at time 0. It(χ) specifies the boxes which are
in X during the time interval [(Z — l)τ, Zτ]. Let

Ht= Σ Pf

We claim that

Σ w(c) = Tr(Π(χo)e~Hle~H2 . . . e~Hβlή . (4.19)
C:s(C) = χ

In the path space expansion of the right side, every term is nonnegative. Each term
in the left side appears in this expansion, so the claim follows.

We now bound the right side of (4.19) by using

ττ(AB)£\\B\\Ύτ(A)9

where A is a positive operator. We take A = Π(χ0) and B = e~Hιe~H2 . . . e~Hβl\
Tr(77(χ0)) is just the dimension of the range of this projection, which equals dn,
where n is the number of sites in χ0 and d is the dimension of the state space at
a single site. To bound ||2J|| we use | | i ί j ^ \Iι(χ)\ \\PQ\\, to conclude
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4.6. Symmetry. In this subsection we prove Lemma 4.7. In many models in class
B we can choose the basis {ef} so that the elements of the symmetry group merely
permute the basis vectors. In this case Lemma 4.7 is trivial. To handle the general
case we develop a representation for the weight that does not involve a choice of
basis.

For a set / of sites in A, define

i,j iel

The sum over i,j is still over all nearest neighbor pairs in A. Next we define

7 : 7 c r /

Lemma 4.10. For vectors φ and ψ the path space expansion of {φ,(e~τH{I))c\jj) is
given by taking the expansion of(φ, e~τH{I)φ) and only keeping the configurations in
which the number of times Pt appears is zero ifiφl and is at least one if i e I.

Proof. (This is a standard inversion trick.) Define L(l) to be the sum of the
configurations in the path space expansion of (φ9 e~τH(I)ψ) in which the number of
times Pi appears is zero if i φ I and is at least one if i e /. We must prove that
(φ, (e~τH(I))cφ) = L(I). Clearly we have

(<M-*H< Jty)= Σ
K: K cz

Thus

(φ,(e-τBV))cΨ)= Σ ( -
J .JczI

= Σ (-l)1'1"'-" Σ
J .J <= / K: K a J

= Σ UK) Σ (-l)1"-'".
K:K c / J K ^ J ^ l

A little thought shows that the sum over J vanishes unless K = /, and so the above
just equals L(I). |

Using the above definition and lemma we can write down an expression for
W(χ) which does not involve an explicit path space expansion. Let / be an integer.
Define I(χ, I) to be the set of sites i such that the "box" St x [(/ — l)τ, /τ] is in χ. So
I(χ, I) tells you where the operator Pt appeared during the time interval (/ — l)τ to
Iτ. If i φ Uje/α o^» t ' i e n ^ e s t a t e a t s ^ t e ι ^ u r ^ n β [(' ~ l)τ> ' τ l i s unchanged. Define
E(χ, I) to be the set of these sites i such that the state is not a ground state and
Gμ(χ, /) to be the set of these sites such that the state is ground state μ. Now let

H(χJ) = H(I(χJ))

m

P{X,D= Π Pf Π Π P?'"> (4.21)
i: ieE(χ,l) μ=l ieGμ(χ,l)

where Pf'μ and Pf are the projections onto the μ th ground state subspace at site
i and onto the subspace of excited states at site i respectively.
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Lemma 4.11.

W{χ) = Tr[P(χ,O)(β"lir^1>)cP(χ, \){e~H^2\ . . . P{χ9β/τ - l)(e-H<*'^)c] .

Proof. The equation for W(χ) follows from the previous lemma and the defini-
tions. I

Proof of Lemma 4.7. The operators Pf and (e~H{χ'l))c are invariant under
the symmetries U^U'1. The operators Pf'μ transform according to
UyU^PΫ'ViUvUp1)'1 = P p ' σ with σ = v if μ = p. Lemma 4.7 now follows easily
from Lemma 4.11. |

5. Perturbation Theory About Diagonally Dominant Hamiltonians

5.1. Statement of Results. In this section we will do rigorous perturbation theory
for a third class of Hamiltonians. This class will include the dimerized Hamiltonian
H2 in the shaded portion of region H of the phase diagram in Fig. 1.2. The results
of this section'will prove Theorem 2.6. In particular we show that in this region of
the phase diagram all of the string order parameters are nonzero in the ground
state of the original Hamiltonian, and the transformed Hamiltonian has at least
four infinite volume ground states. Thus the full Z 2 x Z 2 symmetry is broken.

