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Abstract. This paper presents results on symmetries of the spectrum of singularities
for random cascades found in the statistical theory of turbulence. It is shown that
empirical dimension curves possess a natural symmetry whose presence restricts the
class of allowable probability distributions of the cascade generator in a simple man-
ner. In particular, necessary and sufficient conditions on the probability distribution
of the generator are obtained for symmetry of the singularity spectrum within a large
class of cascade models.

1. Introduction and Main Results

Recent analysis of the Anselmet, Gagne, Hopfmger, Antonia (1984) turbulence data
by Meneveau and Sreenivasan (1987a) provides a comparison of empirical curves
with those predicted by various cascade models, including the lognormal cascade,
the binomial cascades, and the beta model. Based on comparisons of "singularity
spectra" one finds models with remarkably good fit (e.g. either random or deterministic
binomial cascades), as well as examples of departure (e.g. lognormal cascade). The
statistical problem of precise dimension estimation is well-known to be non-trivial;
see Cutler (1991a,b) for a comprehensive treatment of the statistical problems. In
place of fitting the probability distribution of the generator, the focus here is on a
qualitative property of the dimension spectrum which will be shown to restrict the
class of generators in a natural way.

A precise description of the random cascade goes as follows. For simplicity let us

consider partitions of the unit interval J into b subintervals of equal lengths - the
b

empirical curves are for one-dimensional cross sections. Let W(σ\, . . . , σn), for σι G
{0, 1, . . . , 6 — 1}, be independent and identically distributed (iid) mean one positive
random variables. These are referred to as the cascaded variables or generators of
the cascade. Define a sequence of random measures μn on J by

dμn(x) =pn(x)dx, (1)
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where the density pn(x) is the step function defined by

pn{x) = W(σ\)W(σuσ2)...W(σu . . . , σn), x G Jn(σu . . . , σn). (2)

One may apply the martingale convergence theorem to show that with probability one
the sequence {μn} will converge to a random measure μ^ which defines the random
cascade; see Kahane and Peyriere (1976).

Let W denote a generic random variable carrying the common distribution of the
W(σj, . . . , crn)'s. The completely random multinomial cascade is a special case of
the general random cascade obtained by taking W = bpi with equal probabilities

-, for i = 0, . . . , b - 1; "completely random" is added here for emphasis on equal
b
probabilities. The completely random binomial cascade is obtained by taking 6 = 2.
The lognormal cascade refers to the case in which W has a lognormal distribution.

The binomial case b = 2, p\ = p was considered in the analysis of one-dimensional
sections of turbulence data by Meneveau and Sreenivasan (1987a). The value p = 0.7
was seen to provide a "good fit" of the singularity spectrum, which for this model is
defined as a dimension function

f(a) = dim F(σ) (3)

of the set

F(a) = L e [0, 1] : lim ^ ^ ^ = A , (4)
| n J

CO

where Jn(x) = J(σi, . . . , σn), for x = Σ σίb~ι in base b. This example is well-

known and an implicit formula for the singularity spectrum as the Legendre transform

f(a) = min{aq + τ(q)} (5)
q

of the Renyi exponent,

= l i m l o & r w . r , gB))
n-^oo n

is known rigorously by combinatorics and large deviation computations; see Collet,
Lebowitz, Porzio (1987), Feder (1988), Falconer (1990), Brown, Minchon, Peyriere
(1990). The prime in the sum in (6) indicates a sum over those intervals with positive
mass.

The existence and computation of the singularity spectrum and the Renyi scaling
exponent for the random cascade was recently obtained by Holley and Waymire
(1992) under conditions on the I^'s which bound them away from 0 and below
the branching number b. While the results are applicable to the case of the random
multinomial cascades, they do not cover the lognormal cascade, for example. In any
case they are sufficient to show that the singularity spectrum and the Renyi function
for the completely random multinomial cascades and the deterministic multinomial
cascade coincide as described in (5), (6) above. Moreover, it follows from Holley and
Waymire (1992) that under strong boundedness conditions on the W's one has

r(q) = Xb(q) (7)

and
f(a) = min{aq + χb(q)} , (8)

q
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where

Xb(q) = \ogbEWq-(q-l). (9)

To state precise conditions on the cascaded distribution (generator) under which this
holds let us first define

Then (7) and (8) hold whenever
i. 0 < a < W < b with probability one for some α.