In the previous section we perturbed Hamiltonians that were completely trivial
in the sense that we could choose a basis in which all the eigenstates of the
unperturbed Hamiltonian were simple tensor products. In this section we will
perturb Hamiltonians for which the ground state(s) are simple tensor products, but
the excited states need not be. Of course, we require some condition on the
unperturbed Hamiltonian. The condition we assume, which we refer to as diagonal
dominance, says roughly that each diagonal entry of the unperturbed Hamiltonian
is greater than the sum of the absolute values of the off diagonal entries in the same
column.

The models we perturbed in Sect. 4 had a correlation length of zero. In this
section, the models we perturb may have a correlation length of order one. We will
introduce a blocking in the space direction(s), with the scale for the blocking chosen
much larger than the correlation length. Using the diagonal dominance condition
and the comparison Hamiltonian technique introduced in the previous section we
will prove that the polymer expansion for this blocked system converges.

C: Diagonally Dominant Hamiltonians. This class of models has a translation
invariant Hamiltonian of the form

H=V+εP

Uj ί

The sum over ij is over pairs of nearest neighbor sites. Here VUj acts nontrivially
only on sites i and j . The perturbation Po acts nontrivially only on a finite set
containing the origin 0, and Pf is the translation of Po by i. The diagonal dominance
condition will only involve V. Note that the perturbation P is essentially arbitrary
(except for the symmetry requirement described below), but of course ε must be
small.
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We assume that there is a basis {ef}d

μ= x for the state space at a single site and
an integer m ^ d such that the ground state subspace of Vitj is spanned by eμ

ι) (x) e]p
for μ = 1, 2, . . . , m. It is important to note that we do not require that this basis be
orthogonal or normalized. We normalize V so that its ground state energy is zero.

Fix a nearest neighbor pair ij and let vμVtPσ be the matrix of Vtj with respect to
the basis ef ® eψ. More precisely,

d

V P^ R) P^ — V 1) pW (x) pti) (Z Ί\
Vi,jep v9eσ — ZJ Vμv,ρσeμ v9 ev W Z /

μ, v = 1

Since the ground state energy is zero, we have vμVtPP = 0 for p = 1, 2, . . . , m and
any μ, v. We say that V is diagonally dominant if

Σ i i W σ i < v , p * ( 5 3 )
μv: μv φ pσ

for any pσ except pσ = 11, 22, . . . , mm. (For these exceptional values of pσ, both
sides of the inequality are zero.) This condition depends on the basis chosen, so it
may hold in one basis but not in another.

Finally we require that Fand P are invariant under a symmetry group that acts
transitively on the ground states of the models.

It is not hard to see that every Hamiltonian in class B of the previous section is
in class C. In this section we will prove for Hamiltonians in class C all the results
that we proved for Hamiltonians in class B in the previous section.

Theorem 5.1. Consider a model in class C. Then there is a positive constant ε0 such
that for \ε\ ^ ε0 all the conclusions of Theorems 4.2 and 4.3 hold.

5.2. Applications. Our main interest in this class of Hamiltonians is that it includes
Hamiltonians which are in the Haldane phase. Before considering this application
we will present a simpler application that is of interest in its own right.

i) The Spin 1/2 Anisotropic Heisenberg Ferromagnet. In this application we take
the spin to be 1/2. The unperturbed Hamiltonian is

Vij=- ί^σlσ) - 1) + σfσ] + σfσj]

with λ > 1. This Hamiltonian has two ground states: ( + + ) and ( ). Their

energy is zero. The nonzero matrix elements of Vu j are

< + - I vtj + - > = < - + | vitj\ - + > = 2λ,

< + - I vUj\ - + > = < - + | vu\ + - > = - 2 .
Thus this Hamiltonian is diagonally dominant if λ > 1. Note that the excited states
cannot be written as simple tensor products. The perturbation P is arbitrary with
the obvious caveat that the closer λ is to 1, the smaller we require ε to be. For
example, we could take the perturbation to be Sf S* so that the total Hamiltonian
becomes a completely anisotropic Heisenberg Hamiltonian in which all three
coupling constants are different.

ii) The Haldane Phase. The unperturbed Hamiltonian we consider is the
Hamiltonian we obtain by applying the unitary transformation of Sect. 2 to the
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Hamiltonian H2 with β = — 1/3 and δ small but nonzero. (If δ equals zero, then the
model is trivial but the ground state is highly degenerate. The perturbation theory
we are considering cannot be regarded as a perturbation around δ = 0.) To put this
model in the general framework above, we think of two adjacent sites 2ί and 2z + 1
that are strongly coupled as a single site. Site i in the general framework of class
C will correspond to sites 2i and 2ί + 1 in the Hamiltonian H2. So the dimension
d is 9 rather than 3.

By changing the Hamiltonian in some trivial ways we can take the unperturbed
Hamiltonian to be given by

V = P + δP + ~ Pli + 2,2i+3 > (5.4)

where PJJ+X = U~1Pl=jl1U with P^j+χ denoting the projection onto the states
whose restriction to sites j and j + 1 has total spin 2. The nontrivial numerical fact
is that for δ ^ 0.033 we can find a basis in which this Hamiltonian is diagonally
dominant. We show this in the appendix.

The perturbation can be anything which preserves the Z 2 x Z 2 symmetry of the
transformed Hamiltonian. In particular the shaded portion of region H of the
phase diagram in Fig. 1.2 is covered. We can also add a small amount of the crystal
field term (S*)2 or make the isotropic terms S{ S i + 1 and (Si S i + 1 ) 2 slightly
anisotropic.

Note that the region of the Haldane phase in which we have rigorous control
does not include any translation invariant Hamiltonians. For δ = 1 and β = — 1/3
the ground states of the transformed Hamiltonian are simple tensor products, but
we have not been able to find a basis in which the Hamiltonian is diagonally
dominant. (If we could then the results of this section would allow us to conclude
that the translation invariant Hamiltonian was in the Haldane phase for β in
a small neighborhood of - 1/3.)

5.3. Development of the Expansion. The tensor products ( 8 ) 1 ^ $ with 1 ?g μt ^ d
form a basis for the state space for the finite volume A. We denote a choice of
{μJieΛ by K, and the corresponding basis vector by eκ. For an operator 0 we
define its matrix elements, 0{K, K'\ with respect to this basis in the usual way,
Oeκ = ]Γχ, 0(K\K)eκ>. For reasons having to do with the convergence of the
expansion, we will construct the ground states in a slightly different way from the
previous section. If Ko is a basis state which has nonzero overlap with the ground
state, then we can compute the ground state expectation of 0 by

~ j8Jf/2)Qexp(- /?fl/2)](K0, Ko)
( 5 5 )

Our basis is not orthonormal, but we can still develop the path space expansion as
we did in the last section. We must simply interpret expressions like (φt, Oφτ>) as
the φt9 φt> matrix element of the operator 0.

Let DUj be the diagonal part of VUj and OUj the off diagonal part of VUj. Let
D = ]Γ. jDij, 0 = Yji jOij. The sums are over nearest neighbor pairs. Using

= lim 1 - — I
iV-oo L ™
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we obtain