EW2q

<b(EW*)2

β
/ w

iii. χb(a) > 0 and E\ TTTTTTΓ- } > b~\ where ρ(β) = 1 - a.
\\\W\\ooJ

We assume the strong boundedness throughout.
An inspection of the graph in Meneveau and Sreenivasan (Fig. 2, p. 1425, 1987a)

for the "fit" of the binomial cascade with b = 2, p = 0.7 strongly suggests a natural
symmetry in the turbulence data. It follows from the results of Holley and Way mire
(1992) that both the completely random multinomial cascades and the deterministic
multinomial cascades have the same singularity spectrum. Moreover, it follows that
for the (completely random and/or deterministic) binomial cascade with parameters
b = 2, p G (0, 1) one has an implicit formula for the singularity spectrum f(a) in
terms of the Legendre transform relations ( —— = q. — = — a

\da dq
f(a) = min{aq -f r(q)} = σq(a) + τ(q(a)), (11)

where

τ(q) = X2(q) = Iog2{pq + (1 - p)q} , (12)

and
dr pq\og2p + (\ -p)q\og2(\ -p)

a = a(q) = - — = — — . (13)
dq pq + (1 - p)q

We leave it to the reader to directly establish the symmetry (i.e. unimodal with sym-
metry about the mode) for arbitrary p as a warm-up to the general theorem below;
also see the paragraph following Remark 2.

Remark 1. Although it has not been rigorously proven, conventional wisdom and
formal calculations for the lognormal cascade suggest that f(a) may be a quadratic
function and a Legendre transform pair with τ(q) = Xb{q) (e.g. see Meneveau and
Sreenivasan, p. 64, 1987b, or Mandelbrot 1989); and therefore symmetric about its
mode. This would also be anticipated by the results of Holley and Waymire (1992)
if the conditions on the bounds required there can be relaxed. However, surprisingly,
this is quite possibly not the case in view of preliminary computations by Durrett and
Gravner (personal communication).

In order to obtain a general symmetry condition we shall consider classes of
random cascades for which one has the Legendre transform relation

f{a) = min{qa + Xb(q)} (14)
q
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As noted above, this is known to include the random multinomial cascades, as a
consequence of Holley and Waymire (1992), as well as other strongly bounded random
cascades. One may check directly from (14) that f(a) is concave since for any 0 <
r < 1, a\, ct2,

f(ra\ + (1 - r)a2) = mm{q(ra\ + (1 - r)a2) + Xb(q)}
qq

= min{r[qa{ + χb(q)] + (1 - r) [qa2 + Xb(q)]}
q

>r/(αi) + (l-r)/(α2). (15)

Theorem 1. Consider strongly bounded random cascades for which (14) holds. Then
the singularity spectrum f(a) is symmetric about its mode if and only if

EWq

where c = - logElog W~].

Proof. From (14), (15) one has

, v dχb(q) Λ , . fΛΠ,

a = a(q) = = 1 - ρ(q), (17)
dq

where (cf. (10))

Now observe from this that a(q) + Oί(—q) = 2a(0) if and only if

Q(q) + Q(-q) = 2Q(0) - (19)

Taking base-6 logarithms in (16) and differentiation with respect to q shows that (16)
implies (19). Similarly, one may integrate (19) to get (16). The constant follows by
taking q = 0. Next observe from (14) that one can express f(a(q)) = f(a(—q)) as

Xb(q) = - ot(-q) q + Xb(-q) (20)

Equivalently, therefore, one has for (14)

Xb(q) ~ Xb(-q) = - Wq) + a(~q))q. (21)

Now, as already noted, the symmetry condition (16) is equivalent to (19) which, in
turn by (17), is equivalent to

a(q) + a(-q) = 2α(0). (22)

Thus, from this and the definition of Xb(q) one gets after taking logarithms that (21)
is equivalent to (16). •

Remark 2. The curve ρ(q) plays a basic role in the analysis in Holley and Waymire
(1992). Properties and a graph of ρ(q) are given in Lemma 3.3, Fig. 3.1 therein which
remain valid in the unbounded cases as well.