= lim Σ Π
IV-oo KιlN,K2ιN,...Kβ.ιlN t

= lim Σ Γ l Γ l i
Λί^oo KllN,K2IN,...Kβ.1/N ί L i V

Each of Kί/N9 K2/N9 Kβ-i/N is summed over the basis. The product over t is
over the values 1/iV, 2/iV, . . . , β. We take K^ = Ko in the above. Keeping in mind
that 1 - l/N(O + εP) = 1 - 1/JV Σi, J ° « . J ~ ε/NΣiP» w e continue the expansion
by choosing for each time t either the 1 term, one of the OUj terms or one of the &Pt

terms. Let n be the number of times we choose an Oitj term and m the number of
times we chose an sPt term. Let tί9t2, . . . , tn be the times at which we choose an
Oij term, and let (il9jΊ), (i2,J2X »(*«> jn) be the particular terms chosen at these
times. Likewise let sί9 s29 . . . , sm be the times at which we choose an εPi term and
let kl9 k29 . . . , kn be the terms chosen. A choice oϊK1/N, K2/N, . . . , Kβ9 tί9 . . . , ίπ,
0 Ί ? Λ ) ? , (ίiiJnλ sl9...9sm9kl9. ..9km will be referred to as a configuration
and denoted simply by C. The weight, W(C\ of the configuration is zero unless
K-t-i/N = ^ ί f ° r a U ί other than tί9 . . . , ίπ, 5 1 ? . . . , sOT. In this case

p = l

iiV
We divide the space time lattice into large blocks that are L units wide in each

of the space directions and τ units long in the time direction. We take the block
boundaries to run through lattice sites. This means that some lattice sites are on the
block boundaries, but all the bonds in the space direction will lie in exactly one
block, (τ is the length in physical units, not the length in terms of the number of
lattice sites. As always, the lattice sites should be thought of as being separated by
1/JV in the time direction.) The constants L and τ will be chosen later. (They will be
large.)

Next we define the support s(C) of a configuration C. It will be made up of
a subset of the blocks introduced above. First we look at the off diagonal operators
OipJp and Pkr which appear at times tp and sr, respectively. Any block which
contains part of the support of one of these operators is included in s(C). In the
remaining blocks the basis state at each site must be constant as a function of time.
Any of these blocks which contains a nearest neighbor pair of sites that are not in
one of the ground states of V is added to s(C).

To construct the m different ground states, we add the boundary term ΣieSyi Pϊ
to the Hamiltonian as we did in the previous section. As before Pf is the orthogonal
projection whose kernel consists of the states which equal ef on site i. Since the
basis is not orthogonal, the matrix of Pf need not be diagonal. The action of Pf in
our basis is given by

° if v = μ

e « - α μ > ϊ e « if v Φ μ '
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where αμ,v = (ef, e®)/(e®9 ef). By the symmetry, \\ef\\ = | |e«| |, and so αμ,v < 1.
Thus Pf is diagonally dominant in the basis. We treat Pf in the expansion just as
we do the Vitj terms. If a block which includes sites in dΛ has not already been
included in s(C) and one of the boundary sites is in a state other than the ground
state μ for the entire time interval, then we include this block in s(C).

As in the previous section the weight of a possible support set is defined to be
the sum of the weights of all the configurations that have that support set. We
decompose the support set into its connected components as we did in Sect. 4.3. In
the next section we will prove that the weight of a connected component χ is
exponentially small in the number of blocks in χ. Given this estimate the develop-
ment of the expansion and the proof of Theorem 5.1 proceed as in the previous
section with one small twist.

In the proof of part iv) of Theorem 4.3 we made use of the expansion
for Trexp(— βHμ

Λ). In this section we only develop expansions for
exp(— βH^)(K0,K0) for any basis element Ko. For a fixed volume A these
expansions imply

Trexp(- βHft = £ exp(- βHΊ){Kθ9 Ko) = c exp(- βf+ O(e~^))
Ko

for some constants /, y, c with y > 0. We cannot conclude that c = 1 as we had in
Sect. 4, and so we cannot conclude that the ground state eigenvalue is simple.
However, the above estimate shows that for small ε there is a gap between the
ground state eigenvalue and the next eigenvalue. When ε = 0 we know the ground
state eigenvalue is simple, so it must remain simple for small ε. The proof of the
existence of the gap now proceeds as in the previous section.

5.4. Proof of Convergence. The convergence of the expansion will be established
by comparing things with what we would get if we used the following "comparison
Hamiltonian." The diagonally dominant assumption implies that we can find
constants g > 0 and 0 < p < 1 such that

P'1 Σ IV,pσI ^ V . P ° ~ 9 ( 5 7 )
μ, v: μv φ pσ

for any pσ except pσ = 11, 22, . . . , mm. Let VUj be the Hamiltonian we get from
Vij as follows. Replace the off diagonal matrix elements by - p~ι times their
absolute value. Subtract g from the diagonal elements except for the diagonal
elements that are 0. Note that the choice of g and p insures that V is diagonally
dominant. Let Pt be the Hamiltonian we get from Pt by replacing every matrix
element by its absolute value times — p~γ. Finally, let

H = ΣVu + Σ^Pi- (5-8)
i, j i τLj

It is important to note that there is a 1/τL in front of the Pt term, rather than an ε.
(ε will be small compared to 1/τL.)

Lemma 5.2. Given μ > 0 we can find τ, L and ε0 such that for |ε| < ε0,

(5.9)

Here χ is any connected support set, W(χ) is its weight, and\χ\ is the number of blocks
ίnχ.
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How lkrge we must make τ and L and how small we must make ε0 depends on
the constants g and p which we chose above using the definition of diagonal
dominance. This lemma with large enough μ implies that the usual polymer
expansion converges.

Proof of Lemma 5.2. For a configuration C we let n(C) be the number of off
diagonal matrix elements in C which come from Vtj terms, and let m(C) be the
number of off diagonal elements which come from Pt terms. We let t(C) be 1/N
times the number of nearest neighbor pairs i9 j such that the configuration is not in
a ground state of VUj at time t. Then we let

μ(C) = (ετLΓ ( C V ( C ) exp( - gt(C)) I (5.10)

Let W{C) be the weight of C we get using the Hamiltonian H. Then we have

\W(C)\ = μ(C)W(C).

The proof of the lemma follows fairly easily from the following two lemmas.

Lemma 5.3. Given oc> Owe can choose τ and L large enough and ε0 small enough so
that for any configuration C with s(C) = χ, we have

μ(C)^exp(-α|χ|). (5.11)

Lemma 5.4.

Σ ^ (5.12)
C: s(C) = χ

where k is a constant that depends only on the perturbation Po. In particular it does
not depend on ε, L or τ.

Proof of Lemma 5.3. The key to the proof, and to the expansion of this section, is
the following fact. The operator VUj has no matrix elements between the ground
state and the excited states. Thus if a region of the space-time picture is in the
ground state, it can go into an excited state only by a matrix element from Pt or by
an excitation moving in from the right or the left. In other words, every connected
component of the excited region of a configuration C must have a factor of
ε associated with it. If one of these connected components extends a distance of at
least L in the space direction then μ(C) will contain a factor of pL. If it extends
a distance of at least τ in the time direction, then μ(C) will contain a factor of e~xg.
Since p < 1, g > 0 and τ and L are both large, pL and e~τg are both small.

For a block b, we let b denote the union of b and the blocks that touch it in
the sense of having at least one space time point in common with it. (Note that
the number of such blocks depends only on_ the dimension of the lattice.)
Let bl9b2, . . . ,bn be blocks in χ such that bl9 b2, . . . , bn do not have any
blocks in common. We will show later that we can choose these blocks so that
n ^ (1/M)|χ| + 1, where M is an integer that depends only on the number of
dimensions of the lattice. First we will show that we can associate a factor of
(ετL)1/q, ρL or e~gτ from μ(C) with each b{. The integer q is the maximum number of
blocks that the support of a single Pt can intersect. This will prove the lemma with
α given by

e~M« = rrmx{(εoτL)1/q, pL, e~gτ) .
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We can make α as large as we like by first choosing L and τ and then choosing ε0.
Consider bt. If it contains a matrix element from some Pi9 then there is a factor of
ετL in μ(C). Each factor of ετL is associated with at most q blocks, so we have
a factor of (sτL)1/q for bi. If there is no matrix element from some Pt in bi, then the
excited part of C must have a connected piece extending between bt and the exterior
of bi. Thus the part of μ(C) that is associated with b{ must be at least as small as the
larger of ρL and e~τg.