EWq

While the symmetry condition as stated is easily computed, e.g. =
EW q

[4p(l — p)]q in the completely random binomial case, the following corollary makes
its meaning transparent.
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Corollary1 1. Under condition (14), one has a symmetric singularity spectrum for
strongly bounded random cascades if an only if there is an a > 0 such that

Proof. If one assumes the condition of the corollary then Wq and aqW~q have the
same distribution. Taking expected values, the symmetry condition of the theorem
follows immediately from this with c = logα. Conversely, the symmetry condition
of the theorem implies that logW and log(aW~]) have the same moment generating
function and therefore the same probability distribution. The symmetry condition of
the corollary therefore follows with a = ec. •

Remark 3. In view of Corollary 1 the symmetry condition is that up to a rescaling
W and W~ι have the same distribution. This makes the completely random binomial
example transparent for all values of p merely by rescaling W~ι to W\

Another way to view this is to consider probability distributions on the multi-
plicative group Γ — .ftΛ of positive real numbers with identity e = 1. Recall that
symmetric probability distributions on the additive group G = ./Z about b G G can
be viewed as follows. A real-valued random variable X has a symmetric distribution
about (the additive identity) 0 iff X and (its additive inverse) —X have the same
distribution. Secondly, X has a symmetric distribution about a E R iff (its additive
translate) X - a is symmetric about 0. In particular, such a symmetry has a natural
abstraction to a property of a probability distribution on an arbitrary group. With this
we observe that our symmetry condition expressed in Corollary 1 is simply the con-
dition that a probability distribution on the (multiplicative) group Γ be "symmetric
about a E Γ." Thus one determines the basic symmetry in the otherwise seemingly
asymmetric cases of random binomial, lognormal, etc. generators.

Acknowledgements. The second author gratefully acknowledges support from the Center for the
Study of Earth from Space (CSES)/Cooperative Institute for Research in the Environmental Sciences
(CIRES) and the Program in Applied Mathematics at the University of Coloiado at Boulder during
the academic year 1990-91. This work was also partially supported under grants from ARO (26620-
GS), NASA (NAGW-2707), and NSF (DMS-9103738). The first named author is supported by a
NASA Fellowship in CSES/CIRES and the University of Colorado.

References

1. Anselmet, F., Gagne, Y., Hopfinger, E.J., Antonia, R.A.: High-order velocity structure functions
in turbulent shear flows. J. Fluid. Mech. 140, 63-89 (1984)

2. Brown, G., Michon, G., Peyriere, J.: On the multifractal analysis of measures, preprint (1990)
3. Collet, P., Lebowitz, J.L., Porzio, A.: The dimension spectrum of some dynamical systems. J.

Statist. Phys. 47, 609-644 (1987)
4. Cutler, C : Some results on the behavior and estimation of the fractal dimensions of distributions

on attractors. J. Statist. Phys. 62, 651-708 (1991a)
5. Cutler, C : Erratum and Addendum: Some results on the behavior and estimation of the fractal

dimensions of distributions on attractors, J. Statist. Phys. 65, 417-418 (1991b)
6. Durrett, R., Gravner, J.: Personal communication 1991
7. Falconer, K.: Fractal Geometry. New York: Wiley 1990
8. Feder, J. Fractals. New York: Plenum Press 1988



370 S. Peckham and E. Waymire

9j. Holley, R., Waymire, E.: Multifractal dimensions and scaling exponents for strongly bounded
random cascades. To appear in Ann. Applied Probab. vol.2, (4) (1992)

10. Kahane, J.P., Peyriere, J.: Sυr certaines martingales de Benoit Mandelbrot. Adv. Math. 22,
131-145 (1976)

11. Mandelbrot, B.B.: Multifractal measures, especially for the geophysicist. Pure Appld. Geophys.
131, 5-42 (1989)

12. Meneveau, C, Sreenivasan, K.R.: Simple multifractal cascade model for fully developed turbu-
lence. Phys. Rev. Lett. 59(13), 1424-1427 (1987a)

13. Meneveau, C , Sreenivasan, K.R.: The multifractal spectrum of the dissipation field in turbulent
flows. Nucl. Phys. B (Proc. Suppl.) 2, 49-76 (1987b)

Communicated by A.Jaffe