To complete the proof we must find bί,b2, . . . 9bn such that n ^ 1/M|χ| + 1
and bt and bj have no block in common. Pick b± in χ. L e t ^ be bλ unioned with the
blocks that touch b1. Let M be the number of blocks in bx. (If we have one spatial
dimension, b± is a five block by five block rectangle centered at b l 9 and_M = 25)
Now pick a block b2 in χ\b1. Continuing, we let bi be a block in χ\( j JI \ bx. Since bx

contains M blocks, χ \ ( J I = i ί cannot be empty until ί - 1 is at least (1/M)|χ|. If
i >j, then bt is not in bj. Hence bt and bj cannot have any blocks in common. |

Proof of Lemma 5.4. Throughout the proof we let n denote β/τ. Let Im(χ) be the set
of sites ί such that the support of Pf during the time interval ((m - l)τ, mτ) lies
entirely in χ. We then let

j Σ

Note that Hm contains a factor of τ compared to H. We claim that

lim sup £ W{C) S (e~Hie-H2 . . . e~H")(K0, Ko) .
N^-oo C: s(C) = χ

The claim follows from observing that every term in the left side appears in the path
space expansion of the right side, and all the terms in this expansion are non-
negative. We can bound the above by

since each term in this sum is nonnegative.
Let Dij and OUj be the diagonal and off diagonal parts of Kί><7 , respectively. The

definition of diagonal dominance and the choice of the constants g and p, i.e.,
inequality (5.7), imply that for any K\

.AΛ*'.*')

Σ Γl - i Σ OI
K L N i,j

= Γ1 - Tr Σ Σ OU1(K, K')]
L " i,j K A

^ Γ1 + 4 Σ DU(K', K'Λe ~WN)ΐ<ΛA^) g i . (5.14)
L ™ i,j J

Defining

M = sup Σ Pt(K9 K'),
K' K
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we have

Σ0U + J Σ p
ij ^ ielm(χ)

ύ 1 + ^ \Im{l)\M g e x p ^ \Im(χ)\M

for any K'. Repeated applications of this bound to the usual path space expansion
lead to

Σ (eHίe-Hi . . . <ΓH»)(K, Xo) ̂  Π f
K m = l

Now (1/L) Σ m |/m(χ)| ^ c|χ|, where c is a constant that depends only on the size of
the support set of P o I

Appendix

In this appendix we will give a basis in which the Hamiltonian H2 with β = — 1/3
and δ sufficiently small is diagonally dominant. We start by defining nine states on
two sites. For ί = 1, 2, 3, 4 we let

Φi = Φi ® Φi ,

where φt are the states on the site defined in Sect. 2.3. We then let

= I - + > ,

Note that these states are not all orthogonal. The first four states are just the
ground states of the transformed Hamiltonian on two sites with β = — 1/3. Thus
these states are the states one obtains by applying the unitary transformation of
Sect. 2 to the four states on two sites which have total spin equal to 0 to 1. The last
five states above are the states one obtains by applying this unitary transformation
to the states on two sites which have total spin 2. Thus they too are eigenstates of
the transformed Hamiltonian on two sites. Finally we define ek = cφk for
fc = 1, . . . 4 and ek = \j/k for k = 5, . . . 9. Since the basis does not have to be
normalized we are free to choose the constant c as we like. To test for diagonal
dominance we must compute the matrix of Vu+1 as defined in Eq. (5.4) in Sect. 5.2.
Vis diagonally dominant if inequality (5.3) holds. We find that with c = 0.161, Fis
diagonally dominant for δ ^ 0.033.
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Note added in proof. The details of the proof for the final bound of Theorem 2.6 (the exponential
decay of the usual two point correlation) are not given in this paper. A sketch of the proof can be
found in [38]. In [38], Matsui proves that the model treated in Theorem 2.6 has a unique ground
state and a gap, results that we do not prove in the present paper.




